1
|
Perera KD, Johnson D, Lovell S, Groutas WC, Chang KO, Kim Y. Potent Protease Inhibitors of Highly Pathogenic Lagoviruses: Rabbit Hemorrhagic Disease Virus and European Brown Hare Syndrome Virus. Microbiol Spectr 2022; 10:e0014222. [PMID: 35766511 PMCID: PMC9430360 DOI: 10.1128/spectrum.00142-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are highly contagious diseases caused by lagoviruses in the Caliciviridae family. These infectious diseases are associated with high mortality and a serious threat to domesticated and wild rabbits and hares, including endangered species such as riparian brush rabbits (Sylvilagus bachmani riparius). In the United States (U.S.), only isolated cases of RHD had been reported until Spring 2020. However, RHD caused by GI.2/rabbit hemorrhagic disease virus (RHDV)2/b was unexpectedly reported in April 2020 in New Mexico and has subsequently spread to several U.S. states, infecting wild rabbits and hares and making it highly likely that RHD will become endemic in the U.S. Vaccines are available for RHD; however, there is no specific treatment for this disease. Lagoviruses encode a 3C-like protease (3CLpro), which is essential for virus replication and a promising target for antiviral drug development. We have previously generated focused small-molecule libraries of 3CLpro inhibitors and demonstrated the in vitro potency and in vivo efficacy of some protease inhibitors against viruses encoding 3CLpro, including caliciviruses and coronaviruses. Here, we report the development of the enzyme and cell-based assays for the 3CLpro of GI.1c/RHDV, recombinant GI.3P-GI.2 (RHDV2/b), and GII.1/European brown hare syndrome virus (EBHSV) as well as the identification of potent lagovirus 3CLpro inhibitors, including GC376, a protease inhibitor being developed for feline infectious peritonitis. In addition, structure-activity relationship study and homology modeling of the 3CLpro and inhibitors revealed that lagovirus 3CLpro share similar structural requirements for inhibition with other calicivirus 3CLpro. IMPORTANCE Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are viral diseases that affect lagomorphs with significant economic and ecological impacts. RHD vaccines are available, but specific antiviral treatment for these viral infections would be a valuable addition to the current control measures. Lagoviruses encode 3C-like protease (3CLpro), which is essential for virus replication and an attractive target for antiviral drug discovery. We have screened and identified potent small-molecule inhibitors that block lagovirus 3CLpro in the enzyme- and cell-based assays. Our results suggest that these compounds have the potential for further development as antiviral drugs for lagoviruses.
Collapse
Affiliation(s)
- Krishani Dinali Perera
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - David Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | - William C. Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Sawyers E, Cox TE, Fleming PJS, Leung LKP, Morris S. Social interactions of juvenile rabbits (Oryctolagus cuniculus) and their potential role in lagovirus transmission. PLoS One 2022; 17:e0271272. [PMID: 35901018 PMCID: PMC9333329 DOI: 10.1371/journal.pone.0271272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Rabbit Haemorrhagic Disease Virus (RHDV), which is a calicivirus, is used as a biocontrol agent to suppress European wild rabbit populations in Australia. The transmission of RHDV can be influenced by social interactions of rabbits; however, there is a paucity of this knowledge about juvenile rabbits and the roles they may play in the transmission of RHDV. We aimed to quantify the social interactions of juvenile (< 900 g) and adult (> 1200 g) rabbits in a locally abundant population in the Central Tablelands of New South Wales, Australia. Twenty-six juvenile and 16 adult rabbits were fitted with VHF proximity loggers to monitor intra- and inter-group pairings. Use of multiple warrens by these rabbits was investigated using VHF base stations at nine warrens and on foot with a hand-held Yagi antenna. Juvenile rabbits were strongly interconnected with both juveniles and adults within and outside their warren of capture, and almost all juveniles were well-connected to other individuals within their own social group. Inter-group pairings were infrequent and fleeting between adults. Both juvenile and adult rabbits used multiple warrens. However, visits to warrens outside their warren of capture, particularly those within 50 m, were more common and longer in duration in juveniles than in adults. The high connectivity of juveniles within and between warrens in close proximity increases potential pathogen exchange between warrens. Therefore, juvenile rabbits could be of greater importance in lagovirus transmission than adult rabbits. The strength of juvenile rabbit inter- and intra-group pairings, and their tendency to use multiple warrens, highlight their potential to act as ‘superspreaders’ of both infection and immunity for lagoviruses and other pathogens with similar lifecycles. Confirmation of this potential is required through examination of disease progress and rabbit age-related immune responses during outbreaks.
Collapse
Affiliation(s)
- Emma Sawyers
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales, Australia
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
- * E-mail:
| | - Tarnya E. Cox
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales, Australia
| | - Peter J. S. Fleming
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales, Australia
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Luke K. P. Leung
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
| | - Stephen Morris
- Fisheries Research, New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
| |
Collapse
|
3
|
Monitoring of Rabbit Hemorrhagic Disease Virus in European Wild Rabbit (Oryctolagus cuniculus) Populations by PCR Analysis of Rabbit Fecal Pellets. J Wildl Dis 2022; 58:394-398. [PMID: 35113983 DOI: 10.7589/jwd-d-21-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022]
Abstract
European rabbits (Oryctolagus cuniculus) are affected by rabbit hemorrhagic disease (RHD), which is caused by a lagovirus responsible for significant mortality in European wild rabbit populations. Our study aimed to evaluate the potential for detecting viral RNA by duplex real-time PCR in rabbit fecal pellets collected in the field, as a noninvasive method to monitor RHD virus circulation in wild populations. To do this, monthly discoveries of rabbits that died from RHD and detection of viral RNA in fecal pellets were recorded in two enclosed populations of wild rabbits throughout a year. The results suggested a low performance of this procedure to monitor viral infection incidence and a weak concordance with monthly discoveries of rabbits that died from RHD. This poor association was probably due to the low amount of viral RNA in feces, the prolonged time of excretion after infection, and that the number of rabbits found dead from RHD does not necessarily correlate with RHD incidence. Nevertheless, this procedure may be a complementary noninvasive method to assist in determining the presence of RHD viruses in populations. Additional research is needed to determine the suitability of this methodology to perform epidemiologic surveys on wild populations of European rabbits and, especially, other European or North American lagomorph species affected by lagoviruses.
Collapse
|
4
|
Taggart PL, O'Connor TW, Cooke B, Read AJ, Kirkland PD, Sawyers E, West P, Patel K. Good intentions with adverse outcomes when conservation and pest management guidelines are ignored: A case study in rabbit biocontrol. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Patrick L. Taggart
- Vertebrate Pest Research Unit Department of Primary Industries NSW Queanbeyan New South Wales Australia
- Centre for Invasive Species Solutions Bruce Australian Capital Territory Australia
- School of Animal and Veterinary Sciences, The University of Adelaide Roseworthy South Australia Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney New South Wales Australia
| | - Tiffany W. O'Connor
- Department of Primary Industries NSW Elizabeth Macarthur Agricultural Institute Menangle New South Wales Australia
| | - Brian Cooke
- Institute for Applied Ecology, University of Canberra Bruce Australian Capital Territory Australia
- Rabbit‐Free Australia Collinswood South Australia Australia
| | - Andrew J. Read
- Department of Primary Industries NSW Elizabeth Macarthur Agricultural Institute Menangle New South Wales Australia
| | - Peter D. Kirkland
- Department of Primary Industries NSW Elizabeth Macarthur Agricultural Institute Menangle New South Wales Australia
| | - Emma Sawyers
- Vertebrate Pest Research Unit Department of Primary Industries NSW Orange New South Wales Australia
| | - Peter West
- Vertebrate Pest Research Unit Department of Primary Industries NSW Orange New South Wales Australia
| | - Kandarp Patel
- School of Animal and Veterinary Sciences, The University of Adelaide Roseworthy South Australia Australia
- Biosecurity, Department of Primary Industries and Regions Urrbrae South Australia Australia
| |
Collapse
|
5
|
Chen M, Fan Z, Hu B, Song Y, Wei H, Qiu R, Zhu W, Xu W, Wang F. Pathogenicity of the newly emerged Lagovirus europaeus GI.2 strain in China in experimentally infected rabbits. Vet Microbiol 2021; 265:109311. [PMID: 34965497 DOI: 10.1016/j.vetmic.2021.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
In April 2020, rabbit hemorrhagic virus type 2 (Lagovirus europaeus GI.2), which causes highly infectious fatal rabbit hemorrhagic disease, was emerged in China. The phylogenetic analyses of the complete genome sequence of GI.2 showed that it belonged to the non-recombinant GI.3/GI.2 genotype. However, the pathogenicity of this GI.2 strain differed from that of early typical GI.2 strains in Europe. To prevent the spread of the new strain in China, its pathogenicity urgently needs to be studied. Thus, viral shedding and distribution as well as clinical symptoms, histopathological changes, and serum cytokines were studied in experimentally GI.2/SC2020-infected rabbit adults and kits. The kit group showed a shorter survival time after the challenge than the adult group did. The mortality rate was higher in the kits (80 %) than in the adults (30 %). Viral RNA could be detected in both nasal and fecal swabs, and the main dissemination route appeared to be the fecal route. Viral RNA rapidly increased in the blood of the adults and kits at 6 h post-infection, indicating that blood viral load testing can be used for early diagnosis. The most affected organs were the liver and spleen, and the lesions were more severe in the kits than in the adults. The liver contained the highest viral RNA levels. Moreover, serum interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-alpha levels were increased in the infected rabbits. In conclusion, our findings will help to understand the evolutionary trends and pathogenic characteristics of GI.2 strains in China.
Collapse
Affiliation(s)
- Mengmeng Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Weifeng Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.
| |
Collapse
|
6
|
Hall RN, King T, O’Connor TW, Read AJ, Vrankovic S, Piper M, Strive T. Passive Immunisation against RHDV2 Induces Protection against Disease but Not Infection. Vaccines (Basel) 2021; 9:vaccines9101197. [PMID: 34696305 PMCID: PMC8537872 DOI: 10.3390/vaccines9101197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Rabbit haemorrhagic disease virus 2 (RHDV2) is a lagovirus in the family Caliciviridae. The closely related Rabbit haemorrhagic disease virus (RHDV, termed RHDV1 throughout this manuscript for clarity) has been used extensively as a biocontrol agent in Australia since the mid-1990s to manage wild rabbit populations, a major economic and environmental pest species. Releasing RHDV1 into populations with a high proportion of rabbits less than 8–10 weeks of age leads to non-lethal infection in many of these young animals, with subsequent seroconversion and long-term immunity against reinfection. In contrast, RHDV2 causes lethal disease even in young rabbits, potentially offering substantial benefits for rabbit management programs over RHDV1. However, it is not clear how acquired resistance from maternal antibodies may influence immunity after RHDV2 infection. In this study, we assessed serological responses after RHDV2 challenge in young rabbits of three different ages (5-, 7-, or 9-weeks-old) that were passively immunised with either high- (titre of 2560 by RHDV IgG ELISA; 2.41 mg/mL total protein) or low- (titre of 160–640 by RHDV IgG ELISA; 1.41 mg/mL total protein) dose RHDV2 IgG to simulate maternal antibodies. All rabbits treated with a high dose and 75% of those treated with a low dose of RHDV2 IgG survived virus challenge. Surviving animals developed robust lagovirus-specific IgA, IgM, and IgG responses within 10 days post infection. These findings demonstrate that the protection against RHDV2 conferred by passive immunisation is not sterilising. Correspondingly, this suggests that the presence of maternal antibodies in wild rabbit populations may impede the effectiveness of RHDV2 as a biocontrol.
Collapse
Affiliation(s)
- Robyn N. Hall
- Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia; (T.K.); (T.S.)
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
- Correspondence: ; Tel.: +61-2-6246-4245
| | - Tegan King
- Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia; (T.K.); (T.S.)
| | - Tiffany W. O’Connor
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia (A.J.R.); (S.V.)
| | - Andrew J. Read
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia (A.J.R.); (S.V.)
| | - Sylvia Vrankovic
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia (A.J.R.); (S.V.)
| | - Melissa Piper
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia;
| | - Tanja Strive
- Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia; (T.K.); (T.S.)
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
| |
Collapse
|
7
|
Huneau-Salaün A, Boucher S, Fontaine J, Le Normand B, Lopez S, Maurice T, Nouvel L, Bruchec A, Coton J, Martin G, Le Gall-Reculé G, Le Bouquin S. Retrospective studies on rabbit haemorrhagic disease outbreaks caused by RHDV GI.2 virus on farms in France from 2013 to 2018. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rabbit haemorrhagic disease (RHD) is a critical health threat to the rabbit industry in Europe. In 2018, the French rabbit industry adopted a voluntary control plan against this disease. In this context, two epidemiological studies were conducted on RHD outbreaks that occurred between 2013 and 2018 in France. The objectives were to describe the spread of RHD due to the new genotype RHDV GI.2 (rabbit haemorrhagic disease virus GI.2) and to identify rearing factors influencing the occurrence of the disease in order to guide the prevention measures recommended in the control plan. An analysis of cases on 295 farms between 2013 and 2017 showed that 32% of farms were affected at least once; the incidence of the disease increased in 2016-2017 compared to 2013-2015. Farms already affected in 2013-2015 had a higher risk of being infected in 2016-2017 than those that remained unaffected until 2015 (Relative Risk and 95% Confident Interval 1.7 [1.1-2.7]). A case-control study carried out between 2016 and 2018 on 37 outbreaks and 32 control farms revealed variability in biosecurity and decontamination practices between farms. The risk of being infected tends to be linked to these practices, but certain structural factors (e.g. the manure disposal system, transfer of rabbits at weaning) could also influence the risk of virus introduction into farms. In the context of a limited vaccination coverage of the farms (only females are vaccinated), these hypotheses will be studied further, using information from the RHD outbreak monitoring system implemented at the same time as the control plan in 2018.
Collapse
|
8
|
Abrantes J, Lopes AM. A Review on the Methods Used for the Detection and Diagnosis of Rabbit Hemorrhagic Disease Virus (RHDV). Microorganisms 2021; 9:972. [PMID: 33946292 PMCID: PMC8146303 DOI: 10.3390/microorganisms9050972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Calvete C, Sarto MP, Iguacel L, Calvo JH. Infectivity of rabbit haemorrhagic disease virus excreted in rabbit faecal pellets. Vet Microbiol 2021; 257:109079. [PMID: 33930699 DOI: 10.1016/j.vetmic.2021.109079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
Rabbit haemorrhagic disease (RHD) is caused by a lagovirus affecting European rabbits (Oryctolagus cuniculus). Viral RNA is detected in tissues or faeces of convalescent rabbits, suggesting persistent infections; however, this RNA has not been shown to be related to infective viruses to date. In the present work, seven laboratory rabbits were challenged with the RHDV2/b virus variant. Viral RNA was individually detected by duplex qPCR in faeces collected for four weeks after infection, and the infective capacity of viral RNA excreted in the faeces of surviving rabbits was tested by challenging new rabbits with faecal inocula. As results, viral RNA was detected in faeces until the end of the assay. Viral RNA detected in the fourth week was infective only in the case of one rabbit that did not exhibit clear seroconversion, suggesting persistent infection as a result of an impaired immune response. Since the surviving rabbits were apparently healthy individuals, the importance of detecting carriers and the correct management of faeces to control RHD outbreaks in rabbitries are highlighted.
Collapse
Affiliation(s)
- Carlos Calvete
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón, IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| | - María P Sarto
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Laura Iguacel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Jorge H Calvo
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón, IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain; ARAID, 50004, Zaragoza, Spain
| |
Collapse
|
10
|
Taggart PL, Hall RN, Cox TE, Kovaliski J, McLeod SR, Strive T. Changes in virus transmission dynamics following the emergence of RHDV2 shed light on its competitive advantage over previously circulating variants. Transbound Emerg Dis 2021; 69:1118-1130. [PMID: 33724677 DOI: 10.1111/tbed.14071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/17/2023]
Abstract
Rabbit haemorrhagic disease virus (RHDV) is highly pathogenic to European rabbits. Until recently, only one serotype of RHDV was known, GI.1/RHDV. RHDV2/GI.2 is a novel virus that has rapidly spread and become the dominant pathogenic calicivirus in wild rabbits worldwide. It is speculated that RHDV2 has three competitive advantages over RHDV: (a) the ability to partially overcome immunity to other variants; (b) the ability to clinically infect young rabbits; and (c) a wider host range. These differences would be expected to influence virus transmission dynamics. We used markers of recent infection (IgM/IgA antibodies) to investigate virus transmission dynamics pre and post the arrival of RHDV2. Our data set contained over 3,900 rabbits sampled across a 7-year period at 12 Australian sites. Following the arrival of RHDV2, seasonal peaks in IgM and IgA seropositivity shifted forward one season, from winter to autumn and spring to winter, respectively. Contrary to predictions, we found only weak effects of rabbit age, seropositivity to non-pathogenic calicivirus RCV-A1 and population abundance on IgM/IgA seropositivity. Our results demonstrate that RHDV2 enters rabbit populations shortly after the commencement of annual breeding cycles. Upon entering, the population RHDV2 undergoes extensive replication in young rabbits, causing clinical disease, high virus shedding, mortality and the creation of virus-laden carcasses. This results in high virus contamination in the environment, furthering the transmission of RHDV2 and initiating outbreaks, whilst simultaneously removing the susceptible cohort required for the effective transmission of RHDV. Although RHDV may enter the population at the same time point, it is sub-clinical in young rabbits, causing minimal virus shedding and low environmental contamination. Our results demonstrate a major shift in epidemiological patterns in virus transmission, providing the first evidence that RHDV2's ability to clinically infect young rabbits is a key competitive advantage in the field.
Collapse
Affiliation(s)
- Patrick L Taggart
- Vertebrate Pest Research Unit, Department of Primary Industries NSW, Orange, NSW, Australia.,Centre for Invasive Species Solutions, Bruce, ACT, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Robyn N Hall
- Centre for Invasive Species Solutions, Bruce, ACT, Australia.,CSIRO Health and Biosecurity, Acton, ACT, Australia
| | - Tarnya E Cox
- Vertebrate Pest Research Unit, Department of Primary Industries NSW, Orange, NSW, Australia
| | - John Kovaliski
- Biosecurity SA, Adelaide, SA, Australia.,Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Australia
| | - Steven R McLeod
- Vertebrate Pest Research Unit, Department of Primary Industries NSW, Orange, NSW, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, Bruce, ACT, Australia.,CSIRO Health and Biosecurity, Acton, ACT, Australia
| |
Collapse
|
11
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Strive T, Piper M, Huang N, Mourant R, Kovaliski J, Capucci L, Cox TE, Smith I. Retrospective serological analysis reveals presence of the emerging lagovirus RHDV2 in Australia in wild rabbits at least five months prior to its first detection. Transbound Emerg Dis 2019; 67:822-833. [PMID: 31665828 DOI: 10.1111/tbed.13403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
The lagovirus rabbit haemorrhagic disease virus (RHDV) has been circulating in Australia since the mid-1990s when it was released to control overabundant rabbit populations. In recent years, the viral diversity of different RHDVs in Australia has increased, and currently four different types of RHDV are known to be circulating. To allow for ongoing epidemiological studies and impact assessments of these viruses on Australian wild rabbit populations, it is essential that serological tools are updated. To this end, reference sera were produced against all four virulent RHDVs (RHDV, RHDV2 and two different strains of RHDVa) known to be present in Australia and tested in a series of available immunological assays originally developed for the prototype RHDV, to assess patterns of cross-reactivity and the usefulness of these assays to detect lagovirus antibodies, either in a generic or specific manner. Enzyme-linked immunosorbent assays (ELISAs) developed to detect antibody isotypes IgM, IgA and IgG were sufficiently cross-reactive to detect antibodies raised against all four virulent lagoviruses. For the more specific detection of antibodies to the antigenically more different RHDV2, a competition ELISA was adapted using RHDV2-specific monoclonal antibodies in combination with Australian viral antigen. Archival serum banks from a long-term rabbit monitoring site where rabbits were sampled quarterly over a period of 6 years were re-screened using this assay and revealed serological evidence for the arrival of RHDV2 in this population at least 5 months prior to its initial detection in Australia in a dead rabbit in May 2015. The serological methods and reference reagents described here will provide valuable tools to study presence, prevalence and impact of RHDV2 on Australian rabbit populations; however, the discrimination of different antigenic variants of RHDVs as well as mixed infections at the serological level remains challenging.
Collapse
Affiliation(s)
- Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia
| | - Melissa Piper
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Nina Huang
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia
| | - Roslyn Mourant
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - John Kovaliski
- Department of Primary Industries and Regions, Biosecurity SA, Adelaide, Australia
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Tarnya E Cox
- Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia.,Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, Australia
| | - Ina Smith
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| |
Collapse
|
13
|
Neave MJ, Hall RN, Huang N, McColl KA, Kerr P, Hoehn M, Taylor J, Strive T. Robust Innate Immunity of Young Rabbits Mediates Resistance to Rabbit Hemorrhagic Disease Caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses 2018; 10:E512. [PMID: 30235853 PMCID: PMC6163550 DOI: 10.3390/v10090512] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023] Open
Abstract
The rabbit caliciviruses Lagovirus europaeus GI.1 and GI.2 both cause acute necrotizing hepatitis in European rabbits (Oryctolagus cuniculus). Whilst GI.2 is highly virulent in both young and adult rabbits, rabbits younger than eight weeks of age are highly resistant to disease caused by GI.1, although they are still permissive to infection and viral replication. To investigate the underlying mechanism(s) of this age related resistance to GI.1, we compared liver transcriptomes of young rabbits infected with GI.1 to those of adult rabbits infected with GI.1 and young rabbits infected with GI.2. Our data suggest that kittens have constitutively heightened innate immune responses compared to adult rabbits, particularly associated with increased expression of major histocompatibility class II molecules and activity of natural killer cells, macrophages, and cholangiocytes. This enables them to respond more rapidly to GI.1 infection than adult rabbits and thus limit virus-induced pathology. In contrast, these responses were not fully developed during GI.2 infection. We speculate that the observed downregulation of multiple genes associated with innate immunity in kittens during GI.2 infection may be due to virally-mediated immunomodulation, permitting fatal disease to develop. Our study provides insight into the fundamental host⁻pathogen interactions responsible for the differences in age-related susceptibility, which likely plays a critical role in defining the success of GI.2 in outcompeting GI.1 in the field.
Collapse
Affiliation(s)
- Matthew J Neave
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Robyn N Hall
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Nina Huang
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Kenneth A McColl
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Peter Kerr
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Marion Hoehn
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | | | - Tanja Strive
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Restricted Host Specificity of Rabbit Hemorrhagic Disease Virus Is Supported by Challenge Experiments in Immune-compromised Mice ( Mus musculus). J Wildl Dis 2018; 55:218-222. [PMID: 30161016 DOI: 10.7589/2018-03-067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that causes peracute hemorrhagic fever and frequently kills rabbits before an effective adaptive immune response can be developed. In Australia and New Zealand, RHDV is employed to manage wild European rabbit ( Oryctolagus cuniculus) populations. Although there is no evidence that RHDV replicates in animals other than lagomorphs, the detection of RHDV-specific antibodies and RHDV RNA in mice and other species has raised concerns about the host specificity of the virus. To investigate the replication potential of RHDV in mice ( Mus musculus), standard laboratory mice and knockout animals that lack a functional interferon type I receptor were challenged with high doses of RHDV. None of the animals developed clinical signs of illness, and temporal quantification of the viral RNA by real-time PCR did not reveal signs of virus amplification. These data suggest that RHDV cannot replicate in mice-not even in animals with a severely compromised innate immune system.
Collapse
|
15
|
Wells K, Fordham DA, Brook BW, Cassey P, Cox T, O'Hara RB, Schwensow NI. Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits. J Anim Ecol 2018; 87:1418-1428. [DOI: 10.1111/1365-2656.12871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Konstans Wells
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Environmental Futures Research Institute Griffith University Brisbane QLD Australia
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Center for Macroecology, Evolution, and Climate National Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Barry W. Brook
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| | - Phillip Cassey
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - Tarnya Cox
- Vertebrate Pest Research Unit NSW Department Primary Industries Orange NSW Australia
| | - Robert B. O'Hara
- Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Nina I. Schwensow
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Institute of Evolutionary Ecology and Conservation Genomics University of Ulm Ulm Germany
| |
Collapse
|
16
|
Mahar JE, Read AJ, Gu X, Urakova N, Mourant R, Piper M, Haboury S, Holmes EC, Strive T, Hall RN. Detection and Circulation of a Novel Rabbit Hemorrhagic Disease Virus in Australia. Emerg Infect Dis 2018; 24:22-31. [PMID: 29260677 PMCID: PMC5749467 DOI: 10.3201/eid2401.170412] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The highly virulent rabbit hemorrhagic disease virus (RHDV) has been widely used in Australia and New Zealand since the mid-1990s to control wild rabbits, an invasive vertebrate pest in these countries. In January 2014, an exotic RHDV was detected in Australia, and 8 additional outbreaks were reported in both domestic and wild rabbits in the 15 months following its detection. Full-length genomic analysis revealed that this virus is a recombinant containing an RHDVa capsid gene and nonstructural genes most closely related to nonpathogenic rabbit caliciviruses. Nationwide monitoring efforts need to be expanded to assess if the increasing number of different RHDV variants circulating in the Australian environment will affect biological control of rabbits. At the same time, updated vaccines and vaccination protocols are urgently needed to protect pet and farmed rabbits from these novel rabbit caliciviruses.
Collapse
|
17
|
Affiliation(s)
- Mara Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland, UK
| | - Mark Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland, UK
| |
Collapse
|
18
|
Dalton KP, Balseiro A, Juste RA, Podadera A, Nicieza I, Del Llano D, González R, Martin Alonso JM, Prieto JM, Parra F, Casais R. Clinical course and pathogenicity of variant rabbit haemorrhagic disease virus in experimentally infected adult and kit rabbits: Significance towards control and spread. Vet Microbiol 2018; 220:24-32. [PMID: 29885797 DOI: 10.1016/j.vetmic.2018.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/08/2023]
Abstract
RHDVb has become the dominant RHDV on the Iberian Peninsula. A better understanding of its pathogenicity is required to aid control measures. Thus, the clinical course, humoral immune response, viraemia and kinetics of RHDV-N11 (a Spanish RHDVb isolate) infection in different tissues at both viral RNA and protein levels were studied in experimentally infected young and adult rabbits. The case fatality rate differed between the two age groups, with 21% of kits succumbing while no deaths were observed in adults. Fever and viremia were strongly associated with death, which occurred 48 h post infection (PI) too fast for an effective humoral immune response to be mounted. A significant effect on the number of viral RNA copies with regard to the variables age, tissue and time PI (p < 0.0001 in all cases) was detected. Histological lesions in infected rabbits were consistently more frequent and severe in liver and spleen and additionally intestine in kits, these tissues containing the highest levels of viral RNA and protein. Although no adults showed lesions or virus antigen in intestine, both kits and adults maintained steady viral RNA levels from days 1 to 7 PI in this organ. Analysis revealed the fecal route as the main dissemination route of RHDV-N11. Subclinically infected rabbits had detectable viral RNA in their faeces for up to seven days and thus may play an important role spreading the virus. This study allows a better understanding of the transmission of this virus and improvement of the control strategies for this disease.
Collapse
Affiliation(s)
- K P Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| | - A Balseiro
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain.
| | - R A Juste
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain.
| | - A Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| | - I Nicieza
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| | - D Del Llano
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| | - R González
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain.
| | - J M Martin Alonso
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| | - J M Prieto
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain.
| | - F Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| | - R Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain.
| |
Collapse
|
19
|
Rabbit haemorrhagic disease: Cross-protection and comparative pathogenicity of GI.2/RHDV2/b and GI.1b/RHDV lagoviruses in a challenge trial. Vet Microbiol 2018; 219:87-95. [PMID: 29778210 DOI: 10.1016/j.vetmic.2018.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
European rabbits (Oryctolagus cuniculus) are severely affected by rabbit haemorrhagic disease (RHD). Caused by a lagovirus, the disease leads to losses in the rabbit industry and has implications for wildlife conservation. Past RHD outbreaks have been caused by GI.1/RHDV genotype viruses. A new virus belonging to the GI.2/RHDV2/b genotype emerged in 2010, quickly spreading and replacing the former in several countries; however, limited data are available on its pathogenicity and epidemiological factors. The present work extends these issues and evaluates cross-protection between both genotypes. Ninety-four and 88 domestic rabbits were challenged with GI.2/RHDV2/b and GI.1b/RHDV variant isolates, respectively. Cross-protection was determined by a second challenge on survivors with the corresponding strain. Mortality by GI.2/RHDV2/b was highly variable due to unknown individual factors, whereas mortality by GI.1b/RHDV was associated with age. Mortality in rabbits < 4 weeks old was 84%, higher than previously reported. Cross-protection was not identical between the two viruses because the ratio of mortality rate ratios for the first and second challenges was 3.80 ± 2.68 times higher for GI.2/RHDV2/b than it was for GI.1b/RHDV. Rabbit susceptibility to GI.2/RHDV2/b varied greatly and appeared to be modulated by the innate functionality of the immune response and/or its prompt activation by other pathogens. GI.1b/RHDV pathogenicity appeared to be associated with undetermined age-related factors. These results suggest that GI.2/RHDV2/b may interact with other pathogens at the population level but does not satisfactorily explain the GI.1b/RHDV virus's quick replacement.
Collapse
|
20
|
Wu M, Zhu Y, Cong F, Rao D, Yuan W, Wang J, Huang B, Lian Y, Zhang Y, Huang R, Guo P. Rapid detection of three rabbit pathogens by use of the Luminex x-TAG assay. BMC Vet Res 2018; 14:127. [PMID: 29625588 PMCID: PMC5889542 DOI: 10.1186/s12917-018-1438-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/19/2018] [Indexed: 01/18/2023] Open
Abstract
Background Domestic rabbits especially New Zealand white rabbits play an important role in biological research. The disease surveillance and quality control are essential to guarantee the results of animal experiments performed on rabbits. Rabbit hemorrhagic disease virus, rabbit rotavirus and Sendai virus are the important pathogens that needed to be eliminated. Rapid and sensitive method focus on these three viruses should be established for routine monitoring. The Luminex x-TAG assay based on multiplex PCR and fluorescent microsphere is a fast developing technology applied in high throughput detection. Specific primers modified with oligonucleotide sequence/biotin were used to amplify target fragments. The conjugation between oligonucleotide sequence of the PCR products and the MagPlex-TAG microspheres was specific without any cross-reaction, and the hybridization products could be analyzed using the Luminex 200 analyzer instrument. Recombinant plasmids were constructed to estimate the detection limit of the viruses. Furthermore, 40 clinical samples were used to evaluate the efficiency of this multiplex PCR based Luminex x-TAG assay. Results According to the results, this new method showed high specificity and good stability. Assessed by the recombinant plasmids, the detection limit of three viruses was 100copies/μl. Among 40 clinical specimens, 18 specimens were found positive, which was completely concordant with the conventional PCR method. Conclusions The new developed Luminex x-TAG assay is an accurate, high throughput method for rapid detection of three important viruses of rabbits.
Collapse
Affiliation(s)
- Miaoli Wu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.,Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Yujun Zhu
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Feng Cong
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Dan Rao
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Wen Yuan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Bihong Huang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Yuexiao Lian
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Yu Zhang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Ren Huang
- Guangdong laboratory animals monitoring institute, Guangzhou, 510633, China.
| | - Pengju Guo
- Guangdong key laboratory of laboratory Animals, Guangzhou, China.
| |
Collapse
|
21
|
Rocchi MS, Dagleish MP. Diagnosis and prevention of rabbit viral haemorrhagic disease 2. IN PRACTICE 2018. [DOI: 10.1136/inp.k54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Read AJ, Kirkland PD. Efficacy of a commercial vaccine against different strains of rabbit haemorrhagic disease virus. Aust Vet J 2017; 95:223-226. [PMID: 28653381 DOI: 10.1111/avj.12600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND This study investigated the ability of a commercial rabbit haemorrhagic disease virus (RHDV) vaccine (Cylap®) to protect rabbits from disease caused by two different strains of the virus (v351 and K5) that are used or proposed to be used for wild rabbit control in Australia. These strains of the RHDV1 genotype belong to the 'classical RHDV' and 'antigenic variant RHDVa' subtypes, respectively. METHODS Vaccinated rabbits were exposed to very high doses of the virus either by direct oral dosing or by exposure to infected rabbit livers. RESULTS & CONCLUSION All vaccinated rabbits were protected against rabbit haemorrhagic disease, indicating that the Cylap® vaccine is effective against both strains of the virus under experimental conditions.
Collapse
Affiliation(s)
- A J Read
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Private Mail Bag 4008, Narellan 2567, New South Wales, Australia
| | - P D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Private Mail Bag 4008, Narellan 2567, New South Wales, Australia
| |
Collapse
|
23
|
Donaldson B, Al-Barwani F, Pelham SJ, Young K, Ward VK, Young SL. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer 2017; 5:69. [PMID: 28806910 PMCID: PMC5556368 DOI: 10.1186/s40425-017-0270-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer is responsible for almost 700,000 deaths annually worldwide. Therapeutic vaccination is a promising alternative to conventional treatment for colorectal cancer, using vaccines to induce targeted immune responses against tumour-associated antigens. In this study, we have developed chimaeric virus-like particles (VLP), a form of non-infectious non-replicative subunit vaccine consisting of rabbit haemorrhagic disease virus (RHDV) VP60 capsid proteins containing recombinantly inserted epitopes from murine topoisomerase IIα and survivin. These vaccines were developed in mono- (T.VP60, S.VP60) and multi-target (TS.VP60) forms, aiming to elucidate the potential benefits from multi-target vaccination. Methods Chimaeric RHDV VLP were developed by recombinantly inserting immune epitopes at the N-terminus of VP60. Vaccines were tested against a murine model of colorectal cancer by establishing MC38-OVA tumours subcutaneously. Unmethylated CpG DNA oligonucleotides (CpGs) were used as a vaccine adjuvant. Statistical tests employed included the Mantel-Cox log-rank test, ANOVA and unpaired t-tests depending on the data analysed, with a post hoc Bonferroni adjustment for multiple measures. Results Chimaeric RHDV VLP were found to form a composite particle in the presence of CpGs. Overall survival was significantly improved amongst mice bearing MC38-OVA tumours following vaccination with T.VP60 (60%, 9/15), S.VP60 (60%, 9/15) or TS.VP60 (73%, 11/15). TS.VP60 significantly prolonged the vaccine-induced remission period in comparison to each mono-therapy. Conclusions Chimaeric VLP containing multiple epitopes were found to confer an advantage for therapeutic vaccination in a model of colorectal cancer based on the prolongation of remission prior to tumour escape. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0270-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Braeden Donaldson
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Farah Al-Barwani
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Simon J Pelham
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Katie Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sarah L Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
24
|
Hall RN, Capucci L, Matthaei M, Esposito S, Kerr PJ, Frese M, Strive T. An in vivo system for directed experimental evolution of rabbit haemorrhagic disease virus. PLoS One 2017; 12:e0173727. [PMID: 28288206 PMCID: PMC5348035 DOI: 10.1371/journal.pone.0173727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
The calicivirus Rabbit haemorrhagic disease virus (RHDV) is widely used in Australia as a biocontrol agent to manage wild European rabbit (Oryctolagus cuniculus) populations. However, widespread herd immunity limits the effectiveness of the currently used strain, CAPM V-351. To overcome this, we developed an experimental platform for the selection and characterisation of novel RHDV strains. As RHDV does not replicate in cell culture, variant viruses were selected by serially passaging a highly virulent RHDV field isolate in immunologically naïve laboratory rabbits that were passively immunised 18–24 hours post-challenge with a neutralising monoclonal antibody. After seven passages, two amino acid substitutions in the P2 domain of the capsid protein became fixed within the virus population. Furthermore, a synonymous substitution within the coding sequence of the viral polymerase appeared and was also maintained in all subsequent passages. These findings demonstrate proof-of-concept that RHDV evolution can be experimentally manipulated to select for virus variants with altered phenotypes, in this case partial immune escape.
Collapse
Affiliation(s)
- Robyn N. Hall
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Lorenzo Capucci
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Markus Matthaei
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Simona Esposito
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Peter J. Kerr
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael Frese
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
25
|
A real time Taqman RT-PCR for the detection of rabbit hemorrhagic disease virus 2 (RHDV2). J Virol Methods 2015; 219:90-95. [DOI: 10.1016/j.jviromet.2015.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 11/23/2022]
|
26
|
Elsworth P, Cooke BD, Kovaliski J, Sinclair R, Holmes EC, Strive T. Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus). Virology 2014; 464-465:415-423. [PMID: 25146599 DOI: 10.1016/j.virol.2014.06.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 01/14/2023]
Abstract
The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.
Collapse
Affiliation(s)
- Peter Elsworth
- Robert Wicks Pest Animal Research Centre, Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, Toowoomba, Queensland, Australia; Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia
| | - Brian D Cooke
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; University of Canberra, Institute for Applied Ecology, ACT, Canberra, Australia
| | - John Kovaliski
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; Biosecurity South Australia, Adelaide, South Australia, Australia
| | - Ronald Sinclair
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; Biosecurity South Australia, Adelaide, South Australia, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tanja Strive
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; CSIRO Ecosystem Sciences, Canberra, ACT, Australia; CSIRO Biosecurity Flagship, Canberra, Australia.
| |
Collapse
|