1
|
Lenert ME, Green AR, Merriwether EN, Burton MD. B-cell and plasma cell activation in a mouse model of chronic muscle pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100169. [PMID: 39507010 PMCID: PMC11539501 DOI: 10.1016/j.ynpai.2024.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Fibromyalgia (FM) is a complex chronic musculoskeletal pain disorder with an elusive pathogenesis, with a strong implication of immune interactions. We recently found that IL-5 and the adaptive immune system mediates pain outcomes in fibromyalgia (FM) patients and preclinical models of FM-like chronic widespread pain (CWP). However, there is an active debate if FM/CWP has an autoimmune etiology. Preclinical models of CWP utilize a repeated insult paradigm, which resembles a primary, then secondary response similarly observed in the antibody response, in which the subsequent event causes a potentiated pain response. Recent translational studies have implicated immunoglobulins (Ig) and B-cells in FM/CWP pathophysiology. To understand if these are involved in preclinical models of CWP, we performed comprehensive B-cell phenotyping in the bone marrow, circulation, and popliteal (draining) lymph nodes in the two-hit acidic saline model of CWP. We found increased MHC class II-expressing B-cells in peripheral blood, increased activated plasma cells in peripheral blood, and increased memory B-cells in the bone marrow. Interestingly, acidic pH (4.0) injected mice have reduced levels of IgG1, independent of treatment with IL-5. We have demonstrated that the acidic saline model of CWP induces T-cell mediated activation of B-cells, increased active plasma cells, and increased memory B-cells in female mice.
Collapse
Affiliation(s)
- Melissa E. Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Audrey R. Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Ericka N. Merriwether
- Inclusive and Translational Research in Pain Lab Department of Physical Therapy Steinhardt School of Culture, Education, and Human Development New York University 380 Second Avenue, 4th Floor New York, NY 10012, USA
| | - Michael D. Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
2
|
López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, Agra de Almeida Quadros AR, Arnold-Garcia O, Zuberi A, Ling K, Platoshyn O, Niño-Jara E, Ndayambaje IS, McAlonis-Downes M, Cabrera L, Artates JW, Ryan J, Hermann A, Ravits J, Bennett CF, Jafar-Nejad P, Rigo F, Marsala M, Lutz CM, Cleveland DW, Lagier-Tourenne C. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci 2024; 27:34-47. [PMID: 37996528 PMCID: PMC10842032 DOI: 10.1038/s41593-023-01496-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Mariana Bravo-Hernandez
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | | | - Michael W Baughn
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ze'ev Melamed
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melinda S Beccari
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ana Rita Agra de Almeida Quadros
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olatz Arnold-Garcia
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | | | - Karen Ling
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elkin Niño-Jara
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - I Sandra Ndayambaje
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Larissa Cabrera
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan W Artates
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Anita Hermann
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Talifu Z, Pan Y, Gong H, Xu X, Zhang C, Yang D, Gao F, Yu Y, Du L, Li J. The role of KCC2 and NKCC1 in spinal cord injury: From physiology to pathology. Front Physiol 2022; 13:1045520. [PMID: 36589461 PMCID: PMC9799334 DOI: 10.3389/fphys.2022.1045520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The balance of ion concentrations inside and outside the cell is an essential homeostatic mechanism in neurons and serves as the basis for a variety of physiological activities. In the central nervous system, NKCC1 and KCC2, members of the SLC12 cation-chloride co-transporter (CCC) family, participate in physiological and pathophysiological processes by regulating intracellular and extracellular chloride ion concentrations, which can further regulate the GABAergic system. Over recent years, studies have shown that NKCC1 and KCC2 are essential for the maintenance of Cl- homeostasis in neural cells. NKCC1 transports Cl- into cells while KCC2 transports Cl- out of cells, thereby regulating chloride balance and neuronal excitability. An imbalance of NKCC1 and KCC2 after spinal cord injury will disrupt CI- homeostasis, resulting in the transformation of GABA neurons from an inhibitory state into an excitatory state, which subsequently alters the spinal cord neural network and leads to conditions such as spasticity and neuropathic pain, among others. Meanwhile, studies have shown that KCC2 is also an essential target for motor function reconstruction after spinal cord injury. This review mainly introduces the physiological structure and function of NKCC1 and KCC2 and discusses their pathophysiological roles after spinal cord injury.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| |
Collapse
|
4
|
Bertozzi MM, Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA, Fattori V, Staurengo-Ferrari L, Ferraz CR, Domiciano TP, Calixto-Campos C, Borghi SM, Zarpelon AC, Cunha TM, Casagrande R, Verri WA. Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice. Brain Sci 2022; 12:brainsci12091247. [PMID: 36138983 PMCID: PMC9496717 DOI: 10.3390/brainsci12091247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.
Collapse
Affiliation(s)
- Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Felipe A. Pinho-Ribeiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Talita P. Domiciano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Cassia Calixto-Campos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina 86041-120, PR, Brazil
| | - Ana C. Zarpelon
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto 14049-900, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or ; Tel.: +55-43-3371-4979; Fax: +55-43-3371-4387
| |
Collapse
|
5
|
Nasirinezhad F, Zarepour L, Hadjighassem M, Gharaylou Z, Majedi H, Ramezani F. Analgesic Effect of Bumetanide on Neuropathic Pain in Patients With Spinal Cord Injury. Basic Clin Neurosci 2021; 12:409-420. [PMID: 34917299 PMCID: PMC8666921 DOI: 10.32598/bcn.12.3.2049.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The current study evaluated the analgesic effects of bumetanide as an adjunctive in the management of neuropathic pain following Spinal Cord Injury (SCI). The peripheral expression of Na-K-Cl Cotransporter-1 (NKCC1) and K-Cl Cotransporter-2 (KCC2) genes in polymorphonuclear lymphocytes (PMLs) was assessed as a possible biomarker indicating central mechanisms underlying the observed response. Methods Through an open-label, single-arm, pilot trial of bumetanide (2 mg/d), an add-on treatment was conducted on 14 SCI patients for 19 weeks. This study consisted of 3 phases: pre-treatment (1 month), titration (3 weeks), and active treatment (4 months). Ultimately, 9 patients completed the study. The primary outcome variables were the endpoint pain score using the Numeric Rating Scale (NRS), and also the short-form of the McGill pain questionnaire. Secondary endpoints included the short-form of the health survey that assesses the quality of life. Blood samples were collected and used for determining the expression of NKCC1 and KCC2 genes in transcription and translation levels. Results Bumetanide treatment significantly decreased average pain intensity according to the NRS and the short-form of the McGill pain questionnaire scores. Baseline expression of KCC2 protein was low between groups and increased significantly following treatment (P<0.05). In the current study, pain improvement was accompanied by the greater mean change from the baseline (improvement) for the overall quality of life. Conclusion These data highlighted the analgesic effect of bumetanide on neuropathic pain and indicated the potential role of the upregulation of KCC2 protein and involvement of GABAergic disinhibition in producing neuropathic pain.
Collapse
Affiliation(s)
- Farinaz Nasirinezhad
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Zarepour
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gharaylou
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossin Majedi
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Deng SY, Tang XC, Chang YC, Xu ZZ, Chen QY, Cao N, Kong LJY, Wang Y, Ma KT, Li L, Si JQ. Improving NKCC1 Function Increases the Excitability of DRG Neurons Exacerbating Pain Induced After TRPV1 Activation of Primary Sensory Neurons. Front Cell Neurosci 2021; 15:665596. [PMID: 34113239 PMCID: PMC8185156 DOI: 10.3389/fncel.2021.665596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague–Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4–6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.
Collapse
Affiliation(s)
- Shi-Yu Deng
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xue-Chun Tang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yue-Chen Chang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Medical Teaching Experimental Center, Shihezi University Medical College, Shihezi, China
| | - Zhen-Zhen Xu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Yi Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Xiangyang Central Hospital, China
| | - Nan Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang-Jing-Yuan Kong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ke-Tao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Stein T, Tonussi CR. Involvement of the tuberomammillary nucleus of the hypothalamus in the modulation of nociception and joint edema in a model of monoarthritis. Life Sci 2020; 262:118521. [PMID: 33022280 DOI: 10.1016/j.lfs.2020.118521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
AIMS Investigate the involvement of the histaminergic projections from tuberomammillary nucleus (TMN) to the spinal cord in the modulation of nociception and peripheral edema in a model of monoarthritis. MAIN METHODS Subacute monoarthritis was induced by an intraarticular injection of carrageenan followed by LPS 72 h later. Disability and joint edema were assessed at the 3rd hour after LPS and at every hour up to 6 h. KEY FINDINGS Intrathecal administration of histamine potentiated joint incapacitation and edema, while the H1R antagonist cetirizine decreased both. The H3R agonist immepip decreased both incapacitation and edema, while the H3R antagonist thioperamide had the opposite effect. The microinjection of glutamate into the ventral TMN (vTMN) caused an increase of incapacitation and articular edema, whereas the blockade of this nucleus by cobalt chloride inhibited both parameters. Intrathecal administration of cetirizine prevented the increase of incapacitation and joint edema caused by glutamate microinjection into the vTMN. Similarly, an intrathecal injection of the NKCC1 cotransporter inhibitor bumetanide prevented the effects of glutamate microinjection into the vTMN, whereas coadministration of histamine with bumetanide only inhibited the potentiation of joint edema. A microinjection of orexin B into the vTMN potentiated incapacitation and joint edema, while coadministration of the OX1/2 receptor antagonist almorexant with orexin B did not. SIGNIFICANCE These data support the notion that TMN participates in the modulation of a peripheral inflammatory process by means of histaminergic projections to the spinal cord, and the hypothalamus may trigger TMN activation by means of glutamate and orexin.
Collapse
Affiliation(s)
- T Stein
- Program in Biosciences and Health, State University of Western Paraná, Cascavel, PR 85819-110, Brazil
| | - C R Tonussi
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
8
|
Differential expression of Na +/K +/Cl - cotransporter 1 in neurons and glial cells within the superficial spinal dorsal horn of rodents. Sci Rep 2020; 10:11715. [PMID: 32678166 PMCID: PMC7367302 DOI: 10.1038/s41598-020-68638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.
Collapse
|
9
|
Fu W, Wessel CR, Taylor BK. Neuropeptide Y tonically inhibits an NMDAR➔AC1➔TRPA1/TRPV1 mechanism of the affective dimension of chronic neuropathic pain. Neuropeptides 2020; 80:102024. [PMID: 32145934 PMCID: PMC7456540 DOI: 10.1016/j.npep.2020.102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
Transection of the sural and common peroneal branches of the sciatic nerve produces cutaneous hypersensitivity at the tibial innervation territory of the mouse hindpaw that resolves within a few weeks. We report that interruption of endogenous neuropeptide Y (NPY) signaling during remission, with either conditional NPY knockdown in NPYtet/tet mice or intrathecal administration of the Y1 receptor antagonist BIBO3304, reinstated hypersensitivity. These data indicate that nerve injury establishes a long-lasting latent sensitization of spinal nociceptive neurons that is masked by spinal NPY-Y1 neurotransmission. To determine whether this mechanism extends beyond the sensory component of nociception, we used conditioned place aversion and preference assays to evaluate the affective component of pain. We found that BIBO3304 produced place aversion in mice when administered during remission. Furthermore, the analgesic drug gabapentin produced place preference after NPY knockdown in NPYtet/tet but not control mice. We then used pharmacological agents and deletion mutant mice to investigate the cellular mechanisms of neuropathic latent sensitization. BIBO3304-induced reinstatement of mechanical hypersensitivity and conditioned place aversion could be prevented with intrathecal administration of an N-methyl-d-aspartate receptor antagonist (MK-801) and was absent in adenylyl cyclase type 1 (AC1) deletion mutant mice. BIBO3304-induced reinstatement could also be prevented with intrathecal administration an AC1 inhibitor (NB001) or a TRPV1 channel blocker (AMG9801), but not vehicle. Intrathecal administration of a TRPA1 channel blocker (HC030031) prevented the reinstatement of neuropathic hypersensitivity produced either by BIBO3304, or by NPY knockdown in NPYtet/tet but not control mice. Our results confirm new mediators of latent sensitization: TRPA1 and TRPV1. We conclude that NPY acts at spinal Y1 to tonically inhibit a molecular NMDAR➔AC1 intracellular signaling pathway in the dorsal horn that is induced by peripheral nerve injury and drives both the sensory and affective components of chronic neuropathic pain.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - Caitlin R Wessel
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Hossain MZ, Ando H, Unno S, Masuda Y, Kitagawa J. Activation of TRPV1 and TRPM8 Channels in the Larynx and Associated Laryngopharyngeal Regions Facilitates the Swallowing Reflex. Int J Mol Sci 2018; 19:E4113. [PMID: 30567389 PMCID: PMC6321618 DOI: 10.3390/ijms19124113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
The larynx and associated laryngopharyngeal regions are innervated by the superior laryngeal nerve (SLN) and are highly reflexogenic. Transient receptor potential (TRP) channels have recently been detected in SLN innervated regions; however, their involvement in the swallowing reflex has not been fully elucidated. Here, we explore the contribution of two TRP channels, TRPV1 and TRPM8, located in SLN-innervated regions to the swallowing reflex. Immunohistochemistry identified TRPV1 and TRPM8 on cell bodies of SLN afferents located in the nodose-petrosal-jugular ganglionic complex. The majority of TRPV1 and TRPM8 immunoreactivity was located on unmyelinated neurons. Topical application of different concentrations of TRPV1 and TRPM8 agonists modulated SLN activity. Application of the agonists evoked a significantly greater number of swallowing reflexes compared with the number evoked by distilled water. The interval between the reflexes evoked by the agonists was shorter than that produced by distilled water. Prior topical application of respective TRPV1 or TRPM8 antagonists significantly reduced the number of agonist-evoked reflexes. The findings suggest that the activation of TRPV1 and TRPM8 channels present in the swallowing-related regions can facilitate the evoking of swallowing reflex. Targeting the TRP channels could be a potential therapeutic strategy for the management of dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Yuji Masuda
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
11
|
Inyang KE, Szabo-Pardi T, Wentworth E, McDougal TA, Dussor G, Burton MD, Price TJ. The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacol Res 2018; 139:1-16. [PMID: 30391353 DOI: 10.1016/j.phrs.2018.10.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022]
Abstract
Metformin is a widely prescribed drug used in the treatment of type II diabetes. While the drug has many mechanisms of action, most of these converge on AMP activated protein kinase (AMPK), which metformin activates. AMPK is a multifunctional kinase that is a negative regulator of mechanistic target of rapamycin (mTOR) and mitogen activated protein kinase (MAPK) signaling. Activation of AMPK decreases the excitability of dorsal root ganglion neurons and AMPK activators are effective in reducing chronic pain in inflammatory, post-surgical and neuropathic rodent models. We have previously shown that metformin leads to an enduring resolution of neuropathic pain in the spared nerve injury (SNI) model in male mice and rats. The precise mechanism underlying this long-lasting effect is not known. We conducted experiments to investigate the effects of metformin on SNI-induced microglial activation, a process implicated in the maintenance of neuropathic pain that has recently been shown to be sexually dimorphic. We find that metformin is effective at inhibiting development of neuropathic pain when treatment is given around the time of injury and that metformin is likewise effective at reversing neuropathic mechanical hypersensitivity when treatment is initiation weeks after injury. This effect is linked to decreased Iba-1 staining in the dorsal horn, a marker of microglial activation. Importantly, these positive behavioral and microglia effects of metformin were only observed in male mice. We conclude that the neuropathic pain modifying effects of metformin are sex-specific supporting a differential role for microglial activation in male and female mice.
Collapse
Affiliation(s)
- Kufreobong E Inyang
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, United States
| | - Thomas Szabo-Pardi
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, United States
| | - Emma Wentworth
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, United States
| | - Timothy A McDougal
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, United States
| | - Michael D Burton
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, United States.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, United States.
| |
Collapse
|
12
|
Turner AL, Perry MS. Outside the box: Medications worth considering when traditional antiepileptic drugs have failed. Seizure 2017; 50:173-185. [PMID: 28704741 DOI: 10.1016/j.seizure.2017.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Review and discuss medications efficacious for seizure control, despite primary indications for other diseases, as treatment options in patients who have failed therapy with traditional antiepileptic drugs (AEDs). METHODS Literature searches were conducted utilizing PubMed and MEDLINE databases employing combinations of search terms including, but not limited to, "epilepsy", "refractory", "seizure", and the following medications: acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants. RESULTS Data from relevant case studies, retrospective reviews, and available clinical trials were gathered, analyzed, and reported. Experience with acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants show promise for cases of refractory epilepsy in both adults and children. Many medications lack large scale, randomized clinical trials, but the available data is informative when choosing treatment for patients that have failed traditional epilepsy therapies. CONCLUSIONS All neurologists have encountered a patient that failed nearly every AED, diet, and surgical option. For these patients, we often seek fortuitous discoveries within small series and case reports, hoping to find a treatment that might help the patient. In the present review, we describe medications for which antiepileptic effect has been ascribed after they were introduced for other indications.
Collapse
Affiliation(s)
- Adrian L Turner
- Department of Pharmacy, Cook Children's Medical Center, 1500 Cooper Street, 4th Floor, Fort Worth, TX, 76104, USA
| | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, TX, USA.
| |
Collapse
|
13
|
Yousuf MS, Zubkow K, Tenorio G, Kerr B. The chloride co-transporters, NKCC1 and KCC2, in experimental autoimmune encephalomyelitis (EAE). Neuroscience 2017; 344:178-186. [PMID: 28057537 DOI: 10.1016/j.neuroscience.2016.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Patients with multiple sclerosis (MS) often complain of neuropathic pain. According to the Gate Control Theory of Pain, spinal networks of GABAergic inhibitory interneurons are important in modulating nociceptive inputs from the periphery. Na+-K+-2Cl- co-transporter 1 (NKCC1) and K+-Cl- co-transporter 2 (KCC2) generally dictate the tone of GABA/glycine inhibition by regulating intracellular chloride concentrations. In this study, we investigated the role of NKCC1 and KCC2 in neuropathic pain observed in the animal model, experimental autoimmune encephalomyelitis (EAE), a commonly used model to study the pathophysiology of MS. Quantitative real-time polymerase chain reactions (qRT-PCR) analysis revealed no change in NKCC1 mRNA transcripts in dorsal root ganglia throughout EAE disease course. However, NKCC1 and KCC2 mRNA levels in the dorsal spinal cord were significantly reduced at disease onset and peak only to recover by the chronic time point. Similarly, Western blot data revealed a significant downregulation of NKCC1 and KCC2 in the dorsal spinal cord at disease onset but an upregulation of NKCC1 protein in the dorsal root ganglia at this time point. Treatment with bumetanide, an NKCC inhibitor, had no effect on mechanical hypersensitivity seen in mice with EAE even though it reversed the changes in the levels of NKCC1 and KCC2. We noted that bumetanide treatment, while effective at reversing the changes in monomeric KCC2 levels was ineffective at reversing the changes in oligomeric KCC2 which remained repressed. These results indicate that mechanical hypersensitivity in EAE is not mediated by altered levels of NKCC1.
Collapse
MESH Headings
- Animals
- Bumetanide/pharmacology
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Gene Expression/drug effects
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Neuralgia/pathology
- Peptide Fragments
- RNA, Messenger/metabolism
- Sodium Potassium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 2/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Symporters/metabolism
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kasia Zubkow
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Bradley Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
14
|
Kim MJ, Park YH, Yang KY, Ju JS, Bae YC, Han SK, Ahn DK. Participation of central GABA A receptors in the trigeminal processing of mechanical allodynia in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:65-74. [PMID: 28066142 PMCID: PMC5214912 DOI: 10.4196/kjpp.2017.21.1.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/28/2023]
Abstract
Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta (IL-1β) (1 ng/10 µL) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A (GABAA) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the IL-1β-induced mechanical allodynia. In the control group, application of GABA (100 µM) or muscimol (3 µM) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the IL-1β-treated rats. These results suggest that some large myelinated Aβ fibers gain access to the nociceptive system and elicit pain sensation via GABAA receptors under inflammatory pain conditions.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Young Hong Park
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Kui Ye Yang
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin Sook Ju
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Yong Chul Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| | - Dong Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
15
|
Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 2016; 156:2479-2491. [PMID: 26262826 DOI: 10.1097/j.pain.0000000000000318] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.
Collapse
|
16
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
17
|
Yousuf MS, Kerr BJ. The Role of Regulatory Transporters in Neuropathic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:245-71. [PMID: 26920015 DOI: 10.1016/bs.apha.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neuropathic pain arises from an injury or disease of the somatosensory nervous system rather than stimulation of pain receptors. As a result, the fine balance between excitation and inhibition is perturbed leading to hyperalgesia and allodynia. Various neuropathic pain models provide considerable evidence that changes in the glutamatergic, GABAergic, and monoaminergic systems. Neurotransmitter reuptake transporter proteins have the potential to change the temporal and spatial profile of various neurotransmitters throughout the nervous system. This, in turn, can affect the downstream effects of these neurotransmitters and hence modulate pain. This chapter explores various reuptake transporter systems and implicates their role in pain processing. Understanding the transporter systems will enhance drug discovery targeting different facets of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
19
|
Tang D, Qian AH, Song DD, Ben QW, Yao WY, Sun J, Li WG, Xu TL, Yuan YZ. Role of the potassium chloride cotransporter isoform 2-mediated spinal chloride homeostasis in a rat model of visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2015; 308:G767-78. [PMID: 25792562 DOI: 10.1152/ajpgi.00313.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/06/2015] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity represents an important hallmark in the pathophysiology of irritable bowel syndrome (IBS), of which the mechanisms remain elusive. The present study was designed to examine whether cation-chloride cotransporter (CCC)-mediated chloride (Cl(-)) homeostasis of the spinal cord is involved in chronic stress-induced visceral hypersensitivity. Chronic visceral hypersensitivity was induced by exposing male Wistar rats to water avoidance stress (WAS). RT-PCR, Western blotting, and immunohistochemistry were used to assess the expression of CCCs in the spinal cord. Patch-clamp recordings were performed on adult spinal cord slices to evaluate Cl(-) homeostasis and Cl(-) extrusion capacity of lamina I neurons. Visceral sensitivity was estimated by measuring the abdominal withdrawal reflex in response to colorectal distension (CRD). After 10 days of WAS exposure, levels of both total protein and the oligomeric form of the K(+)-Cl(-) cotransporter isoform 2 (KCC2), but not Na(+)-K(+)-2Cl(-) transporter isoform 1 (NKCC1), were significantly decreased in the dorsal horn of the lumbosacral spinal cord. The downregulation of KCC2 resulted in a depolarizing shifted equilibrium potential of GABAergic inhibitory postsynaptic current and impaired Cl(-) extrusion capacity in lamina I neurons of the lumbosacral spinal cord from WAS rats. Acute noxious CRD disrupted spinal KCC2 expression and function 2 h after the final distention in sham rats, but not in WAS rats. Pharmacological blockade of KCC2 activity by intrathecal injection of a KCC2 inhibitor [(dihydroindenyl)oxy] alkanoic acid enhanced visceral nociceptive sensitivity in sham rats, but not in WAS rats. These results suggest that KCC2 downregulation-mediated impairment of spinal cord Cl(-) homeostasis may play an important role in chronic stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Ai-Hua Qian
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Dan-Dan Song
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Qi-Wen Ben
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Wei-Yan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Wei-Guang Li
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Zong Yuan
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| |
Collapse
|
20
|
Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci 2014; 19:125-32. [PMID: 25205985 PMCID: PMC4117080 DOI: 10.5214/ans.0972.7531.190309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain (NP) is a significant and disabling clinical problem with very few therapeutic treatment options available. A major priority is to identify the molecular mechanisms responsible for NP. Although many seemingly relevant pathways have been identified, more research is needed before effective clinical interventions can be produced. Initial insults to the nervous system, such as spinal cord injury (SCI), are often compounded by secondary mechanisms such as inflammation, the immune response, and the changing expression of receptors and ion channels. The consequences of these secondary effects myriad and compound those elicited by the primary injury. Chronic NP syndromes following SCI can greatly complicate the clinical treatment of the primary injury and result in high comorbidity. In this review, we will describe physiological outcomes associated with SCI along with some of the mechanisms known to contribute to chronic NP development.
Collapse
|
21
|
Emerging role of WNK1 in pathologic central nervous system signaling. Ann Neurosci 2014; 18:70-5. [PMID: 25205925 PMCID: PMC4117038 DOI: 10.5214/ans.0972.7531.1118212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 03/30/2011] [Accepted: 04/21/2011] [Indexed: 01/28/2023] Open
Abstract
WNK1 (with no lysine (K)) is a widely expressed serine/threonine protein kinase. The role of this kinase was first described in the kidney where it dynamically controls ion channels that regulate changes in cell volume. WNK1, through intermediates oxidative stress-responsive kinase-1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK), phosphorylates the inwardly directed Na+-K+-Cl---cotransporter 1 (NKCC1) and the outwardly directed K+-Cl--cotransporter 2 (KCC2), activating and deactivating these channels, respectively. WNK1, NKCC1 and KCC2 are also expressed in the central nervous system (CNS). Growing evidence implicates WNK1 playing a critical role in pathologic nervous system signaling where changes in intracellular ion concentration in response to γ-aminobutyric-acid (GABA) can activate otherwise silent pathways. This review will focus on current research about WNK1, its downstream effectors and role in GABA signaling. Future perspectives include investigating WNK1 expression in the CNS after spinal cord injury (SCI), where altered neuronal signaling could underlie pathological states such as neuropathic pain (NP).
Collapse
|
22
|
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15:637-54. [PMID: 25234263 DOI: 10.1038/nrn3819] [Citation(s) in RCA: 529] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.
Collapse
Affiliation(s)
- Kai Kaila
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Theodore J Price
- University of Texas at Dallas, School of Behavior and Brain Sciences, Dallas, Texas 75093, USA
| | - John A Payne
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Martin Puskarjov
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
23
|
Abstract
Vertebrates can sense and avoid noxious heat that evokes pain. Many thermoTRP channels are associated with temperature sensation. TRPV1 is a representative ion channel that is activated by noxious heat. Anoctamin 1 (ANO1) is a Cl- channel activated by calcium that is highly expressed in small sensory neurons, colocalized with markers for nociceptors, and most surprisingly, activated by noxious heat over 44oC. Although ANO1 is a Cl- channel, opening of this channel leads to depolarization of sensory neurons, suggesting a role in nociception. Indeed, the functional deletion of ANO1 in sensory neurons triggers the reduction in thermal pain sensation. Thus, it seems clear that ANO1 is a heat sensor in a nociceptive pathway. Since ANO1 modulators are developed for the purpose of treating chronic diseases such as cystic fibrosis, this finding is likely to predict unwanted effects and provide a guide for better developmental strategy
Collapse
Affiliation(s)
- Hawon Cho
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University
| | - Uhtaek Oh
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University, ; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
24
|
Zhu Y, Zhang XL, Gold MS. Activity-dependent hyperpolarization of EGABA is absent in cutaneous DRG neurons from inflamed rats. Neuroscience 2013; 256:1-9. [PMID: 24135545 DOI: 10.1016/j.neuroscience.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
A shift in GABA(A) signaling from inhibition to excitation in primary afferent neurons appears to contribute to the inflammation-induced increase in afferent input to the CNS. An activity-dependent depolarization of the GABA(A) current equilibrium potential (E(GABA)) has been described in CNS neurons which drives a shift in GABA(A) signaling from inhibition to excitation. The purpose of the present study was to determine if such an activity-dependent depolarization of E(GABA) occurs in primary afferents and whether the depolarization is amplified with persistent inflammation. Acutely dissociated retrogradely labeled cutaneous dorsal root ganglion (DRG) neurons from naïve and inflamed rats were studied with gramicidin perforated patch recording. Rather than a depolarization, 200 action potentials delivered at 2 Hz resulted in a ∼10 mV hyperpolarization of E(GABA) in cutaneous neurons from naïve rats. No such hyperpolarization was observed in neurons from inflamed rats. The shift in E(GABA) was not blocked by 10 μM bumetanide. Furthermore, because activity-dependent hyperpolarization of E(GABA) was fully manifest in the absence of HCO₃⁻ in the bath solution, this shift was not dependent on a change in HCO₃⁻-Cl⁻ exchanger activity, despite evidence of HCO₃⁻-Cl⁻ exchangers in DRG neurons that may contribute to the establishment of E(GABA) in the presence of HCO₃⁻. While the mechanism underlying the activity-dependent hyperpolarization of E(GABA) has yet to be identified, because this mechanism appears to function as a form of feedback inhibition, facilitating GABA-mediated inhibition of afferent activity, it may serve as a novel target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Y Zhu
- Department of Neural and Pain Sciences, University of Maryland, Baltimore School of Dentistry, Baltimore, MD, USA; Department of Anesthesiology, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - X-L Zhang
- Department of Anesthesiology, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M S Gold
- Department of Anesthesiology, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
De Petrocellis L, Schiano Moriello A, Imperatore R, Cristino L, Starowicz K, Di Marzo V. A re-evaluation of 9-HODE activity at TRPV1 channels in comparison with anandamide: enantioselectivity and effects at other TRP channels and in sensory neurons. Br J Pharmacol 2013; 167:1643-51. [PMID: 22861649 DOI: 10.1111/j.1476-5381.2012.02122.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/24/2012] [Accepted: 07/29/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Two oxidation products of linoleic acid, 9- and 13-hydroxy-octadecadienoic acids (HODEs), have recently been suggested to act as endovanilloids, that is, endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) channels, thereby contributing to inflammatory hyperalgesia in rats. However, HODE activity at rat TRPV1 in comparison with the best established endovanilloid, anandamide, and its enantioselectivity and selectivity towards other TRP channels that are also abundant in sensory neurons have never been investigated. EXPERIMENTAL APPROACH We studied the effect of 9(R)-HODE, 9(S)-HODE, (+/-)13-HODE, 15(S)-hydroxyanandamide and anandamide on [Ca(2+) ](i) in HEK-293 cells stably expressing the rat or human recombinant TRPV1, or rat recombinant TRPV2, TRPA1 or TRPM8, and also the effect of 9(S)-HODE in rat dorsal root ganglion (DRG) neurons by calcium imaging. KEY RESULTS Anandamide and 15(S)-hydroxyanandamide were the most potent endovanilloids at human TRPV1, whereas 9(S)-HODE was approximately threefold less efficacious and 75- and 3-fold less potent, respectively, and did not perform much better at rat TRPV1. The 9(R)-HODE and (+/-)13-HODE were almost inactive at TRPV1. Unlike anandamide and 15(S)-hydroxyanandamide, all HODEs were very weak at desensitizing TRPV1 to the action of capsaicin, but activated rat TRPV2 [only (+/-)13-HODE] and rat TRPA1, and antagonized rat TRPM8, at concentrations higher than those required to activate TRPV1. Finally, 9(S)-HODE elevated [Ca(2+) ](i) in DRG neurons almost exclusively in capsaicin-sensitive cells but only at concentrations between 25 and 100 μM. CONCLUSIONS AND IMPLICATIONS The present data suggest that HODEs are less important endovanilloids than anandamide. LINKED ARTICLES This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.
Collapse
|
26
|
Pitcher MH, Nieto FR, Cervero F. Stimulation of Cutaneous Low Threshold Mechanoreceptors in Mice After Intracolonic Capsaicin Increases Spinal c-Fos Labeling in an NKCC1-Dependent Fashion. THE JOURNAL OF PAIN 2013. [DOI: 10.1016/j.jpain.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Increased function of the TRPV1 channel in small sensory neurons after local inflammation or in vitro exposure to the pro-inflammatory cytokine GRO/KC. Neurosci Bull 2012; 28:155-64. [PMID: 22466126 DOI: 10.1007/s12264-012-1208-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Inflammation at the level of the sensory dorsal root ganglia (DRGs) leads to robust mechanical pain behavior and the local inflammation has direct excitatory effects on sensory neurons including small, primarily nociceptive, neurons. These neurons express the transient receptor potential vanilloid-1 (TRPV1) channel, which integrates multiple signals of pain and inflammation. The aim of this study was to characterize the regulation of the TRPV1 channel by local DRG inflammation and by growth-related oncogene (GRO/KC, systemic name: CXCL1), a cytokine known to be upregulated in inflamed DRGs. METHODS Activation of the TRPV1 receptor with capsaicin was studied with patch clamp methods in acutely isolated small-diameter rat sensory neurons in primary culture. In vivo, behavioral effects of TRPV1 and GRO/KC were examined by paw injections. RESULTS Neurons isolated from lumbar DRGs 3 days after local inflammation showed enhanced TRPV1 function: tachyphylaxis (the decline in response to repeated applications of capsaicin) was significantly reduced. A similar effect on tachyphylaxis was observed in neurons pre-treated for 4 h in vitro with GRO/KC. This effect was blocked by H-89, a protein kinase A inhibitor. Consistent with the in vitro results, in vivo behavioral responses to paw injection of capsaicin were enhanced and prolonged by pre-injecting the paw with GRO/KC 4 h before the capsaicin injection. GRO/KC paw injections alone did not elicit pain behaviors. CONCLUSION Function of the TRPV1 channel is enhanced by DRG inflammation and these effects are preserved in vitro during short-term culture. The effects (decreased tachyphylaxis) are mimicked by incubation with GRO/KC, which has previously been found to be strongly upregulated in this and other pain models.
Collapse
|
28
|
Zhu Y, Lu S, Gold MS. Persistent inflammation increases GABA-induced depolarization of rat cutaneous dorsal root ganglion neurons in vitro. Neuroscience 2012; 220:330-40. [PMID: 22728089 PMCID: PMC3412885 DOI: 10.1016/j.neuroscience.2012.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022]
Abstract
Persistent inflammation is associated with a shift in spinal GABA(A) signaling from inhibition to excitation such that GABA(A)-receptor activation contributes to inflammatory hyperalgesia. We tested the hypothesis that the primary afferent is the site of the persistent inflammation-induced shift in GABA(A) signaling which is due to a Na(+)-K(+)-Cl(-)-co-transporter (NKCC1)-dependent depolarization of the GABA(A) current equilibrium potential (E(GABA)). Acutely dissociated retrogradely labeled cutaneous dorsal root ganglion (DRG) neurons from naïve and inflamed (3 days after a subcutaneous injection of complete Freund's adjuvant) adult male rats were studied with Ca(2+) imaging, western blot and gramicidin-perforated patch recording. GABA evoked a Ca(2+) transient in a subpopulation of small- to medium-diameter capsaicin-sensitive cutaneous neurons. Inflammation was associated with a significant increase in the magnitude of GABA-induced depolarization as well as the percentage of neurons in which GABA evoked a Ca(2+) transient. There was no detectable change in NKCC1 protein or phosphoprotein at the whole ganglia level. Furthermore, the increase in excitatory response was comparable in both HEPES- and HCO(3)(-)-buffered solutions, but was only associated with a depolarization of E(GABA) in HCO(3)(-)-based solution. In contrast, under both recording conditions, the excitatory response was associated with an increase in GABA(A) current density, a decrease in low threshold K(+) current density, and resting membrane potential depolarization. Our results suggest that increasing K(+) conductance in afferents innervating a site of persistent inflammation may have greater efficacy in the inhibition of inflammatory hyperalgesia than attempting to drive a hyperpolarizing shift in E(GABA).
Collapse
Affiliation(s)
- Yi Zhu
- Dept of Neural and Pain Sciences, University of Maryland, Baltimore School of Dentistry, Baltimore, Maryland
- Dept of Anesthesiology, University of Pittsburgh, Pittsburgh, USA
| | - Shaogang Lu
- Dept of Medicine (Division of Gastroenterology Hepatology and Nutrition), University of Pittsburgh, Pittsburgh, USA
| | - Michael S. Gold
- Dept of Anesthesiology, University of Pittsburgh, Pittsburgh, USA
- Dept of Neurobiology, University of Pittsburgh, Pittsburgh, USA
- Dept of Medicine (Division of Gastroenterology Hepatology and Nutrition), University of Pittsburgh, Pittsburgh, USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
29
|
Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. Brain Res Bull 2012; 88:581-8. [DOI: 10.1016/j.brainresbull.2012.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
|
30
|
Hakimizadeh E, Oryan S, Hajizadeh moghaddam A, Shamsizadeh A, Roohbakhsh A. Endocannabinoid System and TRPV1 Receptors in the Dorsal Hippocampus of the Rats Modulate Anxiety-like Behaviors. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2012; 15:795-802. [PMID: 23493622 PMCID: PMC3586900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/06/2012] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Fatty acid is amide hydrolase which reduce endogenous anandamide. Transient receptor potential vanilloid-1 (TRPV1) channels have been reported to have a role in the modulation of anxiety-like behaviors in rodents. In the present study, the effects of either endocannabinoid system or TRPV1 channels and their possible interaction on anxiety-like behaviors of the rats were explored. MATERIALS AND METHODS Elevated plus-maze test of anxiety was used to induce anxiety. Capsaicin and AMG 9810 as TRPV1 agonist and antagonist respectively were injected into the dorsal hippocampus. URB 597 as selective FAAH inhibitor and AM 251 as CB1 receptor selective antagonist were also injected into the dorsal hippocampus. The effect of AMG 9810 on the response of URB 597 was also examined. RESULTS Intra-CA1 injection of URB 597 (0.001, 0.01 and 0.1 µg/rat) and AMG 9810 (0.003, 0.03 and 0.3 µg/rat) produced anxiolytic-like effects. Intra-CA1 infusion of capsaicin (0.003, 0.03 and 0.3 µg/rat) increased the anxiety-related behaviors and AM 251 (0.001, 0.01 and 0.1 µg/rat) did not significantly change the animals behavior. AMG 9810 at the dose of 0.003 µg/rat did not change the anxiolytic-like effect of URB 597. CONCLUSION The results of the present study demonstrated that both endocannabinoid system and TRPV1 receptors may affect anxiety-like behaviors. In addition, it seems that TRPV1 receptors are not involved in the effects of anandamide on anxiety-related behaviors in the CA1 region.
Collapse
Affiliation(s)
- Elham Hakimizadeh
- Physiology-Pharmacology Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran ,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ali Shamsizadeh
- Physiology-Pharmacology Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- Physiology-Pharmacology Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran ,Corresponding author: Tel: +98-391-8226927; Fax: +98-391-8220072;
| |
Collapse
|
31
|
Deleterious impact of a γ-aminobutyric acid type A receptor preferring general anesthetic when used in the presence of persistent inflammation. Anesthesiology 2011; 115:782-90. [PMID: 21841466 DOI: 10.1097/aln.0b013e318215e1cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Experimental data suggest general anesthetics preferring γ-aminobutyric acid receptor type A may increase postoperative pain in patients with persistent inflammation. The current study was designed to begin to test this hypothesis. METHODS Groups of rats were defined by the presence of inflammation, surgical intervention, and/or the type of general anesthetic used for a 3-h period of anesthesia. Persistent inflammation was induced with complete Freund adjuvant. The surgical intervention was a plantar incision. Three mechanistically distinct general anesthetics were used: pentobarbital, ketamine/xylazine, and isoflurane. Ongoing pain and hypersensitivity were assessed with guarding behavior analysis and the von Frey test, respectively. RESULTS There was no influence of general anesthetic type on the magnitude or time course of recovery from postoperative hypersensitivity in the absence of persistent inflammation. However, in the presence of persistent inflammation, recovery from hypersensitivity was significantly slower in the pentobarbital group than in the ketamine/xylazine or isoflurane groups. The pentobarbital effect was significant within 3 days of surgery and persisted through the remainder of the testing period. A comparable delay in recovery was observed in pentobarbital-anesthetized inflamed rats not subjected to hind paw incision. The time to 50% recovery in the pentobarbital-treated inflamed groups was almost double that in the other groups. No differences were observed between ketamine/xylazine and isoflurane. Pentobarbital exposure did not increase guarding scores. CONCLUSIONS These results suggest that general anesthetics preferring γ-aminobutyric acid receptor type A may have deleterious consequences when used in the presence of persistent inflammation.
Collapse
|
32
|
Farkas I, Tuboly G, Benedek G, Horvath G. The antinociceptive potency of N-arachidonoyl-dopamine (NADA) and its interaction with endomorphin-1 at the spinal level. Pharmacol Biochem Behav 2011; 99:731-7. [DOI: 10.1016/j.pbb.2011.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 04/27/2011] [Accepted: 05/15/2011] [Indexed: 11/27/2022]
|
33
|
He Y, Ji W, Huang H. Effect of the Cation-Chloride Cotransporter Inhibitor Furosemide in a Rat Model of Postoperative Pain. PAIN MEDICINE 2011; 12:1427-34. [DOI: 10.1111/j.1526-4637.2011.01193.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Synaptic conversion of chloride-dependent synapses in spinal nociceptive circuits: roles in neuropathic pain. PAIN RESEARCH AND TREATMENT 2011; 2011:738645. [PMID: 22110931 PMCID: PMC3195780 DOI: 10.1155/2011/738645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 03/21/2011] [Indexed: 11/17/2022]
Abstract
Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.
Collapse
|
35
|
Klinger M, Sacks S, Cervero F. A role for extracellular signal-regulated kinases 1 and 2 in the maintenance of persistent mechanical hyperalgesia in ovariectomized mice. Neuroscience 2011; 172:483-93. [DOI: 10.1016/j.neuroscience.2010.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 12/13/2022]
|
36
|
Wei H, Hao B, Huang JL, Ma AN, Li XY, Wang YX, Pertovaara A. Intrathecal administration of a gap junction decoupler, an inhibitor of Na+–K+–2Cl− cotransporter 1, or a GABAA receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Pharmacol Biochem Behav 2010; 97:377-83. [DOI: 10.1016/j.pbb.2010.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 01/28/2023]
|
37
|
Pitcher MH, Cervero F. Role of the NKCC1 co-transporter in sensitization of spinal nociceptive neurons. Pain 2010; 151:756-762. [PMID: 20932645 DOI: 10.1016/j.pain.2010.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/27/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
The Na(+), K(+), 2Cl(-) co-transporter type 1 (NKCC1) plays a pivotal role in hyperalgesia associated with inflammatory stimuli. NKCC1 contributes to maintain high [Cl(-)](i) in dorsal root ganglia (DRG) neurons which cause primary afferent depolarization (PAD) when GABA(A) receptors are activated. Enhanced GABA-induced depolarization, through increased NKCC1 activity, has been hypothesized to produce orthodromic spike activity of sufficient intensity to account for touch-induced pain. In the present study, we investigate this hypothesis using in vivo electrophysiology on rat dorsal horn neurons; the effects of spinal blockade of NKCC1 on intraplantar capsaicin-induced sensitization of dorsal horn neurons were examined. Single wide dynamic range (WDR) and nociceptive specific (NS) neuron activity in the dorsal horn was recorded using glass microelectrodes in anesthetized rats. Dorsal horn neurons with a receptive field on the plantar surface of the hindpaw were studied. Neuronal responses to mechanical stimuli (brush, von Frey filaments) were recorded ten minutes before intraplantar injection of 0.3 ml 0.1% capsaicin (CAP), 40 min after CAP and 15 min after local application of the NKCC1 blocker bumetanide (BTD; 500 μM) on the spinal cord. After CAP, low and high threshold stimulation of the cutaneous receptive field produced a significant enhancement in spike frequency over pre-CAP values in both WDR and NS neurons. Spinal BTD application reduced the spike frequency to baseline levels as well as attenuated the CAP-induced increases in background activity. Our data support the hypothesis that NKCC1 plays an important role in the sensitization of dorsal horn neurons following a peripheral inflammatory insult.
Collapse
Affiliation(s)
- Mark H Pitcher
- McGill University, Anesthesia Research Unit, Faculty of Medicine, 3655 Sir William Osler, McIntyre Medical Building 1207, Montreal, Quebec, Canada H3G 1Y6 McGill University, Faculty of Dentistry, Room M-51, Strathcona Anatomy & Dentistry Building, 3640 University Street Montreal, Quebec, Canada H3A 2B2 Alan Edwards Centre for Research on Pain, McGill University, Suite 3100, Genome Building740 Dr. Penfield Avenue Montreal, Quebec, Canada H3A 1A4
| | | |
Collapse
|
38
|
Tang J, Bouyer P, Mykoniatis A, Buschmann M, Matlin KS, Matthews JB. Activated PKC{delta} and PKC{epsilon} inhibit epithelial chloride secretion response to cAMP via inducing internalization of the Na+-K+-2Cl- cotransporter NKCC1. J Biol Chem 2010; 285:34072-85. [PMID: 20732874 DOI: 10.1074/jbc.m110.137380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is a key determinant of transepithelial chloride secretion and dysregulation of chloride secretion is a common feature of many diseases including secretory diarrhea. We have previously shown that activation of protein kinase C (PKC) markedly reduces transepithelial chloride secretion in human colonic T84 cells, which correlates with both functional inhibition and loss of the NKCC1 surface expression. In the present study, we defined the specific roles of PKC isoforms in regulating epithelial NKCC1 and chloride secretion utilizing adenoviral vectors that express shRNAs targeting human PKC isoforms (α, δ, ε) (shPKCs) or LacZ (shLacZ, non-targeting control). After 72 h of adenoviral transduction, protein levels of the PKC isoforms in shPKCs-T84 cells were decreased by ∼90% compared with the shLacZ-control. Activation of PKCs by phorbol 12-myristate 13-acetate (PMA) caused a redistribution of NKCC1 immunostaining from the basolateral membrane to intracellular vesicles in both shLacZ- and shPKCα-T84 cells, whereas the effect of PMA was not observed in shPKCδ- and shPKCε- cells. These results were further confirmed by basolateral surface biotinylation. Furthermore, activation of PKCs by PMA inhibited cAMP-stimulated chloride secretion in the uninfected, shLacZ- and shPKCα-T84 monolayers, but the inhibitory effect was significantly attenuated in shPKCδ- and shPKCε-T84 monolayers. In conclusion, the activated novel isoforms PKCδ or PKCε, but not the conventional isoform PKCα, inhibits transepithelial chloride secretion through inducing internalization of the basolateral surface NKCC1. Our study reveals that the novel PKC isoform-regulated NKCC1 surface expression plays an important role in the regulation of chloride secretion.
Collapse
Affiliation(s)
- Jun Tang
- Department of Surgery, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hasbargen T, Ahmed MM, Miranpuri G, Li L, Kahle KT, Resnick D, Sun D. Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury. Ann N Y Acad Sci 2010; 1198:168-72. [PMID: 20536931 DOI: 10.1111/j.1749-6632.2010.05462.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropathic pain is a common problem following spinal cord injury (SCI). Effective analgesic therapy has been hampered by the lack of knowledge about the mechanisms underlying post-SCI neuropathic pain. Current evidence suggests GABAergic spinal nociceptive processing is a critical functional node in this complex phenotype, representing a potential target for therapeutic intervention. Normal GABA neurotransmission is dependent on precise regulation of the level of intracellular chloride, which is determined by the coordinated activities of two cation/chloride cotransporters (CCCs) in the SLC12 family: the inwardly directed Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) and outwardly directed K(+)-Cl(-) cotransporter isoform 2 (KCC2). Inhibition of NKCC1 with its potent antagonist bumetanide reduces pain behavior in rats following SCI. Moreover, the injured spinal cord tissues exhibit a significant transient upregulation of NKCC1 protein and a concurrent downregulation of KCC2 protein. Thus, imbalanced function of NKCC1 and KCC2 may contribute to the induction and maintenance of the chronic neuropathic pain following SCI.
Collapse
Affiliation(s)
- Tera Hasbargen
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Delpire E, Austin TM. Kinase regulation of Na+-K+-2Cl- cotransport in primary afferent neurons. J Physiol 2010; 588:3365-73. [PMID: 20498230 DOI: 10.1113/jphysiol.2010.190769] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter NKCC1 is expressed in sensory neurons where it accumulates intracellular Cl(-) and facilitates primary afferent depolarization. Depolarization of primary afferent fibre terminals interferes with the gating of incoming sensory signals to the spinal cord. The cotransporter belongs to a family of ion transporters which are sensitive to changes in cell volume. Cell shrinkage, through mechanisms that are still unknown, leads to the phosphorylation and activation of NKCC1. Similarly, axotomy results in increased NKCC1 phosphorylation in dorsal root ganglion (DRG) neurons. This review summarizes the work on the kinases that directly mediate NKCC1 activation. These are the sterile-20-like kinases SPAK and OSR1. Upon their activation through phosphorylation by upstream kinases, SPAK and OSR1 bind to specific peptides located in the cytosolic N-terminal tail of NKCC1, phosphorylate, and stimulate cotransport activity. Expression of SPAK and OSR1 varies from tissue to tissue, but in DRG neurons and in spinal cord, SPAK and OSR1 expression levels are similar. In DRG neurons, both kinases participate in the modulation of NKCC1, as the knockdown of one kinase only results in a partial decrease of NKCC1 function, while the knockdown of both kinases is additive. The identity of the kinases (e.g. WNK kinases) that possibly act upstream of SPAK and OSR1 is also discussed.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
41
|
Geng Y, Byun N, Delpire E. Behavioral analysis of Ste20 kinase SPAK knockout mice. Behav Brain Res 2009; 208:377-82. [PMID: 20006650 DOI: 10.1016/j.bbr.2009.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 11/17/2022]
Abstract
SPAK/STK39 is a mammalian protein kinase involved in the regulation of inorganic ion transport mechanisms known to modulate GABAergic neurotransmission in the both central and the peripheral nervous systems. We have previously shown that disruption of the gene encoding SPAK by homologous recombination in mouse embryonic stem cells results in viable mice that lack expression of the kinase. With the exception of reduced fertility, these mice do not exhibit an overt adverse phenotype. In the present study, we examine the neurological phenotype of these mice by subjecting them to an array of behavioral tests. We show that SPAK knockout mice displayed a higher nociceptive threshold than their wild-type counterparts on the hot plate and tail flick assays. SPAK knockout mice also exhibited a strong locomotor phenotype evidenced by significant deficits on the rotarod and decreased activity in open-field tests. In contrast, balance and proprioception was not affected. Finally, they demonstrated an increased anxiety-like phenotype, spending significantly longer periods of time in the dark area of the light/dark box and increased thigmotaxis in the open-field chamber. These results suggest that the kinase plays an important role in CNS function, consistent with SPAK regulating ion transport mechanisms directly involved in inhibitory neurotransmission.
Collapse
Affiliation(s)
- Yang Geng
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232-2520, USA
| | | | | |
Collapse
|
42
|
Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci U S A 2009; 106:18820-4. [PMID: 19843694 DOI: 10.1073/pnas.0905415106] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) plays a major role in hyperalgesia and allodynia and is expressed both in the peripheral and central nervous systems (CNS). However, few studies have evaluated mechanisms by which CNS TRPV1 mediates hyperalgesia and allodynia after injury. We hypothesized that activation of spinal cord systems releases endogenous TRPV1 agonists that evoke the development of mechanical allodynia by this receptor. Using in vitro superfusion, the depolarization of spinal cord triggered the release of oxidized linoleic acid metabolites, such as 9-hydroxyoctadecadienoic acid (9-HODE) that potently activated spinal TRPV1, leading to the development of mechanical allodynia. Subsequent calcium imaging and electrophysiology studies demonstrated that synthetic oxidized linoleic acid metabolites, including 9-HODE, 13-HODE, and 9 and 13-oxoODE, comprise a family of endogenous TRPV1 agonists. In vivo studies demonstrated that intrathecal application of these oxidized linoleic acid metabolites rapidly evokes mechanical allodynia. Finally, intrathecal neutralization of 9- and 13-HODE by antibodies blocks CFA-evoked mechanical allodynia. These data collectively reveal a mechanism by which an endogenous family of lipids activates TRPV1 in the spinal cord, leading to the development of inflammatory hyperalgesia. These findings may integrate many pain disorders and provide an approach for developing analgesic drugs.
Collapse
|
43
|
Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA. Chloride regulation in the pain pathway. BRAIN RESEARCH REVIEWS 2009; 60:149-70. [PMID: 19167425 PMCID: PMC2903433 DOI: 10.1016/j.brainresrev.2008.12.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/18/2022]
Abstract
Melzack and Wall's Gate Control Theory of Pain laid the theoretical groundwork for a role of spinal inhibition in endogenous pain control. While the Gate Control Theory was based on the notion that spinal inhibition is dynamically regulated, mechanisms underlying the regulation of inhibition have turned out to be far more complex than Melzack and Wall could have ever imagined. Recent evidence indicates that an exquisitely sensitive form of regulation involves changes in anion equilibrium potential (E(anion)), which subsequently impacts fast synaptic inhibition mediated by GABA(A), and to a lesser extent, glycine receptor activation, the prototypic ligand gated anion channels. The cation-chloride co-transporters (in particular NKCC1 and KCC2) have emerged as proteins that play a critical role in the dynamic regulation of E(anion) which in turn appears to play a critical role in hyperalgesia and allodynia following peripheral inflammation or nerve injury. This review summarizes the current state of knowledge in this area with particular attention to how such findings relate to endogenous mechanisms of hyperalgesia and allodynia and potential applications for therapeutics based on modulation of intracellular Cl(-) gradients or pharmacological interventions targeting GABA(A) receptors.
Collapse
Affiliation(s)
| | - Fernando Cervero
- McGill University, Department of Anesthesia, McGill Centre for Research on Pain,
| | | | - Donna L Hammond
- University of Iowa, Department of Anesthesia, Department of Pharmacology,
| | | |
Collapse
|
44
|
Lam DK, Sessle BJ, Hu JW. Glutamate and capsaicin effects on trigeminal nociception II: Activation and central sensitization in brainstem neurons with deep craniofacial afferent input. Brain Res 2009; 1253:48-59. [DOI: 10.1016/j.brainres.2008.11.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
|
45
|
Zhou HY, Chen SR, Chen H, Pan HL. The glutamatergic nature of TRPV1-expressing neurons in the spinal dorsal horn. J Neurochem 2008; 108:305-18. [PMID: 19012737 DOI: 10.1111/j.1471-4159.2008.05772.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
46
|
Cramer SW, Baggott C, Cain J, Tilghman J, Allcock B, Miranpuri G, Rajpal S, Sun D, Resnick D. The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury. Mol Pain 2008; 4:36. [PMID: 18799000 PMCID: PMC2561007 DOI: 10.1186/1744-8069-4-36] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/17/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Altered Cl- homeostasis and GABAergic function are associated with nociceptive input hypersensitivity. This study investigated the role of two major intracellular Cl- regulatory proteins, Na+-K+-Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2), in neuropathic pain following spinal cord injury (SCI). RESULTS Sprague-Dawley rats underwent a contusive SCI at T9 using the MASCIS impactor. The rats developed hyperalgesia between days 21 and 42 post-SCI. Thermal hyperalgesia (TH) was determined by a decrease in hindpaw thermal withdrawal latency time (WLT) between days 21 and 42 post-SCI. Rats with TH were then treated with either vehicle (saline containing 0.25% NaOH) or NKCC1 inhibitor bumetanide (BU, 30 mg/kg, i.p.) in vehicle. TH was then re-measured at 1 h post-injection. Administration of BU significantly increased the mean WLT in rats (p < 0.05). The group administered with the vehicle alone showed no anti-hyperalgesic effects. Moreover, an increase in NKCC1 protein expression occurred in the lesion epicenter of the spinal cord during day 2-14 post-SCI and peaked on day 14 post-SCI (p < 0.05). Concurrently, a down-regulation of KCC2 protein was detected during day 2-14 post-SCI. The rats with TH exhibited a sustained loss of KCC2 protein during post-SCI days 21-42. No significant changes of these proteins were detected in the rostral region of the spinal cord. CONCLUSION Taken together, expression of NKCC1 and KCC2 proteins was differentially altered following SCI. The anti-hyperalgesic effect of NKCC1 inhibition suggests that normal or elevated NKCC1 function and loss of KCC2 function play a role in the development and maintenance of SCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Christopher Baggott
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - John Cain
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Jessica Tilghman
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bradley Allcock
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Gurwattan Miranpuri
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Sharad Rajpal
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Dandan Sun
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Daniel Resnick
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
47
|
Brown BS, Keddy R, Zheng GZ, Schmidt RG, Koenig JR, McDonald HA, Bianchi BR, Honore P, Jarvis MF, Surowy CS, Polakowski JS, Marsh KC, Faltynek CR, Lee CH. Tetrahydropyridine-4-carboxamides as novel, potent transient receptor potential vanilloid 1 (TRPV1) antagonists. Bioorg Med Chem 2008; 16:8516-25. [DOI: 10.1016/j.bmc.2008.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
48
|
Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain 2008; 4:32. [PMID: 18700020 PMCID: PMC2526990 DOI: 10.1186/1744-8069-4-32] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/12/2008] [Indexed: 01/10/2023] Open
Abstract
Background Chloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl- accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl- currents. The intracellular Cl- concentration can, however, vary considerably between individual DRG neurons. This raises the question, whether the contribution of Cl- currents to signal generation differs between individual afferent neurons, and whether the specific Cl- levels in these neurons are subject to modulation. Based on the hypothesis that modulation of the peripheral Cl- homeostasis is involved in the generation of inflammatory hyperalgesia, we examined the effects of inflammatory mediators on intracellular Cl- concentrations and on the expression levels of Cl- transporters in rat DRG neurons. Results We developed an in vitro assay for testing how inflammatory mediators influence Cl- concentration and the expression of Cl- transporters. Intact DRGs were treated with 100 ng/ml NGF, 1.8 μM ATP, 0.9 μM bradykinin, and 1.4 μM PGE2 for 1–3 hours. Two-photon fluorescence lifetime imaging with the Cl--sensitive dye MQAE revealed an increase of the intracellular Cl- concentration within 2 hours of treatment. This effect coincided with enhanced phosphorylation of the Na+-K+-2Cl- cotransporter NKCC1, suggesting that an increased activity of that transporter caused the early rise of intracellular Cl- levels. Immunohistochemistry of NKCC1 and KCC2, the main neuronal Cl- importer and exporter, respectively, exposed an inverse regulation by the inflammatory mediators. While the NKCC1 immunosignal increased, that of KCC2 declined after 3 hours of treatment. In contrast, the mRNA levels of the two transporters did not change markedly during this time. These data demonstrate a fundamental transition in Cl- homeostasis toward a state of augmented Cl- accumulation, which is induced by a 1–3 hour treatment with inflammatory mediators. Conclusion Our findings indicate that inflammatory mediators impact on Cl- homeostasis in DRG neurons. Inflammatory mediators raise intracellular Cl- levels and, hence, the driving force for depolarizing Cl- efflux. These findings corroborate current concepts for the role of Cl- regulation in the generation of inflammatory hyperalgesia and allodynia. As the intracellular Cl- concentration rises in DRG neurons, afferent signals can be boosted by excitatory Cl- currents in the presynaptic terminals. Moreover, excitatory Cl- currents in peripheral sensory endings may also contribute to the generation or modulation of afferent signals, especially in inflamed tissue.
Collapse
|
49
|
Keller AF, Beggs S, Salter MW, De Koninck Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 2007; 3:27. [PMID: 17900333 PMCID: PMC2093929 DOI: 10.1186/1744-8069-3-27] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 09/27/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Disinhibition of neurons in the superficial spinal dorsal horn, via microglia - neuron signaling leading to disruption of chloride homeostasis, is a potential cellular substrate for neuropathic pain. But, a central unresolved question is whether this disinhibition can transform the activity and responses of spinal nociceptive output neurons to account for the symptoms of neuropathic pain. RESULTS Here we show that peripheral nerve injury, local spinal administration of ATP-stimulated microglia or pharmacological disruption of chloride transport change the phenotype of spinal lamina I output neurons, causing them to 1) increase the gain of nociceptive responsiveness, 2) relay innocuous mechanical input and 3) generate spontaneous bursts of activity. The changes in the electrophysiological phenotype of lamina I neurons may account for three principal components of neuropathic pain: hyperalgesia, mechanical allodynia and spontaneous pain, respectively. CONCLUSION The transformation of discharge activity and sensory specificity provides an aberrant signal in a primarily nociceptive ascending pathway that may serve as a basis for the symptoms of neuropathic pain.
Collapse
Affiliation(s)
- A Florence Keller
- Unité de Neurobiologie Cellulaire, Centre de Recherche Université Laval Robert-Giffard, Québec, QC G1J 2G3, Canada
| | - Simon Beggs
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael W Salter
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Yves De Koninck
- Unité de Neurobiologie Cellulaire, Centre de Recherche Université Laval Robert-Giffard, Québec, QC G1J 2G3, Canada
| |
Collapse
|