1
|
Zhang L, Li B, Liu J, Bian YF, Lin GX, Zhou Y. Unveiling hub genes and biological pathways: A bioinformatics analysis of Trauma-Induced Coagulopathy (TIC). PLoS One 2025; 20:e0322043. [PMID: 40300035 PMCID: PMC12040245 DOI: 10.1371/journal.pone.0322043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/15/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Trauma-Induced Coagulopathy is a severe condition that rapidly manifests following traumatic injury and is characterized by shock, hypoperfusion, and vascular damage. This study employed bioinformatics methods to identify crucial hub genes and pathways associated with TIC. METHODS Microarray datasets (accession number GSE223245) were obtained from the Gene Expression Omnibus (GEO) database. The data were subjected analyses to identify the Differentially Expressed Genes (DEGs), which were further subjected to GO and KEGG pathway analyses. Subsequently, a Protein-Protein Interaction (PPI) network was constructed and hub DEGs closely linked to TIC were identified using CytoHubba, MCODE, and CTD scores. The diagnostic value of these hub genes was evaluated using Receiver Operating Characteristic (ROC) analysis. RESULTS Among the analyzed genes, 269 were identified as DEGs, comprising 103 upregulated and 739 downregulated genes. Notably, several significant hub genes were associated with the development of TIC, as revealed by bioinformatic analyses. CONCLUSIONS This study highlights the critical impact of newly discovered genes on the development and progression of TIC. Further validation through experimental research and clinical trials is required to confirm these findings.
Collapse
Affiliation(s)
- Lingang Zhang
- Emergency Department, Yuncheng Central Hospital affiliated to Shanxi Medical University,Yuncheng, Shanxi, China
| | - Bo Li
- Reproductive Medicine Department, Yuncheng Central Hospital affiliated to Shanxi Medical University, Yuncheng, Shanxi, China
| | - Jing Liu
- Pathology Department, Yuncheng Central Hospital affiliated to Shanxi Medical University,Yuncheng, Shanxi, China
| | - Yan feng Bian
- Emergency sungery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital,Third Hospital of Shanxi Medical University, China
| | - Guo xing Lin
- Emergency Department, Hebei province Xingtai Third People’s Hospital, Xingtai, China
| | - Ying Zhou
- Emergency Department, Yuncheng Central Hospital affiliated to Shanxi Medical University,Yuncheng, Shanxi, China
| |
Collapse
|
2
|
Xinyue Z, Li S, Yujie W, Yingcai D, Changhao B, Xueli Z. Engineering of HEK293T Cell Factory for Lentiviral Production by High-Throughput Selected Genes. CRISPR J 2024; 7:272-282. [PMID: 39387256 DOI: 10.1089/crispr.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B, and SPINK6) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with LDAH knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of GBP3, BPIFC, and LDAH increased LV titer by ∼8.33-fold, and knockout (or knockdown) of GBP3, NHLRC1, and NHLRC3 increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.
Collapse
Affiliation(s)
- Zhang Xinyue
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wang Yujie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Binzhou Medical University, Shandong, China
| | - Dai Yingcai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Shanghai Jiao Tong University, Shanghai, China
| | - Bi Changhao
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhang Xueli
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
3
|
Kodiha M, Azad N, Chu S, Crampton N, Stochaj U. Oxidative stress and signaling through EGFR and PKA pathways converge on the nuclear transport factor RanBP1. Eur J Cell Biol 2024; 103:151376. [PMID: 38011756 DOI: 10.1016/j.ejcb.2023.151376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Nuclear protein trafficking requires the soluble transport factor RanBP1. The subcellular distribution of RanBP1 is dynamic, as the protein shuttles between the nucleus and cytoplasm. To date, the signaling pathways regulating RanBP1 subcellular localization are poorly understood. During interphase, RanBP1 resides mostly in the cytoplasm. We show here that oxidative stress concentrates RanBP1 in the nucleus, and our study defines the underlying mechanisms. Specifically, RanBP1's cysteine residues are not essential for its oxidant-induced relocation. Furthermore, our pharmacological approaches uncover that signaling mediated by epidermal growth factor receptor (EGFR) and protein kinase A (PKA) control RanBP1 localization during stress. In particular, pharmacological inhibitors of EGFR or PKA diminish the oxidant-dependent relocation of RanBP1. Mutant analysis identified serine 60 and tyrosine 103 as regulators of RanBP1 nuclear accumulation during oxidant exposure. Taken together, our results define RanBP1 as a target of oxidative stress and a downstream effector of EGFR and PKA signaling routes. This positions RanBP1 at the intersection of important cellular signaling circuits.
Collapse
Affiliation(s)
- Mohamed Kodiha
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Nabila Azad
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Siwei Chu
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Noah Crampton
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada.
| |
Collapse
|
4
|
Du X, Sheng J, Chen Y, He S, Yang Y, Huang Y, Fu Y, Lie L, Han Z, Zhu B, Liu H, Wen Q, Zhou X, Zhou C, Hu S, Ma L. The E3 ligase HERC5 promotes antimycobacterial responses in macrophages by ISGylating the phosphatase PTEN. Sci Signal 2023; 16:eabm1756. [PMID: 37279284 DOI: 10.1126/scisignal.abm1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Innate immune signaling in macrophages during viral infection is regulated by ISGylation, the covalent attachment of the ubiquitin-like protein interferon-stimulated gene 15 (ISG15) to protein targets. Here, we explored the role of ISGylation in the macrophage response to infection with Mycobacterium tuberculosis. In human and mouse macrophages, the E3 ubiquitin ligases HERC5 and mHERC6, respectively, mediated the ISGylation of the phosphatase PTEN, which promoted its degradation. The decreased abundance of PTEN led to an increase in the activity of the PI3K-AKT signaling pathway, which stimulated the synthesis of proinflammatory cytokines. Bacterial growth was increased in culture and in vivo when human or mouse macrophages were deficient in the major E3 ISG15 ligase. The findings expand the role of ISGylation in macrophages to antibacterial immunity and suggest that HERC5 signaling may be a candidate target for adjunct host-directed therapy in patients with tuberculosis.
Collapse
Affiliation(s)
- Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shitong He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
6
|
Ma J, Zhao X, Shi L. Circ 003390/Eukaryotic translation initiation factor 4A3 promoted cell migration and proliferation in endometrial cancer via vascular endothelial growth factor signaling by miR-195-5p. Bioengineered 2022; 13:11958-11972. [PMID: 35546509 PMCID: PMC9276038 DOI: 10.1080/21655979.2022.2069358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The differential expression of circRNA in different biological samples renders it as an ideal biomarker for disease diagnosis and identification of tissue development. In addition, the gradual clarification of the mode of action of circRNA in disease makes it as a potential therapeutic target. The purpose of this study is to investigate the role and regulating mechanism of circular RNA has circ 003390 (circWEE1) on Endometrial cancer (EC) genesis. To estimate clinical values of circWEE1 on cell migration and proliferation in EC, and its possible mechanisms. The expression of circWEE1 and EIF4A3in EC cells have been evaluated using qPCR and Western blot. The expression of circWEE1 and EIF4A3 levels were increased in patients with EC. Over-expression of circWEE1 or down-regulation of miR-195-5p promoted cell migration and proliferation in EC. Next, we verified that eIF4A3 binds to the circWEE1 mRNA transcript, circWEE1 served as a sponge that directly targeted miR-195-5p. Bioinformatics prediction forecast that miR-195-5p directly targeted VEGF at 3'-UTR, which was confirmed by luciferase reporter assay. Our findings indicate that Circular RNA hsa circWEE1/EIF4A3 promoted cell migration and proliferation in EC via VEGF signaling by miR-195-5p, which could provide pivotal potential therapeutic targets for the treatment of EC.
Collapse
Affiliation(s)
- Jing Ma
- Department of Gynecology and Obstetrics, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiwa Zhao
- Department of Gynecology and Obstetrics, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Shi
- Department of Gynecology and Obstetrics, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Singh DK, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger LS, Artyomov MN, Khader SA, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nat Commun 2022; 13:679. [PMID: 35115549 PMCID: PMC8814034 DOI: 10.1038/s41467-022-28315-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Aladyeva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Esaulova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Amanda Swain
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Maxim N Artyomov
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA.
| |
Collapse
|
8
|
Roles of ESCRT proteins (ALIX and CHIMP4A) and their interplay with ISG15 during tick-borne flavivirus infection. J Virol 2021; 96:e0162421. [PMID: 34851141 PMCID: PMC8826915 DOI: 10.1128/jvi.01624-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.
Collapse
|
9
|
Paparisto E, Hunt NR, Labach DS, Coleman MD, Di Gravio EJ, Dodge MJ, Friesen NJ, Côté M, Müller A, Hoenen T, Barr SD. Interferon-Induced HERC5 Inhibits Ebola Virus Particle Production and Is Antagonized by Ebola Glycoprotein. Cells 2021; 10:cells10092399. [PMID: 34572049 PMCID: PMC8472148 DOI: 10.3390/cells10092399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Survival following Ebola virus (EBOV) infection correlates with the ability to mount an early and robust interferon (IFN) response. The host IFN-induced proteins that contribute to controlling EBOV replication are not fully known. Among the top genes with the strongest early increases in expression after infection in vivo is IFN-induced HERC5. Using a transcription- and replication-competent VLP system, we showed that HERC5 inhibits EBOV virus-like particle (VLP) replication by depleting EBOV mRNAs. The HERC5 RCC1-like domain was necessary and sufficient for this inhibition and did not require zinc finger antiviral protein (ZAP). Moreover, we showed that EBOV (Zaire) glycoprotein (GP) but not Marburg virus GP antagonized HERC5 early during infection. Our data identify a novel ‘protagonist–antagonistic’ relationship between HERC5 and GP in the early stages of EBOV infection that could be exploited for the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nina R. Hunt
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Daniel S. Labach
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Macon D. Coleman
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Eric J. Di Gravio
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nicole J. Friesen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Marceline Côté
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Roger-Guindon Hall Room 4214, Ottawa, ON K1H 8M5 , Canada;
| | - Andreas Müller
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Thomas Hoenen
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
- Correspondence:
| |
Collapse
|
10
|
Singh D, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger L, Artyomov M, Khader S, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. RESEARCH SQUARE 2021:rs.3.rs-664507. [PMID: 34282414 PMCID: PMC8288154 DOI: 10.21203/rs.3.rs-664507/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. While studies have reported immune profiling using single cell RNA sequencing in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. We performed longitudinal single-cell RNA sequencing of bronchoalveolar lavage (BAL) cell suspensions from adult rhesus macaques infected with SARS-CoV-2 (n=6) to delineate the early dynamics of immune cells changes. The bronchoalveolar compartment exhibited dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi) (peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline). We observed the accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I IFN response was highly induced in the plasmacytoid dendritic cells. The presence of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin converting enzyme 2 (ACE2) expression was also observed. These macrophages were significantly recruited to the lungs of macaques at 3dpi and harbored SARS-CoV-2, while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery. The recruitment of a myeloid cell-mediated Type I IFN response is associated with the rapid clearance of SARS-CoV-2 infection in macaques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Larry Schlesinger
- Southwest National Primate Research Center Texas Biomedical Research Institute
| | | | | | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute
| |
Collapse
|
11
|
Mathieu NA, Paparisto E, Barr SD, Spratt DE. HERC5 and the ISGylation Pathway: Critical Modulators of the Antiviral Immune Response. Viruses 2021; 13:1102. [PMID: 34207696 PMCID: PMC8228270 DOI: 10.3390/v13061102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Mammalian cells have developed an elaborate network of immunoproteins that serve to identify and combat viral pathogens. Interferon-stimulated gene 15 (ISG15) is a 15.2 kDa tandem ubiquitin-like protein (UBL) that is used by specific E1-E2-E3 ubiquitin cascade enzymes to interfere with the activity of viral proteins. Recent biochemical studies have demonstrated how the E3 ligase HECT and RCC1-containing protein 5 (HERC5) regulates ISG15 signaling in response to hepatitis C (HCV), influenza-A (IAV), human immunodeficiency virus (HIV), SARS-CoV-2 and other viral infections. Taken together, the potent antiviral activity displayed by HERC5 and ISG15 make them promising drug targets for the development of novel antiviral therapeutics that can augment the host antiviral response. In this review, we examine the emerging role of ISG15 in antiviral immunity with a particular focus on how HERC5 orchestrates the specific and timely ISGylation of viral proteins in response to infection.
Collapse
Affiliation(s)
- Nicholas A. Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| | - Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
12
|
Jacquet S, Pontier D, Etienne L. Rapid Evolution of HERC6 and Duplication of a Chimeric HERC5/6 Gene in Rodents and Bats Suggest an Overlooked Role of HERCs in Mammalian Immunity. Front Immunol 2021; 11:605270. [PMID: 33391270 PMCID: PMC7775381 DOI: 10.3389/fimmu.2020.605270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Studying the evolutionary diversification of mammalian antiviral defenses is of main importance to better understand our innate immune repertoire. The small HERC proteins are part of a multigene family, including HERC5 and HERC6, which have probably diversified through complex evolutionary history in mammals. Here, we performed mammalian-wide phylogenetic and genomic analyses of HERC5 and HERC6, using 83 orthologous sequences from bats, rodents, primates, artiodactyls, and carnivores—the top five representative groups of mammalian evolution. We found that HERC5 has been under weak and differential positive selection in mammals, with only primate HERC5 showing evidences of pathogen-driven selection. In contrast, HERC6 has been under strong and recurrent adaptive evolution in mammals, suggesting past and widespread genetic arms-races with viral pathogens. Importantly, the rapid evolution of mammalian HERC6 spacer domain suggests that it might be a host-pathogen interface, targeting viral proteins and/or being the target of virus antagonists. Finally, we identified a HERC5/6 chimeric gene that arose from independent duplication in rodent and bat lineages and encodes for a conserved HERC5 N-terminal domain and divergent HERC6 spacer and HECT domains. This duplicated chimeric gene highlights adaptations that potentially contribute to rodent and bat immunity. Our findings open new research avenues on the functions of HERC6 and HERC5/6 in mammals, and on their implication in antiviral innate immunity.
Collapse
Affiliation(s)
- Stéphanie Jacquet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France.,CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Dominique Pontier
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Lucie Etienne
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
13
|
Picard L, Ganivet Q, Allatif O, Cimarelli A, Guéguen L, Etienne L. DGINN, an automated and highly-flexible pipeline for the detection of genetic innovations on protein-coding genes. Nucleic Acids Res 2020; 48:e103. [PMID: 32941639 PMCID: PMC7544217 DOI: 10.1093/nar/gkaa680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive evolution has shaped major biological processes. Finding the protein-coding genes and the sites that have been subjected to adaptation during evolutionary time is a major endeavor. However, very few methods fully automate the identification of positively selected genes, and widespread sources of genetic innovations such as gene duplication and recombination are absent from most pipelines. Here, we developed DGINN, a highly-flexible and public pipeline to Detect Genetic INNovations and adaptive evolution in protein-coding genes. DGINN automates, from a gene's sequence, all steps of the evolutionary analyses necessary to detect the aforementioned innovations, including the search for homologs in databases, assignation of orthology groups, identification of duplication and recombination events, as well as detection of positive selection using five methods to increase precision and ranking of genes when a large panel is analyzed. DGINN was validated on nineteen genes with previously-characterized evolutionary histories in primates, including some engaged in host-pathogen arms-races. Our results confirm and also expand results from the literature, including novel findings on the Guanylate-binding protein family, GBPs. This establishes DGINN as an efficient tool to automatically detect genetic innovations and adaptive evolution in diverse datasets, from the user's gene of interest to a large gene list in any species range.
Collapse
Affiliation(s)
- Lea Picard
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Laboratoire de Biologie et Biométrie Evolutive, CNRS UMR 5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Quentin Ganivet
- Laboratoire de Biologie et Biométrie Evolutive, CNRS UMR 5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Omran Allatif
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Andrea Cimarelli
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Evolutive, CNRS UMR 5558, Université Claude Bernard Lyon 1, Villeurbanne, France
- Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Lucie Etienne
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
14
|
Evolution-Guided Structural and Functional Analyses of the HERC Family Reveal an Ancient Marine Origin and Determinants of Antiviral Activity. J Virol 2018; 92:JVI.00528-18. [PMID: 29669830 PMCID: PMC6002735 DOI: 10.1128/jvi.00528-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 01/24/2023] Open
Abstract
In humans, homologous to the E6-AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing protein 5 (HERC5) is an interferon-induced protein that inhibits replication of evolutionarily diverse viruses, including human immunodeficiency virus type 1 (HIV-1). To better understand the origin, evolution, and function of HERC5, we performed phylogenetic, structural, and functional analyses of the entire human small-HERC family, which includes HERC3, HERC4, HERC5, and HERC6. We demonstrated that the HERC family emerged >595 million years ago and has undergone gene duplication and gene loss events throughout its evolution. The structural topology of the RCC1-like domain and HECT domains from all HERC paralogs is highly conserved among evolutionarily diverse vertebrates despite low sequence homology. Functional analyses showed that the human small HERCs exhibit different degrees of antiviral activity toward HIV-1 and that HERC5 provides the strongest inhibition. Notably, coelacanth HERC5 inhibited simian immunodeficiency virus (SIV), but not HIV-1, particle production, suggesting that the antiviral activity of HERC5 emerged over 413 million years ago and exhibits species- and virus-specific restriction. In addition, we showed that both HERC5 and HERC6 are evolving under strong positive selection, particularly blade 1 of the RCC1-like domain, which we showed is a key determinant of antiviral activity. These studies provide insight into the origin, evolution, and biological importance of the human restriction factor HERC5 and the other HERC family members. IMPORTANCE Intrinsic immunity plays an important role as the first line of defense against viruses. Studying the origins, evolution, and functions of proteins responsible for effecting this defense will provide key information about virus-host relationships that can be exploited for future drug development. We showed that HERC5 is one such antiviral protein that belongs to an evolutionarily conserved family of HERCs with an ancient marine origin. Not all vertebrates possess all HERC members, suggesting that different HERCs emerged at different times during evolution to provide the host with a survival advantage. Consistent with this, two of the more recently emerged HERC members, HERC5 and HERC6, displayed strong signatures of having been involved in an ancient evolutionary battle with viruses. Our findings provide new insights into the evolutionary origin and function of the HERC family in vertebrate evolution, identifying HERC5 and possibly HERC6 as important effectors of intrinsic immunity in vertebrates.
Collapse
|
15
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
16
|
Eslamloo K, Xue X, Hall JR, Smith NC, Caballero-Solares A, Parrish CC, Taylor RG, Rise ML. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics 2017; 18:706. [PMID: 28886690 PMCID: PMC5591513 DOI: 10.1186/s12864-017-4099-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Due to the limited availability and high cost of fish oil in the face of increasing aquaculture production, there is a need to reduce usage of fish oil in aquafeeds without compromising farm fish health. Therefore, the present study was conducted to determine if different levels of vegetable and fish oils can alter antiviral responses of salmon macrophage-like cells (MLCs). Atlantic salmon (Salmo salar) were fed diets containing 7.4% (FO7) or 5.1% (FO5) fish oil. These diets were designed to be relatively low in EPA + DHA (i.e. FO7: 1.41% and FO5: 1%), but near the requirement level, and resulting in comparable growth. Vegetable oil (i.e. rapeseed oil) was used to balance fish oil in experimental diets. After a 16-week feeding trial, MLCs isolated from fish in these dietary groups were stimulated by a viral mimic (dsRNA: pIC) for 6 h (qPCR assay) and 24 h (microarray and qPCR assays). RESULTS The fatty acid composition of head kidney leukocytes varied between the two dietary groups (e.g. higher 20:5n-3 in the FO7 group). Following microarray assays using a 44K salmonid platform, Rank Products (RP) analysis showed 14 and 54 differentially expressed probes (DEP) (PFP < 0.05) between the two diets in control and pIC groups (FO5 vs. FO7), respectively. Nonetheless, Significance Analysis of Microarrays (SAM, FDR < 0.05) identified only one DEP between pIC groups of the two diets. Moreover, we identified a large number (i.e. 890 DEP in FO7 and 1128 DEP in FO5 overlapping between SAM and RP) of pIC-responsive transcripts, and several of them were involved in TLR-/RLR-dependent and cytokine-mediated pathways. The microarray results were validated as significantly differentially expressed by qPCR assays for 2 out of 9 diet-responsive transcripts and for all of the 35 selected pIC-responsive transcripts. CONCLUSION Fatty acid-binding protein adipocyte (fabp4) and proteasome subunit beta type-8 (psmb8) were significantly up- and down-regulated, respectively, in the MLCs of fish fed the diet with a lower level of fish oil, suggesting that they are important diet-responsive, immune-related biomarkers for future studies. Although the different levels of dietary fish and vegetable oils involved in this study affected the expression of some transcripts, the immune-related pathways and functions activated by the antiviral response of salmon MLCs in both groups were comparable overall. Moreover, the qPCR revealed transcripts responding early to pIC (e.g. lgp2, map3k8, socs1, dusp5 and cflar) and time-responsive transcripts (e.g. scarb1-a, csf1r, traf5a, cd80 and ctsf) in salmon MLCs. The present study provides a comprehensive picture of the putative molecular pathways (e.g. RLR-, TLR-, MAPK- and IFN-associated pathways) activated by the antiviral response of salmon MLCs.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
17
|
ZNF395 Is an Activator of a Subset of IFN-Stimulated Genes. Mediators Inflamm 2017; 2017:1248201. [PMID: 28316371 PMCID: PMC5339479 DOI: 10.1155/2017/1248201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of the interferon (IFN) pathway in response to infection with pathogens results in the induction of IFN-stimulated genes (ISGs) including proinflammatory cytokines, which mount the proper antiviral immune response. However, aberrant expression of these genes is pathogenic to the host. In addition to IFN-induced transcription factors non-IFN-regulated factors contribute to the transcriptional control of ISGs. Here, we show by genome wide expression analysis, siRNA-mediated suppression and Doxycycline-induced overexpression that the cellular transcription factor ZNF395 activates a subset of ISGs including the chemokines CXCL10 and CXCL11 in keratinocytes. We found that ZNF395 acts independently of IFN but enhances the IFN-induced expression of CXCL10 and CXCL11. Luciferase reporter assays revealed a requirement of intact NFκB-binding sites for ZNF395 to stimulate the CXCL10 promoter. The transcriptional activation of CXCL10 and CXCL11 by ZNF395 was abolished after inhibition of IKK by BMS-345541, which increased the stability of ZNF395. ZNF395 encodes at least two motifs that mediate the enhanced degradation of ZNF395 in response to IKK activation. Thus, IKK is required for ZNF395-mediated activation of transcription and enhances its turn-over to keep the activity of ZNF395 low. Our results support a previously unrecognized role of ZNF395 in the innate immune response and inflammation.
Collapse
|
18
|
Garcia-Minambres A, Eid SG, Mangan NE, Pade C, Lim SS, Matthews AY, de Weerd NA, Hertzog PJ, Mak J. Interferon epsilon promotes HIV restriction at multiple steps of viral replication. Immunol Cell Biol 2017; 95:478-483. [PMID: 28045025 DOI: 10.1038/icb.2016.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Abstract
Interferon epsilon (IFNɛ) is a type I IFN that is expressed constitutively in the female reproductive tract (FRT), and contributes to protection in models of sexually transmitted infections. Using multiple cell systems, including reporter cell lines and activated peripheral blood lymphocytes (PBLs), we show that recombinant IFNɛ impairs HIV infection at stage(s) post HIV entry and up to the translation of viral proteins. Consistent with this, IFNɛ upregulated a number of host cell restriction factors that block HIV at these stages of the replication cycle. The potency of IFNɛ induction of these HIV restriction factors was comparable to conventional type I IFNs, namely IFNα and IFNβ. IFNɛ also significantly reduced the infectivity of progeny virion particles likely by inducing expression of HIV restriction factors, such as IFITM3, which act at that stage of infection. Thus, our data demonstrate that human IFNɛ suppresses HIV replication at multiple stages of infection.
Collapse
Affiliation(s)
- Albert Garcia-Minambres
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sahar G Eid
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Corinna Pade
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Antony Y Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Johnson Mak
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
19
|
Schott K, Riess M, König R. Role of Innate Genes in HIV Replication. Curr Top Microbiol Immunol 2017; 419:69-111. [PMID: 28685292 DOI: 10.1007/82_2017_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells use an elaborate innate immune surveillance and defense system against virus infections. Here, we discuss recent studies that reveal how HIV-1 is sensed by the innate immune system. Furthermore, we present mechanisms on the counteraction of HIV-1. We will provide an overview how HIV-1 actively utilizes host cellular factors to avoid sensing. Additionally, we will summarize effectors of the innate response that provide an antiviral cellular state. HIV-1 has evolved passive mechanism to avoid restriction and to regulate the innate response. We review in detail two prominent examples of these cellular factors: (i) NLRX1, a negative regulator of the innate response that HIV-1 actively usurps to block cytosolic innate sensing; (ii) SAMHD1, a restriction factor blocking the virus at the reverse transcription step that HIV-1 passively avoids to escape sensing.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany.
| |
Collapse
|
20
|
Eslamloo K, Xue X, Booman M, Smith NC, Rise ML. Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:187-205. [PMID: 27255218 DOI: 10.1016/j.dci.2016.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/29/2016] [Accepted: 05/29/2016] [Indexed: 06/05/2023]
Abstract
A study was conducted to determine the transcriptome response of Atlantic cod (Gadus morhua) macrophages to the viral mimic, polyriboinosinic polyribocytidylic acid (pIC), using a 20K Atlantic cod microarray platform and qPCR. We identified 285 significantly up-regulated and 161 significantly down-regulated probes in cod macrophages 24 h after pIC stimulation. A subset of 26 microarray-identified transcripts was subjected to qPCR validation using samples treated with pIC or phosphate-buffered saline (control) over time (3, 6, 12, 24, 48 h), and 77% of them showed a significant response to pIC. The microarray and qPCR analyses in this study showed that pIC induced the expression of cod macrophage transcripts involved in RLR- and TLR-dependent pathogen recognition (e.g. tlr3, tlr7, mda5 and lgp2), as well as signal transducers (e.g. stat1 and nfkbia) and transcription activators (e.g. irf7 and irf10) in the MyD88-independent and dependent signalling pathways. Several immune effectors (e.g. isg15s, viperin, herc4, mip2 and ccl13) were significantly up-regulated in pIC-stimulated cod macrophages. The expression of some transcripts (e.g. irf7, irf10, viperin) was significantly up-regulated by pIC as early as 12 h. All pIC-induced transcripts had peak expression at either 24 h (e.g. tlr7, irf7, mip2) or 48 h (e.g. tlr3, lgp2, stat1). This study suggests possible roles of both vertebrate-conserved (e.g. tlr3 as an up-regulated gene) and fish-specific (tlr22g as a down-regulated gene) receptors in dsRNA recognition, and the importance of conserved and potentially fish-specific interferon stimulated genes in cod macrophages.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Marije Booman
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| |
Collapse
|
21
|
Sánchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 2016; 73:1955-68. [PMID: 26801221 PMCID: PMC11108380 DOI: 10.1007/s00018-016-2139-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The HERC gene family encodes proteins with two characteristic domains in their sequence: the HECT domain and the RCC1-like domain (RLD). In humans, the HERC family comprises six members that can be divided into two groups based on their molecular mass and domain structure. Whereas large HERCs (HERC1 and HERC2) contain one HECT and more than one RLD, small HERCs (HERC3-6) possess single HECT and RLD domains. Accumulating evidence shows the HERC family proteins to be key components of a wide range of cellular functions, including neurodevelopment, DNA damage repair, cell growth and immune response. Considering the significant recent advances made regarding HERC functionality, an updated review summarizing the progress is greatly needed at 10 years since the last HERC review. We provide an integrated view of HERC function and go into detail about its implications for several human diseases such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|