1
|
Shestipalova A, Nikishchenko V, Bogomolov A, Voronezhskaya EE. Parental Serotonin Modulation Alters Monoamine Balance in Identified Neurons and Affects Locomotor Activity in Progeny of Lymnaea stagnalis (Mollusca: Gastropoda). Int J Mol Sci 2025; 26:2454. [PMID: 40141098 PMCID: PMC11942300 DOI: 10.3390/ijms26062454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Monoamine neurotransmitters play a critical role in the development and function of the nervous system. In this study, we investigated the impact of parental serotonin (5-HT) modulation on the monoamine balance in the identified apical neurons of Lymnaea stagnalis embryos and its influence on embryonic locomotor activity. Using immunocytochemical and pharmacological approaches, we detected serotonin in the apical neurons of veliger-stage embryos, observing that the relative 5-HT level within these neurons varied with seasonal conditions. Pharmacological elevation of parental 5-HT levels significantly increased the relative 5-HT level in the oocytes and subsequently in the apical neurons of their offspring. Notably, while the relative dopamine (DA) levels in these neurons remained stable, the increase in the relative 5-HT level significantly enhanced the embryos' rotational locomotion. The expression of tryptophan hydroxylase (TPH), a key enzyme in serotonin synthesis, is a prerequisite for the elevation of the relative 5-HT level in apical neurons and is detected as early as the gastrula stage. Importantly, neither a reduction of 5-HT in the maternal organism by chlorpromazine application nor its pharmacological elevation via serotonin precursor (5-HTP) application at the cleavage stage affected the monoamine balance in apical neurons. These findings provide novel insights into how the parental 5-HT level selectively alters the monoamine phenotype of the identified neurons, offering a model for studying environmentally induced neural plasticity in early development.
Collapse
Affiliation(s)
- Anastasiia Shestipalova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (A.S.); (A.B.)
| | - Viktoriya Nikishchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia;
| | - Anton Bogomolov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (A.S.); (A.B.)
| | - Elena E. Voronezhskaya
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (A.S.); (A.B.)
| |
Collapse
|
2
|
Olson CS, Moorjani A, Ragsdale CW. Molecular and morphological circuitry of the octopus sucker ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637560. [PMID: 39990388 PMCID: PMC11844415 DOI: 10.1101/2025.02.10.637560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The octopus sucker is a profoundly complex sensorimotor structure. Each of the hundreds of suckers that line the octopus arm can move independently or in concert with one another. These suckers also contain an intricate sensory epithelium, enriched with chemotactile receptors. Much of the massive nervous system embedded in the octopus arm mediates control of the suckers. Each arm houses a large axial nerve cord (ANC), which features local enlargements corresponding to each sucker. There is also a sucker ganglion, a peripheral nervous element, situated in the stalk of every sucker. The structure and function of the sucker ganglion remains obscure. We examined the cellular organization and molecular composition of the sucker ganglion in Octopus bimaculoides. The sucker ganglion has an ellipsoid shape and features an unusual organization: the neuropil of the ganglion is distributed as a cap aborally (away from the sucker) and a small pocket orally (towards the sucker), with neuronal cell bodies concentrated in the space between. Using in situ hybridization, we detected positive expression of sensory (PIEZO) and motor (LHX3 and MNX) neuron markers in the sucker ganglion cell bodies. Nerve fibers spread out from the sucker ganglion, targeting the surrounding sucker musculature and the oral roots extending to the ANC. Our results indicate that the sucker ganglion is composed of both sensory and motor elements and suggest that this ganglion is not a simple relay for the ANC but facilitates local reflexes for each sucker.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| | - Aashna Moorjani
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
3
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
4
|
Olson CS, Schulz NG, Ragsdale CW. Neuronal segmentation in cephalopod arms. Nat Commun 2025; 16:443. [PMID: 39814765 PMCID: PMC11736069 DOI: 10.1038/s41467-024-55475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Prehensile arms are among the most remarkable features of the octopus, but little is known about the neural circuitry controlling arm movements. Here, we report on the cellular and molecular organization of the arm nervous system, focusing on its massive axial nerve cords (ANCs). We found that the ANC is segmented. In transverse cross sections, the ANC cell body layer wraps around the neuropil with no apparent segregation of sensory and motor neurons. In longitudinal sections, however, ANC neurons form segments, setting up a modular organization to the adjoining neuropil. ANC nerves exit in the septa between segments, and for each sucker, form a spatial topographic map ("suckerotopy"). A strong link between ANC segmentation and flexible sucker-laden arms is confirmed by comparative study of squid arms and tentacles. These ANC modules offer a template for modeling the motor control of soft tissues and provide a compelling example of nervous system segmentation in molluscs.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL, USA.
| | - Natalie Grace Schulz
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Clifton W Ragsdale
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Loria SF, Ehrenthal VL, Esposito LA. Revisiting the scorpion central nervous system using microCT. Sci Rep 2024; 14:27961. [PMID: 39543179 PMCID: PMC11564975 DOI: 10.1038/s41598-024-76917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
The central nervous system (CNS) of Chelicerata has remained conserved since the Cambrian, yet few studies have examined its variability within chelicerate orders including Scorpiones. The scorpion CNS comprises the prosomal ganglion and opisthosomal ventral nerve cord. We visualize the scorpion CNS with microCT, explore morphological variation across taxa, compare the scorpion CNS to other arachnids, and create a terminology glossary and literature review to assist future studies. Six scorpion species were microCT scanned. Scan quality varied and most structures in the prosomal ganglion could only be observed in Paruroctonus becki (Vaejovidae). Major nerves and the first opisthosomal ganglion were visible in nearly all taxa. We present the most detailed 3D-rendering of the scorpion prosomal ganglion to date. Our results corroborate existing research and find the scorpion CNS to be conserved. Nearly all structures reported previously in the prosomal ganglion were located in similar positions in P. becki, and nerve morphology was conserved across examined families. Despite similarities, we report differences from the literature, observe taxonomic variation in prosomal ganglion shape, and confirm positional variation for the first opisthosomal ganglion. This study serves as a starting point for microCT analysis of the scorpion CNS, and future work should include more distantly related, size variable taxa to better elucidate these findings.
Collapse
Affiliation(s)
- Stephanie F Loria
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA.
- Museum of Nature Hamburg-Zoology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany.
| | - Valentin L Ehrenthal
- Museum of Nature Hamburg-Zoology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Lauren A Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
6
|
Biserova NM, Margarit AA. Complex Brain Morphology Discovered in the Shark Parasite Nybelinia surmenicola (Cestoda: Trypanorhyncha). J Morphol 2024; 285:e70002. [PMID: 39434450 DOI: 10.1002/jmor.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
The ultrastructure of the nervous system has been studied in sexually mature Nybelinia surmenicola (Cestoda: Trypanorhyncha) from the intestine of a shark Lamna ditropis. The central nervous system (CNS) reveals a complex organization within cestodes and corresponds to the trypanorhynch pattern of brain architecture. The brain of N. surmenicola is differentiated into nine clearly defined lobes and semicircular, median, and X-shaped cruciate commissures. A specific feature is the presence of a powerful extracellular capsule that surrounds the brain lobes with the cortical glial cells. Moreover, the architecture of the anterior lobes clearly distinguishes the species of Tentacularioidea. The neurons of the anterior lobes form compact groups looking like frontal horns. There are approximately 120 neurons in the anterior lobes and a preliminary estimate of more than 300 perikarya in the brain. Several ultrastructural types of neurons have been identified, differing in the size and shape of the soma, the density of the cytoplasm, and the ultrastructure of synaptic vesicles. Numerous synapses involving clear and electron-dense vesicles have been observed in neuropils. Two types of glial cells have been found in the brain that participate in neuronal metabolism and wrap around the giant axons, brain lobes, neuropil compartments, and the main nerve cords. Such a powerful extracellular fibrillar brain capsule has not been observed in the brain of other studied cestodes and has been demonstrated in this study for the first time. The differentiation of the brain lobes reveals the important role of the rhyncheal system in the evolution of cestodes and correlates with their behavior. The anterior nerves arising from the anterior lobes innervate the radial muscles stabilizing the position of the tentacle sheaths and movements of the attachment organs. The nervous system anatomy and the brain architecture may reflect the morphofunctional aspects of the tapeworm evolution.
Collapse
Affiliation(s)
| | - Anna A Margarit
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Holst S, Tiseo GR, Djeghri N, Sötje I. Approaches and findings in histological and micromorphological research on Rhizostomeae. ADVANCES IN MARINE BIOLOGY 2024; 98:99-192. [PMID: 39547756 DOI: 10.1016/bs.amb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The substantial development of microscopic techniques and histological examination methods during the past five decades allowed for many new insights into the histology and microanatomy of Rhizostomeae. The present review focuses on new findings about histologically important structures: nerves, senses, muscles, gonads, zooxanthellae and nematocysts. Different ontogenetic stages of rhizostome species were included in the literature research, supplemented with the authors' unpublished data and figures. The overview of the research results reveals that the application of chemo- and immunohistochemical techniques have provided deeper insights into neuronal and sensory structures and their interconnections. Modern microscopic methods led to new findings on the histological gonadal organization and details of the processes of gametogenesis, fertilization, cleavage, gastrulation, and brooding. Advanced optical methods also allowed for a better understanding of Rhizostomeae-zooxanthellae associations and the morphology and function of nematocysts. Improvements in molecular biology allowed for more precise identification of zooxanthellae associated with rhizostome species. Although there has been significant progress in all of the research subjects covered here, we identify several knowledge gaps and conclude with some recommendations for future research.
Collapse
Affiliation(s)
- Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany.
| | - Gisele R Tiseo
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nicolas Djeghri
- The Marine Biological Association, Continuous Plankton Recorder Survey, Plymouth, United Kingdom; University of Brest (UBO), Institut Universitaire Européen de la Mer (IUEM), Laboratoire des sciences de l'environnement marin (LEMAR, UMR 6539), Plouzané, France
| | - Ilka Sötje
- University of Hamburg, Institute for Cell and Systems Biology of Animals (IZS), Hamburg, Germany
| |
Collapse
|
8
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Kotsyuba E, Dyachuk V. Effects of Chronic Exposure to Low Doses of Rotenone on Dopaminergic and Cholinergic Neurons in the CNS of Hemigrapsus sanguineus. Int J Mol Sci 2024; 25:7159. [PMID: 39000265 PMCID: PMC11241242 DOI: 10.3390/ijms25137159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Rotenone, as a common pesticide and insecticide frequently found in environmental samples, may be present in aquatic habitats worldwide. Exposure to low concentrations of this compound may cause alterations in the nervous system, thus contributing to Parkinsonian motor symptoms in both vertebrates and invertebrates. However, the effects of chronic exposure to low doses of rotenone on the activity of neurotransmitters that govern motor functions and on the specific molecular mechanisms leading to movement morbidity remain largely unknown for many aquatic invertebrates. In this study, we analyzed the effects that rotenone poisoning exerts on the activity of dopamine (DA) and acetylcholine (ACh) synthesis enzymes in the central nervous system (CNS) of Asian shore crab, Hemigrapsus sanguineus (de Haan, 1835), and elucidated the association of its locomotor behavior with Parkinson's-like symptoms. An immunocytochemistry analysis showed a reduction in tyrosine hydroxylase (TH) in the median brain and the ventral nerve cord (VNC), which correlated with the subsequent decrease in the locomotor activity of shore crabs. We also observed a variation in cholinergic neurons' activity, mostly in the ventral regions of the VNC. Moreover, the rotenone-treated crabs showed signs of damage to ChAT-lir neurons in the VNC. These data suggest that chronic treatment with low doses of rotenone decreases the DA level in the VNC and the ACh level in the brain and leads to progressive and irreversible reductions in the crab's locomotor activity, life span, and changes in behavior.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
10
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Menzel R, Rybak J. Insights from the past: the work of Hans von Alten on the evolution of brain structure, ecological adaptation, and cognition in hymenopteran species. Learn Mem 2024; 31:a053922. [PMID: 38862163 PMCID: PMC11199940 DOI: 10.1101/lm.053922.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
In his treatise on arthropod brains, Hans von Alten (1910) focuses on a specific functional group of insects-the flying Hymenoptera-which exhibit a spectrum of lifestyles ranging from solitary to social. His work presents a distinctive comparative neuro-anatomical approach rooted in an eco-evolutionary and eco-behavioral background. We regard his publication as an exceptionally valuable source of information and seek to inspire the research community dedicated to the study of the insect brain to explore its insights further, even after more than 110 years. We have translated and annotated his work, expecting it to engage researchers not just with its remarkable drawings but also with its substantive content and exemplary research strategy. The present text is designed to complement von Alten's publication, situating it within the temporal context of nineteenth-century and early twentieth-century studies, and to draw connections to contemporary perspectives, especially concerning a central brain structure: the mushroom body.
Collapse
Affiliation(s)
- Randolf Menzel
- Department of Biology, Neurobiology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
12
|
von Döhren J. Comparative development of the serotonin- and FMRFamide-immunoreactive components of the nervous system in two distantly related ribbon worm species (Nemertea, Spiralia). Front Neurosci 2024; 18:1375208. [PMID: 38586190 PMCID: PMC10998470 DOI: 10.3389/fnins.2024.1375208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Neurodevelopment in larval stages of non-model organisms, with a focus on the serotonin- and FMRFamide-immunoreactive components, has been in the focus of research in the recent past. However, some taxonomic groups remain understudied. Nemertea (ribbon worms) represent such an understudied clade with only few reports on nervous system development mostly from phylogenetically or developmentally derived species. It would be insightful to explore neurodevelopment in additional species to be able to document the diversity and deduce common patterns to trace the evolution of nervous system development. Methods Fluorescent immunohistochemical labeling with polyclonal primary antibodies against serotonin and FMRF-amide and a monoclonal antibody against synapsin performed on series of fixed larval stages of two nemertean species Cephalothrix rufifrons (Archinemertea, Palaeonemertea) and Emplectonema gracile (Monostilifera, Hoplonemertea) were analyzed with confocal laser scanning microscopy. Results This contribution gives detailed accounts on the development of the serotonin- and FMRFamide-immunoreactive subsets of the nervous system in two nemertean species from the first appearance of the respective signals. Additionally, data on synapsin-like immunoreactivity illustrates the general structure of neuropil components. Events common to both investigated species are the appearance of serotonin-like immunoreactive signals before the appearance of FMRF-like immunoreactive signals and the strict progression of the development of the lateral nerve cords from the anteriorly located, ring-shaped brain toward the posterior pole of the larva. Notable differences are (1) the proboscis nervous system that is developing much earlier in investigated larval stages of E. gracile and (2) distinct early, but apparently transient, serotonergic neurons on the frontal and caudal pole of the larva in E. gracile that seem to be absent in C. rufifrons. Discussion According to the results from this investigation and in line with previously published accounts on nervous system development, the hypothetical last common ancestor of Nemertea had a ring-shaped brain arranged around the proboscis opening, from which a pair of ventro-lateral nerve cords develops in anterior to posterior progression. Early frontal and caudal serotonergic neurons that later degenerate or cease to express serotonin are an ancestral character of Nemertea that they share with several other spiralian clades.
Collapse
Affiliation(s)
- Jörn von Döhren
- Bonn Institute of Organismic Biology (BIOB), Animal Biodiversity Section, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Kalke P, Linder SS, Beckers P, Helm C. Palps across the tree - the neuronal innervation and development of sensory head appendages in Annelida. Front Neurosci 2024; 17:1310225. [PMID: 38239828 PMCID: PMC10794354 DOI: 10.3389/fnins.2023.1310225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Polychaetes inhabit a wide variety of habitats and show a great morphological diversity. In this context, a key morphological structure for adapting to their individual lifestyles and ecological niches are the prominent head appendages. In the last years more and more studies focused on the mainly sensory annelid head appendages - namely the antennae, palps, buccal lips and cirri - to unravel the evolutionary origin and phylogeny of Annelida. Unfortunately, comparable data for most of the polychaete families are lacking so far, especially when it comes to features of the larval anterior nervous system and the related innervation and potential homology of these head appendages. In this study, we therefore use an integrative morphological approach including immunohistochemistry and confocal laser scanning microscopy in combination with histological serial sections and 3D-visualizations. With special focus on the palp-like appendages, our data provides a closer look into the development of the larval anterior nervous system and the related sensory structures of three polychaete families representing major groups of the annelid tree of life. Hence, we investigate members of the palaeoannelid Magelonidae as well as basally-branching Amphinomidae, and the pleistoannelid Spionidae forming a taxon deeply nested within Sedentaria. Our comparative data of larval and adult neuronal features support the homology of feeding-palps across the annelid tree. Furthermore, our observations show that larval palps gradually transform into the adult ones while keeping a very similar neuronal innervation pattern. Solely for Amphinomidae a loss of larval palps during ontogenesis has to be assumed. Therefore, our investigations uncover important and so far unknown details in terms of structural homology across Annelida and provide important results necessary for our understanding of annelid evolution.
Collapse
Affiliation(s)
- Paul Kalke
- Helm Lab, Johann-Friedrich-Blumenbach-Institute, Animal Evolution and Biodiversity, University of Göttingen, Göttingen, Germany
| | - Samira S. Linder
- Helm Lab, Johann-Friedrich-Blumenbach-Institute, Animal Evolution and Biodiversity, University of Göttingen, Göttingen, Germany
| | - Patrick Beckers
- Institute of Evolutionary Biology and Zooecology, Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| | - Conrad Helm
- Helm Lab, Johann-Friedrich-Blumenbach-Institute, Animal Evolution and Biodiversity, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Olson CS, Ragsdale CW. Toward an Understanding of Octopus Arm Motor Control. Integr Comp Biol 2023; 63:1277-1284. [PMID: 37327080 PMCID: PMC10755184 DOI: 10.1093/icb/icad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Octopuses have the extraordinary ability to control eight prehensile arms with hundreds of suckers. With these highly flexible limbs, they engage in a wide variety of tasks, including hunting, grooming, and exploring their environment. The neural circuitry generating these movements engages every division of the octopus nervous system, from the nerve cords of the arms to the supraesophegeal brain. In this review, the current knowledge on the neural control of octopus arm movements is discussed, highlighting open questions and areas for further study.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, University of Chicago, Chicago 60637, USA
| | | |
Collapse
|
15
|
Raspe S, Kümmerlen K, Harzsch S. Immunolocalization of SIFamide-like neuropeptides in the adult and developing central nervous system of the amphipod Parhyale hawaiensis (Malacostraca, Peracarida, Amphipoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101309. [PMID: 37879171 DOI: 10.1016/j.asd.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.
Collapse
Affiliation(s)
- Sophie Raspe
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Katja Kümmerlen
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| |
Collapse
|
16
|
Sivitilli DM, Strong T, Weertman W, Ullmann J, Smith JR, Gire DH. Mechanisms of octopus arm search behavior without visual feedback. BIOINSPIRATION & BIOMIMETICS 2023; 18:066017. [PMID: 37793413 DOI: 10.1088/1748-3190/ad0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The octopus coordinates multiple, highly flexible arms with the support of a complex distributed nervous system. The octopus's suckers, staggered along each arm, are employed in a wide range of behaviors. Many of these behaviors, such as foraging in visually occluded spaces, are executed under conditions of limited or absent visual feedback. In coordinating unseen limbs with seemingly infinite degrees of freedom across a variety of adaptive behaviors, the octopus appears to have solved a significant control problem facing the field of soft-bodied robotics. To study the strategies that the octopus uses to find and capture prey within unseen spaces, we designed and 3D printed visually occluded foraging tasks and tracked arm motion as the octopus attempted to find and retrieve a food reward. By varying the location of the food reward within these tasks, we can characterize how the arms and suckers adapt to their environment to find and capture prey. We compared these results to simulated experimental conditions performed by a model octopus arm to isolate the primary mechanisms driving our experimental observations. We found that the octopus relies on a contact-based search strategy that emerges from local sucker coordination to simplify the control of its soft, highly flexible limbs.
Collapse
Affiliation(s)
- Dominic M Sivitilli
- Department of Psychology, University of Washington, Seattle, WA, United States of America
- Astrobiology Program, University of Washington, Seattle, WA, United States of America
| | - Terrell Strong
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, United States of America
| | - Willem Weertman
- Department of Psychology, University of Washington, Seattle, WA, United States of America
| | - Joseph Ullmann
- Friday Harbor Laboratories, University of Washington, Seattle, WA, United States of America
| | - Joshua R Smith
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, United States of America
- Department of Electrical & Computer Engineering, University of Washington, 98195 Seattle, WA, United States of America
| | - David H Gire
- Department of Psychology, University of Washington, Seattle, WA, United States of America
- Astrobiology Program, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
17
|
Nikishchenko V, Kolotukhina N, Dyachuk V. Comparative Neuroanatomy of Pediveliger Larvae of Various Bivalves from the Sea of Japan. BIOLOGY 2023; 12:1341. [PMID: 37887051 PMCID: PMC10604817 DOI: 10.3390/biology12101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/28/2023]
Abstract
Here, we describe the nervous system structures from pediveligers of eight bivalve species (Callista brevisiphonata, Mactromeris polynyma, Crenomytilus grayanus, Kellia japonica, Mizuhopecten yessoensis, and Azumapecten farreri) with different modes of life in their adult stages, corresponding to the ecological niches that they occupy (burrowing, cemented, byssally attached, and mobile forms). We have identified neuromorphological features of the central and peripheral nervous systems in larval bivalves. We show that the unpaired sensory apical organ is still present in pediveligers along with the developing paired cerebral ganglia characteristic of an adult mollusk. Pediveligers have the pleural ganglia connected to the pedal ganglia via the pedal nerve cords and to the visceral ganglia via the lateral nerve cords. We have found a number of structures of the peripheral nervous system whose presence varies between pediveligers of different species. Mactromeris, Callista, and Pododesmus have 5-HT-immunopositive stomatogastric neurons, whereas the Yesso and Farrer's scallops have an FMRFamide-immunopositive enteric nervous system. The innervation of the anterior part of the velum is connected to a system of the apical organ and cerebral ganglia, and the innervation of the posterior part is connected to the visceral ganglia. Most differences in the structure of the peripheral elements of the nervous system are species-specific and weakly depend on the ecological niche that pediveligers occupy.
Collapse
Affiliation(s)
| | | | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (V.N.); (N.K.)
| |
Collapse
|
18
|
Kwak HJ, Medina-Jiménez BI, Park SC, Kim JH, Jeong GH, Jeon MJ, Kim S, Kim JW, Weisblat DA, Cho SJ. Slit-Robo expression in the leech nervous system: insights into eyespot evolution. Cell Biosci 2023; 13:70. [PMID: 37013648 PMCID: PMC10071614 DOI: 10.1186/s13578-023-01019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Slit and Robo are evolutionarily conserved ligand and receptor proteins, respectively, but the number of slit and robo gene paralogs varies across recent bilaterian genomes. Previous studies indicate that this ligand-receptor complex is involved in axon guidance. Given the lack of data regarding Slit/Robo in the Lophotrochozoa compared to Ecdysozoa and Deuterostomia, the present study aims to identify and characterize the expression of Slit/Robo orthologs in leech development. RESULTS We identified one slit (Hau-slit), and two robo genes (Hau-robo1 and Hau-robo2), and characterized their expression spatiotemporally during the development of the glossiphoniid leech Helobdella austinensis. Throughout segmentation and organogenesis, Hau-slit and Hau-robo1 are broadly expressed in complex and roughly complementary patterns in the ventral and dorsal midline, nerve ganglia, foregut, visceral mesoderm and/or endoderm of the crop, rectum and reproductive organs. Before yolk exhaustion, Hau-robo1 is also expressed where the pigmented eye spots will later develop, and Hau-slit is expressed in the area between these future eye spots. In contrast, Hau-robo2 expression is extremely limited, appearing first in the developing pigmented eye spots, and later in the three additional pairs of cryptic eye spots in head region that never develop pigment. Comparing the expression of robo orthologs between H. austinensis and another glossiphoniid leech, Alboglossiphonia lata allows to that robo1 and robo2 operate combinatorially to differentially specify pigmented and cryptic eyespots within the glossiphoniid leeches. CONCLUSIONS Our results support a conserved role in neurogenesis, midline formation and eye spot development for Slit/Robo in the Lophotrochozoa, and provide relevant data for evo-devo studies related to nervous system evolution.
Collapse
Affiliation(s)
- Hee-Jin Kwak
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Ecology, Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Brenda I Medina-Jiménez
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Earth Sciences, Paleobiology, Geocentrum, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Soon Cheol Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Hyeuk Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Incheon, 22689, Republic of Korea
| | - Geon-Hwi Jeong
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Mi-Jeong Jeon
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Sangil Kim
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, 385 Weill Hall, Berkeley, CA, 94720-3200, USA.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
19
|
Schoenemann B, Clarkson ENK. The median eyes of trilobites. Sci Rep 2023; 13:3917. [PMID: 36890176 PMCID: PMC9995485 DOI: 10.1038/s41598-023-31089-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Arthropods typically possess two types of eyes-compound eyes, and the ocellar, so called 'median eyes'. Only trilobites, an important group of arthropods during the Palaeozoic, seem not to possess median eyes. While compound eyes are in focus of many investigations, median eyes are not as well considered. Here we give an overview of the occurence of median eyes in the arthropod realm and their phylogenetic relationship to other ocellar eye-systems among invertebrates. We discuss median eyes as represented in the fossil record e.g. in arthropods of the Cambrian fauna, and document median eyes in trilobites the first time. We make clear that ocellar systems, homologue to median eyes and possibly their predecessors are the primordial visual system, and that the compound eyes evolved later. Furthermore, the original number of median eyes is two, as retained in chelicerates. Four, probably the consequence of a gene-dublication, can be found for example in basal crustaceans, three is a derived number by fusion of the central median eyes and characterises Mandibulata. Median eyes are present in larval trilobites, but lying below a probably thin, translucent cuticle, as described here, which explains why they have hitherto escaped detection. So this article gives a review about the complexity of representation and evolution of median eyes among arthropods, and fills the gap of missing median eyes in trilobites. Thus now the number of median eyes represented in an arthropod is an important tool to find its position in the phylogenetic tree.
Collapse
Affiliation(s)
- Brigitte Schoenemann
- Department of Biology, Institute of Zoology (Neurobiology, Animal Physiology), University of Cologne, 50674, Cologne, Germany.
| | - Euan N K Clarkson
- Grant Institute, School of Geosciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, UK
| |
Collapse
|
20
|
Zito F, Bonaventura R, Costa C, Russo R. Carbonic anhydrases in development: morphological observations and gene expression profiling in sea urchin embryos exposed to acetazolamide. Open Biol 2023; 13:220254. [PMID: 36597694 PMCID: PMC9811153 DOI: 10.1098/rsob.220254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbonic anhydrases (CANs) are conserved metalloenzymes catalysing the reversible hydration of carbon dioxide into protons and bicarbonate, with important roles in cells physiology. Some CAN-coding genes were found in sea urchin genome, although only one involved in embryonic skeletogenesis was described in Paracentrotus lividus. Here, we investigated gene expression patterns of P. lividus embryos cultured in the presence of acetazolamide (AZ), a CAN inhibitor, to combine morphological defects with their molecular underpinning. CAN inhibition blocked skeletogenesis, affected the spatial/temporal expression of some biomineralization-related genes, inhibited embryos swimming. A comparative analysis on the expression of 127 genes in control and 3 h/24 h AZ-treated embryos, using NanoString technology, showed the differential expression of genes encoding for structural/regulatory proteins, with different embryonic roles: biomineralization, transcriptional regulation, signalling, development and defence response. The study of the differentially expressed genes and the signalling pathways affected, besides in silico analyses and a speculative 'interactomic model', leads to predicting the presence of various CAN isoforms, possibly involved in different physiological processes/activities in sea urchin embryo, and their potential target genes/proteins. Our findings provide new valuable molecular data for further studies in several biological fields: developmental biology (biomineralization, axes patterning), cell differentiation (neural development) and drug toxicology (AZ effects on embryos/tissues).
Collapse
Affiliation(s)
- Francesca Zito
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rosa Bonaventura
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Caterina Costa
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Roberta Russo
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| |
Collapse
|
21
|
Flensburg SB, Garm A, Funch P. The contraction-expansion behaviour in the demosponge Tethya wilhelma is light controlled and follows a diurnal rhythm. J Exp Biol 2022; 225:286159. [PMID: 36546534 DOI: 10.1242/jeb.244751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Sponges (phylum Porifera) are metazoans which lack muscles and nerve cells, yet perform coordinated behaviours such as whole-body contractions. Previous studies indicate diurnal variability in both the number of contractions and the expression of circadian clock genes. Here, we show that diurnal patterns are present in the contraction-expansion behaviour of the demosponge Tethya wilhelma, by using infrared videography and a simulated night/day cycle including sunrise and sunset mimics. In addition, we show that this behaviour is at least strongly influenced by ambient light intensity and therefore indicates light-sensing capabilities in this sponge species. This is supported by our finding that T. wilhelma consistently contracts at sunrise, and that this pattern disappears both when the sponge is kept in constant darkness and when it is in constant light.
Collapse
Affiliation(s)
- Sarah B Flensburg
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000 Aarhus C, Denmark
| | - Anders Garm
- Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Peter Funch
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000 Aarhus C, Denmark
| |
Collapse
|
22
|
Gordon T, Zaquin T, Kowarsky MA, Voskoboynik Y, Hendin N, Wurtzel O, Caicci F, Manni L, Voskoboynik A, Shenkar N. Stemness Activity Underlying Whole Brain Regeneration in a Basal Chordate. Cells 2022; 11:3727. [PMID: 36496987 PMCID: PMC9738451 DOI: 10.3390/cells11233727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding how neurons regenerate following injury remains a central challenge in regenerative medicine. Adult mammals have a very limited ability to regenerate new neurons in the central nervous system (CNS). In contrast, the basal chordate Polycarpa mytiligera can regenerate its entire CNS within seven days of complete removal. Transcriptome sequencing, cellular labeling, and proliferation in vivo essays revealed that CNS regeneration is mediated by a newly formed neural progeny and the activation of neurodevelopmental pathways that are associated with enhanced stem-cell activity. Analyzing the expression of 239 activated pathways enabled a quantitative understanding of gene-set enrichment patterns at key regeneration stages. The molecular and cellular mechanisms controlling the regenerative ability that this study reveals can be used to develop innovative approaches to enhancing neurogenesis in closely-related chordate species, including humans.
Collapse
Affiliation(s)
- Tal Gordon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tal Zaquin
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | | | - Yotam Voskoboynik
- Bioinformatics and System Biology, Jacobs School of Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Noam Hendin
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Omri Wurtzel
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Federico Caicci
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Lucia Manni
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
23
|
Beckers P, Gebhardt T, Helm C. Loss of nervous system complexity – Morphological analyses shed light on the neuronal evolution in Myzostomida (Annelida). ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Patrick Beckers
- Institute of Evolutionary Biology and Zooecology, University of Bonn Bonn Germany
| | - Tobias Gebhardt
- Institute of Evolutionary Biology and Zooecology, University of Bonn Bonn Germany
| | - Conrad Helm
- Johann‐Friedrich‐Blumenbach Institute for Zoology & Anthropology Animal Evolution and Biodiversity University of Göttingen Göttingen Germany
| |
Collapse
|
24
|
Voronezhskaya EE. Serotonin as a volume transmission signal in the “simple nervous system” of mollusks: From axonal guidance to behavioral orchestration. Front Synaptic Neurosci 2022; 14:1024778. [DOI: 10.3389/fnsyn.2022.1024778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
|
25
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
26
|
Kniazkina M, Dyachuk V. Neurogenesis of the scallop Azumapecten farreri: from the first larval sensory neurons to the definitive nervous system of juveniles. Front Zool 2022; 19:22. [PMID: 35922810 PMCID: PMC9347173 DOI: 10.1186/s12983-022-00468-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods. Results We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers. Conclusions We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00468-7.
Collapse
Affiliation(s)
- Marina Kniazkina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.
| |
Collapse
|
27
|
Tidau S, Whittle J, Jenkins SR, Davies TW. Artificial light at night reverses monthly foraging pattern under simulated moonlight. Biol Lett 2022; 18:20220110. [PMID: 35892207 PMCID: PMC9326264 DOI: 10.1098/rsbl.2022.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mounting evidence shows that artificial light at night (ALAN) alters biological processes across levels of organization, from cells to communities. Yet, the combined impacts of ALAN and natural sources of night-time illumination remain little explored. This is in part due the lack of accurate simulations of the complex changes moonlight intensity, timing and spectra throughout a single night and lunar cycles in laboratory experiments. We custom-built a novel system to simulate natural patterns of moonlight to test how different ALAN intensities affect predator–prey relationships over the full lunar cycle. Exposure to high intensity ALAN (10 and 50 lx) reversed the natural lunar-guided foraging pattern by the gastropod mesopredator Nucella lapillus on its prey Semibalanus balanoides. Foraging decreased during brighter moonlight in naturally lit conditions. When exposed to high intensity ALAN, foraging increased with brighter moonlight. Low intensity ALAN (0.1 and 0.5 lx) had no impact on foraging. Our results show that ALAN alters the foraging pattern guided by changes in moonlight brightness. ALAN impacts on ecosystems can depend on lunar light cycles. Accurate simulations of night-time light cycle will warrant more realistic insights into ALAN impacts and also facilitate advances in fundamental night-time ecology and chronobiology.
Collapse
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.,School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Jack Whittle
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Stuart R Jenkins
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Thomas W Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
28
|
Moysiuk J, Caron JB. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Curr Biol 2022; 32:3302-3316.e2. [PMID: 35809569 DOI: 10.1016/j.cub.2022.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023]
Abstract
In addition to being among the most iconic and bizarre-looking Cambrian animals, radiodonts are a group that offers key insight into the acquisition of the arthropod body plan by virtue of their phylogenetic divergence prior to all living members of the phylum. Nonetheless, radiodont fossils are rare and often fragmentary, and contentions over their interpretation have hindered resolution of important evolutionary conundrums. Here, we describe 268 specimens of Stanleycaris hirpex from the Cambrian Burgess Shale, including many exceptionally preserved whole-body specimens, informing the most complete reconstruction of a radiodont to date. The trunk region of Stanleycaris has up to 17 segments plus two pairs of filiform caudal blades. The recognition of dorsal sclerotic segmentation of the trunk cuticle and putative unganglionated nerve cords provides new insight into the relative timing of acquisition of segmental traits, the epitome of the arthropod body plan. In addition to the pair of stalked lateral eyes, the short head unexpectedly bears a large median eye situated behind a preocular sclerite on an anteriorly projecting head lobe. Upon re-evaluation, similar median eyes can be identified in other Cambrian panarthropods demonstrating a deep evolutionary continuity. The exquisitely preserved brain of Stanleycaris is consistent with the hypothesized deutocerebral innervation of the frontal appendages, reconciling neuroanatomical evidence with external morphology in support of an ancestrally bipartite head and brain for arthropods. We propose that the integration of this bipartite head prior to the acquisition of most segmental characters exclusively in the arthropod trunk may help explain its developmental differentiation.
Collapse
Affiliation(s)
- Joseph Moysiuk
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON M5S 2C6, Canada.
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON M5S 2C6, Canada; Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, ON M5S 3B1, Canada.
| |
Collapse
|
29
|
Vogt L, Mikó I, Bartolomaeus T. Anatomy and the type concept in biology show that ontologies must be adapted to the diagnostic needs of research. J Biomed Semantics 2022; 13:18. [PMID: 35761389 PMCID: PMC9235205 DOI: 10.1186/s13326-022-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In times of exponential data growth in the life sciences, machine-supported approaches are becoming increasingly important and with them the need for FAIR (Findable, Accessible, Interoperable, Reusable) and eScience-compliant data and metadata standards. Ontologies, with their queryable knowledge resources, play an essential role in providing these standards. Unfortunately, biomedical ontologies only provide ontological definitions that answer What is it? questions, but no method-dependent empirical recognition criteria that answer How does it look? QUESTIONS Consequently, biomedical ontologies contain knowledge of the underlying ontological nature of structural kinds, but often lack sufficient diagnostic knowledge to unambiguously determine the reference of a term. RESULTS We argue that this is because ontology terms are usually textually defined and conceived as essentialistic classes, while recognition criteria often require perception-based definitions because perception-based contents more efficiently document and communicate spatial and temporal information-a picture is worth a thousand words. Therefore, diagnostic knowledge often must be conceived as cluster classes or fuzzy sets. Using several examples from anatomy, we point out the importance of diagnostic knowledge in anatomical research and discuss the role of cluster classes and fuzzy sets as concepts of grouping needed in anatomy ontologies in addition to essentialistic classes. In this context, we evaluate the role of the biological type concept and discuss its function as a general container concept for groupings not covered by the essentialistic class concept. CONCLUSIONS We conclude that many recognition criteria can be conceptualized as text-based cluster classes that use terms that are in turn based on perception-based fuzzy set concepts. Finally, we point out that only if biomedical ontologies model also relevant diagnostic knowledge in addition to ontological knowledge, they will fully realize their potential and contribute even more substantially to the establishment of FAIR and eScience-compliant data and metadata standards in the life sciences.
Collapse
Affiliation(s)
- Lars Vogt
- TIB Leibniz Information Centre for Science and Technology, Welfengarten 1B, 30167, Hannover, Germany.
| | - István Mikó
- Don Chandler Entomological Collection, University of New Hampshire, Durham, NH, USA
| | - Thomas Bartolomaeus
- Institut für Evolutionsbiologie und Ökologie, Universität Bonn, An der Immenburg 1, 53121, Bonn, Germany
| |
Collapse
|
30
|
Preza M, Van Bael S, Temmerman L, Guarnaschelli I, Castillo E, Koziol U. Global analysis of neuropeptides in cestodes identifies Attachin, a SIFamide homolog, as a stimulant of parasite motility and attachment. J Neurochem 2022; 162:467-482. [PMID: 35689626 DOI: 10.1111/jnc.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Many anthelmintics target the neuromuscular system, in particular by interfering with signaling mediated by classical neurotransmitters. Although peptidergic signaling has been proposed as a novel target for anthelmintics, current knowledge of the neuropeptide complement of many helminth groups is still limited, especially for parasitic flatworms (cestodes, trematodes, and monogeneans). In this work, we have characterized the neuropeptide complement of the model cestode Hymenolepis microstoma. Peptidomic characterization of adults of H. microstoma validated many of the neuropeptide precursor (npp) genes previously predicted in silico, and identified novel neuropeptides that are conserved in parasitic flatworms. Most neuropeptides from parasitic flatworms lack significant similarity to those from other animals, confirming the uniqueness of their peptidergic signaling. Analysis of gene expression of ten npp genes by in situ hybridization confirmed that all of them are expressed in the nervous system and identified cryptic features, including the first evidence of dorsoventral asymmetry, as well as a new population of peripheral peptidergic cells that appears to be conserved in the trematode Schistosoma mansoni. Finally, we characterized in greater detail Attachin, an SIFamide homolog. Although its expression is largely restricted to the longitudinal nerve cords and cerebral commissure in H. microstoma, it shows widespread localization in the larval nervous system of Echinococcus multilocularis and Mesocestoides corti. Exogenous addition of a peptide corresponding to the highly conserved C-terminus of Attachin stimulated motility and attachment of M. corti larvae. Altogether, this work provides a robust experimental foothold for the characterization of peptidergic signaling in parasitic flatworms.
Collapse
Affiliation(s)
- Matías Preza
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sven Van Bael
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Inés Guarnaschelli
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Estela Castillo
- Laboratorio de Biología Parasitaria, Instituto de Higiene, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Lev O, Edgecombe GD, Chipman AD. Serial Homology and Segment Identity in the Arthropod Head. Integr Org Biol 2022; 4:obac015. [PMID: 35620450 PMCID: PMC9128542 DOI: 10.1093/iob/obac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anterior-most unit of the crown-group arthropod body plan includes three segments, the pre-gnathal segments, that contain three neuromeres that together comprise the brain. Recent work on the development of this anterior region has shown that its three units exhibit many developmental differences to the more posterior segments, to the extent that they should not be considered serial homologs. Building on this revised understanding of the development of the pre-gnathal segments, we suggest a novel scenario for arthropod head evolution. We posit an expansion of an ancestral single-segmented head at the transition from Radiodonta to Deuteropoda in the arthropod stem group. The expanded head subdivided into three segmental units, each maintaining some of the structures of the ancestral head. This scenario is consistent with what we know of head evolution from the fossil record and helps reconcile some of the debates about early arthropod evolution.
Collapse
Affiliation(s)
- Oren Lev
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ariel D Chipman
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| |
Collapse
|
32
|
Kotsyuba E, Dyachuk V. Immunocytochemical Localization of Enzymes Involved in Dopamine, Serotonin, and Acetylcholine Synthesis in the Optic Neuropils and Neuroendocrine System of Eyestalks of Paralithodes camtschaticus. Front Neuroanat 2022; 16:844654. [PMID: 35464134 PMCID: PMC9024244 DOI: 10.3389/fnana.2022.844654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying the neurotransmitters secreted by specific neurons in crustacean eyestalks is crucial to understanding their physiological roles. Here, we combined immunocytochemistry with confocal microscopy and identified the neurotransmitters dopamine (DA), serotonin (5-HT), and acetylcholine (ACh) in the optic neuropils and X-organ sinus gland (XO-SG) complex of the eyestalks of Paralithodes camtschaticus (red king crab). The distribution of Ach neurons was studied by choline acetyltransferase (ChAT) immunohistochemistry and compared with that of DA neurons examined in the same or adjacent sections by tyrosine hydroxylase (TH) immunohistochemistry. We detected 5-HT, TH, and ChAT in columnar, amacrine, and tangential neurons in the optic neuropils and established the presence of immunoreactive fibers and neurons in the terminal medulla in the XO region of the lateral protocerebrum. Additionally, we detected ChAT and 5-HT in the endogenous cells of the SG of P. camtschaticus for the first time. Furthermore, localization of 5-HT- and ChAT-positive cells in the SG indicated that these neurotransmitters locally modulate the secretion of neurohormones that are synthesized in the XO. These findings establish the presence of several neurotransmitters in the XO-SG complex of P. camtschaticus.
Collapse
|
33
|
Frankowski K, Miyazaki K, Brenneis G. A microCT-based atlas of the central nervous system and midgut in sea spiders (Pycnogonida) sheds first light on evolutionary trends at the family level. Front Zool 2022; 19:14. [PMID: 35361245 PMCID: PMC8973786 DOI: 10.1186/s12983-022-00459-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Pycnogonida (sea spiders) is the sister group of all other extant chelicerates (spiders, scorpions and relatives) and thus represents an important taxon to inform early chelicerate evolution. Notably, phylogenetic analyses have challenged traditional hypotheses on the relationships of the major pycnogonid lineages (families), indicating external morphological traits previously used to deduce inter-familial affinities to be highly homoplastic. This erodes some of the support for phylogenetic information content in external morphology and calls for the study of additional data classes to test and underpin in-group relationships advocated in molecular analyses. In this regard, pycnogonid internal anatomy remains largely unexplored and taxon coverage in the studies available is limited. Results Based on micro-computed X-ray tomography and 3D reconstruction, we created a comprehensive atlas of in-situ representations of the central nervous system and midgut layout in all pycnogonid families. Beyond that, immunolabeling for tubulin and synapsin was used to reveal selected details of ganglionic architecture. The ventral nerve cord consistently features an array of separate ganglia, but some lineages exhibit extended composite ganglia, due to neuromere fusion. Further, inter-ganglionic distances and ganglion positions relative to segment borders vary, with an anterior shift in several families. Intersegmental nerves target longitudinal muscles and are lacking if the latter are reduced. Across families, the midgut displays linear leg diverticula. In Pycnogonidae, however, complex multi-branching diverticula occur, which may be evolutionarily correlated with a reduction of the heart. Conclusions Several gross neuroanatomical features are linked to external morphology, including intersegmental nerve reduction in concert with trunk segment fusion, or antero-posterior ganglion shifts in partial correlation to trunk elongation/compaction. Mapping on a recent phylogenomic phylogeny shows disjunct distributions of these traits. Other characters show no such dependency and help to underpin closer affinities in sub-branches of the pycnogonid tree, as exemplified by the tripartite subesophageal ganglion of Pycnogonidae and Rhynchothoracidae. Building on this gross anatomical atlas, future studies should now aim to leverage the full potential of neuroanatomy for phylogenetic interrogation by deciphering pycnogonid nervous system architecture in more detail, given that pioneering work on neuron subsets revealed complex character sets with unequivocal homologies across some families. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00459-8.
Collapse
Affiliation(s)
- Karina Frankowski
- Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Universität Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany
| | - Katsumi Miyazaki
- Department of Environmental Science, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata, 950-2181, Japan
| | - Georg Brenneis
- Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Universität Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
34
|
Temereva E. First Modern Data on the Lophophore Nervous System in Adult Novocrania anomala and a Current Assessment of Brachiopod Phylogeny. BIOLOGY 2022; 11:biology11030406. [PMID: 35336780 PMCID: PMC8945433 DOI: 10.3390/biology11030406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary The nervous system of Novocrania anomala adults is described for the first time. A table containing data on the lophophore innervation in species from three brachiopod subphyla is presented. A comparative analysis suggests a close relationship between the Craniiformea and the Rhynchonelliformea, and thereby supports the “Calciata” hypothesis of brachiopod phylogeny. Abstract Although the lophophore is regarded as the main synapomorphy of all lophophorates, the evolution of the lophophore in certain groups of lophophorates remains unclear. To date, the innervation of the lophophore has been studied with modern methods only for three brachiopod species belonging to two subphyla: Linguliformea and Rhynchonelliformea. In the third subphylum, the Craniiformea, there are data for juveniles but not for adults. In the current research, the innervation of the lophophore in Novocrania anomala adults was studied by immunocytochemistry and confocal laser scanning microscopy. In the spiral lophophore of adults of the craniiform N. anomala, each arm is innervated by six brachial nerves: main, additional main, accessory, second accessory, additional lower, and lower brachial nerves. Compared with other brachiopod species, this complex innervation of the lophophore correlates with the presence of many lophophoral muscles. The general anatomy of the lophophore nervous system and the peculiarities of the organization of the subenteric ganglion of the craniiform N. anomala have a lot in common with those of rhynchonelliforms but not with those of linguliforms. These findings are consistent with the “Calciata” hypothesis of the brachiopod phylogeny and are inconsistent with the inference that the Craniiformea and Linguliformea are closely related.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, 119991 Moscow, Russia; ; Tel.: +7-(909)-9764434
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
35
|
Biserova NM, Mustafina AR, Raikova OI. The neuro-glandular brain of the Pyramicocephalus phocarum plerocercoid (Cestoda, Diphyllobothriidea): immunocytochemical and ultrastructural study. ZOOLOGY 2022; 152:126012. [DOI: 10.1016/j.zool.2022.126012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023]
|
36
|
Brenneis G. The visual pathway in sea spiders (Pycnogonida) displays a simple serial layout with similarities to the median eye pathway in horseshoe crabs. BMC Biol 2022; 20:27. [PMID: 35086529 PMCID: PMC8796508 DOI: 10.1186/s12915-021-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Phylogenomic studies over the past two decades have consolidated the major branches of the arthropod tree of life. However, especially within the Chelicerata (spiders, scorpions, and kin), interrelationships of the constituent taxa remain controversial. While sea spiders (Pycnogonida) are firmly established as sister group of all other extant representatives (Euchelicerata), euchelicerate phylogeny itself is still contested. One key issue concerns the marine horseshoe crabs (Xiphosura), which recent studies recover either as sister group of terrestrial Arachnida or nested within the latter, with significant impact on postulated terrestrialization scenarios and long-standing paradigms of ancestral chelicerate traits. In potential support of a nested placement, previous neuroanatomical studies highlighted similarities in the visual pathway of xiphosurans and some arachnopulmonates (scorpions, whip scorpions, whip spiders). However, contradictory descriptions of the pycnogonid visual system hamper outgroup comparison and thus character polarization. RESULTS To advance the understanding of the pycnogonid brain and its sense organs with the aim of elucidating chelicerate visual system evolution, a wide range of families were studied using a combination of micro-computed X-ray tomography, histology, dye tracing, and immunolabeling of tubulin, the neuropil marker synapsin, and several neuroactive substances (including histamine, serotonin, tyrosine hydroxylase, and orcokinin). Contrary to previous descriptions, the visual system displays a serial layout with only one first-order visual neuropil connected to a bilayered arcuate body by catecholaminergic interneurons. Fluorescent dye tracing reveals a previously reported second visual neuropil as the target of axons from the lateral sense organ instead of the eyes. CONCLUSIONS Ground pattern reconstruction reveals remarkable neuroanatomical stasis in the pycnogonid visual system since the Ordovician or even earlier. Its conserved layout exhibits similarities to the median eye pathway in euchelicerates, especially in xiphosurans, with which pycnogonids share two median eye pairs that differentiate consecutively during development and target one visual neuropil upstream of the arcuate body. Given multiple losses of median and/or lateral eyes in chelicerates, and the tightly linked reduction of visual processing centers, interconnections between median and lateral visual neuropils in xiphosurans and arachnopulmonates are critically discussed, representing a plausible ancestral condition of taxa that have retained both eye types.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
37
|
Purschke G, Vodopyanov S, Baller A, von Palubitzki T, Bartolomaeus T, Beckers P. Ultrastructure of cerebral eyes in Oweniidae and Chaetopteridae (Annelida) - implications for the evolution of eyes in Annelida. ZOOLOGICAL LETTERS 2022; 8:3. [PMID: 35078543 PMCID: PMC8787891 DOI: 10.1186/s40851-022-00188-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent phylogenomic studies have revealed a robust, new hypothesis of annelid phylogeny. Most surprisingly, a few early branching lineages formed a basal grade, whereas the majority of taxa were categorized as monophyletic Pleistoannelida. Members of these basal groups show a comparatively simple organization lacking certain characters regarded to be annelid specific. Thus, the evolution of organ systems and the characteristics probably present in the last common annelid ancestor require reevaluation. With respect to light-sensitive organs, a pair of simple larval eyes is regarded as being present in their last common ancestor. However, the evolutionary origin and structure of adult eyes remain obscure. Typically, adult eyes are multicellular pigment cups or pinhole eyes with or without a lens comprising rhabdomeric photoreceptor cells (PRCs) and pigmented supportive cells (PSCs) in converse design. However, in the most basal lineages, eyes are only present in a few taxa, and thus far, their ultrastructure is unknown. RESULTS Ultrastructural investigations of members of Oweniidae and Chaetopteridae reveal a corresponding design of adult cerebral eyes and PRCs. The eyes in species of these groups are simple pigment spot eyes, either forming a flat patch or embedded in a tube-like invagination. They are part of the epidermis and comprise two cell types, PSCs and rhabdomeric PRCs. Both cell types bear microvilli and one more or less reduced cilium. However, the PRCs showed only a moderate increase in the apical membrane surface in the form of irregularly arranged microvilli intermingling with those of the PSCs; a densely arranged brush border of rhabdomeric microvilli was absent. Additionally, both cell types show certain characteristics elsewhere observable in typical epidermal supportive cells. CONCLUSIONS These findings shed new light on the evolutionary history of adult eyes in Annelida. Most likely, the adult eye of the annelid stem species was a pair of simple pigment spot eyes with only slightly specialized PSCs and PRCs being an integrative part of the epidermis. As is the case for the nuchal organs, typical pigment cup adult eyes presumably evolved later in the annelid phylogeny, namely, in the stem lineages of Amphinomida and Pleistoannelida.
Collapse
Affiliation(s)
- Günter Purschke
- Zoology and Developmental Biology, Department of Biology and Chemistry, Osnabrück University, Osnabrück, Germany.
| | - Stepan Vodopyanov
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anjilie Baller
- Zoology and Developmental Biology, Department of Biology and Chemistry, Osnabrück University, Osnabrück, Germany
- Present address: Department of Biology, Faculty II, University of Vechta, Vechta, Germany
| | - Tim von Palubitzki
- Zoology and Developmental Biology, Department of Biology and Chemistry, Osnabrück University, Osnabrück, Germany
| | - Thomas Bartolomaeus
- Institute of Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| | - Patrick Beckers
- Institute of Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Martin C, Jahn H, Klein M, Hammel JU, Stevenson PA, Homberg U, Mayer G. The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biol 2022; 20:26. [PMID: 35073910 PMCID: PMC9136957 DOI: 10.1186/s12915-021-01196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| | - Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Mercedes Klein
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| |
Collapse
|
39
|
Jenkins KM, Briggs DE, Luque J. The remarkable visual system of a Cretaceous crab. iScience 2022; 25:103579. [PMID: 35005531 PMCID: PMC8715156 DOI: 10.1016/j.isci.2021.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
True crabs (Brachyura) are one of the few groups of arthropods to evolve several types of compound eye, the origins and early evolution of which are obscure. Here, we describe details of the eyes of the Cretaceous brachyuran Callichimaera perplexa, which possessed remarkably large eyes and a highly disparate body form among brachyurans. The eyes of C. perplexa preserve internal optic neuropils and external corneal elements, and it is the first known post-Paleozoic arthropod to preserve both. Additionally, a series of specimens of C. perplexa preserve both the eyes and carapace, allowing for the calculation of the optical growth rate. C. perplexa shows the fastest optical growth rate compared with a sample of 14 species of extant brachyurans. The growth series of C. perplexa, in combination with the calculation of the interommatidial angle and eye parameter, demonstrates that it was a highly visual predator that inhabited well-lit environments. We report optical details of the Cretaceous brachyuran crab Callichimaera perplexa It preserves both internal optic neuropils and external corneal elements Callichimaera has a faster optical growth rate than a series of extant crabs Callichimaera was a highly visual predator inhabiting well-lit environments
Collapse
Affiliation(s)
- Kelsey M. Jenkins
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
- Corresponding author
| | - Derek E.G. Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
- Peabody Museum of Natural History, Yale University, New Haven, CT 06511, USA
| | - Javier Luque
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Smithsonian Tropical Research Institute, Balboa–Ancón 0843–03092, Panamá, Panamá
- Institute of Environment and Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
- Corresponding author
| |
Collapse
|
40
|
Fofanova E, Mayorova TD, Voronezhskaya EE. Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree. PeerJ 2021; 9:e12386. [PMID: 34966573 PMCID: PMC8667735 DOI: 10.7717/peerj.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula, and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.
Collapse
Affiliation(s)
- Elizaveta Fofanova
- Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Tatiana D Mayorova
- Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Elena E Voronezhskaya
- Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
41
|
Anatomy of the Nervous System in Chelifer cancroides (Arachnida: Pseudoscorpiones) with a Distinct Sensory Pathway Associated with the Pedipalps. INSECTS 2021; 13:insects13010025. [PMID: 35055868 PMCID: PMC8780800 DOI: 10.3390/insects13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Most arthropods (uniting animals such as the chelicerates, e.g., spiders and their kin, as well as millipedes, centipedes, crustaceans, and insects) have distinct sensory appendages at the second head segment, the so-called antennae. The Arachnida (e.g., spiders and scorpions) do not possess antennae, but have evolved highly specialized sensory organs on different body regions. However, very limited information is available concerning pseudoscorpions (false scorpions). These animals do not seem to possess such specialized structures, but show dominant, multifunctional appendages prior to the first walking leg, called pedipalps. Here, we investigate the neuronal pathway of these structures as well as general aspects of the nervous system. We describe new details of typical arthropod brain compartments, such as the arcuate body and a comparatively small mushroom body. Neurons associated with the pedipalps terminate in two regions in the central nervous system of characteristic arrangement: a glomerular and a layered center, which we interpret as a chemo- and a mechanosensory center, respectively. The centers, which fulfill the same function in other animals, show a similar arrangement. These similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites. Identifying these similarities helps to understand the general functionality of sensory systems, not only within arthropods. Abstract Many arachnid taxa have evolved unique, highly specialized sensory structures such as antenniform legs in Amblypygi (whip spiders), for instance, or mesosomal pectines in scorpions. Knowledge of the neuroanatomy as well as functional aspects of these sensory organs is rather scarce, especially in comparison to other arthropod clades. In pseudoscorpions, no special sensory structures have been discovered so far. Nevertheless, these animals possess dominant, multifunctional pedipalps, which are good candidates for being the primary sensory appendages. However, only little is known about the anatomy of the nervous system and the projection pattern of pedipalpal afferents in this taxon. By using immunofluorescent labeling of neuronal structures as well as lipophilic dye labeling of pedipalpal pathways, we identified the arcuate body, as well as a comparatively small mushroom body, the latter showing some similarities to that of Solifugae (sun spiders and camel spiders). Furthermore, afferents from the pedipalps terminate in a glomerular and a layered neuropil. Due to the innervation pattern and structural appearance, we conclude that these neuropils are the first integration centers of the chemosensory and mechanosensory afferents. Within Arthropoda, but also other invertebrates or even vertebrates, sensory structures show rather similar neuronal arrangement. Thus, these similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites of the respective modality.
Collapse
|
42
|
Temereva E, Rimskaya-Korsakova N, Dyachuk V. Detailed morphology of tentacular apparatus and central nervous system in Owenia borealis (Annelida, Oweniidae). ZOOLOGICAL LETTERS 2021; 7:15. [PMID: 34865650 PMCID: PMC8647411 DOI: 10.1186/s40851-021-00182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The Oweniidae are marine annelids with many unusual features of organ system, development, morphology, and ultrastructure. Together with magelonids, oweniids have been placed within the Palaeoannelida, a sister group to all remaining annelids. The study of this group may increase our understanding of the early evolution of annelids (including their radiation and diversification). In the current research, the morphology and ulta-anatomy of the head region of Owenia borealis is studied by scanning electron microscopy (SEM), 3D reconstructions, transmission electron microscopy (TEM), and whole-mount immunostaining with confocal laser scanning microscopy. According to SEM, the tentacle apparatus consists of 8-14 branched arms, which are covered by monociliary cells that form a ciliary groove extending along the oral side of the arm base. Each tentacle contains a coelomic cavity with a network of blood capillaries. Monociliary myoepithelial cells of the tentacle coelomic cavity form both the longitudinal and the transverse muscles. The structure of this myoepithelium is intermediate between a simple and pseudo-stratified myoepithelium. Overall, tentacles lack prominent zonality, i.e., co-localization of ciliary zones, neurite bundles, and muscles. This organization, which indicates a non-specialized tentacle crown in O. borealis and other oweniids with tentacles, may be ancestral for annelids. TEM, light, and confocal laser scanning microscopy revealed that the head region contains the anterior nerve center comprising of outer and inner (=circumoral) nerve rings. Both nerve rings are organized as concentrated nerve plexus, which contains perikarya and neurites extending between basal projections of epithelial cells (radial glia). The outer nerve ring gives rise to several thick neurite bundles, which branch and extend along aboral side of each tentacle. Accordingly to their immunoreactivity, both rings of the anterior nerve center could be homologized with the dorsal roots of circumesophageal connectives of the typical annelids. Accordingly to its ultrastructure, the outer nerve ring of O. borealis and so-called brain of other oweniids can not be regarded as a typical brain, i.e. the most anterior ganglion, because it lacks ganglionic structure.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Nadezhda Rimskaya-Korsakova
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| |
Collapse
|
43
|
May the palps be with you – new insights into the evolutionary origin of anterior appendages in Terebelliformia (Annelida). BMC ZOOL 2021; 6:30. [PMID: 37170288 PMCID: PMC10124185 DOI: 10.1186/s40850-021-00094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
Abstract
Background
Head appendages in Annelida contribute significantly to the immense morphological diversity in this spiralian taxon. Nevertheless, the evolutionary origin of annelid antennae, palps, cirri and tentacles are part of vast theories and debates that took place over decades. One of these heavily discussed groups are the Terebelliformia, which bear numerous anterior tentacles originating from different regions of the head. The question, whether these tentacles are homologous to feeding palps in other annelids or if these structures evolved convergently in terebellids and the remaining taxa, has been highly debated in the past.
Results
By using morphological methods including immunohistochemistry, confocal microscopy, Azan-stained serial sections and 3D-visualisation, we are able to shed new light and a fresh look on the old question of the evolutionary origin of the buccal tentacles and their associated head structures in Terebelliformia. Our investigations show that the brains of the ampharetid Hypania invalida and the aulophora larvae of Lanice conchilega (Terebellidae) consist of a dorsal, more prominent and a more slender, ventral brain region. Neurite bundles innervating the buccal tentacles split off from the ventral and dorsal root within the ventral brain region and thus originate from the dorsal and ventral root of the circumoesophageal connectives. Hence, the observed neurite bundles fulfil the morphological criteria for the innervating neurite bundles of feeding palps known from Paleoannelida.
Conclusions
We disagree with former conclusions that buccal tentacles are part of the alimentary canal. Based on the presented data, the buccal tentacles of terebelliform taxa are innervated by neurite bundles and can be homologized with peristomial feeding palps of other Annelida.
Our comparative investigations reveal important insights into morphological changes during the evolution of anterior head appendages in Terebelliformia and Annelida in general. Nevertheless, our analyses also illustrate the gaps in knowledge and that more investigations throughout the annelid tree are necessary to explain and understand the huge diversity of annelid anterior appendages.
Collapse
|
44
|
Herranz M, Park T, Di Domenico M, Leander BS, Sørensen MV, Worsaae K. Revisiting kinorhynch segmentation: variation of segmental patterns in the nervous system of three aberrant species. Front Zool 2021; 18:54. [PMID: 34674731 PMCID: PMC8529749 DOI: 10.1186/s12983-021-00438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Kinorhynch segmentation differs from the patterns found in Chordata, Arthropoda and Annelida which have coeloms and circulatory systems. Due to these differences and their obsolete status as 'Aschelminthes', the microscopic kinorhynchs are often not acknowledged as segmented bilaterians. Yet, morphological studies have shown a conserved segmental arrangement of ectodermal and mesodermal organ systems with spatial correspondence along the anterior-posterior axis. However, a few aberrant kinorhynch lineages present a worm-like body plan with thin cuticle and less distinct segmentation, and thus their study may aid to shed new light on the evolution of segmental patterns within Kinorhyncha. RESULTS Here we found the nervous system in the aberrant Cateria styx and Franciscideres kalenesos to be clearly segmental, and similar to those of non-aberrant kinorhynchs; hereby not mirroring their otherwise aberrant and posteriorly shifted myoanatomy. In Zelinkaderes yong, however, the segmental arrangement of the nervous system is also shifted posteriorly and misaligned with respect to the cuticular segmentation. CONCLUSIONS The morphological disparity together with the distant phylogenetic positions of F. kalenesos, C. styx and Z. yong support a convergent origin of aberrant appearances and segmental mismatches within Kinorhyncha.
Collapse
Affiliation(s)
- Maria Herranz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Taeseo Park
- National Institute of Biological Resources, Incheon, South Korea
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Brazil
| | - Brian S Leander
- Departments of Zoology and Botany, University of British Columbia, Vancouver, Canada
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Worsaae
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Buhre JS, Purschke G. Ultrastructure and functional morphology of the dorsal organs in Scoloplos armiger (Annelida, Sedentaria, Orbiniida). ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractAnnelids and particularly polychaetes possess a great variety of sensory organs and respond to numerous sensory stimuli. Although eyes and nuchal organs are comparatively well studied, the so-called dorsal organs are among the lesser-known sense organs in aquatic annelids. Moreover, they are known to be restricted to only two out of approximately 80 families of polychaetes—Orbiniidae and Spionidae—which are not closely related. These organs have been regarded as segmentally repeated nuchal organs in the latter taxon, but in Orbiniidae, data are lacking, although it is known that the organs occur almost along the entire trunk except for the anterior-most segments. Furthermore, although the nuchal organ ultrastructure is known to be comparatively uniform for many polychaete species, a comparative investigation has not been conducted in Orbiniidae. To bridge this data gap, we examined an intertidal population of the widely distributed species Scoloplos armiger. Although not completely identical, nuchal and dorsal organs show a high degree of correspondence in the examined specimens. Moreover, both organs correspond to the general structure of nuchal organs. They comprise ciliated supportive cells and bipolar receptor cells and are innervated directly from the brain. The supportive cells form subcuticular spaces and olfactory chambers apically protected by specialized microvilli that house the sensory processes—cilia and microvilli—of the monociliated receptor cells. Therefore, it can be concluded that nuchal and dorsal organs are also identical in Orbiniidae. However, despite general correspondence with spionids, convergent evolution in the two taxa appears to be the most parsimonious interpretation.
Collapse
|
46
|
Gąsiorowski L, Børve A, Cherneva IA, Orús-Alcalde A, Hejnol A. Molecular and morphological analysis of the developing nemertean brain indicates convergent evolution of complex brains in Spiralia. BMC Biol 2021; 19:175. [PMID: 34452633 PMCID: PMC8400761 DOI: 10.1186/s12915-021-01113-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The brain anatomy in the clade Spiralia can vary from simple, commissural brains (e.g., gastrotrichs, rotifers) to rather complex, partitioned structures (e.g., in cephalopods and annelids). How often and in which lineages complex brains evolved still remains unclear. Nemerteans are a clade of worm-like spiralians, which possess a complex central nervous system (CNS) with a prominent brain, and elaborated chemosensory and neuroglandular cerebral organs, which have been previously suggested as homologs to the annelid mushroom bodies. To understand the developmental and evolutionary origins of the complex brain in nemerteans and spiralians in general, we investigated details of the neuroanatomy and gene expression in the brain and cerebral organs of the juveniles of nemertean Lineus ruber. RESULTS In the juveniles, the CNS is already composed of all major elements present in the adults, including the brain, paired longitudinal lateral nerve cords, and an unpaired dorsal nerve cord, which suggests that further neural development is mostly related with increase in the size but not in complexity. The ultrastructure of the juvenile cerebral organ revealed that it is composed of several distinct cell types present also in the adults. The 12 transcription factors commonly used as brain cell type markers in bilaterians show region-specific expression in the nemertean brain and divide the entire organ into several molecularly distinct areas, partially overlapping with the morphological compartments. Additionally, several of the mushroom body-specific genes are expressed in the developing cerebral organs. CONCLUSIONS The dissimilar expression of molecular brain markers between L. ruber and the annelid Platynereis dumerilii indicates that the complex brains present in those two species evolved convergently by independent expansions of non-homologous regions of a simpler brain present in their last common ancestor. Although the same genes are expressed in mushroom bodies and cerebral organs, their spatial expression within organs shows apparent differences between annelids and nemerteans, indicating convergent recruitment of the same genes into patterning of non-homologous organs or hint toward a more complicated evolutionary process, in which conserved and novel cell types contribute to the non-homologous structures.
Collapse
Affiliation(s)
| | - Aina Børve
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Irina A Cherneva
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
47
|
Deryckere A, Styfhals R, Elagoz AM, Maes GE, Seuntjens E. Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. eLife 2021; 10:e69161. [PMID: 34425939 PMCID: PMC8384421 DOI: 10.7554/elife.69161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cephalopods have evolved nervous systems that parallel the complexity of mammalian brains in terms of neuronal numbers and richness in behavioral output. How the cephalopod brain develops has only been described at the morphological level, and it remains unclear where the progenitor cells are located and what molecular factors drive neurogenesis. Using histological techniques, we located dividing cells, neural progenitors and postmitotic neurons in Octopus vulgaris embryos. Our results indicate that an important pool of progenitors, expressing the conserved bHLH transcription factors achaete-scute or neurogenin, is located outside the central brain cords in the lateral lips adjacent to the eyes, suggesting that newly formed neurons migrate into the cords. Lineage-tracing experiments then showed that progenitors, depending on their location in the lateral lips, generate neurons for the different lobes, similar to the squid Doryteuthis pealeii. The finding that octopus newborn neurons migrate over long distances is reminiscent of vertebrate neurogenesis and suggests it might be a fundamental strategy for large brain development.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaplesItaly
| | - Ali Murat Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Gregory E Maes
- Center for Human Genetics, Genomics Core, UZ-KU LeuvenLeuvenBelgium
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU LeuvenLeuvenBelgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| |
Collapse
|
48
|
Szczęsny S, Huderek D, Przyborowski Ł. Explainable spiking neural network for real time feature classification. J EXP THEOR ARTIF IN 2021. [DOI: 10.1080/0952813x.2021.1957024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Szymon Szczęsny
- Faculty of Computing and Telecommunications, Poznań University of Technology, Poznań, Poland
| | - Damian Huderek
- Faculty of Computing and Telecommunications, Poznań University of Technology, Poznań, Poland
| | - Łukasz Przyborowski
- Faculty of Computing and Telecommunications, Poznań University of Technology, Poznań, Poland
| |
Collapse
|
49
|
Zieger E, Calcino AD, Robert NSM, Baranyi C, Wanninger A. Ecdysis-related neuropeptide expression and metamorphosis in a non-ecdysozoan bilaterian. Evolution 2021; 75:2237-2250. [PMID: 34268730 DOI: 10.1111/evo.14308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
Ecdysis-related neuropeptides (ERNs), including eclosion hormone, crustacean cardioactive peptide, myoinhibitory peptide, bursicon alpha, and bursicon beta regulate molting in insects and crustaceans. Recent evidence further revealed that ERNs likely play an ancestral role in invertebrate life cycle transitions, but their tempo-spatial expression patterns have not been investigated outside Arthropoda. Using RNA-seq and in situ hybridization, we show that ERNs are broadly expressed in the developing nervous system of a mollusk, the polyplacophoran Acanthochitona fascicularis. While some ERN-expressing neurons persist from larval to juvenile stages, others are only present during settlement and metamorphosis. These transient neurons belong to the "ampullary system," a polyplacophoran-specific larval sensory structure. Surprisingly, however, ERN expression is absent from the apical organ, another larval sensory structure that degenerates before settlement is completed in A. fascicularis. Our findings thus support a role of ERNs in A. fascicularis metamorphosis but contradict the common notion that the apical organ-like structures shared by various aquatic invertebrates (i.e., cnidarians, annelids, mollusks, echinoderms) are of general importance for this process.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Andrew D Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Nicolas S M Robert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Christian Baranyi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Webster NB, Corbet M, Sur A, Meyer NP. Role of BMP signaling during early development of the annelid Capitella teleta. Dev Biol 2021; 478:183-204. [PMID: 34216573 DOI: 10.1016/j.ydbio.2021.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
The mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria. This is especially true in the morphologically diverse Spiralia (≈Lophotrochozoa). Despite several studies of D-V axis formation and neural induction in spiralians, there is no consensus for how these two processes are related, or whether BMP signaling may have played an ancestral role in either process. To determine the function of BMP signaling during early development of the spiralian annelid Capitella teleta, we incubated embryos and larvae in BMP4 protein for different amounts of time. Adding exogenous BMP protein to early-cleaving C. teleta embryos had a striking effect on formation of the brain, eyes, foregut, and ventral midline in a time-dependent manner. However, adding BMP did not block brain or VNC formation or majorly disrupt the D-V axis. We identified three key time windows of BMP activity. 1) BMP treatment around birth of the 3rd-quartet micromeres caused the loss of the eyes, radialization of the brain, and a reduction of the foregut, which we interpret as a loss of A- and C-quadrant identities with a possible trans-fate switch to a D-quadrant identity. 2) Treatment after the birth of micromere 4d induced formation of a third ectopic brain lobe, eye, and foregut lobe, which we interpret as a trans-fate switch of B-quadrant micromeres to a C-quadrant identity. 3) Continuous BMP treatment from late cleavage (4d + 12 h) through mid-larval stages resulted in a modest expansion of Ct-chrdl expression in the dorsal ectoderm and a concomitant loss of the ventral midline (neurotroch ciliary band). Loss of the ventral midline was accompanied by a collapse of the bilaterally-symmetric ventral nerve cord, although the total amount of neural tissue was not greatly affected. Our results compared with those from other annelids and molluscs suggest that BMP signaling was not ancestrally involved in delimiting neural tissue to one region of the D-V axis. However, the effects of ectopic BMP on quadrant-identity during cleavage stages may represent a non-axial organizing signal that was present in the last common ancestor of annelids and mollusks. Furthermore, in the last common ancestor of annelids, BMP signaling may have functioned in patterning ectodermal fates along the D-V axis in the trunk. Ultimately, studies on a wider range of spiralian taxa are needed to determine the role of BMP signaling during neural induction and neural patterning in the last common ancestor of this group. Ultimately, these comparisons will give us insight into the evolutionary origins of centralized nervous systems and body plans.
Collapse
Affiliation(s)
- Nicole B Webster
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA.
| | - Michele Corbet
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA
| | - Abhinav Sur
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA
| | - Néva P Meyer
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|