1
|
Borges FO, Sampaio E, Santos CP, Rosa R. Climate-Change Impacts on Cephalopods: A Meta-Analysis. Integr Comp Biol 2023; 63:1240-1265. [PMID: 37468442 DOI: 10.1093/icb/icad102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Aside from being one of the most fascinating groups of marine organisms, cephalopods play a major role in marine food webs, both as predators and as prey, while representing key living economic assets, namely for artisanal and subsistence fisheries worldwide. Recent research suggests that cephalopods are benefitting from ongoing environmental changes and the overfishing of certain fish stocks (i.e., of their predators and/or competitors), putting forward the hypothesis that this group may be one of the few "winners" of climate change. While many meta-analyses have demonstrated negative and overwhelming consequences of ocean warming (OW), acidification (OA), and their combination for a variety of marine taxa, such a comprehensive analysis is lacking for cephalopod molluscs. In this context, the existing literature was surveyed for peer-reviewed articles featuring the sustained (≥24 h) and controlled exposure of cephalopod species (Cephalopoda class) to these factors, applying a comparative framework of mixed-model meta-analyses (784 control-treatment comparisons, from 47 suitable articles). Impacts on a wide set of biological categories at the individual level (e.g., survival, metabolism, behavior, cell stress, growth) were evaluated and contrasted across different ecological attributes (i.e., taxonomic lineages, climates, and ontogenetic stages). Contrary to what is commonly assumed, OW arises as a clear threat to cephalopods, while OA exhibited more restricted impacts. In fact, OW impacts were ubiquitous across different stages of ontogeny, taxonomical lineages (i.e., octopuses, squids, and cuttlefish). These results challenge the assumption that cephalopods benefit from novel ocean conditions, revealing an overarching negative impact of OW in this group. Importantly, we also identify lingering literature gaps, showing that most studies to date focus on OW and early life stages of mainly temperate species. Our results raise the need to consolidate experimental efforts in a wider variety of taxa, climate regions, life stages, and other key environmental stressors, such as deoxygenation and hypoxia, to better understand how cephalopods will cope with future climate change.
Collapse
Affiliation(s)
- Francisco O Borges
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
| | - Eduardo Sampaio
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitatsstrasse 10, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Biology, University of Konstanz, Universitatsstrasse 10, Konstanz 78464, Germany
| | - Catarina P Santos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, Carcavelos 2775-405, Portugal
- Sphyrna Association, Boa Vista Island, Sal Rei, Cape Verde
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisboa1 749-016, Portugal
| |
Collapse
|
2
|
Kuan PL, You JY, Wu GC, Tseng YC. Temperature increases induce metabolic adjustments in the early developmental stages of bigfin reef squid (Sepioteuthis lessoniana). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156962. [PMID: 35779738 DOI: 10.1016/j.scitotenv.2022.156962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Climate changes, such as extreme temperature shifts, can have a direct and significant impact on animals living in the ocean system. Ectothermic animals may undergo concerted metabolic shifts in response to ambient temperature changes. The physiological and molecular adaptations in cephalopods during their early life stages are largely unknown due to the challenge of rearing them outside of a natural marine environment. To overcome this obstacle, we established a pelagic bigfin reef squid (Sepioteuthis lessoniana) culture facility, which allowed us to monitor the effects of ambient thermal elevation and fluctuation on cephalopod embryos/larvae. By carefully observing embryonic development in the breeding facility, we defined 23 stages of bigfin reef squid embryonic development, beginning at stage 12 (blastocyst; 72 h post-egg laying) and continuing through hatching (~1 month post-egg laying). Since temperature recordings from the bigfin reef squid natural habitats have shown a steady rise over the past decade, we examined energy substrate utilization and cellular/metabolic responses in developing animals under different temperature conditions. As the ambient temperature increased by 7 °C, hatching larvae favored aerobic metabolism by about 2.3-fold. Short-term environmental warming stress inhibited oxygen consumption but did not affect ammonium excretion in stage (St.) 25 larvae. Meanwhile, an aerobic metabolism-related marker (CoxI) and a cellular stress-responsive marker (HSP70) were rapidly up-regulated upon acute warming treatments. In addition, our simulations of temperature oscillations mimicking natural daily rhythms did not result in significant changes in metabolic processes in St. 25 animals. As the ambient temperature increased by 7 °C, referred to as heatwave conditions, CoxI, HSP70, and antioxidant molecule (SOD) were stimulated, indicating the importance of cellular and metabolic adjustments. As with other aquatic species with high metabolic rates, squid larvae in the tropical/sub-tropical climate zone undergo adaptive metabolic shifts to maintain physiological functions and prevent excessive oxidative stress under environmental warming.
Collapse
Affiliation(s)
- Pou-Long Kuan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
| | - Jhih-Yao You
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan; Institute of Oceanography, National Taiwan University, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan.
| |
Collapse
|
3
|
Liu ST, Horng JL, Lin LY. Role of the Basolateral Na+/H+ Exchanger-2 (NHE2) in Ionocytes of Seawater- Acclimated Medaka (Oryzias latipes). Front Physiol 2022; 13:870967. [PMID: 35399277 PMCID: PMC8987715 DOI: 10.3389/fphys.2022.870967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Ionocytes in the skin and gills of seawater (SW) fishes are responsible for acid-base regulation and salt secretion. Na+/H+ exchangers (NHEs) are considered the major acid (H+)-secreting transporters in ionocytes of SW fishes. However, the subcellular localization and function of a specific NHE isoform (NHE2) have never clearly been revealed. In this study, we cloned and sequenced NHE2 from an SW-acclimated medaka (Oryzias latipes) and examined its functions in medaka embryos. A phylogenetic analysis showed that the evolutionary relationships of mammalian NHE2 and NHE4 are close to those of fish NHE2. A gene structure analysis showed that tetrapod NHE4 might be a tandem duplication of fish NHE2. Immunohistochemistry with a medaka-specific antibody localized NHE2 to the basolateral membrane of ionocytes. Lost-of-function experiments with photo-activated morpholino oligonucleotides showed that both H+ and Cl– secretion by ionocytes were suppressed in NHE2-knockdown embryos, suggesting that the basolateral NHE2 facilitates acid and salt secretion by ionocytes of medaka in seawater.
Collapse
Affiliation(s)
- Sian-Tai Liu
- Department of Life Science, School of Life Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Sciences, National Taiwan Normal University, Taipei City, Taiwan
- *Correspondence: Li-Yih Lin,
| |
Collapse
|
4
|
Capasso L, Ganot P, Planas-Bielsa V, Tambutté S, Zoccola D. Intracellular pH regulation: characterization and functional investigation of H + transporters in Stylophora pistillata. BMC Mol Cell Biol 2021; 22:18. [PMID: 33685406 PMCID: PMC7941709 DOI: 10.1186/s12860-021-00353-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reef-building corals regularly experience changes in intra- and extracellular H+ concentrations ([H+]) due to physiological and environmental processes. Stringent control of [H+] is required to maintain the homeostatic acid-base balance in coral cells and is achieved through the regulation of intracellular pH (pHi). This task is especially challenging for reef-building corals that share an endosymbiotic relationship with photosynthetic dinoflagellates (family Symbiodinaceae), which significantly affect the pHi of coral cells. Despite their importance, the pH regulatory proteins involved in the homeostatic acid-base balance have been scarcely investigated in corals. Here, we report in the coral Stylophora pistillata a full characterization of the genomic structure, domain topology and phylogeny of three major H+ transporter families that are known to play a role in the intracellular pH regulation of animal cells; we investigated their tissue-specific expression patterns and assessed the effect of seawater acidification on their expression levels. RESULTS We identified members of the Na+/H+ exchanger (SLC9), vacuolar-type electrogenic H+-ATP hydrolase (V-ATPase) and voltage-gated proton channel (HvCN) families in the genome and transcriptome of S. pistillata. In addition, we identified a novel member of the HvCN gene family in the cnidarian subclass Hexacorallia that has not been previously described in any species. We also identified key residues that contribute to H+ transporter substrate specificity, protein function and regulation. Last, we demonstrated that some of these proteins have different tissue expression patterns, and most are unaffected by exposure to seawater acidification. CONCLUSIONS In this study, we provide the first characterization of H+ transporters that might contribute to the homeostatic acid-base balance in coral cells. This work will enrich the knowledge of the basic aspects of coral biology and has important implications for our understanding of how corals regulate their intracellular environment.
Collapse
Affiliation(s)
- Laura Capasso
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.,Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | | | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.
| |
Collapse
|
5
|
Intracellular pH regulation in mantle epithelial cells of the Pacific oyster, Crassostrea gigas. J Comp Physiol B 2020; 190:691-700. [PMID: 32816118 PMCID: PMC7520413 DOI: 10.1007/s00360-020-01303-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022]
Abstract
Shell formation and repair occurs under the control of mantle epithelial cells in bivalve molluscs. However, limited information is available on the precise acid–base regulatory machinery present within these cells, which are fundamental to calcification. Here, we isolate mantle epithelial cells from the Pacific oyster, Crassostrea gigas and utilise live cell imaging in combination with the fluorescent dye, BCECF-AM to study intracellular pH (pHi) regulation. To elucidate the involvement of various ion transport mechanisms, modified seawater solutions (low sodium, low bicarbonate) and specific inhibitors for acid–base proteins were used. Diminished pH recovery in the absence of Na+ and under inhibition of sodium/hydrogen exchangers (NHEs) implicate the involvement of a sodium dependent cellular proton extrusion mechanism. In addition, pH recovery was reduced under inhibition of carbonic anhydrases. These data provide the foundation for a better understanding of acid–base regulation underlying the physiology of calcification in bivalves.
Collapse
|
6
|
Zakroff CJ, Mooney TA. Antagonistic Interactions and Clutch-Dependent Sensitivity Induce Variable Responses to Ocean Acidification and Warming in Squid ( Doryteuthis pealeii) Embryos and Paralarvae. Front Physiol 2020; 11:501. [PMID: 32508680 PMCID: PMC7251416 DOI: 10.3389/fphys.2020.00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Ocean acidification (OA) and warming seas are significant concerns for coastal systems and species. The Atlantic longfin squid, Doryteuthis pealeii, a core component of the Northwest Atlantic trophic web, has demonstrated impacts, such as reduced growth and delayed development, under high chronic exposure to acidification (2200 ppm), but the combined effects of OA and warming have not been explored in this species. In this study, D. pealeii egg capsules were reared under a combination of several acidification levels (400, 2200, and 3500 ppm) and temperatures (20 and 27°C). Hatchlings were measured for a range of metrics [dorsal mantle length (DML), yolk sac volume (YV), malformation, and hatching success] in three trials over the 2016 breeding season (May – October). Although notable resistance to stressors was seen, highlighting variability within and between clutches, reduced DML and malformation of the embryos occurred at the highest OA exposure. Surprisingly, increased temperatures did not appear to exacerbate OA impacts, although responses were variable. Time to hatching, which increased with acidification, decreased much more drastically under warming and, further, decreased or removed delays caused by acidification. Hatching success, while variable by clutch, showed consistent patterns of greater late stage loss of embryos under acidification and greater early stage loss under warming, highlighting the potential difference in timing between these stressors for this system, i.e., that acidification stress builds up and causes impacts over time within the egg capsule as the embryos grow and respire. High OA-exposed hatchlings from the warmer conditions often showed reduced impacts compared to those reared in ambient temperatures. This may be due to the increased developmental rate and subsequently reduced OA exposure time of embryos in the higher temperature treatment. These results indicate a substantive potential plasticity to multiple stressors during the embryonic development of this species of squid, but do not predict how this species would fare under these future ocean scenarios.
Collapse
Affiliation(s)
- Casey J Zakroff
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA, United States
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
7
|
Spady BL, Munday PL, Watson SA. Elevated seawater pCO 2 affects reproduction and embryonic development in the pygmy squid, Idiosepius pygmaeus. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104812. [PMID: 31610954 DOI: 10.1016/j.marenvres.2019.104812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The oceans are absorbing additional carbon dioxide (CO2) from the atmosphere and projected future CO2 levels and ocean acidification could have negative implications for many marine organisms, especially during early life stages. Cephalopods are ecologically important in marine ecosystems, yet the potential effects of increased partial pressure of CO2 (pCO2) in seawater on cephalopod reproduction and embryonic development are little studied. We allowed adult two-toned pygmy squid (Idiosepius pygmaeus) to breed in ambient control (~445 μatm; ~8.05 pHT) or elevated pCO2 conditions (~940 μatm; ~7.78 pHT) and compared reproductive traits in adults and developmental characteristics of their eggs, which remained in control or elevated pCO2 treatments until hatching. Breeding pairs at elevated pCO2 produced clutches with 40% fewer eggs, vitelli that were 14% smaller directly after spawning, embryos that were 5% smaller upon hatching, and eggs with an 8% increase in late-stage egg swelling compared with pairs at control conditions. Elevated pCO2 did not affect fertility, time to hatch, or hatching success. Eggs were laid 40% closer together in elevated pCO2 compared with control conditions, indicating a possible effect of elevated pCO2 on reproductive behaviour. These results show that elevated pCO2 can adversely affect reproduction and embryonic development of the two-toned pygmy squid. As the potential for adaptation is influenced by reproductive success, testing the capacity for squid to adapt to future ocean conditions should be a priority for future research.
Collapse
Affiliation(s)
- Blake L Spady
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, 4810, Australia
| |
Collapse
|
8
|
Andrikou C, Thiel D, Ruiz-Santiesteban JA, Hejnol A. Active mode of excretion across digestive tissues predates the origin of excretory organs. PLoS Biol 2019; 17:e3000408. [PMID: 31356592 PMCID: PMC6687202 DOI: 10.1371/journal.pbio.3000408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/08/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
Most bilaterian animals excrete toxic metabolites through specialized organs, such as nephridia and kidneys, which share morphological and functional correspondences. In contrast, excretion in non-nephrozoans is largely unknown, and therefore the reconstruction of ancestral excretory mechanisms is problematic. Here, we investigated the excretory mode of members of the Xenacoelomorpha, the sister group to Nephrozoa, and Cnidaria, the sister group to Bilateria. By combining gene expression, inhibitor experiments, and exposure to varying environmental ammonia conditions, we show that both Xenacoelomorpha and Cnidaria are able to excrete across digestive-associated tissues. However, although the cnidarian Nematostella vectensis seems to use diffusion as its main excretory mode, the two xenacoelomorphs use both active transport and diffusion mechanisms. Based on these results, we propose that digestive-associated tissues functioned as excretory sites before the evolution of specialized organs in nephrozoans. We conclude that the emergence of a compact, multiple-layered bilaterian body plan necessitated the evolution of active transport mechanisms, which were later recruited into the specialized excretory organs.
Collapse
Affiliation(s)
- Carmen Andrikou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Daniel Thiel
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Spady BL, Nay TJ, Rummer JL, Munday PL, Watson SA. Aerobic performance of two tropical cephalopod species unaltered by prolonged exposure to projected future carbon dioxide levels. CONSERVATION PHYSIOLOGY 2019; 7:coz024. [PMID: 31198560 PMCID: PMC6554595 DOI: 10.1093/conphys/coz024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/21/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Squid and many other cephalopods live continuously on the threshold of their environmental oxygen limitations. If the abilities of squid to effectively take up oxygen are negatively affected by projected future carbon dioxide (CO2) levels in ways similar to those demonstrated in some fish and invertebrates, it could affect the success of squid in future oceans. While there is evidence that acute exposure to elevated CO2 has adverse effects on cephalopod respiratory performance, no studies have investigated this in an adult cephalopod after relatively prolonged exposure to elevated CO2 or determined any effects on aerobic scope. Here, we tested the effects of prolonged exposure (≥20% of lifespan) to elevated CO2 levels (~1000 μatm) on the routine and maximal oxygen uptake rates, aerobic scope and recovery time of two tropical cephalopod species, the two-toned pygmy squid, Idiosepius pygmaeus and the bigfin reef squid, Sepioteuthis lessoniana. Neither species exhibited evidence of altered aerobic performance after exposure to elevated CO2 when compared to individuals held at control conditions. The recovery time of I. pygmaeus under both control and elevated CO2 conditions was less than 1 hour, whereas S. lessoniana required approximately 8 hours to recover fully following maximal aerobic performance. This difference in recovery time may be due to the more sedentary behaviours of I. pygmaeus. The ability of these two cephalopod species to cope with prolonged exposure to elevated CO2 without detriment to their aerobic performance suggests some resilience to an increasingly high CO2 world.
Collapse
Affiliation(s)
- Blake L Spady
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Tiffany J Nay
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland, Australia
| |
Collapse
|
10
|
Lacoue-Labarthe T, Oberhänsli F, Teyssié JL, Martin S. Delineation of metals and radionuclides bioconcentration in eggs of seabream Sparus aurata and effect of environmental pCO 2. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:426-433. [PMID: 30059868 DOI: 10.1016/j.jenvrad.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Considered as the most vulnerable ontogenic stages to environmental stressors, the early-life stages of fish paid a peculiar attention with respect to their vulnerability to metal and radionuclides contamination. Concomitantly, the increasing anthropogenic CO2 release in the atmosphere will cause major change of the seawater chemistry that could affect the trace elements and radionuclides bioconcentration efficiencies by marine organisms. The aim of this work was to 1) delineate the uptake behaviours of Ag, Am, Cd, Co and Zn in seabream eggs during 65 h of development and retention by newly hatched and 7 h-old larvae maintained in clean seawater, respectively, and 2) investigate the effects of elevated pCO2 on the bioconcentration efficiencies of these elements in eggs. Besides differing in terms of maximal concentration factors values, the uptake kinetics showed element-specific patterns with Am being linearly bioconcentrated and Co and Zn showing a saturation state equilibrium. The 110mAg and 109Cd uptake kinetics shared a two-phases pattern being best described by a saturation equation during the first 24 h of development, and then an exponential loss of accumulated elements although the radiotracer concentrations in the surrounding water remained constant. At hatching time, the radioactivity of 110mAg was the highest among radiotracers detected in the larvae. After 7 h in depuration conditions, 60% of this metal was still detected whereas 241Am, 60Co and 65Zn were almost totally lost, suggesting an efficient incorporation of Ag in the embryo during the egg development. Finally, this study brought first qualitative data on the effect of pCO2/pH on metal bioconcentration in eggs, raising the need to unravel chemical and biological processes to predict a potential shift of the toxicity of environmental contamination of fish early life stages with future ocean change.
Collapse
Affiliation(s)
- Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, France; International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco.
| | - François Oberhänsli
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco
| | - Jean-Louis Teyssié
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco
| | - Sophie Martin
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29682, Roscoff Cedex, France
| |
Collapse
|
11
|
Spady BL, Munday PL, Watson SA. Predatory strategies and behaviours in cephalopods are altered by elevated CO 2. GLOBAL CHANGE BIOLOGY 2018; 24:2585-2596. [PMID: 29460508 DOI: 10.1111/gcb.14098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that projected near-future carbon dioxide (CO2 ) levels can alter predator avoidance behaviour in marine invertebrates, yet little is known about the possible effects on predatory behaviours. Here we tested the effects of elevated CO2 on the predatory behaviours of two ecologically distinct cephalopod species, the pygmy squid, Idiosepius pygmaeus, and the bigfin reef squid, Sepioteuthis lessoniana. Both species exhibited an increased latency to attack and altered body pattern choice during the attack sequence at elevated CO2 . I. pygmaeus also exhibited a 20% decrease in predation rate, an increased striking distance, and reduced preference for attacking the posterior end of prey at elevated CO2 . Elevated CO2 increased activity levels of S. lessoniana comparable to those previously shown in I. pygmaeus, which could adversely affect their energy budget and increase their potential to be preyed upon. The effects of elevated CO2 on predatory behaviours, predation strategies and activity levels of cephalopods reported here could have far-reaching consequences in marine ecosystems due to the ecological importance of cephalopods in the marine food web.
Collapse
Affiliation(s)
- Blake L Spady
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
12
|
Highly diversified expansions shaped the evolution of membrane bound proteins in metazoans. Sci Rep 2017; 7:12387. [PMID: 28959054 PMCID: PMC5620054 DOI: 10.1038/s41598-017-11543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022] Open
Abstract
The dramatic increase in membrane proteome complexity is arguably one of the most pivotal evolutionary events that underpins the origin of multicellular animals. However, the origin of a significant number of membrane families involved in metazoan development has not been clarified. In this study, we have manually curated the membrane proteomes of 22 metazoan and 2 unicellular holozoan species. We identify 123,014 membrane proteins in these 24 eukaryotic species and classify 86% of the dataset. We determine 604 functional clusters that are present from the last holozoan common ancestor (LHCA) through many metazoan species. Intriguingly, we show that more than 70% of the metazoan membrane protein families have a premetazoan origin. The data show that enzymes are more highly represented in the LHCA and expand less than threefold throughout metazoan species; in contrast to receptors that are relatively few in the LHCA but expand nearly eight fold within metazoans. Expansions related to cell adhesion, communication, immune defence, and developmental processes are shown in conjunction with emerging biological systems, such as neuronal development, cytoskeleton organization, and the adaptive immune response. This study defines the possible LHCA membrane proteome and describes the fundamental functional clusters that underlie metazoan diversity and innovation.
Collapse
|
13
|
Sui Y, Liu Y, Zhao X, Dupont S, Hu M, Wu F, Huang X, Li J, Lu W, Wang Y. Defense Responses to Short-term Hypoxia and Seawater Acidification in the Thick Shell Mussel Mytilus coruscus. Front Physiol 2017; 8:145. [PMID: 28337153 PMCID: PMC5343010 DOI: 10.3389/fphys.2017.00145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022] Open
Abstract
The rising anthropogenic atmospheric CO2 results in the reduction of seawater pH, namely ocean acidification (OA). In East China Sea, the largest coastal hypoxic zone was observed in the world. This region is also strongly impacted by ocean acidification as receiving much nutrient from Changjiang and Qiantangjiang, and organisms can experience great short-term natural variability of DO and pH in this area. In order to evaluate the defense responses of marine mussels under this scenario, the thick shell mussel Mytilus coruscus were exposed to three pH/pCO2 levels (7.3/2800 μatm, 7.7/1020 μatm, 8.1/376 μatm) at two dissolved oxygen concentrations (DO, 2.0, 6.0 mg L−1) for 72 h. Results showed that byssus thread parameters, such as the number, diameter, attachment strength and plaque area were reduced by low DO, and shell-closing strength was significantly weaker under both hypoxia and low pH conditions. Expression patterns of genes related to mussel byssus protein (MBP) were affected by hypoxia. Generally, hypoxia reduced MBP1 and MBP7 expressions, but increased MBP13 expression. In conclusion, both hypoxia and low pH induced negative effects on mussel defense responses, with hypoxia being the main driver of change. In addition, significant interactive effects between pH and DO were observed on shell-closing strength. Therefore, the adverse effects induced by hypoxia on the defense of mussels may be aggravated by low pH in the natural environments.
Collapse
Affiliation(s)
- Yanming Sui
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries SciencesShanghai, China
| | - Yimeng Liu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Xin Zhao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences Shanghai, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg Fiskebäckskil, Sweden
| | - Menghong Hu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Fangli Wu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean University Shanghai, China
| | - Xizhi Huang
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean University Shanghai, China
| | - Jiale Li
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Weiqun Lu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Youji Wang
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| |
Collapse
|
14
|
Wood HL, Sundell K, Almroth BC, Sköld HN, Eriksson SP. Population-dependent effects of ocean acidification. Proc Biol Sci 2016; 283:rspb.2016.0163. [PMID: 27053741 DOI: 10.1098/rspb.2016.0163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica.The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects.
Collapse
Affiliation(s)
- Hannah L Wood
- Department of Biological and Environmental Sciences-Kristineberg, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences-Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences-Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Helén Nilsson Sköld
- Sven Loven Centre for Marine Sciences-Kristineberg, University of Gothenburg, Gothenburg, Sweden
| | - Susanne P Eriksson
- Department of Biological and Environmental Sciences-Kristineberg, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Navarro MO, Kwan GT, Batalov O, Choi CY, Pierce NT, Levin LA. Development of Embryonic Market Squid, Doryteuthis opalescens, under Chronic Exposure to Low Environmental pH and [O2]. PLoS One 2016; 11:e0167461. [PMID: 27936085 PMCID: PMC5147904 DOI: 10.1371/journal.pone.0167461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
The market squid, Doryteuthis opalescens, is an important forage species for the inshore ecosystems of the California Current System. Due to increased upwelling and expansion of the oxygen minimum zone in the California Current Ecosystem, the inshore environment is expected to experience lower pH and [O2] conditions in the future, potentially impacting the development of seafloor-attached encapsulated embryos. To understand the consequences of this co-occurring environmental pH and [O2] stress for D. opalescens encapsulated embryos, we performed two laboratory experiments. In Experiment 1, embryo capsules were chronically exposed to a treatment of higher (normal) pH (7.93) and [O2] (242 μM) or a treatment of low pH (7.57) and [O2] (80 μM), characteristic of upwelling events and/or La Niña conditions. The low pH and low [O2] treatment extended embryo development duration by 5-7 days; embryos remained at less developed stages more often and had 54.7% smaller statolith area at a given embryo size. Importantly, the embryos that did develop to mature embryonic stages grew to sizes that were similar (non-distinct) to those exposed to the high pH and high [O2] treatment. In Experiment 2, we exposed encapsulated embryos to a single stressor, low pH (7.56) or low [O2] (85 μM), to understand the importance of environmental pH and [O2] rising and falling together for squid embryogenesis. Embryos in the low pH only treatment had smaller yolk reserves and bigger statoliths compared to those in low [O2] only treatment. These results suggest that D. opalescens developmental duration and statolith size are impacted by exposure to environmental [O2] and pH (pCO2) and provide insight into embryo resilience to these effects.
Collapse
Affiliation(s)
- Michael O. Navarro
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- * E-mail:
| | - Garfield T. Kwan
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
| | - Olga Batalov
- Division of Biological Science, UCSD, La Jolla, California, United States of America
| | - Chelsea Y. Choi
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Biology Department, University of Rochester, Rochester, New York, United States of America
| | - N. Tessa Pierce
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
| | - Lisa A. Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
| |
Collapse
|
16
|
Thiel D, Hugenschütt M, Meyer H, Paululat A, Quijada-Rodriguez AR, Purschke G, Weihrauch D. Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). ACTA ACUST UNITED AC 2016; 220:425-436. [PMID: 27852754 DOI: 10.1242/jeb.145615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Ammonia is a toxic waste product from protein metabolism and needs to be either converted into less toxic molecules or, in the case of fish and aquatic invertebrates, excreted directly as is. In contrast to fish, very little is known regarding the ammonia excretion mechanism and the participating excretory organs in marine invertebrates. In the current study, ammonia excretion in the marine burrowing polychaete Eurythoe complanata was investigated. As a potential site for excretion, the 100-200 µm long, 30-50 µm wide and up to 25 µm thick dentrically branched, well ventilated and vascularized branchiae (gills) were identified. In comparison to the main body, the branchiae showed considerably higher mRNA expression levels of Na+/K+-ATPase, V-type H+-ATPase, cytoplasmic carbonic anhydrase (CA-2), a Rhesus-like protein, and three different ammonia transporters (AMTs). Experiments on the intact organism revealed that ammonia excretion did not occur via apical ammonia trapping, but was regulated by a basolateral localized V-type H+-ATPase, carbonic anhydrase and intracellular cAMP levels. Interestingly, the V-type H+-ATPase seems to play a role in ammonia retention. A 1 week exposure to 1 mmol l-1 NH4Cl (HEA) did not cause a change in ammonia excretion rates, while the three branchial expressed AMTs showed a tendency to be down-regulated. This indicates a shift of function in the branchial ammonia excretion processes under these conditions.
Collapse
Affiliation(s)
- Daniel Thiel
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Maja Hugenschütt
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Heiko Meyer
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Achim Paululat
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | | | - Günter Purschke
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Dirk Weihrauch
- University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Nödl MT, Kerbl A, Walzl MG, Müller GB, de Couet HG. The cephalopod arm crown: appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes. Front Zool 2016; 13:44. [PMID: 27708680 PMCID: PMC5041568 DOI: 10.1186/s12983-016-0175-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cephalopods are a highly derived class of molluscs that adapted their body plan to a more active and predatory lifestyle. One intriguing adaptation is the modification of the ventral foot to form a bilaterally symmetric arm crown, which constitutes a true morphological novelty in evolution. In addition, this structure shows many diversifications within the class of cephalopods and therefore offers an interesting opportunity to study the molecular underpinnings of the emergence of phenotypic novelties and their diversification. Here we use the sepiolid Euprymna scolopes as a model to study the formation and differentiation of the decabrachian arm crown, which consists of four pairs of sessile arms and one pair of retractile tentacles. We provide a detailed description of arm crown formation in order to understand the basic morphology and the developmental dynamics of this structure. RESULTS We show that the morphological formation of the cephalopod appendages occurs during distinct phases, including outgrowth, elongation, and tissue differentiation. Early outgrowth is characterized by uniform cell proliferation, while the elongation of the appendages initiates tissue differentiation. The latter progresses in a gradient from proximal to distal, whereas cell proliferation becomes restricted to the distal-most end of the arm. Differences in the formation of arms and tentacles exist, with the tentacles showing an expedite growth rate and higher complexity at younger stages. CONCLUSION The early outgrowth and differentiation of the E. scolopes arm crown shows similarities to the related, yet derived cephalopod Octopus vulgaris. Parallels in the growth and differentiation of appendages seem to exist throughout the animal kingdom, raising the question of whether these similarities reflect a recruitment of similar molecular patterning pathways.
Collapse
Affiliation(s)
- Marie-Therese Nödl
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria ; Department of Biology, University of Hawaii at Manoa, 2538 McCarthy Mall, Edmondson Hall 413, Honolulu, HI 96822 USA
| | - Alexandra Kerbl
- Marine Biology Section - Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Manfred G Walzl
- Department of Integrative Zoology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Gerd B Müller
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Heinz Gert de Couet
- Department of Biology, University of Hawaii at Manoa, 2538 McCarthy Mall, Edmondson Hall 413, Honolulu, HI 96822 USA
| |
Collapse
|
18
|
Hu MY, Michael K, Kreiss CM, Stumpp M, Dupont S, Tseng YC, Lucassen M. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua. Front Physiol 2016; 7:198. [PMID: 27313538 PMCID: PMC4889603 DOI: 10.3389/fphys.2016.00198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023] Open
Abstract
CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Physiology, University of Kiel Kiel, Germany
| | - Katharina Michael
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute Bremerhaven, Germany
| | - Cornelia M Kreiss
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute Bremerhaven, Germany
| | - Meike Stumpp
- Helmholtz Centre for Ocean Research Kiel Kiel, Germany
| | - Sam Dupont
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences, University of Gothenburg Gothenburg, Sweden
| | - Yung-Che Tseng
- Department of Life Science, National Taiwan Normal University Taipei City, Taiwan
| | - Magnus Lucassen
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute Bremerhaven, Germany
| |
Collapse
|
19
|
Li S, Huang J, Liu C, Liu Y, Zheng G, Xie L, Zhang R. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1157-1165. [PMID: 26727167 DOI: 10.1021/acs.est.5b05107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Chuang Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
20
|
Hu MY, Guh YJ, Shao YT, Kuan PL, Chen GL, Lee JR, Jeng MS, Tseng YC. Strong Ion Regulatory Abilities Enable the Crab Xenograpsus testudinatus to Inhabit Highly Acidified Marine Vent Systems. Front Physiol 2016; 7:14. [PMID: 26869933 PMCID: PMC4734175 DOI: 10.3389/fphys.2016.00014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood HCO3- levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na+/K+-ATPase (NKA) and V-type H+-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan; Institute of Physiology, Christian-Albrechts University KielKiel, Germany
| | - Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Yi-Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University Keelung, Taiwan
| | - Pou-Long Kuan
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Guan-Lin Chen
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Yung-Che Tseng
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
21
|
Hu MY, Hwang PP, Tseng YC. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods. Tissue Barriers 2015; 3:e1064196. [PMID: 26716070 DOI: 10.1080/21688370.2015.1064196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4 (+)) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Physiology; Christian-Albrechts University Kiel ; Kiel, Germany ; Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei City, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei City, Taiwan
| | - Yung-Che Tseng
- Department of Life Science; National Taiwan Normal University ; Taipei City, Taiwan
| |
Collapse
|
22
|
Adlimoghaddam A, Boeckstaens M, Marini AM, Treberg JR, Brassinga AKC, Weihrauch D. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. ACTA ACUST UNITED AC 2015; 218:675-83. [PMID: 25740900 DOI: 10.1242/jeb.111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW(-1) day(-1)) and very little urea (0.21±0.004 µmol gFW(-1) day(-1)). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H(+)-ATPase, carbonic anhydrase, Na(+)/K(+)-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l(-1) NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na(+)/K(+)-ATPase also increased significantly in response to 1 mmol l(-1) NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | - Mélanie Boeckstaens
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Anna-Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Jason R Treberg
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2 Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | | | - Dirk Weihrauch
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| |
Collapse
|
23
|
Osmotic/ionic status of body fluids in the euryhaline cephalopod suggest possible parallel evolution of osmoregulation. Sci Rep 2015; 5:14469. [PMID: 26403952 PMCID: PMC4585917 DOI: 10.1038/srep14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022] Open
Abstract
Acclimation from marine to dilute environments constitutes among the dramatic evolutionary transitions in the history of life. Such adaptations have evolved in multiple lineages, but studies of the blood/hemolymph homeostasis mechanisms are limited to those using evolutionarily advanced Deuterostome (chordates) and Ecdysozoa (crustaceans). Here, we examined hemolymph homeostasis in the advanced Lophotrochozoa/mollusc, the other unexplored taxa, and its possible regulation by the vasopressin/oxytocin superfamily peptides known to be implicated in fluid homeostasis in Chordata and Arthropoda. The hemolymph osmotic and ionic status in the euryhaline cephalopod (Octopus ocellatus) following transfer from 30-ppt normal seawater to 20 ppt salinity indicate hyperosmo- and hyperionoregulatory abilities for more than 1 week, as in crustaceans and teleost fish. While ventilation frequency decreased by 1 day, Na+/K+-ATPase activity, which has been generally implicated in ion transport, was induced in two of the eight posterior gills after 1 week. In addition, the octopuses were intravenously injected with 1 or 100 ng/g octopressin or cephalotocin, which are Octopus vasopressin/oxytocin orthologs. After 1 day, octopressin, but not cephalotocin, decreased the hemolymph osmolality and Ca concentrations, as well as urinary Na concentrations. These data provide evidence for possible parallel evolution in hyperionoregulatory mechanisms and coordination by conserved peptides.
Collapse
|
24
|
Stumpp M, Hu MY, Tseng YC, Guh YJ, Chen YC, Yu JK, Su YH, Hwang PP. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes. Sci Rep 2015; 5:10421. [PMID: 26051042 PMCID: PMC4458843 DOI: 10.1038/srep10421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3− transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.
Collapse
Affiliation(s)
- Meike Stumpp
- 1] Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan R.O.C. [2] Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany
| | - Marian Y Hu
- 1] Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan R.O.C. [2] Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Yung-Che Tseng
- Department of Life Sciences, National Taiwan Normal University, Taipei, Taiwan R.O.C
| | - Ying-Jeh Guh
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan R.O.C
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan R.O.C
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan R.O.C
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan R.O.C
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan R.O.C
| |
Collapse
|
25
|
Le Roy N, Jackson DJ, Marie B, Ramos-Silva P, Marin F. The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization. Front Zool 2014. [DOI: 10.1186/s12983-014-0075-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Spady BL, Watson SA, Chase TJ, Munday PL. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus. Biol Open 2014; 3:1063-70. [PMID: 25326517 PMCID: PMC4232764 DOI: 10.1242/bio.20149894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19-25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.
Collapse
Affiliation(s)
- Blake L Spady
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Sue-Ann Watson
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Tory J Chase
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L Munday
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
27
|
Hu MY, Guh YJ, Stumpp M, Lee JR, Chen RD, Sung PH, Chen YC, Hwang PP, Tseng YC. Branchial NH4+-dependent acid–base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Front Zool 2014. [DOI: 10.1186/s12983-014-0055-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
28
|
Hu MY, Casties I, Stumpp M, Ortega-Martinez O, Dupont S. Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis. ACTA ACUST UNITED AC 2014; 217:2411-21. [PMID: 24737772 DOI: 10.1242/jeb.100024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Seawater acidification due to anthropogenic release of CO2 as well as the potential leakage of pure CO2 from sub-seabed carbon capture storage (CCS) sites may impose a serious threat to marine organisms. Although infaunal organisms can be expected to be particularly impacted by decreases in seawater pH, as a result of naturally acidified conditions in benthic habitats, information regarding physiological and behavioral responses is still scarce. Determination of PO2 and P(CO2) gradients within burrows of the brittlestar Amphiura filiformis during environmental hypercapnia demonstrated that besides hypoxic conditions, increases of environmental P(CO2) are additive to the already high P(CO2) (up to 0.08 kPa) within the burrows. In response to up to 4 weeks exposure to pH 7.3 (0.3 kPa P(CO2)) and pH 7.0 (0.6 kPa P(CO2)), metabolic rates of A. filiformis were significantly reduced in pH 7.0 treatments, accompanied by increased ammonium excretion rates. Gene expression analyses demonstrated significant reductions of acid-base (NBCe and AQP9) and metabolic (G6PDH, LDH) genes. Determination of extracellular acid-base status indicated an uncompensated acidosis in CO2-treated animals, which could explain the depressed metabolic rates. Metabolic depression is associated with a retraction of filter feeding arms into sediment burrows. Regeneration of lost arm tissues following traumatic amputation is associated with significant increases in metabolic rate, and hypercapnic conditions (pH 7.0, 0.6 kPa) dramatically reduce the metabolic scope for regeneration, reflected in an 80% reduction in regeneration rate. Thus, the present work demonstrates that elevated seawater P(CO2) significantly affects the environment and the physiology of infaunal organisms like A. filiformis.
Collapse
Affiliation(s)
- Marian Y Hu
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences, Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Isabel Casties
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences, Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden
| | - Meike Stumpp
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences, Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Olga Ortega-Martinez
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences, Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden
| | - Sam Dupont
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences, Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden
| |
Collapse
|