1
|
Hester AK, Semwal MK, Cepeda S, Xiao Y, Rueda M, Wimberly K, Venables T, Dileepan T, Kraig E, Griffith AV. Redox regulation of age-associated defects in generation and maintenance of T cell self-tolerance and immunity to foreign antigens. Cell Rep 2022; 38:110363. [PMID: 35172147 PMCID: PMC8898380 DOI: 10.1016/j.celrep.2022.110363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
Thymic atrophy reduces naive T cell production and contributes to increased susceptibility to viral infection with age. Expression of tissue-restricted antigen (TRA) genes also declines with age and has been thought to increase autoimmune disease susceptibility. We find that diminished expression of a model TRA gene in aged thymic stromal cells correlates with impaired clonal deletion of cognate T cells recognizing an autoantigen involved in atherosclerosis. Clonal deletion in the polyclonal thymocyte population is also perturbed. Distinct age-associated defects in the generation of antigen-specific T cells include a conspicuous decline in generation of T cells recognizing an immunodominant influenza epitope. Increased catalase activity delays thymic atrophy, and here, we show that it mitigates declining production of influenza-specific T cells and their frequency in lung after infection, but does not reverse declines in TRA expression or efficient negative selection. These results reveal important considerations for strategies to restore thymic function.
Collapse
Affiliation(s)
- Allison K Hester
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Manpreet K Semwal
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sergio Cepeda
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Yangming Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Meghan Rueda
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Kymberly Wimberly
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | - Thamotharampillai Dileepan
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ellen Kraig
- Department of Cell Systems and Anatomy, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ann V Griffith
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
3
|
Oh SJ, Lee JK, Shin OS. Aging and the Immune System: the Impact of Immunosenescence on Viral Infection, Immunity and Vaccine Immunogenicity. Immune Netw 2019; 19:e37. [PMID: 31921467 PMCID: PMC6943173 DOI: 10.4110/in.2019.19.e37] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Immunosenescence is characterized by a progressive deterioration of the immune system associated with aging. Multiple components of both innate and adaptive immune systems experience aging-related changes, such as alterations in the number of circulating monocytic and dendritic cells, reduced phagocytic activities of neutrophils, limited diversity in B/T cell repertoire, T cell exhaustion or inflation, and chronic production of inflammatory cytokines known as inflammaging. The elderly are less likely to benefit from vaccinations as preventative measures against infectious diseases due to the inability of the immune system to mount a successful defense. Therefore, aging is thought to decrease the efficacy and effectiveness of vaccines, suggesting aging-associated decline in the immunogenicity induced by vaccination. In this review, we discuss aging-associated changes in the innate and adaptive immunity and the impact of immunosenescence on viral infection and immunity. We further explore recent advances in strategies to enhance the immunogenicity of vaccines in the elderly. Better understanding of the molecular mechanisms underlying immunosenescence-related immune dysfunction will provide a crucial insight into the development of effective elderly-targeted vaccines and immunotherapies.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Jae Kyung Lee
- Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| |
Collapse
|
4
|
Autran B. [Alterations in responses to vaccines in older people]. Rev Mal Respir 2019; 36:1047-1056. [PMID: 31522947 DOI: 10.1016/j.rmr.2019.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
The aging population raises a number of public health issues including a need to address the severity and frequency of infections observed in older people. Vaccines play an important role in prevention. However, immunosenescence alters the intensity and quality of vaccine responses, thus limiting the impact of recommendations directed after 65 years for vaccination against flu, pneumococci, pertussis, tetanus and zoster. Immunosenescence, aggravated by co-morbidities, varies with age, becoming apparent after 60-65 years and more profound after 85 years. All stages of vaccine responses are affected by immunosenescence, from the innate immunity required to activate these responses to the induction of protective antibody responses and immune memory. Nevertheless, the capacity to develop new responses to primary vaccination is more affected than the ability to respond to recalls, although this is also impaired. Responses to vaccines are differentially altered depending on vaccine and age. Influenza vaccines are modestly immunogenic and several meta-analyses agree an estimate for efficacy of about 50% against virologically-proven flu and 40% against flu-related deaths. The anti-pneumococcal 23-valent non-conjugated vaccine does not induce memory while the 13-valent conjugated one does, but their efficacy are likely to be similar between 70 to 52% before 75 years. A sequential vaccination program with the 13-valent primo-vaccination followed by the 23-valent, recommended in immune-suppressed patients, is currently being studied in France. The waning of immunity to pertussis makes recalls necessary in the elderly who develop good antibody responses. Several research avenues are currently being pursued to try improve the degree of protection conferred by these vaccines in elderly.
Collapse
Affiliation(s)
- B Autran
- Sorbonne-université, 75005 Paris, France; UMR-S Inserm/UPMC 1135), CIMI-Paris (centre de recherches immunité maladies infectieuses), 83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
5
|
Lanzer KG, Cookenham T, Reiley WW, Blackman MA. Virtual memory cells make a major contribution to the response of aged influenza-naïve mice to influenza virus infection. IMMUNITY & AGEING 2018; 15:17. [PMID: 30093911 PMCID: PMC6081820 DOI: 10.1186/s12979-018-0122-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Background A diverse repertoire of naïve T cells is thought to be essential for a robust response to new infections. However, a key aspect of aging of the T cell compartment is a decline in numbers and diversity of peripheral naïve T cells. We have hypothesized that the age-related decline in naïve T cells forces the immune system to respond to new infections using cross-reactive memory T cells generated to previous infections that dominate the aged peripheral T cell repertoire. Results Here we confirm that the CD8 T cell response of aged, influenza-naïve mice to primary infection with influenza virus is dominated by T cells that derive from the memory T cell pool. These cells exhibit the phenotypic characteristics of virtual memory cells rather than true memory cells. Furthermore, we find that the repertoire of responding CD8 T cells is constrained compared with that of young mice, and differs significantly between individual aged mice. After infection, these virtual memory CD8 T cells effectively develop into granzyme-producing effector cells, and clear virus with kinetics comparable to naïve CD8 T cells from young mice. Conclusions The response of aged, influenza-naive mice to a new influenza infection is mediated largely by memory CD8 T cells. However, unexpectedly, they have the phenotype of VM cells. In response to de novo influenza virus infection, the VM cells develop into granzyme-producing effector cells and clear virus with comparable kinetics to young CD8 T cells.
Collapse
Affiliation(s)
| | - Tres Cookenham
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983 USA
| | - William W Reiley
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983 USA
| | | |
Collapse
|
6
|
Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection. Front Immunol 2017; 8:784. [PMID: 28769922 PMCID: PMC5512344 DOI: 10.3389/fimmu.2017.00784] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
The number of people over the age of 60 is expected to double by 2050 according to the WHO. This emphasizes the need to ensure optimized resilience to health stressors in late life. In older adults, influenza is one of the leading causes of catastrophic disability (defined as the loss of independence in daily living and self-care activities). Influenza vaccination is generally perceived to be less protective in older adults, with some studies suggesting that the humoral immune response to the vaccine is further impaired in cytomegalovirus (CMV)-seropositive older people. CMV is a β-herpes virus infection that is generally asymptomatic in healthy individuals. The majority of older adults possess serum antibodies against the virus indicating latent infection. Age-related changes in T-cell-mediated immunity are augmented by CMV infection and may be associated with more serious complications of influenza infection. This review focuses on the impact of aging and CMV on immune cell function, the response to influenza infection and vaccination, and how the current understanding of aging and CMV can be used to design a more effective influenza vaccine for older adults. It is anticipated that efforts in this field will address the public health need for improved protection against influenza in older adults, particularly with regard to the serious complications leading to loss of independence.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Second Department of Internal Medicine, University of Tübingen Medical Center, Tübingen, Germany
| | - George A Kuchel
- UConn Center on Aging, UConn Health, Farmington, CT, United States
| | | |
Collapse
|
7
|
Abstract
Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, 'licensing' APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as 'universal helpers' to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.
Collapse
Affiliation(s)
- Mary Speir
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- School of Biological Sciences, Victoria University Wellington, PO Box 600, Wellington, 6140, New Zealand.
- Maurice Wilkins Centre, Private Bag 92019, Auckland, New Zealand.
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- Wellington Blood and Cancer Centre, Wellington Hospital, Private Bag 7902, Wellington, 6242, New Zealand.
- Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, 6021, New Zealand.
| |
Collapse
|
8
|
Bahadoran A, Lee SH, Wang SM, Manikam R, Rajarajeswaran J, Raju CS, Sekaran SD. Immune Responses to Influenza Virus and Its Correlation to Age and Inherited Factors. Front Microbiol 2016; 7:1841. [PMID: 27920759 PMCID: PMC5118461 DOI: 10.3389/fmicb.2016.01841] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses, and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Sau H. Lee
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Seok M. Wang
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, MARA University of TechnologySelangor, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical CentreKuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Chandramathi S. Raju
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
9
|
Perica K, Kosmides AK, Schneck JP. Linking form to function: Biophysical aspects of artificial antigen presenting cell design. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:781-90. [PMID: 25200637 PMCID: PMC4344884 DOI: 10.1016/j.bbamcr.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022]
Abstract
Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Lepletier A, Chidgey AP, Savino W. Perspectives for Improvement of the Thymic Microenvironment through Manipulation of Thymic Epithelial Cells: A Mini-Review. Gerontology 2015; 61:504-14. [DOI: 10.1159/000375160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
|
11
|
Bruns H, Bessell C, Varela JC, Haupt C, Fang J, Pasemann S, Mackensen A, Oelke M, Schneck JP, Schütz C. CD47 Enhances In Vivo Functionality of Artificial Antigen-Presenting Cells. Clin Cancer Res 2015; 21:2075-83. [PMID: 25593301 DOI: 10.1158/1078-0432.ccr-14-2696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/04/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Artificial antigen-presenting cells, aAPC, have successfully been used to stimulate antigen-specific T-cell responses in vitro as well as in vivo. Although aAPC compare favorably with autologous dendritic cells in vitro, their effect in vivo might be diminished through rapid clearance by macrophages. Therefore, to prevent uptake and minimize clearance of aAPC by macrophages, thereby increasing in vivo functionality, we investigated the efficiency of "don't eat me" three-signal aAPC compared with classical two-signal aAPC. EXPERIMENTAL DESIGN To generate "don't eat me" aAPC, CD47 was additionally immobilized onto classical aAPC (aAPC(CD47+)). aAPC and aAPC(CD47+) were analyzed in in vitro human primary T-cell and macrophage cocultures. In vivo efficiency was compared in a NOD/SCID T-cell proliferation and a B16-SIY melanoma model. RESULTS This study demonstrates that aAPC(CD47+) in coculture with human macrophages show a CD47 concentration-dependent inhibition of phagocytosis, whereas their ability to generate and expand antigen-specific T cells was not affected. Furthermore, aAPC(CD47+)-generated T cells displayed equivalent killing abilities and polyfunctionality when compared with aAPC-generated T cells. In addition, in vivo studies demonstrated an enhanced stimulatory capacity and tumor inhibition of aAPC(CD47+) over normal aAPC in conjunction with diverging biodistribution in different organs. CONCLUSIONS Our data for the first time show that aAPC functionalized with CD47 maintain their stimulatory capacity in vitro and demonstrate enhanced in vivo efficiency. Thus, these next-generation aAPC(CD47+) have a unique potential to enhance the application of the aAPC technology for future immunotherapy approaches.
Collapse
Affiliation(s)
- Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Catherine Bessell
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Juan Carlos Varela
- Division of Hematology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Carl Haupt
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jerry Fang
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shirin Pasemann
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Mathias Oelke
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jonathan P Schneck
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Christian Schütz
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
12
|
Condotta SA, Cabrera-Perez J, Badovinac VP, Griffith TS. T-cell-mediated immunity and the role of TRAIL in sepsis-induced immunosuppression. Crit Rev Immunol 2013; 33:23-40. [PMID: 23510024 DOI: 10.1615/critrevimmunol.2013006721] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sepsis is the leading cause of death in most intensive care units, and the death of septic patients usually does not result from the initial septic event but rather from subsequent nosocomial infections. Patients who survive severe sepsis often display severely compromised immune function. Not only is there significant apoptosis of lymphoid and myeloid cells that depletes critical components of the immune system during sepsis, there is also decreased function of the remaining immune cells. Studies of animals and humans suggest the immune defects that occur during sepsis may be critical to pathogenesis and subsequent mortality. This review focuses on sepsis-induced alterations with the cluster differentiation (CD) 8 T-cell compartment that can affect the control of secondary heterologous infections. Understanding how a septic event directly influences CD8 T-cell populations through apoptotic death and homeostatic proliferation and indirectly by immune-mediated suppression will provide valuable starting points for developing new treatment options.
Collapse
|
13
|
Santulli G, Iaccarino G. Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes. IMMUNITY & AGEING 2013; 10:10. [PMID: 23497413 PMCID: PMC3763845 DOI: 10.1186/1742-4933-10-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/10/2013] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a key role in cellular communication, allowing human cells to sense external cues or to talk each other through hormones or neurotransmitters. Research in this field has been recently awarded with the Nobel Prize in chemistry to Robert J. Lefkowitz and Brian K. Kobilka, for their pioneering work on beta adrenergic receptors (βARs), a prototype GPCR. Such receptors, and β2AR in particular, which is extensively distributed throughout the body, are involved in a number of pathophysiological processes. Moreover, a large amount of studies has demonstrated their participation in ageing process. Reciprocally, age-related changes in regulation of receptor responses have been observed in numerous tissues and include modifications of βAR responses. Impaired sympathetic nervous system function has been indeed evoked as at least a partial explanation for several modifications that occur with ageing. This article represents an updated presentation of the current knowledge in the field, summarizing in a systematic way the major findings of research on ageing in several organs and tissues (crime scenes) expressing βARs: heart, vessels, skeletal muscle, respiratory system, brain, immune system, pancreatic islets, liver, kidney and bone.
Collapse
Affiliation(s)
- Gaetano Santulli
- Departments of Translational Medical Sciences and Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
| | | |
Collapse
|
14
|
Grizzi F, Di Caro G, Laghi L, Hermonat P, Mazzola P, Nguyen DD, Radhi S, Figueroa JA, Cobos E, Annoni G, Chiriva-Internati M. Mast cells and the liver aging process. Immun Ageing 2013; 10:9. [PMID: 23496863 PMCID: PMC3599827 DOI: 10.1186/1742-4933-10-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
It has now ascertained that the clinical manifestations of liver disease in the elderly population reflect both the cumulative effects of longevity on the liver and the generalized senescence of the organism ability to adjust to metabolic, infectious, and immunologic insults. Although liver tests are not significantly affected by age, the presentation of liver diseases such as viral hepatitis may be subtler in the elderly population than that of younger patients.Human immunosenescence is a situation in which the immune system, particularly T lymphocyte function, deteriorates with age, while innate immunity is negligibly affected and in some cases almost up-regulated.We here briefly review the relationships between the liver aging process and mast cells, the key effectors in a more complex range of innate immune responses than originally though.
Collapse
Affiliation(s)
- Fabio Grizzi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giuseppe Di Caro
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paul Hermonat
- Department of Internal medicine and Gene Therapy Program, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paolo Mazzola
- Department of Health Sciences, University of Milano-Bicocca, Milan, and Geriatric Clinic, San Gerardo Hospital, Monza, Italy
| | - Diane D Nguyen
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Saba Radhi
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jose A Figueroa
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Everardo Cobos
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Giorgio Annoni
- Department of Health Sciences, University of Milano-Bicocca, Milan, and Geriatric Clinic, San Gerardo Hospital, Monza, Italy
| | - Maurizio Chiriva-Internati
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
15
|
Lambert ND, Ovsyannikova IG, Pankratz VS, Jacobson RM, Poland GA. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Rev Vaccines 2013; 11:985-94. [PMID: 23002979 DOI: 10.1586/erv.12.61] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Annual vaccination against seasonal influenza is recommended to decrease disease-related mortality and morbidity. However, one population that responds suboptimally to influenza vaccine is adults over the age of 65 years. The natural aging process is associated with a complex deterioration of multiple components of the host immune system. Research into this phenomenon, known as immunosenescence, has shown that aging alters both the innate and adaptive branches of the immune system. The intricate mechanisms involved in immune response to influenza vaccine, and how these responses are altered with age, have led us to adopt a more encompassing systems biology approach to understand exactly why the response to vaccination diminishes with age. Here, the authors review what changes occur with immunosenescence, and some immunogenetic factors that influence response, and outline the systems biology approach to understand the immune response to seasonal influenza vaccination in older adults.
Collapse
Affiliation(s)
- Nathaniel D Lambert
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street SW, Rochester, MI 55905, USA
| | | | | | | | | |
Collapse
|
16
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|