1
|
Omasta B, Tomaskova J. Cellular Lipids-Hijacked Victims of Viruses. Viruses 2022; 14:1896. [PMID: 36146703 PMCID: PMC9501026 DOI: 10.3390/v14091896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the millions of years-long co-evolution with their hosts, viruses have evolved plenty of mechanisms through which they are able to escape cellular anti-viral defenses and utilize cellular pathways and organelles for replication and production of infectious virions. In recent years, it has become clear that lipids play an important role during viral replication. Viruses use cellular lipids in a variety of ways throughout their life cycle. They not only physically interact with cellular membranes but also alter cellular lipid metabolic pathways and lipid composition to create an optimal replication environment. This review focuses on examples of how different viruses exploit cellular lipids in different cellular compartments during their life cycles.
Collapse
Affiliation(s)
| | - Jana Tomaskova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
2
|
Fenizia C, Ibba SV, Vanetti C, Strizzi S, Rossignol JF, Biasin M, Trabattoni D, Clerici M. The Modulation of Cholesterol Metabolism Is Involved in the Antiviral Effect of Nitazoxanide. Infect Dis Rep 2021; 13:636-644. [PMID: 34287319 PMCID: PMC8293206 DOI: 10.3390/idr13030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Abstract
We previously investigated the role of Nitazoxanide (NTZ), a thiazolide endowed with antiviral and antiparasitic activity, in HIV-1 infection. NTZ treatment in primary isolated PBMCs was able to reduce HIV-1 infection in vitro by inducing the expression of a number of type-I interferon-stimulated genes. Among them, NTZ was able to induce cholesterol-25-hydroxylase (CH25H), which is involved in cholesterol metabolism. In the present study, we wanted to deepen our knowledge about the antiviral mechanism of action of NTZ. Indeed, by inducing CH25H, which catalyzes the formation of 25-hydroxycholesterol from cholesterol, NTZ treatment repressed cholesterol biosynthetic pathways and promoted cholesterol mobilization and efflux from the cell. Such effects were even more pronounced upon stimulation with FLU antigens in combination. It is already well known how lipid metabolism and virus replication are tightly interconnected; thus, it is not surprising that the antiviral immune response employs genes related to cholesterol metabolism. Indeed, NTZ was able to modulate cholesterol metabolism in vitro and, by doing so, enhance the antiviral response. These results give us the chance to speculate about the suitability of NTZ as adjuvant for induction of specific natural immunity. Moreover, the putative application of NTZ to alimentary-related diseases should be investigated.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Salomè Valentina Ibba
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | | | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro 66, 20148 Milan, Italy
- Correspondence: ; Tel.: +39-02-5031-9678
| |
Collapse
|
3
|
Tahmoorespur M, Azghandi M, Javadmanesh A, Meshkat Z, Sekhavati MH. A Novel Chimeric Anti-HCV Peptide Derived from Camel Lactoferrin and Molecular Level Insight on Its Interaction with E2. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09972-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Abstract
PURPOSE OF REVIEW We comment on the role of dyslipidaemia in cardiovascular disease (CVD) in HIV-infected patients. We have discussed various risk factors, including traditional CVD risk factors, HIV-related risk factors and antiretroviral therapy (ART)-induced dyslipidaemia. RECENT FINDINGS HIV-infected individuals are prone to lipid and lipoprotein abnormalities as a result of the infection itself and the effect of ART. The older drugs used for the treatment of HIV were associated with an increased risk of these abnormalities. New therapies used to treat HIV are lipid friendly. Calculating CVD risk in the HIV population is complex due to the infection itself and the ART-related factors. The advancement in ART has helped to increase the life expectancy of HIV patients. As a result, a growing number of patients die of non-HIV related complications such as CVD, hepatic and renal disease. Outcome studies with intervention for dyslipidaemia in HIV are underway. SUMMARY The implications of the above findings suggest that all patients with HIV should undergo a CVD risk assessment before starting ART. Appropriate lipid-friendly ART regimen should be initiated along with intervention for associated CVD risk factors (e.g. lipids, hypertension and smoking).
Collapse
|
5
|
Awan Z, Tay ESE, Eyre NS, Wu LE, Beard MR, Boo I, Drummer HE, George J, Douglas MW. Calsyntenin-1 mediates hepatitis C virus replication. J Gen Virol 2016; 97:1877-1887. [PMID: 27221318 DOI: 10.1099/jgv.0.000511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The hepatitis C virus (HCV) RNA genome of 9.6 kb encodes only 10 proteins, and so is highly dependent on host hepatocyte factors to facilitate replication. We aimed to identify host factors involved in the egress of viral particles. By screening the supernatant of HCV-infected Huh7 cells using SILAC-based proteomics, we identified the transmembrane protein calsyntenin-1 as a factor specifically secreted by infected cells. Calsyntenin-1 has previously been shown to mediate transport of endosomes along microtubules in neurons, through interactions with kinesin light chain-1. Here we demonstrate for the first time, we believe, a similar role for calsyntenin-1 in Huh7 cells, mediating intracellular transport of endosomes. In HCV-infected cells we show that calsyntenin-1 contributes to the early stages of the viral replication cycle and the formation of the replication complex. Importantly, we demonstrate in our model that silencing calsyntenin-1 disrupts the viral replication cycle, confirming the reliance of HCV on this protein as a host factor. Characterizing the function of calsyntenin-1 will increase our understanding of the HCV replication cycle and pathogenesis, with potential application to other viruses sharing common pathways.
Collapse
Affiliation(s)
- Zunaira Awan
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Nicholas S Eyre
- Hepatitis C Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Lindsay E Wu
- University of New South Wales, Sydney NSW 2052, Australia
| | - Michael R Beard
- Hepatitis C Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Irene Boo
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne VIC 3004, Australia
| | - Heidi E Drummer
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne VIC 3004, Australia.,Department of Microbiology, 19 Innovation Walk, Monash University, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|
6
|
HCV-Induced Oxidative Stress: Battlefield-Winning Strategy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7425628. [PMID: 27293514 PMCID: PMC4880679 DOI: 10.1155/2016/7425628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 02/08/2023]
Abstract
About 150 million people worldwide are chronically infected with hepatitis C virus (HCV). The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24) is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.
Collapse
|
7
|
Stefas I, Tigrett S, Dubois G, Kaiser M, Lucarz E, Gobby D, Bray D, Ellerbrok H, Zarski JP, Veas F. Interactions between Hepatitis C Virus and the Human Apolipoprotein H Acute Phase Protein: A Tool for a Sensitive Detection of the Virus. PLoS One 2015; 10:e0140900. [PMID: 26502286 PMCID: PMC4621047 DOI: 10.1371/journal.pone.0140900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022] Open
Abstract
The Hepatitis C virus (HCV) infection exhibits a high global prevalence frequently associated with hepatocellular carcinoma, taking years to develop. Despite the standardization of highly sensitive HCV quantitative RT-PCR (qRT-PCR) detection methods, false-negative diagnoses may be generated with current methods, mainly due to the presence of PCR inhibitors and/or low viral loads in the patient’s sample. These false-negative diagnoses impact both public health systems, in developing countries, and an in lesser extent, in developed countries, including both the risk of virus transmission during organ transplantation and/or blood transfusion and the quality of the antiviral treatment monitoring. To adopt an appropriate therapeutic strategy to improve the patient’s prognosis, it is urgent to increase the HCV detection sensitivity. Based upon previous studies on HBV, we worked on the capacity of the scavenger acute phase protein, Apolipoprotein H (ApoH) to interact with HCV. Using different approaches, including immunoassays, antibody-inhibition, oxidation, ultracentrifugation, electron microscopy and RT-PCR analyses, we demonstrated specific interactions between HCV particles and ApoH. Moreover, when using a two-step HCV detection process, including capture of HCV by ApoH-coated nanomagnetic beads and a home-made real-time HCV-RT-PCR, we confirmed the presence of HCV for all samples from a clinical collection of HCV-seropositive patients exhibiting an RT-PCR COBAS® TaqMan® HCV Test, v2.0 (COBAS)-positive result. In contrast, for HCV-seropositive patients with either low HCV-load as determined with COBAS or exhibiting HCV-negative COBAS results, the addition of the two-step ApoH-HCV-capture and HCV-detection process was able to increase the sensitivity of HCV detection or more interestingly, detect in a genotype sequence-independent manner, a high-proportion (44%) of HCV/RNA-positive among the COBAS HCV-negative patients. Thus, the immune interaction between ApoH and HCV could be used as a sample preparation tool to enrich and/or cleanse HCV patient’s samples to enhance the detection sensitivity of HCV and therefore significantly reduce the numbers of false-negative HCV diagnosis results.
Collapse
Affiliation(s)
- Ilias Stefas
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Sylvia Tigrett
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France; Institut de Recherche pour le Développement, UMR-Ministère de la Défense 3, Laboratoire d'Immuno-Physiopathologie Moléculaire Comparée, Faculté de Pharmacie, Montpellier, France
| | - Grégor Dubois
- Institut de Recherche pour le Développement, UMR-Ministère de la Défense 3, Laboratoire d'Immuno-Physiopathologie Moléculaire Comparée, Faculté de Pharmacie, Montpellier, France
| | | | - Estelle Lucarz
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Delphine Gobby
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Dorothy Bray
- Immunoclin Corporation, Washington, DC, United States of America
| | - Heinz Ellerbrok
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses, Berlin, Germany
| | - Jean Pierre Zarski
- Clinique d'Hépato-gastroentérologie, Centre Hospitalier Universitaire de Grenoble, IAB, INSERM U823, Grenoble, France
| | - Francisco Veas
- Institut de Recherche pour le Développement, UMR-Ministère de la Défense 3, Laboratoire d'Immuno-Physiopathologie Moléculaire Comparée, Faculté de Pharmacie, Montpellier, France
| |
Collapse
|
8
|
Verstrepen BE, Boonstra A, Koopman G. Immune mechanisms of vaccine induced protection against chronic hepatitis C virus infection in chimpanzees. World J Hepatol 2015; 7:53-69. [PMID: 25624997 PMCID: PMC4295194 DOI: 10.4254/wjh.v7.i1.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by a high propensity for development of life-long viral persistence. An estimated 170 million people suffer from chronic hepatitis caused by HCV. Currently, there is no approved prophylactic HCV vaccine available. With the near disappearance of the most relevant animal model for HCV, the chimpanzee, we review the progression that has been made regarding prophylactic vaccine development against HCV. We describe the results of the individual vaccine evaluation experiments in chimpanzees, in relation to what has been observed in humans. The results of the different studies indicate that partial protection against infection can be achieved, but a clear correlate of protection has thus far not yet been defined.
Collapse
Affiliation(s)
- Babs E Verstrepen
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - André Boonstra
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - Gerrit Koopman
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| |
Collapse
|
9
|
Unexpected structural features of the hepatitis C virus envelope protein 2 ectodomain. J Virol 2014; 88:10280-8. [PMID: 24991010 DOI: 10.1128/jvi.00874-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV), a member of the family Flaviviridae, is a leading cause of chronic liver disease and cancer. Recent advances in HCV therapeutics have resulted in improved cure rates, but an HCV vaccine is not available and is urgently needed to control the global pandemic. Vaccine development has been hampered by the lack of high-resolution structural information for the two HCV envelope glycoproteins, E1 and E2. Recently, Kong and coworkers (Science 342:1090-1094, 2013, doi:10.1126/science.1243876) and Khan and coworkers (Nature 509[7500]:381-384, 2014, doi:10.1038/nature13117) independently determined the structure of the HCV E2 ectodomain core with some unexpected and informative results. The HCV E2 ectodomain core features a globular architecture with antiparallel β-sheets forming a central β sandwich. The residues comprising the epitopes of several neutralizing and nonneutralizing human monoclonal antibodies were also determined, which is an essential step toward obtaining a fine map of the human humoral response to HCV. Also clarified were the regions of E2 that directly bind CD81, an important HCV cellular receptor. While it has been widely assumed that HCV E2 is a class II viral fusion protein (VFP), the newly determined structure suggests that the HCV E2 ectodomain shares structural and functional similarities only with domain III of class II VFPs. The new structural determinations suggest that the HCV glycoproteins use a different mechanism than that used by class II fusion proteins for cell fusion.
Collapse
|
10
|
Abstract
The vasculitides are a large group of heterogeneous diseases for which it has been assumed that pathogenesis is largely autoimmune. As clinicians, we distinguish one form of vasculitis from another on the basis of observed patterns of organ injury, the size of the vessels affected and histopathological findings. The terms 'small-vessel', 'medium-vessel' and 'large-vessel' vasculitis are useful clinical descriptors, but fail to inform us about why vessels of a certain calibre are favoured by one disease and not another. Classification based on vessel size also fails to consider that vessels of a specific calibre are not equally prone to injury. Distinct vulnerabilities undoubtedly relate to the fact that same-size vessels in different tissues may not be identical conduits. In fact, vessels become specialized, from the earliest stages of embryonic development, to suit the needs of different anatomical locations. Vessels of the same calibre in different locations and organs are as different as the organ parenchymal cells through which they travel. The dialogue between developing vessels and the tissues they perfuse is designed to meet special local needs. Added to the story of vascular diversity and vulnerability are changes that occur during growth, development and ageing. An improved understanding of the unique territorial vulnerabilities of vessels could form the basis of new hypotheses for the aetiopathogenesis of the vasculitides. This Review considers how certain antigens, including infectious agents, might become disease-relevant and how vascular diversity could influence disease phenotypes and the spectrum of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Gary S Hoffman
- Department of Rheumatic and Immunologic Diseases, A50, 9500 Euclid Avenue, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, A50, 9500 Euclid Avenue, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Abstract
The lifecycle of several viruses is intimately tied to the lipid metabolism of their host cells, and lipid droplets (LDs) have emerged as crucial organelles in the propagation of these viral infections. Investigating the roles of LDs in viral infection requires expertise in both virology and cell metabolism pertaining to LDs. In this review, we offer an updated list and review of the multiples methods we have used in our laboratory to study both the role of LDs in viral infection and the effect of viral infection on cellular LDs, with a special emphasis on hepatitis C virus and other RNA viruses.
Collapse
|
12
|
Sánchez-García A, Ríos-Ibarra CP, Rincón-Sánchez AR, Ortiz-López R, Garza-Juárez A, Morlett-Chávez J, Martínez-Rodríguez H, Rivas-Estilla AM. Use of proteomic analysis tools to identify HCV-proteins down-regulated by acetylsalicylic acid. Ann Hepatol 2013; 12:725-732. [DOI: 10.1016/s1665-2681(19)31313-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
13
|
Vipperla B, Dass JFP, Jayanthi S. Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection. J Biomol Struct Dyn 2013; 32:1443-55. [PMID: 23914916 DOI: 10.1080/07391102.2013.823624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.
Collapse
Affiliation(s)
- Bhavaniprasad Vipperla
- a School of Bio Sciences and Technology, Bioinformatics Division , VIT University , Vellore , Tamilnadu , 632014 , India
| | | | | |
Collapse
|
14
|
Yoshida T, Kondoh M, Mizuguchi H, Yagi K. [Development of an adenovirus vector containing a hepatitis C virus expression cassette and its application]. YAKUGAKU ZASSHI 2013; 133:305-11. [PMID: 23449406 DOI: 10.1248/yakushi.12-00237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis C virus (HCV) is a hepatotropic member of the Flaviviridae family and contains a 9.6 kb positive-sense RNA genome. Approximately 170-million people are infected with HCV worldwide. These people face increased risks of chronic hepatitis, cirrhosis and hepatocellular carcinoma compared with the general population. Transduction of the HCV genome into hepatocytes is essential for understanding the mode of action of HCV infection, and for preparing HCV, evaluating HCV replication, and screening anti-HCV drugs. Although electroporation of in vitro-synthesized HCV genome and transduction of plasmid vectors containing the HCV genome are widely used in HCV research, a more convenient system with higher transduction efficiency is needed. Among viral transduction systems, adenovirus (Ad) vector is one of the most efficient and convenient systems; Ad vector has been widely used in clinical gene therapies. Therefore, Ad vector is a promising system for the delivery of the HCV genome; however, an Ad vector expressing the HCV genome has never been developed. We here describe the preparation of an Ad vector expressing the HCV genome, and outline future directions of HCV research using this vector system.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
15
|
Waheed Y, Saeed U, Anjum S, Afzal MS, Ashraf M. Development of Global Consensus Sequence and Analysis of Highly Conserved Domains of the HCV NS5B Prote in. HEPATITIS MONTHLY 2012; 12:e6142. [PMID: 23087757 PMCID: PMC3475062 DOI: 10.5812/hepatmon.6142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/31/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) is a plus stranded RNA virus which encodes 10 different genes. The HCV NS5B gene encodes a polymerase, which is responsible for the replication of the virus and is a potential target for the development of antiviral agents. HCV has a high mutation rate and is classified into six major genotypes. OBJECTIVES The aim of this study was to draw a representing consensus sequence of each HCV genotype, align all six consensus sequences to draw a global consensus sequence and also study the highly conserved residues. MATERIALS AND METHODS 236 HCV NS5B sequences, belonging to all six genotypes, reported from all over the world were aligned then a representing phylogenetic tree wasdrawn. RESULTS The active site residues D220, D225, D318 and D319, which bind the divalent cations, are highly conserved among all the HCV genotypes. The other catalytic pocket residues, R158, S367, R386, and T390 and R394, which interact with the triphosphate of NTPs, are also highly conserved while T390 is mutated to valine in the genotype 5. The motif B residues G283, T286, T287 and N291, which take part in sugar selection by RdRp, are also highly conserved except for T286 which is mutated to proline in the genotypes 3 and 6. The residues E18, Y191, C274, Y276 and H502, which take part in primer/template interaction, are also high conserved except for H502 which is mutated to serine in genotype 2. High variation in all the six consensus sequences was observed in a 12 amino acid beta hairpin loop, which interacts with the double stranded RNA. Nine different peptides from the highly conserved regions of HCV NS5B protein were drawn which can be used as a peptide vaccine. The HCV NS5B phylogenetic tree shows the clusters of different genotypes and their evolutionary association. CONCLUSIONS In spite of a high mutation rate in HCV, the residues which are present in the catalytic pocket, sugar selection and template/primer interaction are highly conserved. These are target sites for the development of antiviral agents or peptide vaccines. The phylogenetic analysis suggests that different HCV genotypes have been evolved from the genotype 1a.
Collapse
Affiliation(s)
- Yasir Waheed
- Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Corresponding author: Yasir Waheed, Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, (44000), Pakistan. Tel.: +92-3005338171, Fax: +92-5190856102, E-mail:
| | - Umar Saeed
- Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sadia Anjum
- Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mohammad Sohail Afzal
- Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Ashraf
- Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
16
|
Lagache T, Danos O, Holcman D. Modeling the step of endosomal escape during cell infection by a nonenveloped virus. Biophys J 2012; 102:980-9. [PMID: 22404920 DOI: 10.1016/j.bpj.2011.12.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/27/2022] Open
Abstract
Widely disparate viruses enter the host cell through an endocytic pathway and travel the cytoplasm inside an endosome. For the viral genetic material to be delivered into the cytoplasm, these viruses have to escape the endosomal compartment, an event triggered by the conformational changes of viral endosomolytic proteins. We focus here on small nonenveloped viruses such as adeno-associated viruses, which contain few penetration proteins. The first time a penetration protein changes conformation defines the slowest timescale responsible for the escape. To evaluate this time, we construct what to our knowledge is a novel biophysical model based on a stochastic approach that accounts for the small number of proteins, the endosomal maturation, and the protease activation dynamics. We show that the escape time increases with the endosomal size, whereas decreasing with the number of viral particles inside the endosome. We predict that the optimal escape probability is achieved when the number of proteases in the endosome is in the range of 250-350, achieved for three viral particles.
Collapse
Affiliation(s)
- Thibault Lagache
- Group of Computational Biology and Applied Mathematics, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
17
|
Oliveira LPM, Jesus RPD, Boulhosa RSSB, Mendes CMC, Lyra AC, Lyra LGC. Metabolic syndrome in patients with chronic hepatitis C virus genotype 1 infection who do not have obesity or type 2 diabetes. Clinics (Sao Paulo) 2012; 67:219-23. [PMID: 22473401 PMCID: PMC3297029 DOI: 10.6061/clinics/2012(03)03] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The individual components of metabolic syndrome may be independent predictors of mortality in patients with liver disease. We aimed to evaluate the prevalence of metabolic syndrome and its related components in hepatitis C virus-infected patients who are not obese and do not have type 2 diabetes. METHODS This cross-sectional study included 125 patients infected with hepatitis C virus genotype 1. Metabolic syndrome was defined according to the International Diabetes Federation. Anthropometric data were measured according to standardized procedures. Bioimpedance analysis was performed on all patients. RESULTS Metabolic syndrome was diagnosed in 21.6% of patients. Of the subjects with metabolic syndrome, 59.3% had hypertension, 77.8% had insulin resistance, 85.2% were overweight, 48.1% had a high waist circumference, 85.2% had an increased body fat percentage, and 92.3% had an elevated waist:hip ratio. In the bivariate analysis, female sex (OR 2.58; 95% CI: 1.09-6.25), elevated gamma-glutamyl transferase (γGT) (OR 2.63; 95% CI: 1.04-7.29), elevated fasting glucose (OR 8.05; 95% CI: 3.17-21.32), low HDL cholesterol (OR 2.80; 95% CI: 1.07-7.16), hypertriglyceridemia (OR 7.91; 95% CI: 2.88-22.71), elevated waist circumference (OR 10.33; 95% CI: 3.72-30.67), overweight (OR 11.33; 95% CI: 3.97-41.07), and increased body fat percentage (OR 8.34; 95% CI: 2.94-30.08) were independent determinants of metabolic syndrome. Using the final multivariate regression model, similar results were observed for abdominal fat (OR 9.98; 95% CI: 2.63-44.41) and total body fat percentage (OR 8.73; 95% CI: 2.33-42.34). However, metabolic syndrome risk was also high for those with blood glucose >5.55 mmol/L or HDL cholesterol <0.9 mmol/L (OR 16.69; 95% CI: 4.64-76.35; OR 7.23; 95% CI: 1.86-32.63, respectively). CONCLUSION Metabolic syndrome is highly prevalent among hepatitis C virus-infected patients without type 2 diabetes or obesity. Metabolic syndrome was significantly associated with hypertension, insulin resistance, increased abdominal fat, and overweight.
Collapse
|
18
|
Darling JM, Lemon SM, Fried MW. Hepatitis C. SCHIFF'S DISEASES OF THE LIVER 2011:582-652. [DOI: 10.1002/9781119950509.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Abstract
Lipid droplets (LDs) are highly dynamic cell organelles involved in energy homeostasis and membrane trafficking. Here, we review how select pathogens interact with LDs. Several RNA viruses use host LDs at different steps of their life cycle. Some intracellular bacteria and parasites usurp host LDs or encode their own lipid biosynthesis machinery, thus allowing production of LDs independently of their host. Although many mechanistic details of host/pathogen LD interactions are unknown, a picture emerges in which the unique cellular architecture and energy stored in LDs are important in the replication of diverse pathogens.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | |
Collapse
|
20
|
Verstrepen BE, Depla E, Rollier CS, Mares G, Drexhage JAR, Priem S, Verschoor EJ, Koopman G, Granier C, Dreux M, Cosset FL, Maertens G, Heeney JL. Clearance of genotype 1b hepatitis C virus in chimpanzees in the presence of vaccine-induced E1-neutralizing antibodies. J Infect Dis 2011; 204:837-44. [PMID: 21849281 PMCID: PMC3156919 DOI: 10.1093/infdis/jir423] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/12/2011] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that neutralizing antibodies play an important role in protection from chronic hepatitis C virus (HCV) infection. Efforts to elicit such responses by immunization with intact heterodimeric E1E2 envelope proteins have met with limited success. To determine whether antigenic sites, which are not exposed by the combined E1E2 heterodimer structure, are capable of eliciting neutralizing antibody responses, we expressed and purified each as separate recombinant proteins E1 and E2, from which the immunodominant hypervariable region (HVR-1) was deleted. Immunization of chimpanzees with either E1 or E2 alone induced antigen-specific T-helper cytokines of similar magnitude. Unexpectedly, the capacity to neutralize HCV was observed in E1 but not in animals immunized with E2 devoid of HVR-1. Furthermore, in vivo only E1-vaccinated animals exposed to the heterologous HCV-1b inoculum cleared HCV infection.
Collapse
Affiliation(s)
- Babs E. Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Erik Depla
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Christine S. Rollier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Gwenny Mares
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Joost A. R. Drexhage
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Sofie Priem
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Christelle Granier
- Université de Lyon, UCB Lyon-1, INSERM, U758, Human Virology laboratory, EVIR Team, Lyon; Ecole Normale Supérieure de Lyon, France
| | - Marlène Dreux
- Université de Lyon, UCB Lyon-1, INSERM, U758, Human Virology laboratory, EVIR Team, Lyon; Ecole Normale Supérieure de Lyon, France
| | - François L. Cosset
- Université de Lyon, UCB Lyon-1, INSERM, U758, Human Virology laboratory, EVIR Team, Lyon; Ecole Normale Supérieure de Lyon, France
| | - Geert Maertens
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Jonathan L. Heeney
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- Laboratory of Viral Zoonotics, University of Cambridge, CB3-OES, United Kingdom
| |
Collapse
|
21
|
He J, Pei X, Xu W, Wang C, Zhang X, Wu J, Zhao W. The relationship between tumor necrosis factor-α polymorphisms and hepatitis C virus infection: a systematic review and meta-analysis. Ren Fail 2011; 33:915-22. [PMID: 21851198 DOI: 10.3109/0886022x.2011.605537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV) is now recognized as one of the major causes of chronic liver disease. It is also one of the most common complications in maintenance hemodialysis (HD) patients. Tumor necrosis factor (TNF)-α promoter polymorphisms are observed to modulate TNF-α levels and thought to have an effect on susceptibility to HCV infection and the virus clearance, but the results are inconsistent. In this study, a systematic review and meta-analysis of the published data was performed to evaluate the relationship between the TNF-α-238, -308 polymorphisms and HCV infection. METHODS A total of 15 studies published were analyzed, which were indexed from PubMed, Embase, and CNKI databases (up to December 2010). All the data were analyzed using RevMan 4.2 software. Odds ratios (OR) and confidence intervals (95% CI) were calculated by fixed or random-effects models. Heterogeneity and publication bias across the studies were also explored. RESULTS The data showed no significant association between TNF-α-308, -238 gene polymorphisms and the susceptibility to HCV infection in the global group (p = 0.28, p = 0.38, respectively) and the sub-groups (European, American, African, and Asian). Besides, the distributions of TNF-α-308, -238 A/G alleles were also not significantly different between the persistent infection group and the spontaneous clearance group (p = 0.64, p = 0.75, respectively). CONCLUSION TNF-α-238, -308 gene polymorphisms might have no effect on susceptibility to HCV infection and the virus clearance. The findings of this meta-analysis have implications in the optimal prevention of HCV in HD patients and in the guidance of future research.
Collapse
Affiliation(s)
- Juan He
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Human cell types important for hepatitis C virus replication in vivo and in vitro: old assertions and current evidence. Virol J 2011; 8:346. [PMID: 21745397 PMCID: PMC3142522 DOI: 10.1186/1743-422x-8-346] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro.
Collapse
|
23
|
Herker E, Ott M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab 2011; 22:241-8. [PMID: 21497514 PMCID: PMC3118981 DOI: 10.1016/j.tem.2011.03.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world's population, establishing a lifelong infection in the majority of cases. The life cycle of HCV is closely tied to the lipid metabolism of liver cells, and lipid droplets have emerged as crucial intracellular organelles that support persistent propagation of viral infection. In this review, we examine recent advances in our understanding of how HCV usurps intracellular lipids to propagate, and highlight unique opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
- To whom correspondence should be addressed: Melanie Ott, MD, PhD, Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158, Tel: (415) 734-4807, Fax: (415) 355-0855,
| |
Collapse
|
24
|
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17:2520-35. [PMID: 21633657 PMCID: PMC3103810 DOI: 10.3748/wjg.v17.i20.2520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.
Collapse
|
25
|
Multifaceted roles for lipids in viral infection. Trends Microbiol 2011; 19:368-75. [PMID: 21530270 PMCID: PMC3130080 DOI: 10.1016/j.tim.2011.03.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 02/07/2023]
Abstract
Viruses have evolved complex and dynamic interactions with their host cell. In recent years we have gained insight into the expanding roles for host lipids in the virus life cycle. In particular, viruses target lipid signaling, synthesis, and metabolism to remodel their host cells into an optimal environment for their replication. This review highlights examples from different viruses that illustrate the importance of these diverse virus–lipid interactions.
Collapse
|
26
|
Syder AJ, Lee H, Zeisel MB, Grove J, Soulier E, Macdonald J, Chow S, Chang J, Baumert TF, McKeating JA, McKelvy J, Wong-Staal F. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol 2011; 54:48-55. [PMID: 20932595 DOI: 10.1016/j.jhep.2010.06.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS ITX 5061 is a clinical stage small molecule compound that promotes high-density lipoprotein (HDL) levels in animals and patients by targeting the scavenger receptor BI protein pathway. Since SR-BI is a known co-receptor for HCV infection, we evaluated these compounds for their effects on HCV entry. METHODS We obtained ITX 5061 and related compounds to characterize their interaction with SR-BI and effects on HCV entry and infection. RESULTS We confirmed that a tritium-labeled compound analog (ITX 7650) binds cells expressing SR-BI, and both ITX 5061 and ITX 7650 compete for HDL-mediated lipid transfer in an SR-BI dependent manner. Both molecules inhibit HCVcc and HCVpp infection of primary human hepatocytes and/or human hepatoma cell lines and have minimal effects on HCV RNA replication. Kinetic studies suggest that the compounds act at an early post-binding step. CONCLUSIONS These results suggest that the ITX compounds inhibit HCV infection with a mechanism of action distinct from other HCV therapies under development. Since ITX 5061 has already been evaluated in over 280 patients with good pharmacokinetic and safety profiles, it warrants proof-of-concept clinical studies in HCV infected patients.
Collapse
Affiliation(s)
- Andrew J Syder
- iTherX Pharmaceuticals, Inc., San Diego, CA 92191-0530, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Small molecule drug discovery for Dengue and West Nile viruses: applying experience from hepatitis C virus. Future Med Chem 2010; 2:1181-203. [DOI: 10.4155/fmc.10.195] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There are currently no specific treatments for infection with Dengue virus (DENV) and West Nile Virus (WNV). Drug-discovery programs are underway for both viruses, but as yet no small molecules have advanced to clinical trials. Hepatitis C virus (HCV) is a related flavivirus that has been the focus of intense drug discovery efforts for the last two decades. Many approaches currently being pursued for DENV and WNV have been previously attempted for HCV with varying degrees of success. The experience with HCV may direct DENV and WNV efforts towards approaches with the best chance of success. Based on experience with HCV, the viral polymerase and protease are attractive targets to focus on since these have been most successful to date. Cell-based phenotypic screening may also yield attractive inhibitors. The helicase and methyltransferase enzymes are likely to prove difficult targets and host target approaches are fraught with safety concerns.
Collapse
|
28
|
Abstract
The mechanisms of hepatitis C virus (HCV) replication remain poorly understood, and the cellular factors required for HCV replication are yet to be completely defined. CD81 is known to mediate HCV entry. Our study uncovered an unexpected novel function of CD81 in the HCV life cycle that is important for HCV RNA replication. HCV replication occurred efficiently in infected cells with high levels of CD81 expression. In HCV-infected or RNA-transfected cells with low levels of CD81 expression, initial viral protein synthesis occurred normally, but efficient replication failed to proceed. The aborted replication could be restored by the transient transfection of a CD81 expression plasmid. CD81-dependent replication was demonstrated with both an HCV infectious cell culture and HCV replicon cells of genotypes 1b and 2a. We also showed that CD81 expression is positively correlated with the kinetics of HCV RNA synthesis but inversely related to the kinetics of viral protein production, suggesting that CD81 may control viral replication by directing viral RNA template function to RNA replication. Thus, CD81 may be necessary for the efficient replication of the HCV genome in addition to its role in viral entry.
Collapse
|