1
|
Zhao W, Mi Y, Zhao Y, Deng C, Yu R, Mei Q, Cheng Y. 7-Amino acid peptide (7P) decreased airway inflammation and hyperresponsiveness in a murine model of asthma. Eur J Pharmacol 2021; 912:174576. [PMID: 34673034 DOI: 10.1016/j.ejphar.2021.174576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
A 7-amino acid peptide (7P), (Gly-Gln-Thr-Tyr-Thr-Ser-Gly) is one of the synthesized mimic polypeptides, which is the second envelope protein at hypervariable region 1 of chronic hepatitis C virus (HCV HVR1). It contributed to the anti-inflammatory reaction and inhibited lung Th9 responses in asthma through binding to CD81. In this study, we examined the effects of 7P on bronchoconstriction, acute inflammation of the airways, and lung Th2-type responses during allergic lung inflammation. Our results determined that 7P decreased bronchoconstriction and inhibited both acute inflammatory cytokines (TNFα, IL-1β, and IL-6) and Th2 cell cytokine responses (IL-5, IL-4, and IL-13) during allergic lung inflammation. 7P directly inhibited lung Th2 cell differentiation (7P: 5.1% vs. vehicle:12.2% and control 7P:12.2%) and suppressed airway inflammatory cytokine signal transduction to decrease Th2 cell response. Overall, 7P significantly decreased airway hyperresponsiveness (AHR), airway inflammation, and Th2 responses, which may serve as a novel therapeutic candidate during allergic lung inflammation.
Collapse
Affiliation(s)
- Wanzhou Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China.
| | - Yahui Mi
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China.
| | - Yanying Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China.
| | - Chloe Deng
- Opsimath Services, El Monte, CA, 91733-2228, USA.
| | - Ruihe Yu
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China; Shanghai Feichang Biotechnology Co.Ltd, Shanghai, China.
| | - Qibing Mei
- Luzhou New Drug Evaluation and Research Center, Luzhou, 646000, Sichuan Province, PR China.
| | - Yun Cheng
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China; Shanghai Feichang Biotechnology Co.Ltd, Shanghai, China.
| |
Collapse
|
2
|
A 7-Amino Acid Peptide Mimic from Hepatitis C Virus Hypervariable Region 1 Inhibits Mouse Lung Th9 Cell Differentiation by Blocking CD81 Signaling during Allergic Lung Inflammation. J Immunol Res 2020; 2020:4184380. [PMID: 32258172 PMCID: PMC7109583 DOI: 10.1155/2020/4184380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/18/2019] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
T helper (Th) cells orchestrate allergic lung inflammation in asthma pathogenesis. Th9 is a novel Th cell subset that mainly produces IL-9, a potent proinflammatory cytokine in asthma. A 7-amino acid peptide (7P) of the hypervariable region 1 (HVR1) of hepatitis C virus has been identified as an important regulator in the type 2 cytokine (IL-4, IL-5, and IL-13) immune response. However, it is unknown whether 7P regulates Th9 cell differentiation during ovalbumin- (OVA-) induced allergic lung inflammation. To address this, we studied wild-type mice treated with 7P and a control peptide in an in vivo mouse model of OVA-induced allergic inflammation and an in vitro cell model of Th9 differentiation, using flow cytometry, cytokine assays, and quantitative PCR. The binding of 7P to CD81 on naïve CD4+ T cells during lung Th9 differentiation was determined using CD81 overexpression and siRNA knockdown analyses. Administration of 7P significantly reduced Th9 cell differentiation after OVA sensitization and exposure. 7P also inhibited Th9 cell differentiation from naïve and memory CD4+ T cells in vitro. Furthermore, 7P inhibited the differentiation of human Th9 cells with high CD81 expression from naïve CD4+ T cells by blocking CD81 signaling. CD81 siRNA significantly reduced Th9 cell differentiation from naïve CD4+ T cells in vitro. Interestingly, CD81 overexpression in human naïve CD4+ T cells also enhanced Th9 development in vitro. These data indicate that 7P may be a good candidate for reducing IL-9 production in asthma.
Collapse
|
3
|
Tarr AW, Backx M, Hamed MR, Urbanowicz RA, McClure CP, Brown RJP, Ball JK. Immunization with a synthetic consensus hepatitis C virus E2 glycoprotein ectodomain elicits virus-neutralizing antibodies. Antiviral Res 2018; 160:25-37. [PMID: 30217650 DOI: 10.1016/j.antiviral.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023]
Abstract
Global eradication of hepatitis C virus (HCV) infection will require an efficacious vaccine capable of eliciting protective immunity against genetically diverse HCV strains. Natural spontaneous resolution of HCV infection is associated with production of broadly-neutralizing antibodies targeting the HCV glycoproteins E1 and E2. As such, production of cross-neutralizing antibodies is an important endpoint for experimental vaccine trials. Varying success generating cross-neutralizing antibodies has been achieved with immunogens derived from naturally-occurring HCV strains. In this study the challenge of minimising the genetic diversity between the vaccine strain and circulating HCV isolates was addressed. Two novel synthetic E2 glycoprotein immunogens (NotC1 and NotC2) were derived from consensus nucleotide sequences deduced from samples of circulating genotype 1 HCV strains. These two synthetic sequences differed in their relative positions in the overall genotype 1a/1b phylogeny. Expression of these constructs in Drosophila melanogaster S2 cells resulted in high yields of correctly-folded, monomeric E2 protein, which were recognised by broadly neutralizing monoclonal antibodies. Immunization of guinea pigs with either of these consensus immunogens, or a comparable protein representing a circulating genotype 1a strain resulted in high titres of cross-reactive anti-E2 antibodies. All immunogens generated antibodies capable of neutralizing the H77 strain, but NotC1 elicited antibodies that more potently neutralized virus entry. These vaccine-induced antibodies neutralized some viruses representing genotype 1, but not strains representing genotype 2 or genotype 3. Thus, while this approach to vaccine design resulted in correctly folded, immunogenic protein, cross-neutralizing epitopes were not preferentially targeted by the host immune response generated by this immunogen. Greater immunofocussing of vaccines to common epitopes is necessary to successfully elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Alexander W Tarr
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Matthijs Backx
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Mohamed R Hamed
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Richard A Urbanowicz
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Richard J P Brown
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
4
|
Ingle NB, Virkar RG, Agnihotri K, Sharma KS, Lole KS, Arankalle VA. Evaluation of Liposome, Heat-Killed Mycobacterium w, and Alum Adjuvants in the Protection Offered by Different Combinations of Recombinant HA, NP proteins, and M2e Against Homologous H5N1 Virus. Viral Immunol 2016; 29:478-486. [PMID: 27508998 DOI: 10.1089/vim.2016.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continued evolution of highly pathogenic H5N1 viruses causing high mortality in humans obviates need for broadly cross-reactive vaccines. For this, hemagglutinin (HA) inducing specific protective antibodies, highly conserved nucleoprotein (NP), and ectodomain of matrix (M2e) protein, either singly or in combination, were evaluated in BALB/c mice. Recombinant HA and NP (baculovirus system) and M2e (synthetic peptide) and 3 adjuvants, that is, liposomes, Mw (heat killed Mycobacterium w), and alum were utilized for the homologous virus challenge. Additional immunogens included liposome-encapsulated HA/NP proteins and corresponding DNAs. Mice groups received two doses of respective formulations given at 3-week intervals and challenged intranasally with 100LD50 of H5N1 virus strain. Dynamics of weight loss, lung viral load, titres of IgG-anti-HA, NP, and M2e antibodies (ELISA), and IgG-subtype analysis was done. Two doses of all the formulations led to 100% seroconversion against the immunogens evaluated (100% seroconversion after the first dose in majority). Antibody titres against the components were dependent on the adjuvant and combination. HA-driven Th2 response with all the adjuvants, balanced Th1/Th2 response to NP protein, and Th2-bias with alum were noted. Low anti-M2e antibody titres did not allow subtype analysis. On challenge, complete protection was observed with Mw-HA, alum-HA+NP, Lipo-HA+NP+M2e, alum-HA+NP+M2e, and HA-DP formulations with 12-fold, 8-fold, 720-fold, 17-fold, and no reduction, respectively, in lung viral load. In conclusion, the results identify several adjuvant-immunogen combinations conferring 100% protection in mice that need further evaluation in higher animals.
Collapse
Affiliation(s)
- Nilesh B Ingle
- Hepatitis Division, National Institute of Virology , Pune, India
| | - Rashmi G Virkar
- Hepatitis Division, National Institute of Virology , Pune, India
| | | | - Kapil S Sharma
- Hepatitis Division, National Institute of Virology , Pune, India
| | - Kavita S Lole
- Hepatitis Division, National Institute of Virology , Pune, India
| | | |
Collapse
|
5
|
Joshi SS, Arankalle VA. Differential Immune Responses in Mice Immunized with Recombinant Neutralizing Epitope Protein of Hepatitis E Virus Formulated with Liposome and Alum Adjuvants. Viral Immunol 2016; 29:350-60. [PMID: 27285290 DOI: 10.1089/vim.2016.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In the developing countries, Hepatitis E virus (HEV) is a predominant cause of sporadic acute hepatitis in adults and waterborne epidemics leading to high mortality in pregnant women. Vaccine development mainly focuses on the structural capsid protein open-reading-frame-2 (ORF-2) of the virus. We successfully evaluated liposome-adjuvanted recombinant neutralizing epitope protein (rNEp), a part of ORF-2, 458-607aa, in mice and rhesus macaques. We compared immune response to adjuvants alone, rNEp alone, or adjuvanted with liposome (lipo-rNEp)/alum (al-rNEp) in mice following intramuscular administration of two doses of 5 μg each. IgG anti-HEV titers (enzyme-linked immunosorbent assay), immunophenotyping (flow cytometry, CD3(+)CD4(+), CD3(+)CD8(+), CD11c(+), CD11b(+), CD19(+) cells; costimulatory markers CD80, CD86, MHC-I, MHC-II, and early activation marker CD69), and levels of Th1/Th2 cytokines (IL-2/IFN-γ/IL-4/IL-5 and additionally IL-1β/IL-6/IL-10/TNF for early time points) were determined at early (4/12/24-h postdose-1) and later time points (2 weeks post-both doses). IgG anti-HEV titers were higher in the lipo-rNEp group than al-rNEp post-both doses (p < 0.05). At early time points, cell type proportions were comparable at the site of injection; IL-Iβ levels increased in lipo-rNEp, 24 h, while IL-6 levels rose in lipo-rNEp/al-rNEp/alum-alone groups, 4 h, compared to controls. In the draining lymph nodes (DLNs), CD11c(+)CD86(+) cells increased at 24 h in liposome-alone/lipo-rNEp groups. A rise in the CD11c(+)CD69(+) cells was noted in the lipo-rNEp group compared to other groups (p < 0.05). Cytokine levels in the spleen/sera remained unchanged in all the groups (p > 0.05). At 2 weeks postdose-2, CD11c(+)MHC-II(+)/CD11b(+)MHC-II(+) cells increased in the spleen in the lipo-rNEp and al-rNEp groups, respectively. In the DLNs, CD19(+)MHC-II(+) cells increased in rNEp/al-rNEp/lipo-rNEp groups post-both doses and CD11c(+)CD86(+) cells in the lipo-rNEp group. A balanced Th1/Th2 response was evident in the lipo-rNEp, while a Th2 bias was noted in al-rNEp. Different immune response gene clustering patterns were noted in uncultured spleens from immunized mice and cultured-stimulated splenocytes. In conclusion, lipo-rNEp is a better immunogen, works through dendritic cells, and elicits a balanced Th1/Th2 response, while alum functions through macrophages and induces a Th2 response.
Collapse
|
6
|
Behzadi MA, Alborzi A, Kalani M, Pouladfar G, Dianatpour M, Ziyaeyan M. Immunization with a Recombinant Expression Vector Encoding NS3/NS4A of Hepatitis C Virus Genotype 3a Elicits Cell-Mediated Immune Responses in C57BL/6 Mice. Viral Immunol 2016; 29:138-47. [PMID: 26909520 DOI: 10.1089/vim.2015.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Today, hepatitis C virus (HCV) infection is considered as one of the most significant international health concerns. Although novel therapeutic regimens against the infection have shown satisfactory results, no approved vaccine exists yet. This study aimed to evaluate the immunogenicity of a DNA vaccine candidate for HCV-3a, based on nonstructural proteins NS3/NS4A, in C57BL/6 mice. Immunogenicity effect of pDisplay-NS3/NS4A was analyzed through immunization with 100 and 200 μg concentrations of the construct with complete Freund's adjuvant, monophosphoryl lipid A (MPL), or without adjuvant. The frequencies of different splenic mononuclear cells were measured using the Mouse Th1/Th2/Th17 Phenotyping Kit. Moreover, the number of T-CD8(+) cells was determined using conjugated anti-CD8a and anti-CD3e antibodies by flow cytometry. As observed, the frequencies of Th1, T-CD8(+), and Th2 cells increased in all the experimental groups, compared with the controls. The highest levels of the respective cells were seen in the group immunized with 200 μg of the construct with MPL. Also, there were positive correlations between the frequency of Th1 cells and those of Th2 and T-CD8(+) cells in all the immunized groups, but were significant in those receiving adjuvants. The frequency of Th17 cells did not statistically change among the groups. Taken together, our findings revealed that the constructed DNA vaccine encoding HCV-3a NS3/NS4A gene induces the cell-mediated immune responses significantly. However, its coadministration with adjuvants exhibits more efficient results than the recombinant plasmid alone. Further study is currently underway to evaluate the specific immune responses and recognize the responsible antigenic epitopes.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- 1 Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz, Iran .,2 Student Research Committee, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Abdolvahab Alborzi
- 1 Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Mehdi Kalani
- 1 Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Gholamreza Pouladfar
- 1 Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Mehdi Dianatpour
- 3 Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran .,4 Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Mazyar Ziyaeyan
- 1 Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz, Iran
| |
Collapse
|
7
|
Sabri S, Idrees M, Rafique S, Ali A, Iqbal M. Studies on the role of NS3 and NS5A non-structural genes of hepatitis C virus genotype 3a local isolates in apoptosis. Int J Infect Dis 2014; 25:38-44. [PMID: 24845365 DOI: 10.1016/j.ijid.2014.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is the causative agent of chronic liver diseases, which usually lead to liver fibrosis, liver cirrhosis, and hepatocellular carcinoma (HCC). Among the non-structural genes of HCV, NS3 and NS5A play important roles in apoptosis. The NS3 and NS5A genes of HCV interact with the p53 tumor suppressor gene differentially. The objective of this study was to analyze the interaction of NS3 and NS5A genes of HCV genotype 3a with the p53 gene, subgenomic HCV replicons harboring NS3 and NS5A genes. METHODS Huh-7 cell lines stably expressing NS3 and NS5A genes were generated. The stable cell lines were confirmed by Western blot, reverse transcriptase PCR, and immunofluorescence assay. HCV NS3- and NS5A-expressing cell lines were transfected with p53-expressing clone. RESULTS NS3 and NS5A both interact with p53 by down-regulating the expression of the p53 gene. In HCV subgenomic harboring cells, the interaction of NS3 and NS5A with p53 was observed consistently. The suppression of p53 gene expression by NS3 and NS5A was observed significantly as compared with NS3- and NS5A-negative control Huh-7 cells. CONCLUSION It is concluded that both of the non-structural genes, NS3 and NS5A, of HCV play important roles in the hepatocarcinogenesis of HCV by interacting directly or indirectly in different manners with the p53 gene.
Collapse
Affiliation(s)
- Sabeen Sabri
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- National Center of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Shazia Rafique
- Center of Applied Molecular Biology, Ministry of Science and Technology, Govt. of Punjab, Lahore, Pakistan
| | - Amjad Ali
- Department of Biotechnology, University of Malakand, Chakdra Dir (lower), Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Iqbal
- Center of Applied Molecular Biology, Ministry of Science and Technology, Govt. of Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Martinez-Donato G, Amador-Cañizares Y, Alvarez-Lajonchere L, Guerra I, Pérez A, Dubuisson J, Wychowsk C, Musacchio A, Aguilar D, Dueñas-Carrera S. Neutralizing antibodies and broad, functional T cell immune response following immunization with hepatitis C virus proteins-based vaccine formulation. Vaccine 2014; 32:1720-6. [PMID: 24486345 DOI: 10.1016/j.vaccine.2014.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 01/01/2023]
Abstract
HCV is a worldwide health problem despite the recent advances in the development of more effective therapies. No preventive vaccine is available against this pathogen. However, non-sterilizing immunity has been demonstrated and supports the potential success of HCV vaccines. Induction of cross-neutralizing antibodies and T cell responses targeting several conserved epitopes, have been related to hepatitis C virus (HCV) clearance. Therefore, in this work, the immunogenicity of a preparation (MixprotHC) based on protein variants of HCV Core, E1, E2 and NS3 was evaluated in mice and monkeys. IgG from MixprotHC immunized mice and monkeys neutralized the infectivity of heterologous HCVcc. Moreover, strong CD4+ and CD8+ T cells proliferative and IFN-γ secretion responses were elicited against HCV proteins. Remarkably, immunization with MixprotHC induced control of viremia in a surrogate challenge model in mice. These results suggest that MixprotHC might constitute an effective immunogen against HCV in humans with potential for reducing the likelihood of immune escape and viral persistence.
Collapse
Affiliation(s)
- Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba.
| | - Yalena Amador-Cañizares
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Liz Alvarez-Lajonchere
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Ivis Guerra
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Angel Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Jean Dubuisson
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Czeslaw Wychowsk
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Alexis Musacchio
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Daylen Aguilar
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Santiago Dueñas-Carrera
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| |
Collapse
|
9
|
Kumar M, Sudeep AB, Arankalle VA. Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against chikungunya virus. Vaccine 2012; 30:6142-9. [PMID: 22884660 DOI: 10.1016/j.vaccine.2012.07.072] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/18/2012] [Accepted: 07/26/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVES With the re-emergence of chikungunya virus (CHIKV) in an explosive form and in the absence of a commercially available vaccine, we aimed to develop candidate vaccines employing recombinant E2 protein or chemically inactivated whole virus. DESIGN AND METHODS E2 gene of CHIKV isolate of ECSA genotype was cloned in pET15b vector, expressed and purified (rE2p). The virus was propagated in Vero cell line, purified and inactivated with formalin and BPL individually. Six to eight weeks old female BALB/c mice were immunized intramuscularly with two doses of 10μg, 20μg and 50μg of vaccine formulations with or without adjuvants, 2 weeks apart. The adjuvants evaluated were alum, Mw, CadB (rE2p), alum/Mw (formalin inactivated CHIKV) and alum (BPL-inactivated CHIKV). Humoral immunity was assessed by ELISA and in vitro neutralization test using homologous and heterologous (Asian genotype) strains of CHIKV. Two cohorts of vaccinated mice were challenged separately via intranasal route with homologous virus two and 20 weeks after the 2nd dose. Viral load (CHIKV RNA by real time PCR) was determined in the serum and tissues (muscle, brain, spleen) of the mice challenged with the homologous virus. RESULTS Anti-CHIK-antibody titres were dose dependent for all the immunogen formulations. BPL-inactivated vaccines led to the highest ELISA/neutralizing antibody (nAb) titres while alum was the most effective adjuvant. Asian genotype strain could be neutralized by the nAbs. In an adult mouse model, complete protection was offered by the alum-adjuvanted rE2p and both the inactivated vaccines as no virus was detected in the tissues and blood after challenge 2 weeks or 20 weeks-post-2nd dose. However, with rE2p-CadB, very low viremia was recorded on the 2nd day-post-challenge. CONCLUSION Both rE2p and BPL/formalin-inactivated virus are promising candidate vaccines deserving further evaluation.
Collapse
Affiliation(s)
- Manish Kumar
- National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India
| | | | | |
Collapse
|