1
|
A trip down memory lane with Retrovirology. Retrovirology 2019; 16:22. [PMID: 31434571 PMCID: PMC6702738 DOI: 10.1186/s12977-019-0485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
2
|
Keshavarz M, Karbalaie Niya MH, Tameshkel FS, Mozaffari Nejad AS, Monavari SH, Keyvani H. A Survey on Human T-cell Lymphotropic Virus Type 1 (HTLV-1) and Xenotropic Murine Leukemia Virus-Related Virus (XMRV) Coinfection in Tehran, Iran. J Pharm Bioallied Sci 2018; 10:166-171. [PMID: 30237687 PMCID: PMC6142885 DOI: 10.4103/jpbs.jpbs_25_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Xenotropic murine leukemia virus-related virus (XMRV) is a gamma retrovirus, which has been detected in patients with prostate cancer, chronic fatigue syndrome, and general population with a number of acquired infections such as infection with human T-cell lymphotropic virus (HTLV) and human immunodeficiency virus (HIV). The aim of this study was to determine the HTLV-1 and XMRV coinfection for the first time in Iranian patients who were admitted to the Tehran hospitals. Materials and Methods: Two hundred and ninety one patients suspected with HTLV-1 were referred to the hospitals affiliated to the Iran University of Medical Sciences, Tehran, Iran from April 2012 to October 2016. Genomic deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) from peripheral blood mononuclear cells/cerebrospinal fluids was extracted by High Pure Viral Nucleic Acid Kit (Roche, Germany). After complementary DNA synthesis, conventional reverse transcriptase polymerase chain reaction was used for the detection of HTLV-1 or XMRV-infected patients. Statistical Package for Social Sciences (SPSS) software, version 16 (SPSS, Chicago, IL, USA) was used for statistical analyses. Results: Of the 291 patients suspected of HTLV infection, 123 (42.3%) were male with a mean age of 38±15 years. HTLV-1 RNA was found in 93 (31.9%) specimens comprising 40 men (41.3%) and 53 women (56.9%). Of the 93 patients who were HTLV-1 positive, one sample (1%) was positive for XMRV env gene. Conclusion: These findings suggest that the lack of significant detection of XMRV in patients who were HTLV-1 positive could not be associated with complications of HTLV-1. Although this is a preliminary report from Iranian patients with HTLV-1, further studies are needed to show the actual prevalence of XMRV infection by geographical distribution and various populations.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fahimeh Safarnezhad Tameshkel
- Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran.,Student Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sasan Mozaffari Nejad
- Molecular Research Center, Student Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gomes STM, Imbiriba L, Burbano RR, Silva ALDC, Feitosa RNM, Cayres-Vallinoto IMV, Ishak MDOG, Ishak R, Vallinoto ACR. Lack of evidence for human infection with Xenotropic murine leukemia virus-related virus in the Brazilian Amazon basin. Rev Soc Bras Med Trop 2014; 47:302-6. [PMID: 25075480 DOI: 10.1590/0037-8682-0075-2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/16/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION This study confirmed the absence of natural infection with Xenotropic murine leukemia virus-related virus (XMRV) or XMRV-related disease in human populations of the Brazilian Amazon basin. We demonstrated that 803 individuals of both sexes, who were residents of Belem in the Brazilian State of Pará, were not infected with XMRV. METHODS Individuals were divided into 4 subgroups: healthy individuals, individuals infected with human immunodeficiency virus, type 1 (HIV-1), individuals infected with human T-lymphotrophic virus, types 1 or 2 (HTLV-1/2), and individuals with prostate cancer. XMRV infection was investigated by nested PCR to detect the viral gag gene and by quantitative PCR to detect pol. RESULTS There was no amplification of either gag or pol segments from XRMV in any of the samples examined. CONCLUSIONS This study supports the conclusions of the studies that eventually led to the retraction of the original study reporting the association between XMRV and human diseases.
Collapse
Affiliation(s)
| | - Luciana Imbiriba
- Laboratório de Virologia, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Rommel Rodriguéz Burbano
- Laboratório de Citogenética Humana, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Artur Luiz da Costa Silva
- Laboratório de Polimorfismo de DNA, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | | | | | | | - Ricardo Ishak
- Laboratório de Virologia, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | | |
Collapse
|
4
|
Tang Y, George A, Taylor T, Hildreth JEK. Cholesterol depletion inactivates XMRV and leads to viral envelope protein release from virions: evidence for role of cholesterol in XMRV infection. PLoS One 2012; 7:e48013. [PMID: 23110160 PMCID: PMC3482229 DOI: 10.1371/journal.pone.0048013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/24/2012] [Indexed: 01/24/2023] Open
Abstract
Membrane cholesterol plays an important role in replication of HIV-1 and other retroviruses. Here, we report that the gammaretrovirus XMRV requires cholesterol and lipid rafts for infection and replication. We demonstrate that treatment of XMRV with a low concentration (10 mM) of 2-hydroxypropyl-β-cyclodextrin (2OHpβCD) partially depleted virion-associated cholesterol resulting in complete inactivation of the virus. This effect could not be reversed by adding cholesterol back to treated virions. Further analysis revealed that following cholesterol depletion, virus-associated Env protein was significantly reduced while the virions remained intact and retained core proteins. Increasing concentrations of 2OHpβCD (≥20 mM) resulted in loss of the majority of virion-associated cholesterol, causing disruption of membrane integrity and loss of internal Gag proteins and viral RNA. Depletion of cholesterol from XMRV-infected cells significantly reduced virus release, suggesting that cholesterol and intact lipid rafts are required for the budding process of XMRV. These results suggest that unlike glycoproteins of other retroviruses, the association of XMRV glycoprotein with virions is highly dependent on cholesterol and lipid rafts.
Collapse
Affiliation(s)
- Yuyang Tang
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Alvin George
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Thyneice Taylor
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - James E. K. Hildreth
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lee D, Das Gupta J, Gaughan C, Steffen I, Tang N, Luk KC, Qiu X, Urisman A, Fischer N, Molinaro R, Broz M, Schochetman G, Klein EA, Ganem D, DeRisi JL, Simmons G, Hackett J, Silverman RH, Chiu CY. In-depth investigation of archival and prospectively collected samples reveals no evidence for XMRV infection in prostate cancer. PLoS One 2012; 7:e44954. [PMID: 23028701 PMCID: PMC3445615 DOI: 10.1371/journal.pone.0044954] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/10/2012] [Indexed: 12/31/2022] Open
Abstract
XMRV, or xenotropic murine leukemia virus (MLV)-related virus, is a novel gammaretrovirus originally identified in studies that analyzed tissue from prostate cancer patients in 2006 and blood from patients with chronic fatigue syndrome (CFS) in 2009. However, a large number of subsequent studies failed to confirm a link between XMRV infection and CFS or prostate cancer. On the contrary, recent evidence indicates that XMRV is a contaminant originating from the recombination of two mouse endogenous retroviruses during passaging of a prostate tumor xenograft (CWR22) in mice, generating laboratory-derived cell lines that are XMRV-infected. To confirm or refute an association between XMRV and prostate cancer, we analyzed prostate cancer tissues and plasma from a prospectively collected cohort of 39 patients as well as archival RNA and prostate tissue from the original 2006 study. Despite comprehensive microarray, PCR, FISH, and serological testing, XMRV was not detected in any of the newly collected samples or in archival tissue, although archival RNA remained XMRV-positive. Notably, archival VP62 prostate tissue, from which the prototype XMRV strain was derived, tested negative for XMRV on re-analysis. Analysis of viral genomic and human mitochondrial sequences revealed that all previously characterized XMRV strains are identical and that the archival RNA had been contaminated by an XMRV-infected laboratory cell line. These findings reveal no association between XMRV and prostate cancer, and underscore the conclusion that XMRV is not a naturally acquired human infection.
Collapse
Affiliation(s)
- Deanna Lee
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
- University of California San Francisco-Abbott Viral Diagnostics and Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | | | | | - Imke Steffen
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ning Tang
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Ka-Cheung Luk
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Xiaoxing Qiu
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Anatoly Urisman
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
| | - Nicole Fischer
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ross Molinaro
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Miranda Broz
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
| | | | - Eric A. Klein
- Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Don Ganem
- Novartis Institutes for Biomedical Research, Emeryville, California, United States of America
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Graham Simmons
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - John Hackett
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | | | - Charles Y. Chiu
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
- University of California San Francisco-Abbott Viral Diagnostics and Discovery Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
6
|
No evidence for xenotropic murine leukemia-related virus infection in Sweden using internally controlled multiepitope suspension array serology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1399-410. [PMID: 22787191 DOI: 10.1128/cvi.00391-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many syndromes have a large number of differential diagnoses, a situation which calls for multiplex diagnostic systems. Myalgic encephalomyelitis (ME), also named chronic fatigue syndrome (CFS), is a common disease of unknown etiology. A mouse retrovirus, xenotropic murine leukemia-related virus (XMRV), was found in ME/CFS patients and blood donors, but this was not corroborated. However, the paucity of serological investigations on XMRV in humans prompted us to develop a serological assay which cover many aspects of XMRV antigenicity. It is a novel suspension array method, using a multiplex IgG assay with nine recombinant proteins from the env and gag genes of XMRV and 38 peptides based on known epitopes of vertebrate gammaretroviruses. IgG antibodies were sought in 520 blood donors and 85 ME/CFS patients and in positive- and negative-control sera from animals. We found no differences in seroreactivity between blood donors and ME/CFS patients for any of the antigens. This did not support an association between ME/CFS and XMRV infection. The multiplex serological system had several advantages: (i) biotinylated protein G allowed us to run both human and animal sera, which is essential because of a lack of XMRV-positive humans; (ii) a novel quality control was a pan-peptide positive-control rabbit serum; and (iii) synthetic XMRV Gag peptides with degenerate positions covering most of the variation of murine leukemia-like viruses did not give higher background than nondegenerate analogs. The principle may be used for creation of variant tolerant peptide serologies. Thus, our system allows rational large-scale serological assays with built-in quality control.
Collapse
|
7
|
Mohan KVK, Devadas K, Sainath Rao S, Hewlett I, Atreya C. Identification of XMRV infection-associated microRNAs in four cell types in culture. PLoS One 2012; 7:e32853. [PMID: 22438885 PMCID: PMC3306368 DOI: 10.1371/journal.pone.0032853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/31/2012] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture. METHODS Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. RESULTS MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. DISCUSSION The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.
Collapse
Affiliation(s)
- Ketha V. K. Mohan
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Krishnakumar Devadas
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Shilpakala Sainath Rao
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Chintamani Atreya
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Zhou Y, Steffen I, Montalvo L, Lee TH, Zemel R, Switzer WM, Tang S, Jia H, Heneine W, Winkelman V, Tailor CS, Ikeda Y, Simmons G. Development and application of a high-throughput microneutralization assay: lack of xenotropic murine leukemia virus-related virus and/or murine leukemia virus detection in blood donors. Transfusion 2012; 52:332-42. [PMID: 22239212 DOI: 10.1111/j.1537-2995.2011.03519.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Xenotropic murine leukemia virus (MLV)-related virus (XMRV) and other related MLVs have been described with chronic fatigue syndrome and certain types of prostate cancer. In addition, prevalence rates as high as 7% have been reported in blood donors, raising the risk of transfusion-related transmission. Several laboratories have utilized microneutralization assays as a surrogate marker for detection of anti-MLV serologic responses--with up to 25% of prostate cancer patients reported to harbor neutralizing antibody responses. STUDY DESIGN AND METHODS We developed a high-throughput microneutralization assay for research studies on blood donors using retroviral vectors pseudotyped with XMRV-specific envelopes. Infection with these pseudotypes was neutralized by sera from both macaques and mice challenged with XMRV, but not preimmune serum. A total of 354 plasma samples from blood donors in the Reno/Tahoe area were screened for neutralization. RESULTS A total of 6.5% of donor samples gave moderate neutralization of XMRV, but not control pseudotypes. However, further testing by Western blot revealed no evidence of antibodies against MLVs in any of these samples. Furthermore, no evidence of infectious virus or viral nucleic acid was observed. CONCLUSION A microneutralization assay was developed for detection of XMRV and can be applied in a high-throughput format for large-scale studies. Although a proportion of blood donors demonstrated the ability to block XMRV envelope-mediated infection, we found no evidence that this inhibition was mediated by specific antibodies elicited by exposure to XMRV or MLV. It is likely that this moderate neutralization is mediated through another, nonspecific mechanism.
Collapse
Affiliation(s)
- Yanchen Zhou
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Testing strategies for detection of xenotropic murine leukemia virus-related virus infection. Adv Virol 2012; 2011:281425. [PMID: 22312340 PMCID: PMC3265300 DOI: 10.1155/2011/281425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/18/2011] [Accepted: 06/10/2011] [Indexed: 11/17/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a newly identified gamma retrovirus and may be associated with prostate cancer- (PC) and chronic fatigue syndrome (CFS). Since its identification in 2006 and detection of polytropic murine lenkemia virus (MLV)-like sequences in CFS patients in 2010, several test methods including nucleic acid testing methods and serological assays have been developed for detection of XMRV and/or MLV-like sequences. However, these research assays have not yet been validated and evaluated due to the lack of well-characterized reference materials. Mouse DNA contamination should be carefully checked when testing human specimens in order to avoid false-positive detection of XMRV or MLV-like sequences.
Collapse
|
10
|
Dodd RY, Hackett J, Linnen JM, Dorsey K, Wu Y, Zou S, Qiu X, Swanson P, Schochetman G, Gao K, Carrick JM, Krysztof DE, Stramer SL. Xenotropic murine leukemia virus-related virus does not pose a risk to blood recipient safety. Transfusion 2011; 52:298-306. [PMID: 22098340 DOI: 10.1111/j.1537-2995.2011.03450.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND When xenotropic murine leukemia virus-related virus (XMRV) was first reported in association with chronic fatigue syndrome, it was suggested that it might offer a risk to blood safety. Thus, the prevalence of the virus among blood donors and, if present, its transmissibility by transfusion need to be defined. STUDY DESIGN AND METHODS Two populations of routine blood donor samples (1435 and 13,399) were obtained for prevalence evaluations; samples from a linked donor-recipient repository were also evaluated. Samples were tested for the presence of antibodies to XMRV-related recombinant antigens and/or for XMRV RNA, using validated, high-throughput systems. RESULTS The presence of antibodies to XMRV could not be confirmed among a total of 17,249 blood donors or recipients (0%; 95% confidence interval [CI], 0%-0.017%); 1763 tested samples were nonreactive for XMRV RNA (0%; 95% CI, 0%-0.17%). Evidence of infection was absent from 109 recipients and 830 evaluable blood samples tested after transfusion of a total of 3741 blood components. CONCLUSIONS XMRV and related murine leukemia virus (MLV) markers are not present among a large population of blood donors and evidence of transfusion transmission could not be detected. Thus, these viruses do not currently pose a threat to blood recipient safety and further actions relating to XMRV and MLV are not justified.
Collapse
Affiliation(s)
- Roger Y Dodd
- American Red Cross Holland Laboratory, Rockville, Maryland 20855, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Prevalence of XMRV nucleic acid and antibody in HIV-1-Infected men and in men at risk for HIV-1 Infection. Adv Virol 2011; 2011:268214. [PMID: 22282703 PMCID: PMC3265298 DOI: 10.1155/2011/268214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/08/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023] Open
Abstract
Xenotropic MLV-Related Virus (XMRV) was recently reported to be associated with prostate cancer and chronic fatigue syndrome (CFS). Infection was also reported in 3.7% of healthy individuals. These highly reported frequencies of infection prompted concerns about the possibility of a new, widespread retroviral epidemic. The Multicenter AIDS Cohort Study (MACS) provides an opportunity to assess the prevalence of XMRV infection and its association with HIV-1 infection among men who have sex with men. Reliable detection of XMRV infection requires the application of multiple diagnostic methods, including detection of human antibodies to XMRV and detection of XMRV nucleic acid. We, therefore, tested 332 patient plasma and PBMC samples obtained from recent visits in a subset of patients in the MACS cohort for XMRV antibodies using Abbott prototype ARCHITECT chemiluminescent immunoassays (CMIAs) and for XMRV RNA and proviral DNA using a XMRV single-copy qPCR assay (X-SCA). Although 9 of 332 (2.7%) samples showed low positive reactivity against a single antigen in the CMIA, none of these samples or matched controls were positive for plasma XMRV RNA or PBMC XMRV DNA by X-SCA. Thus, we found no evidence of XMRV infection among men in the MACS regardless of HIV-1 serostatus.
Collapse
|
12
|
Absence of detectable XMRV and other MLV-related viruses in healthy blood donors in the United States. PLoS One 2011; 6:e27391. [PMID: 22110639 PMCID: PMC3215715 DOI: 10.1371/journal.pone.0027391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/16/2011] [Indexed: 02/06/2023] Open
Abstract
Background Preliminary studies in chronic fatigue syndrome (CFS) patients and XMRV infected animals demonstrated plasma viremia and infection of blood cells with XMRV, indicating the potential risk for transfusion transmission. XMRV and MLV-related virus gene sequences have also been detected in 4–6% of healthy individuals including blood donors in the U.S. These results imply that millions of persons in the U.S. may be carrying the nucleic acid sequences of XMRV and/or MLV-related viruses, which is a serious public health and blood safety concern. Methodology/Principal Findings To gain evidence of XMRV or MLV-related virus infection in the U.S. blood donors, 110 plasma samples and 71 PBMC samples from blood donors at the NIH blood bank were screened for XMRV and MLV-related virus infection. We employed highly sensitive assays, including nested PCR and real-time PCR, as well as co-culture of plasma with highly sensitive indicator DERSE cells. Using these assays, none of the samples were positive for XMRV or MLV-related virus. Conclusions/Significance Our results are consistent with those from several other studies, and demonstrate the absence of XMRV or MLV-related viruses in the U.S. blood donors that we studied.
Collapse
|
13
|
Simmons G, Glynn SA, Komaroff AL, Mikovits JA, Tobler LH, Hackett J, Tang N, Switzer WM, Heneine W, Hewlett IK, Zhao J, Lo SC, Alter HJ, Linnen JM, Gao K, Coffin JM, Kearney MF, Ruscetti FW, Pfost MA, Bethel J, Kleinman S, Holmberg JA, Busch MP. Failure to confirm XMRV/MLVs in the blood of patients with chronic fatigue syndrome: a multi-laboratory study. Science 2011; 334:814-7. [PMID: 21940862 PMCID: PMC3299483 DOI: 10.1126/science.1213841] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Murine leukemia viruses (MLVs), including xenotropic-MLV-related virus (XMRV), have been controversially linked to chronic fatigue syndrome (CFS). To explore this issue in greater depth, we compiled coded replicate samples of blood from 15 subjects previously reported to be XMRV/MLV-positive (14 with CFS) and from 15 healthy donors previously determined to be negative for the viruses. These samples were distributed in a blinded fashion to nine laboratories, which performed assays designed to detect XMRV/MLV nucleic acid, virus replication, and antibody. Only two laboratories reported evidence of XMRV/MLVs; however, replicate sample results showed disagreement, and reactivity was similar among CFS subjects and negative controls. These results indicate that current assays do not reproducibly detect XMRV/MLV in blood samples and that blood donor screening is not warranted.
Collapse
Affiliation(s)
- Graham Simmons
- Blood Systems Research Institute and University of California, San Francisco, San Francisco, CA 94118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qiu X, Swanson P, Tang N, Leckie GW, Devare SG, Schochetman G, Hackett J. Seroprevalence of xenotropic murine leukemia virus-related virus in normal and retrovirus-infected blood donors. Transfusion 2011; 52:307-16. [PMID: 22023235 DOI: 10.1111/j.1537-2995.2011.03395.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Xenotropic murine leukemia virus-related virus (XMRV) has been reported in patients with prostate cancer and chronic fatigue syndrome. Although results have been conflicting, the potential of XMRV as an infectious human retrovirus has raised concerns about transfusion safety. To address this issue, normal and retrovirus-infected blood donors were screened for evidence of XMRV infection. STUDY DESIGN AND METHODS Plasma from 1000 US, 100 human immunodeficiency virus Type 1-infected Cameroonian, and 642 human T-lymphotropic virus Type I (HTLV-I)-infected or uninfected Japanese blood donors as well as 311 sexually transmitted disease diagnostic specimens were screened for antibodies to XMRV gp70 and p15E using chemiluminescent immunoassays (CMIAs). CMIA-reactive samples were evaluated by p30 CMIA, Western blot, and real-time reverse transcriptase polymerase chain reaction. RESULTS XMRV seroreactivity was low (0%-0.6%) with the exception of the HTLV-I-infected donors (4.9%). Antibody was detected against only a single XMRV protein (p15E or gp70); none of the seroreactive samples had detectable XMRV pol or env sequences. The elevated seroreactivity in HTLV-I-infected donors was due to an increased p15E seroreactive rate (4.1%). Inspection of XMRV and HTLV sequences revealed a high level of conservation within the immunodominant region (IDR) of the transmembrane protein. In some cases, HTLV IDR peptide competitively reduced the XMRV p15E signal. CONCLUSIONS Based on the low prevalence of seroreactivity, detection of antibody to only a single XMRV protein and the absence of XMRV sequences, this study finds no compelling evidence of XMRV in normal or retrovirus-infected blood donors. The increased p15E seroreactivity observed in HTLV infection is likely due to cross-reactive antibodies.
Collapse
Affiliation(s)
- Xiaoxing Qiu
- Infectious Diseases R&D, Abbott Diagnostics, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Setty MKHG, Devadas K, Ragupathy V, Ravichandran V, Tang S, Wood O, Gaddam DS, Lee S, Hewlett IK. XMRV: usage of receptors and potential co-receptors. Virol J 2011; 8:423. [PMID: 21896167 PMCID: PMC3184104 DOI: 10.1186/1743-422x-8-423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/06/2011] [Indexed: 11/25/2022] Open
Abstract
Background XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC) patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS). Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors. Methods To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma) cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR. Results Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP. Conclusion XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.
Collapse
|
16
|
Phylogeny-directed search for murine leukemia virus-like retroviruses in vertebrate genomes and in patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome and prostate cancer. Adv Virol 2011; 2011:341294. [PMID: 22315600 PMCID: PMC3265301 DOI: 10.1155/2011/341294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 01/20/2023] Open
Abstract
Gammaretrovirus-like sequences occur in most vertebrate genomes. Murine Leukemia Virus (MLV) like retroviruses (MLLVs) are a subset, which may be pathogenic and spread cross-species. Retroviruses highly similar to MLLVs (xenotropic murine retrovirus related virus (XMRV) and Human Mouse retrovirus-like RetroViruses (HMRVs)) reported from patients suffering from prostate cancer (PC) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) raise the possibility that also humans have been infected. Structurally intact, potentially infectious MLLVs occur in the genomes of some mammals, especially mouse. Mouse MLLVs contain three major groups. One, MERV G3, contained MLVs and XMRV/HMRV. Its presence in mouse DNA, and the abundance of xenotropic MLVs in biologicals, is a source of false positivity. Theoretically, XMRV/HMRV could be one of several MLLV transspecies infections. MLLV pathobiology and diversity indicate optimal strategies for investigating XMRV/HMRV in humans and raise ethical concerns. The alternatives that XMRV/HMRV may give a hard-to-detect “stealth” infection, or that XMRV/HMRV never reached humans, have to be considered.
Collapse
|
17
|
Sheikholvaezin A, Blomberg F, Ohrmalm C, Sjösten A, Blomberg J. Rational recombinant XMRV antigen preparation and bead coupling for multiplex serology in a suspension array. Protein Expr Purif 2011; 80:176-84. [PMID: 21871964 DOI: 10.1016/j.pep.2011.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Diagnosis of infectious diseases often requires demonstration of antibodies to the microbe (serology). A large set of antigens, covering viruses, bacteria, fungi and parasites may be needed. Recombinant proteins have a prime role in serological tests. Suspension arrays offer high throughput for simultaneous measurement of many different antibodies. We here describe a rational process for preparation, purification and coupling to beads of recombinant proteins prepared in Escherichia coli derivate Origami B, to be used in a serological Luminex suspension array. All six Gag and Env proteins (p10, p12, p15, p30, gp70 and p15E), from the xenotropic murine leukemia virus-related virus (XMRV), were prepared, allowing the creation of a multiepitope XMRV antibody assay. The procedure is generic and allows production of protein antigens ready for serological testing in a few working days. Instability and aggregation problems were circumvented by expression of viral proteins fused to a carrier protein (thioredoxin A; TrxA), purification via inclusion body formation, urea solubilization, His tag affinity chromatography and direct covalent coupling to microspheres without removal of the elution buffer. The yield of one preparation (2-10mg fusion protein per 100ml culture) was enough for 20-100 coupling reactions, sufficing for tests of many tens of thousands of sera. False serological positivity due to antibodies binding to TrxA and to traces of E. coli proteins remaining in the preparation could be reduced by preabsorption of sera with free TrxA and E. coli extract. The recombinant antigens were evaluated using anti-XMRV antibodies. Although hybrid proteins expressed in E. coli in this way will not have the entire tertiary structure and posttranslational modifications of the native proteins, they contain a large subset of the epitopes associated with them. The described strategy is simple, quick, efficient and cheap. It should be applicable for suspension array serology in general.
Collapse
Affiliation(s)
- Ali Sheikholvaezin
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
18
|
Mi Z, Lu Y, Zhang S, An X, Wang X, Chen B, Wang Q, Tong Y. Absence of xenotropic murine leukemia virus-related virus in blood donors in China. Transfusion 2011; 52:326-31. [PMID: 21854397 DOI: 10.1111/j.1537-2995.2011.03267.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xenotropic murine leukemia virus-related virus (XMRV) is a novel human gammaretrovirus that was first identified in patients with prostate cancer in 2006. Subsequent studies have shown that XMRV is also detected in patients with chronic fatigue syndrome (CFS) and even in some healthy controls and blood donors. However, some conflicting findings have been reported by different laboratories or in different regions. The association of XMRV with human diseases and the prevalence of XMRV in different populations needs to be further determined. STUDY DESIGN AND METHODS XMRV was screened in 391 blood samples from healthy blood donors in China. Nested reverse transcription-polymerase chain reaction (PCR) was used to amplify gag and env genes of XMRV from total RNA of peripheral blood mononuclear cells (PBMNCs) and plasma, respectively. Quantitative PCR was performed to detect XMRV env gene in genomic DNA of PBMNCs. To enhance the detection sensitivity, plasma was added into LNCaP cells to amplify XMRV in the plasma samples. RESULTS No XMRV was found in the 391 blood donors in China or in the LNCaP cells inoculated with plasma from the blood donors. CONCLUSION Both PCR and virus isolation in highly permissive LNCaP cells failed to detect XMRV in 391 Chinese blood donors, indicating that XMRV infection might not be present in blood donors in China.
Collapse
Affiliation(s)
- Zhiqiang Mi
- Beijing Institute of Microbiology and Epidemiology and Affiliated Hospital, Academy of Military Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Failure to Detect XMRV-Specific Antibodies in the Plasma of CFS Patients Using Highly Sensitive Chemiluminescence Immunoassays. Adv Virol 2011; 2011:854540. [PMID: 22312356 PMCID: PMC3265317 DOI: 10.1155/2011/854540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/10/2011] [Indexed: 11/20/2022] Open
Abstract
In 2009, Lombardi et al. reported their startling finding that the gammaretrovirus xenotropic murine leukemia virus-related retrovirus (XMRV) is present in 67% of blood samples of patients suffering from chronic fatigue syndrome (CFS), as opposed to only 3.7% of samples from healthy individuals. However, we and others could not confirm these results, using a nested PCR assay. An alternative to this highly sensitive, but contamination-prone, technique is to measure the serological response to XMRV. Thus, we tested the plasma samples from our cohorts of CFS patients and healthy controls for the presence of XMRV-specific antibodies. Using two novel chemiluminescence immunoassays (CMIAs), we show that none of our samples have any XMRV-reactive antibodies. Taken together with our previous findings, we conclude that XMRV is not present in any human individual tested by us, regardless of CFS or healthy control.
Collapse
|
20
|
XMRV Discovery and Prostate Cancer-Related Research. Adv Virol 2011; 2011:432837. [PMID: 22312343 PMCID: PMC3265305 DOI: 10.1155/2011/432837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/25/2011] [Indexed: 11/21/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) was first reported in 2006 in a study of human prostate cancer patients with genetic variants of the antiviral enzyme, RNase L. Subsequent investigations in North America, Europe, Asia, and Africa have either observed or failed to detect XMRV in patients (prostate cancer, chronic fatigue syndrome-myalgic encephalomyelitis (CFS-ME), and immunosuppressed with respiratory tract infections) or normal, healthy, control individuals. The principal confounding factors are the near ubiquitous presence of mouse-derived reagents, antibodies and cells, and often XMRV itself, in laboratories. XMRV infects and replicates well in many human cell lines, but especially in certain prostate cancer cell lines. XMRV also traffics to prostate in a nonhuman primate model of infection. Here, we will review the discovery of XMRV and then focus on prostate cancer-related research involving this intriguing virus.
Collapse
|
21
|
Knox K, Carrigan D, Simmons G, Teque F, Zhou Y, Hackett J, Qiu X, Luk KC, Schochetman G, Knox A, Kogelnik AM, Levy JA. No evidence of murine-like gammaretroviruses in CFS patients previously identified as XMRV-infected. Science 2011; 333:94-7. [PMID: 21628393 DOI: 10.1126/science.1204963] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Members of the gammaretroviruses--such as murine leukemia viruses (MLVs), most notably XMRV [xenotropic murine leukemia virus (X-MLV)-related virus--have been reported to be present in the blood of patients with chronic fatigue syndrome (CFS). We evaluated blood samples from 61 patients with CFS from a single clinical practice, 43 of whom had previously been identified as XMRV-positive. Our analysis included polymerase chain reaction and reverse transcription polymerase chain reaction procedures for detection of viral nucleic acids and assays for detection of infectious virus and virus-specific antibodies. We found no evidence of XMRV or other MLVs in these blood samples. In addition, we found that these gammaretroviruses were strongly (X-MLV) or partially (XMRV) susceptible to inactivation by sera from CFS patients and healthy controls, which suggested that establishment of a successful MLV infection in humans would be unlikely. Consistent with previous reports, we detected MLV sequences in commercial laboratory reagents. Our results indicate that previous evidence linking XMRV and MLVs to CFS is likely attributable to laboratory contamination.
Collapse
Affiliation(s)
- Konstance Knox
- Wisconsin Viral Research Group, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Paprotka T, Delviks-Frankenberry KA, Cingöz O, Martinez A, Kung HJ, Tepper CG, Hu WS, Fivash MJ, Coffin JM, Pathak VK. Recombinant origin of the retrovirus XMRV. Science 2011; 333:97-101. [PMID: 21628392 DOI: 10.1126/science.1205292] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The retrovirus XMRV (xenotropic murine leukemia virus-related virus) has been detected in human prostate tumors and in blood samples from patients with chronic fatigue syndrome, but these findings have not been replicated. We hypothesized that an understanding of when and how XMRV first arose might help explain the discrepant results. We studied human prostate cancer cell lines CWR22Rv1 and CWR-R1, which produce XMRV virtually identical to the viruses recently found in patient samples, as well as their progenitor human prostate tumor xenograft (CWR22) that had been passaged in mice. We detected XMRV infection in the two cell lines and in the later passage xenografts, but not in the early passages. In particular, we found that the host mice contained two proviruses, PreXMRV-1 and PreXMRV-2, which share 99.92% identity with XMRV over >3.2-kilobase stretches of their genomes. We conclude that XMRV was not present in the original CWR22 tumor but was generated by recombination of two proviruses during tumor passaging in mice. The probability that an identical recombinant was generated independently is negligible (~10(-12)); our results suggest that the association of XMRV with human disease is due to contamination of human samples with virus originating from this recombination event.
Collapse
Affiliation(s)
- Tobias Paprotka
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tuke PW, Tettmar KI, Tamuri A, Stoye JP, Tedder RS. PCR master mixes harbour murine DNA sequences. Caveat emptor! PLoS One 2011; 6:e19953. [PMID: 21647447 PMCID: PMC3102076 DOI: 10.1371/journal.pone.0019953] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/07/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND XMRV is the most recently described retrovirus to be found in Man, firstly in patients with prostate cancer (PC) and secondly in 67% of patients with chronic fatigue syndrome (CFS) and 3.7% of controls. Both disease associations remain contentious. Indeed, a recent publication has concluded that "XMRV is unlikely to be a human pathogen". Subsequently related but different polytropic MLV (pMLV) sequences were also reported from the blood of 86.5% of patients with CFS. and 6.8% of controls. Consequently we decided to investigate blood donors for evidence of XMRV/pMLV. METHODOLOGY/PRINCIPAL FINDINGS Testing of cDNA prepared from the whole blood of 80 random blood donors, generated gag PCR signals from two samples (7C and 9C). These had previously tested negative for XMRV by two other PCR based techniques. To test whether the PCR mix was the source of these sequences 88 replicates of water were amplified using Invitrogen Platinum Taq (IPT) and Applied Biosystems Taq Gold LD (ABTG). Four gag sequences (2D, 3F, 7H, 12C) were generated with the IPT, a further sequence (12D) by ABTG re-amplification of an IPT first round product. Sequence comparisons revealed remarkable similarities between these sequences, endogeous MLVs and the pMLV sequences reported in patients with CFS. CONCLUSIONS/SIGNIFICANCE Methodologies for the detection of viruses highly homologous to endogenous murine viruses require special caution as the very reagents used in the detection process can be a source of contamination and at a level where it is not immediately apparent. It is suggested that such contamination is likely to explain the apparent presence of pMLV in CFS.
Collapse
Affiliation(s)
- Philip W Tuke
- Transfusion Microbiology Research and Development, National Transfusion Microbiology Laboratories, National Health Service Blood and Transplant, Colindale, London, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
[Infection by HIV-2, HTLV and new human retroviruses in Spain]. Med Clin (Barc) 2011; 138:541-4. [PMID: 21565368 DOI: 10.1016/j.medcli.2011.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/01/2011] [Indexed: 12/17/2022]
|
25
|
Switzer WM, Jia H, Zheng H, Tang S, Heneine W. No association of xenotropic murine leukemia virus-related viruses with prostate cancer. PLoS One 2011; 6:e19065. [PMID: 21573232 PMCID: PMC3087753 DOI: 10.1371/journal.pone.0019065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/15/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The association of the xenotropic murine leukemia virus-related virus (XMRV) with prostate cancer continues to receive heightened attention as studies report discrepant XMRV prevalences ranging from zero up to 23%. It is unclear if differences in the diagnostic testing, disease severity, geography, or other factors account for the discordant results. We report here the prevalence of XMRV in a population with well-defined prostate cancers and RNase L polymorphism. We used broadly reactive PCR and Western blot (WB) assays to detect infection with XMRV and related murine leukemia viruses (MLV). METHODOLOGY/PRINCIPAL FINDINGS We studied specimens from 162 US patients diagnosed with prostate cancer with a intermediate to advanced stage (Gleason Scores of 5-10; moderate (46%) poorly differentiated tumors (54%)). Prostate tissue DNA was tested by PCR assays that detect XMRV and MLV variants. To exclude contamination with mouse DNA, we also designed and used a mouse-specific DNA PCR test. Detailed phylogenetic analysis was used to infer evolutionary relationships. RNase L typing showed that 9.3% were homozygous (QQ) for the R462Q RNase L mutation, while 45.6% and 45.1% were homozygous or heterozygous, respectively. Serologic testing was performed by a WB test. Three of 162 (1.9%) prostate tissue DNA were PCR-positive for XMRV and had undetectable mouse DNA. None was homozygous for the QQ mutation. Plasma from all three persons was negative for viral RNA by RT-PCR. All 162 patients were WB negative. Phylogenetic analysis inferred a distinct XMRV. CONCLUSIONS AND THEIR SIGNIFICANCE We found a very low prevalence of XMRV in prostate cancer patients. Infection was confirmed by phylogenetic analysis and absence of contaminating mouse DNA. The finding of undetectable antibodies and viremia in all three patients may reflect latent infection. Our results do not support an association of XMRV or MLV variants with prostate cancer.
Collapse
Affiliation(s)
- William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
| | | | | | | | | |
Collapse
|
26
|
Absence of XMRV retrovirus and other murine leukemia virus-related viruses in patients with chronic fatigue syndrome. J Virol 2011; 85:7195-202. [PMID: 21543496 DOI: 10.1128/jvi.00693-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is a multisystem disorder characterized by prolonged and severe fatigue that is not relieved by rest. Attempts to treat CFS have been largely ineffective primarily because the etiology of the disorder is unknown. Recently, CFS has been associated with xenotropic murine leukemia virus-related virus (XMRV) as well as other murine leukemia virus (MLV)-related viruses, though not all studies have found these associations. We collected blood samples from 100 CFS patients and 200 self-reported healthy volunteers from the same geographical area. We analyzed these in a blind manner using molecular, serological, and viral replication assays. We also analyzed samples from patients in the original study that reported XMRV in CFS patients. We did not find XMRV or related MLVs either as viral sequences or infectious viruses, nor did we find antibodies to these viruses in any of the patient samples, including those from the original study. We show that at least some of the discrepancy with previous studies is due to the presence of trace amounts of mouse DNA in the Taq polymerase enzymes used in these previous studies. Our findings do not support an association between CFS and MLV-related viruses, including XMRV, and the off-label use of antiretrovirals for the treatment of CFS does not seem justified at present.
Collapse
|
27
|
Makarova N, Zhao C, Zhang Y, Bhosle S, Suppiah S, Rhea JM, Kozyr N, Arnold RS, Ly H, Molinaro RJ, Parslow TG, Hunter E, Liotta D, Petros J, Blackwell JL. Antibody responses against xenotropic murine leukemia virus-related virus envelope in a murine model. PLoS One 2011; 6:e18272. [PMID: 21494670 PMCID: PMC3071813 DOI: 10.1371/journal.pone.0018272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/24/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Xenotropic murine leukemia virus-related virus (XMRV) was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC). Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP) that had the size and morphology of live infectious XMRV. RESULTS Immunization elicited Env-specific binding and neutralizing antibodies (NAb) against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1:1024 and 1:464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations. CONCLUSIONS Vaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans.
Collapse
Affiliation(s)
- Natalia Makarova
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Chunxia Zhao
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yuanyuan Zhang
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sushma Bhosle
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Suganthi Suppiah
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jeanne M. Rhea
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Natalia Kozyr
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Rebecca S. Arnold
- Department of Urology, Emory University, Atlanta, Georgia, United States of America
| | - Hinh Ly
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Ross J. Molinaro
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- Core Laboratories Emory University Hospital Midtown, Emory University, Atlanta, Georgia, United States of America
| | - Tristram G. Parslow
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Dennis Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - John Petros
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- Department of Urology, Emory University, Atlanta, Georgia, United States of America
- Department of Hematology-Oncology, Emory University, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Jerry L. Blackwell
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
28
|
Sakuma T, Hué S, Squillace KA, Tonne JM, Blackburn PR, Ohmine S, Thatava T, Towers GJ, Ikeda Y. No evidence of XMRV in prostate cancer cohorts in the Midwestern United States. Retrovirology 2011; 8:23. [PMID: 21447170 PMCID: PMC3077333 DOI: 10.1186/1742-4690-8-23] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/29/2011] [Indexed: 11/23/2022] Open
Abstract
Background Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was initially identified in prostate cancer (PCa) tissue, particularly in the prostatic stromal fibroblasts, of patients homozygous for the RNASEL R462Q mutation. A subsequent study reported XMRV antigens in malignant prostatic epithelium and association of XMRV infection with PCa, especially higher-grade tumors, independently of the RNASEL polymorphism. Further studies showed high prevalence of XMRV or related MLV sequences in chronic fatigue syndrome patients (CFS), while others found no, or low, prevalence of XMRV in a variety of diseases including PCa or CFS. Thus, the etiological link between XMRV and human disease remains elusive. To address the association between XMRV infection and PCa, we have tested prostate tissues and human sera for the presence of viral DNA, viral antigens and anti-XMRV antibodies. Results Real-time PCR analysis of 110 PCa (Gleason scores >4) and 40 benign and normal prostate tissues identified six positive samples (5 PCa and 1 non-PCa). No statistical link was observed between the presence of proviral DNA and PCa, PCa grades, and the RNASEL R462Q mutation. The amplified viral sequences were distantly related to XMRV, but nearly identical to endogenous MLV sequences in mice. The PCR positive samples were also positive for mouse mitochondrial DNA by nested PCR, suggesting contamination of the samples with mouse DNA. Immuno-histochemistry (IHC) with an anti-XMRV antibody, but not an anti-MLV antibody that recognizes XMRV, sporadically identified antigen-positive cells in prostatic epithelium, irrespectively of the status of viral DNA detection. No serum (159 PCa and 201 age-matched controls) showed strong neutralization of XMRV infection at 1:10 dilution. Conclusion The lack of XMRV sequences or strong anti-XMRV neutralizing antibodies indicates no or very low prevalence of XMRV in our cohorts. We conclude that real-time PCR- and IHC-positive samples were due to laboratory contamination and non-specific immune reactions, respectively.
Collapse
Affiliation(s)
- Toshie Sakuma
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Furuta RA, Miyazawa T, Sugiyama T, Kuratsune H, Ikeda Y, Sato E, Misawa N, Nakatomi Y, Sakuma R, Yasui K, Yamaguti K, Hirayama F. No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan. Retrovirology 2011; 8:20. [PMID: 21414229 PMCID: PMC3065418 DOI: 10.1186/1742-4690-8-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/17/2011] [Indexed: 11/14/2022] Open
Abstract
Background The involvement of xenotropic murine leukemia virus-related virus (XMRV) in prostate cancer (PC) and chronic fatigue syndrome (CFS) is disputed as its reported prevalence ranges from 0% to 25% in PC cases and from 0% to more than 80% in CFS cases. To evaluate the risk of XMRV infection during blood transfusion in Japan, we screened three populations--healthy donors (n = 500), patients with PC (n = 67), and patients with CFS (n = 100)--for antibodies against XMRV proteins in freshly collected blood samples. We also examined blood samples of viral antibody-positive patients with PC and all (both antibody-positive and antibody-negative) patients with CFS for XMRV DNA. Results Antibody screening by immunoblot analysis showed that a fraction of the cases (1.6-3.0%) possessed anti-Gag antibodies regardless of their gender or disease condition. Most of these antibodies were highly specific to XMRV Gag capsid protein, but none of the individuals in the three tested populations retained strong antibody responses to multiple XMRV proteins. In the viral antibody-positive PC patients, we occasionally detected XMRV genes in plasma and peripheral blood mononuclear cells but failed to isolate an infectious or full-length XMRV. Further, all CFS patients tested negative for XMRV DNA in peripheral blood mononuclear cells. Conclusion Our data show no solid evidence of XMRV infection in any of the three populations tested, implying that there is no association between the onset of PC or CFS and XMRV infection in Japan. However, the lack of adequate human specimens as a positive control in Ab screening and the limited sample size do not allow us to draw a firm conclusion.
Collapse
Affiliation(s)
- Rika A Furuta
- Department of Research, Japanese Red Cross Osaka Blood Center, 2-4-43 Morinomiya, Joto-ku, Osaka 536-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Simmons G, Glynn SA, Holmberg JA, Coffin JM, Hewlett IK, Lo SC, Mikovits JA, Switzer WM, Linnen JM, Busch MP. The Blood Xenotropic Murine Leukemia Virus-Related Virus Scientific Research Working Group: mission, progress, and plans. Transfusion 2011; 51:643-53. [PMID: 21366602 PMCID: PMC3071162 DOI: 10.1111/j.1537-2995.2011.03063.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graham Simmons
- Blood Systems Research Institute and University of California, San Francisco, California 94118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Satterfield BC, Garcia RA, Jia H, Tang S, Zheng H, Switzer WM. Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses. Retrovirology 2011; 8:12. [PMID: 21342521 PMCID: PMC3050813 DOI: 10.1186/1742-4690-8-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/22/2011] [Indexed: 11/30/2022] Open
Abstract
In 2009, a newly discovered human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), was reported by Lombardi et al. in 67% of persons from the US with chronic fatigue syndrome (CFS) by PCR detection of gag sequences. Although six subsequent studies have been negative for XMRV, CFS was defined more broadly using only the CDC or Oxford criteria and samples from the US were limited in geographic diversity, both potentially reducing the chances of identifying XMRV positive CFS cases. A seventh study recently found polytropic MuLV sequences, but not XMRV, in a high proportion of persons with CFS. Here we tested blood specimens from 45 CFS cases and 42 persons without CFS from over 20 states in the United States for both XMRV and MuLV. The CFS patients all had a minimum of 6 months of post-exertional malaise and a high degree of disability, the same key symptoms described in the Lombardi et al. study. Using highly sensitive and generic DNA and RNA PCR tests, and a new Western blot assay employing purified whole XMRV as antigen, we found no evidence of XMRV or MuLV in all 45 CFS cases and in the 42 persons without CFS. Our findings, together with previous negative reports, do not suggest an association of XMRV or MuLV in the majority of CFS cases.
Collapse
|
33
|
Infection, viral dissemination, and antibody responses of rhesus macaques exposed to the human gammaretrovirus XMRV. J Virol 2011; 85:4547-57. [PMID: 21325416 DOI: 10.1128/jvi.02411-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotropic murine leukemia-related virus (XMRV) was identified in association with human prostate cancer and chronic fatigue syndrome. To examine the infection potential, kinetics, and tissue distribution of XMRV in an animal model, we inoculated five macaques with XMRV intravenously. XMRV established a persistent, chronic disseminated infection, with low transient viremia and provirus in blood lymphocytes during acute infection. Although undetectable in blood after about a month, XMRV viremia was reactivated at 9 months, confirming the chronicity of the infection. Furthermore, XMRV Gag was detected in tissues throughout, with wide dissemination throughout the period of monitoring. Surprisingly, XMRV infection showed organ-specific cell tropism, infecting CD4 T cells in lymphoid organs including the gastrointestinal lamina propria, alveolar macrophages in lung, and epithelial/interstitial cells in other organs, including the reproductive tract. Of note, in spite of the intravenous inoculation, extensive XMRV replication was noted in prostate during acute but not chronic infection even though infected cells were still detectable by fluorescence in situ hybridization (FISH) in prostate at 5 and 9 months postinfection. Marked lymphocyte activation occurred immediately postinfection, but antigen-specific cellular responses were undetectable. Antibody responses were elicited and boosted upon reexposure, but titers decreased rapidly, suggesting low antigen stimulation over time. Our findings establish a nonhuman primate model to study XMRV replication/dissemination, transmission, pathogenesis, immune responses, and potential future therapies.
Collapse
|
34
|
Klein HG, Dodd RY, Hollinger FB, Katz LM, Kleinman S, McCleary KK, Silverman RH, Stramer SL. Xenotropic murine leukemia virus-related virus (XMRV) and blood transfusion: report of the AABB interorganizational XMRV task force. Transfusion 2011; 51:654-61. [PMID: 21235597 DOI: 10.1111/j.1537-2995.2010.03012.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Harvey G Klein
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hohn O, Strohschein K, Brandt AU, Seeher S, Klein S, Kurth R, Paul F, Meisel C, Scheibenbogen C, Bannert N. No evidence for XMRV in German CFS and MS patients with fatigue despite the ability of the virus to infect human blood cells in vitro. PLoS One 2010; 5:e15632. [PMID: 21203514 PMCID: PMC3008728 DOI: 10.1371/journal.pone.0015632] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/18/2010] [Indexed: 02/07/2023] Open
Abstract
Background Xenotropic murine leukemia virus-related virus (XMRV), a novel human retrovirus originally identified in prostate cancer tissues, has recently been associated with chronic fatigue syndrome (CFS), a disabling disease of unknown etiology affecting millions of people worldwide. However, several subsequent studies failed to detect the virus in patients suffering from these illnesses or in healthy subjects. Here we report the results of efforts to detect antibody responses and viral sequences in samples from a cohort of German CFS and relapsing remitting multiple sclerosis (MS) patients with fatigue symptoms. Methodology Blood samples were taken from a cohort of 39 patients fulfilling the Fukuda/CDC criteria (CFS), from 112 patients with an established MS diagnosis and from 40 healthy donors. Fatigue severity in MS patients was assessed using the Fatigue Severity Scale (FSS). Validated Gag- and Env-ELISA assays were used to screen sera for XMRV antibodies. PHA-activated PBMC were cultured for seven days in the presence of IL-2 and DNA isolated from these cultures as well as from co-cultures of PBMC and highly permissive LNCaP cells was analyzed by nested PCR for the presence of the XMRV gag gene. In addition, PBMC cultures were exposed to 22Rv1-derived XMRV to assess infectivity and virus production. Conclusion None of the screened sera from CFS and MS patients or healthy blood donors tested positive for XMRV specific antibodies and all PBMC (and PBMC plus LNCaP) cultures remained negative for XMRV sequences by nested PCR. These results argue against an association between XMRV infection and CFS and MS in Germany. However, we could confirm that PBMC cultures from healthy donors and from CFS patients can be experimentally infected by XMRV, resulting in the release of low levels of transmittable virus.
Collapse
Affiliation(s)
- Oliver Hohn
- Centre for Biological Security 4, Robert Koch-Institute, Berlin, Germany
- Centre for Retrovirology, Robert Koch-Institute, Berlin, Germany
| | - Kristin Strohschein
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U. Brandt
- NeuroCure Clinical Research Center (NCRC), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Seeher
- Centre for Biological Security 4, Robert Koch-Institute, Berlin, Germany
| | - Sandra Klein
- Centre for Biological Security 4, Robert Koch-Institute, Berlin, Germany
| | | | - Friedemann Paul
- NeuroCure Clinical Research Center (NCRC), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Meisel
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Bannert
- Centre for Biological Security 4, Robert Koch-Institute, Berlin, Germany
- Centre for Retrovirology, Robert Koch-Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
36
|
Stoye JP, Silverman RH, Boucher CA, Le Grice SFJ. The xenotropic murine leukemia virus-related retrovirus debate continues at first international workshop. Retrovirology 2010; 7:113. [PMID: 21176195 PMCID: PMC3022689 DOI: 10.1186/1742-4690-7-113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/22/2010] [Indexed: 12/12/2022] Open
Abstract
The 1st International Workshop on Xenotropic Murine Leukemia Virus-Related Retrovirus (XMRV), co-sponsored by the National Institutes of Health, The Department of Health and Human Services and Abbott Diagnostics, was convened on September 7/8, 2010 on the NIH campus, Bethesda, MD. Attracting an international audience of over 200 participants, the 2-day event combined a series of plenary talks with updates on different aspects of XMRV research, addressing basic gammaretrovirus biology, host response, association of XMRV with chronic fatigue syndrome and prostate cancer, assay development and epidemiology. The current status of XMRV research, concerns among the scientific community and suggestions for future actions are summarized in this meeting report.
Collapse
Affiliation(s)
- Jonathan P Stoye
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | | | | | | |
Collapse
|
37
|
Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology 2010; 7:101. [PMID: 21118532 PMCID: PMC3009702 DOI: 10.1186/1742-4690-7-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022] Open
Abstract
The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|