1
|
An Y, Cao S, Shi L, Zhang Y, Wang X, Yuan S, Shi Y, Wang B, Liu J, Han CJ. Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway. Brain Res Bull 2025; 221:111226. [PMID: 39870326 DOI: 10.1016/j.brainresbull.2025.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP. However, it is not known whether Sig-1R can ameliorate pathological neuroinflammation in DNP. The present study used a rat model of DNP and a highly selective agonist of Sig-1R to assess the effects of the protein on neuropathic pain in rats with type 2 diabetes mellitus. The rats were divided into Control, Model, Sig-1R agonist PRE-084 (0.3, 0.6, 1 mg/kg), and metformin (Met, 20 mg/kg) groups, with seven rats per group, and their body weight, fasting blood glucose, mechanical withdrawal threshold and thermal withdrawal latency were tested weekly for two weeks. After treatment with PRE-084, the pain thresholds in the DNP rats were significantly improved, together with pathological changes in the dorsal root ganglion, reductions in the serum levels of TNF-α, IL-1β, IL-6, MOD, and prostaglandin E2 (PGE2), and the activity of superoxide dismutase was increased. The mRNA levels of TNF-α, IL-1β, and cyclooxygenase 2 (COX-2) were reduced. Pharmacological inhibition of Sig-1R with BD1047 (10 μM) abolished Sig-1R-mediated activation of lipopolysaccharide-treated BV-2 microglial cells. It was also found that PRE-084 increased phosphorylation of serine/threonine protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β) at Ser9, inhibiting nuclear factor kappa B (NF-κB)-mediated neuroinflammation in the dorsal root ganglion, thus reducing DNP. The findings suggest that the effect of Sig-1R agonist PRE-084 on DNP may reduce the level of inflammation through the up-regulation of AKT/GSK-3β and down-regulation of the NF-κB signaling, thereby contributing to the treatment of the disease.
Collapse
Affiliation(s)
- Yuyu An
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shanshan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Leilei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yuhan Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shiyu Yuan
- Department of Pharmacy, The Second affiliated hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Chao-Jun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
2
|
Song Y, Xu Z, Zhang L, Gao L. Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons. Biomolecules 2025; 15:73. [PMID: 39858467 PMCID: PMC11764217 DOI: 10.3390/biom15010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025] Open
Abstract
The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model. Our results revealed several key findings: (1) The expression of Sig-1R was found to be upregulated during the progression of inflammatory pain, with a notable translocation from the cytoplasm to the membrane; (2) Inhibition of peripheral Sig-1R using S1RA resulted in a reduction of CFA-induced allodynia; (3) Activation of Sig-1R through PRE-084 led to a decrease in the fast sodium current in isolated DRG neurons from CFA-treated rats, which was associated with a diminished action potential (AP) peak and maximum depolarizing rate (MDR), as well as an increased rheobase; (4) Furthermore, PRE-084 was observed to enhance the slow component of the sodium current, resulting in hyperpolarization of the threshold potential and an increase in AP firing frequency, alongside an elevation in the mRNA expression of the slow sodium channel Nav1.9 in CFA-treated rats. In conclusion, our findings suggest that the modulation of sodium channels by Sig-1R in DRG neurons plays a significant role in the mechanisms underlying inflammatory pain.
Collapse
Affiliation(s)
- Yuanlong Song
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China; (Y.S.); (Z.X.); (L.Z.)
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China
| | - Zifen Xu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China; (Y.S.); (Z.X.); (L.Z.)
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Liangpin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China; (Y.S.); (Z.X.); (L.Z.)
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China
| | - Linlin Gao
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China; (Y.S.); (Z.X.); (L.Z.)
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China
| |
Collapse
|
3
|
Schonfeld E, Johnstone TM, Haider G, Shah A, Marianayagam NJ, Biswal S, Veeravagu A. Sigma-1 receptor expression in a subpopulation of lumbar spinal cord microglia in response to peripheral nerve injury. Sci Rep 2023; 13:14762. [PMID: 37679500 PMCID: PMC10484902 DOI: 10.1038/s41598-023-42063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Sigma-1 Receptor has been shown to localize to sites of peripheral nerve injury and back pain. Radioligand probes have been developed to localize Sigma-1 Receptor and thus image pain source. However, in non-pain conditions, Sigma-1 Receptor expression has also been demonstrated in the central nervous system and dorsal root ganglion. This work aimed to study Sigma-1 Receptor expression in a microglial cell population in the lumbar spine following peripheral nerve injury. A publicly available transcriptomic dataset of 102,691 L4/5 mouse microglial cells from a sciatic-sural nerve spared nerve injury model and 93,027 age and sex matched cells from a sham model was used. At each of three time points-postoperative day 3, postoperative day 14, and postoperative month 5-gene expression data was recorded for both spared nerve injury and Sham cell groups. For all cells, 27,998 genes were sequenced. All cells were clustered into 12 distinct subclusters and gene set enrichment pathway analysis was performed. For both the spared nerve injury and Sham groups, Sigma-1 Receptor expression significantly decreased at each time point following surgery. At the 5-month postoperative time point, only one of twelve subclusters showed significantly increased Sigma-1 Receptor expression in spared nerve injury cells as compared to Sham cells (p = 0.0064). Pathway analysis of this cluster showed a significantly increased expression of the inflammatory response pathway in the spared nerve injury cells relative to Sham cells at the 5-month time point (p = 6.74e-05). A distinct subcluster of L4/5 microglia was identified which overexpress Sigma-1 Receptor following peripheral nerve injury consistent with neuropathic pain inflammatory response functioning. This indicates that upregulated Sigma-1 Receptor in the central nervous system characterizes post-acute peripheral nerve injury and may be further developed for clinical use in the differentiation between low back pain secondary to peripheral nerve injury and low back pain not associated with peripheral nerve injury in cases where the pain cannot be localized.
Collapse
Affiliation(s)
- Ethan Schonfeld
- Neurosurgery Artificial Intelligence Lab, Stanford University School of Medicine, Stanford, CA, USA.
| | - Thomas Michael Johnstone
- Neurosurgery Artificial Intelligence Lab, Stanford University School of Medicine, Stanford, CA, USA
| | - Ghani Haider
- Neurosurgery Artificial Intelligence Lab, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaryan Shah
- Neurosurgery Artificial Intelligence Lab, Stanford University School of Medicine, Stanford, CA, USA
| | - Neelan Joseph Marianayagam
- Neurosurgery Artificial Intelligence Lab, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandip Biswal
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anand Veeravagu
- Neurosurgery Artificial Intelligence Lab, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Li Z, Wu TT, Xiong YT, Zhang XY, Bao YP, Guo LB, Han BJ, Li SX, Wang YF, Lu L, Wang XQ. A pilot study on improvements in attention function in major depressive disorder after 12 weeks of escitalopram monotherapy or combined treatment with agomelatine. Front Psychiatry 2023; 14:1188175. [PMID: 37426111 PMCID: PMC10325661 DOI: 10.3389/fpsyt.2023.1188175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 07/11/2023] Open
Abstract
Objective This study aimed to explore both impairments in attention function in patients with major depressive disorder (MDD) and the efficacy of escitalopram monotherapy or combination therapy with agomelatine. Methods A total of 54 patients with MDD and 46 healthy controls (HCs) were included. Patients were treated with escitalopram for 12 weeks; those who presented with severe sleep impairments were also given agomelatine. Participants were evaluated using the Attention Network Test (ANT), which included tests of alerting, orienting, and executive control networks. Concentration, instantaneous memory, and resistance to information interference were tested using the digit span test, and the logical memory test (LMT) was used to evaluate abstract logical thinking. The Hamilton Depression Rating Scale-17 items, Hamilton Anxiety Rating Scale, and Pittsburgh Sleep Quality Index were used to assess depression, anxiety, and sleep quality, respectively. Patients with MDD were assessed at the end of weeks 0, 4, 8, and 12. HCs were assessed once at baseline. Results Compared with HCs, patients with MDD showed significantly different alerting, orienting, and executive control functions of attention networks. Treatment with escitalopram alone or combined with agomelatine significantly improved LMT scores at the end of weeks 4, 8, and 12 and restored scores to the level of HCs at the end of week 8. Total Toronto Hospital Test of Alertness scores in patients with MDD increased significantly after 4 weeks of treatment. The ANT executive control reaction time in patients with MDD decreased significantly after 4 weeks of treatment, with this decrease lasting until the end of week 12, but scores did not return to the levels of HCs. Combined treatment with escitalopram and agomelatine led to more improvement in ANT orienting reaction time and was accompanied by a greater reduction of total scores on the Hamilton Depression Rating Scale-17 items and Hamilton Anxiety Rating Scale compared with escitalopram monotherapy. Conclusions Patients with MDD showed overall impairments in three domains of attention networks as well as the LMT and a test of subjective alertness. Escitalopram monotherapy significantly improved the LMT scores and the executive control function scores in the ANT at the end of the fourth week of treatment, and the improvement was more extensive with combined escitalopram and agomelatine treatment.
Collapse
Affiliation(s)
- Zhe Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Ting-Ting Wu
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Yi-Ting Xiong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xin-Yang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Li-Bo Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Bao-Jie Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Yu-Feng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and Peking University-International Development Group, McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xue-Qin Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| |
Collapse
|
5
|
Xu Z, Lei Y, Qin H, Zhang S, Li P, Yao K. Sigma-1 Receptor in Retina: Neuroprotective Effects and Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23147572. [PMID: 35886921 PMCID: PMC9321618 DOI: 10.3390/ijms23147572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Retinal degenerative diseases are the major factors leading to severe visual impairment and even irreversible blindness worldwide. The therapeutic approach for retinal degenerative diseases is one extremely urgent and hot spot in science research. The sigma-1 receptor is a novel, multifunctional ligand-mediated molecular chaperone residing in endoplasmic reticulum (ER) membranes and the ER-associated mitochondrial membrane (ER-MAM); it is widely distributed in numerous organs and tissues of various species, providing protective effects on a variety of degenerative diseases. Over three decades, considerable research has manifested the neuroprotective function of sigma-1 receptor in the retina and has attempted to explore the molecular mechanism of action. In the present review, we will discuss neuroprotective effects of the sigma-1 receptor in retinal degenerative diseases, mainly in aspects of the following: the localization in different types of retinal neurons, the interactions of sigma-1 receptors with other molecules, the correlated signaling pathways, the influence of sigma-1 receptors to cellular functions, and the potential therapeutic effects on retinal degenerative diseases.
Collapse
|
6
|
Shin SM, Wang F, Qiu C, Itson-Zoske B, Hogan QH, Yu H. Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain. Gene Ther 2022; 29:1-15. [PMID: 32424233 PMCID: PMC7671947 DOI: 10.1038/s41434-020-0157-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
The Sigma-1 receptor (σ1R) is highly expressed in the primary sensory neurons (PSNs) that are the critical site of initiation and maintenance of pain following peripheral nerve injury. By immunoblot and immunohistochemistry, we observed increased expression of both σ1R and σ1R-binding immunoglobulin protein (BiP) in the lumbar (L) dorsal root ganglia (DRG) ipsilateral to painful neuropathy induced by spared nerve injury (SNI). To evaluate the therapeutic potential of PSN-targeted σ1R inhibition at a selected segmental level, we designed a recombinant adeno-associated viral (AAV) vector expressing a small hairpin RNA (shRNA) against rat σ1R. Injection of this vector into the L4/L5 DRGs induced downregulation of σ1R in DRG neurons of all size groups, while expression of BiP was not affected. This was accompanied by attenuation of SNI-induced cutaneous mechanical and thermal hypersensitivity. Whole-cell current-clamp recordings of dissociated neurons showed that knockdown of σ1R suppressed neuronal excitability, suggesting that σ1R silencing attenuates pain by reversal of injury-induced neuronal hyperexcitability. These findings support a critical role of σ1R in modulating PSN nociceptive functions, and that the nerve injury-induced elevated σ1R activity in the PSNs can be a significant driver of neuropathic pain. Further understanding the role of PSN-σ1R in pain pathology may open routes to exploit this system for DRG-targeted pain therapy.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, PR China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
7
|
Hornung RS, Raut NGR, Cantu DJ, Lockhart LM, Averitt DL. Sigma-1 receptors and progesterone metabolizing enzymes in nociceptive sensory neurons of the female rat trigeminal ganglia: A neural substrate for the antinociceptive actions of progesterone. Mol Pain 2022; 18:17448069211069255. [PMID: 35040378 PMCID: PMC8777333 DOI: 10.1177/17448069211069255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.
Collapse
Affiliation(s)
| | | | - Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Lauren M Lockhart
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| |
Collapse
|
8
|
Molecular Changes in the Dorsal Root Ganglion during the Late Phase of Peripheral Nerve Injury-induced Pain in Rodents: A Systematic Review. Anesthesiology 2021; 136:362-388. [PMID: 34965284 DOI: 10.1097/aln.0000000000004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
Collapse
|
9
|
Wang SM, Goguadze N, Kimura Y, Yasui Y, Pan B, Wang TY, Nakamura Y, Lin YT, Hogan QH, Wilson KL, Su TP, Wu HE. Genomic Action of Sigma-1 Receptor Chaperone Relates to Neuropathic Pain. Mol Neurobiol 2021; 58:2523-2541. [PMID: 33459966 PMCID: PMC8128747 DOI: 10.1007/s12035-020-02276-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER) chaperones implicated in neuropathic pain. Here we examine if the Sig-1R may relate to neuropathic pain at the level of dorsal root ganglia (DRG). We focus on the neuronal excitability of DRG in a "spare nerve injury" (SNI) model of neuropathic pain in rats and find that Sig-1Rs likely contribute to the genesis of DRG neuronal excitability by decreasing the protein level of voltage-gated Cav2.2 as a translational inhibitor of mRNA. Specifically, during SNI, Sig-1Rs translocate from ER to the nuclear envelope via a trafficking protein Sec61β. At the nucleus, the Sig-1R interacts with cFos and binds to the promoter of 4E-BP1, leading to an upregulation of 4E-BP1 that binds and prevents eIF4E from initiating the mRNA translation for Cav2.2. Interestingly, in Sig-1R knockout HEK cells, Cav2.2 is upregulated. In accordance with those findings, we find that intra-DRG injection of Sig-1R agonist (+)pentazocine increases frequency of action potentials via regulation of voltage-gated Ca2+ channels. Conversely, intra-DRG injection of Sig-1R antagonist BD1047 attenuates neuropathic pain. Hence, we discover that the Sig-1R chaperone causes neuropathic pain indirectly as a translational inhibitor.
Collapse
MESH Headings
- Animals
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Endoplasmic Reticulum/metabolism
- Eukaryotic Initiation Factor-4E/metabolism
- Ganglia, Spinal/metabolism
- Gene Expression Regulation
- Genome
- HEK293 Cells
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Nerve Tissue/injuries
- Nerve Tissue/pathology
- Neuralgia/genetics
- Nuclear Envelope/metabolism
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Caps/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, sigma/agonists
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- SEC Translocation Channels/metabolism
- Transcription, Genetic
- Sigma-1 Receptor
- Rats
Collapse
Affiliation(s)
- Shao-Ming Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Nino Goguadze
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Yuriko Kimura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tzu-Yun Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Pharmacology, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yu-Ting Lin
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
10
|
Peng Y, Zhang Q, Welsh WJ. Novel Sigma 1 Receptor Antagonists as Potential Therapeutics for Pain Management. J Med Chem 2021; 64:890-904. [PMID: 33372782 DOI: 10.1021/acs.jmedchem.0c01964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sigma 1 receptor (S1R) is a molecular chaperone protein located in the endoplasmic reticulum and plasma membranes and has been shown to play important roles in various pathological disorders including pain and, as recently discovered, COVID-19. Employing structure- and QSAR-based drug design strategies, we rationally designed, synthesized, and biologically evaluated a series of novel triazole-based S1R antagonists. Compound 10 exhibited potent binding affinity for S1R, high selectivity over S2R and 87 other human targets, acceptable in vitro metabolic stability, slow clearance in liver microsomes, and excellent blood-brain barrier permeability in rats. Further in vivo studies in rats showed that 10 exhibited negligible acute toxicity in the rotarod test and statistically significant analgesic effects in the formalin test for acute inflammatory pain and paclitaxel-induced neuropathic pain models during cancer chemotherapy. These encouraging results promote further development of our triazole-based S1R antagonists as novel treatments for pain of different etiologies.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, United States
| | - Qiang Zhang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 661 Hoes Lane West, Piscataway, New Jersey 08854, United States
| | - William J Welsh
- Biomedical Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, United States
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 661 Hoes Lane West, Piscataway, New Jersey 08854, United States
| |
Collapse
|
11
|
Perić V, Golubović M, Lazarević M, Marjanović V, Kostić T, Đorđević M, Milić D, Veselinović AM. Development of potential therapeutics for pain treatment by inducing Sigma 1 receptor antagonism – in silico approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj00883h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QSAR modeling with computer-aided drug design were used for the in silico development of novel therapeutics for pain treatment.
Collapse
Affiliation(s)
- Velimir Perić
- Department for Cardiac Surgery
- Clinic for Anaesthesiology and Intensive Therapy
- Clinical Center Niš
- Niš
- Serbia
| | - Mladjan Golubović
- Department for Cardiac Surgery
- Clinic for Anaesthesiology and Intensive Therapy
- Clinical Center Niš
- Niš
- Serbia
| | - Milan Lazarević
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Vesna Marjanović
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Tomislav Kostić
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Miodrag Đorđević
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Dragan Milić
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | | |
Collapse
|
12
|
Szczepańska K, Kuder KJ, Kieć-Kononowicz K. Dual-targeting Approach on Histamine H 3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders. Curr Med Chem 2021; 28:2974-2995. [PMID: 32767910 DOI: 10.2174/0929867327666200806103144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
13
|
Ruiz-Cantero MC, González-Cano R, Tejada MÁ, Santos-Caballero M, Perazzoli G, Nieto FR, Cobos EJ. Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol Res 2021; 163:105339. [PMID: 33276102 DOI: 10.1016/j.phrs.2020.105339] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Miriam Santos-Caballero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Department of Nursing, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Francisco R Nieto
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
14
|
Intagliata S, Sharma A, King TI, Mesangeau C, Seminerio M, Chin FT, Wilson LL, Matsumoto RR, McLaughlin JP, Avery BA, McCurdy CR. Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In Vivo. AAPS JOURNAL 2020; 22:94. [PMID: 32691179 DOI: 10.1208/s12248-020-00472-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
Abstract
The sigma-2 receptor has been cloned and identified as Tmem97, which is a transmembrane protein involved in intracellular Ca2+ regulation and cholesterol homeostasis. Since its discovery, the sigma-2 receptor has been an extremely controversial target, and many efforts have been made to elucidate the functional role of this receptor during physiological and pathological conditions. Recently, this receptor has been proposed as a potential target to treat neuropathic pain due to the ability of sigma-2 receptor agonists to relieve mechanical hyperalgesia in mice model of chronic pain. In the present work, we developed a highly selective sigma-2 receptor ligand (sigma-1/sigma-2 selectivity ratio > 1000), 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H- benzo[d]imidazol-2(3H)-one (CM398), with an encouraging in vitro and in vivo pharmacological profile in rodents. In particular, radioligand binding studies demonstrated that CM398 had preferential affinity for sigma-2 receptor compared with sigma-1 receptor and at least four other neurotransmitter receptors sites, including the norepinephrine transporter. Following oral administration, CM398 showed rapid absorption and peak plasma concentration (Cmax) occurred within 10 min of dosing. Moreover, the compound showed adequate, absolute oral bioavailability of 29.0%. Finally, CM398 showed promising anti-inflammatory analgesic effects in the formalin model of inflammatory pain in mice. The results collected in this study provide more evidence that selective sigma-2 receptor ligands can be useful tools in the development of novel pain therapeutics and altogether, these data suggest that CM398 is a suitable lead candidate for further evaluation.
Collapse
Affiliation(s)
- Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Christophe Mesangeau
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael Seminerio
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Lisa L Wilson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Rae R Matsumoto
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA.,Dean's Office, Touro University California College of Pharmacy, Vallejo, CA, 94592, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Bonnie A Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA. .,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
15
|
Intagliata S, Agha H, Kopajtic TA, Katz JL, Kamble SH, Sharma A, Avery BA, McCurdy CR. Exploring 1-adamantanamine as an alternative amine moiety for metabolically labile azepane ring in newly synthesized benzo[ d]thiazol-2(3 H)one σ receptor ligands. Med Chem Res 2020; 29:1697-1706. [PMID: 33584084 DOI: 10.1007/s00044-020-02597-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work we report the structure-activity relationships, binding properties, and metabolic stability studies of a series of benzo[d]thiazol-2(3H)one as sigma receptors (σRs) ligands. Specifically, to improve the metabolic stability of the cyclic amine fragment of our lead compound (SN56), the metabolically unstable azepane ring was replaced with a 1-adatamantamine moiety. Within the synthesized analogs, compound 12 had low nanomolar affinity for the σ1R (K i = 7.2 nM) and moderate preference (61-fold) over the σ2R. In vitro metabolic stability studies showed a slight improvement of the metabolic stability for 7-12, even though an extensive metabolism in rat liver microsomes is being observed. Furthermore, metabolic soft spot identification of 12 suggested that the N-methyl group of the adamantyl moiety is a major site of metabolism.
Collapse
Affiliation(s)
- Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.,Department of BioMolecular Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | - Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Theresa A Kopajtic
- Psychobiology Section, Intramural Research Program, Department of Health and Human Services, NIDA, NIH, Baltimore, MD 21224, USA
| | - Jonathan L Katz
- Psychobiology Section, Intramural Research Program, Department of Health and Human Services, NIDA, NIH, Baltimore, MD 21224, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Bonnie A Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.,Department of BioMolecular Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
16
|
Steroids and TRP Channels: A Close Relationship. Int J Mol Sci 2020; 21:ijms21113819. [PMID: 32471309 PMCID: PMC7325571 DOI: 10.3390/ijms21113819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.
Collapse
|
17
|
Carcolé M, Kummer S, Gonçalves L, Zamanillo D, Merlos M, Dickenson AH, Fernández‐Pastor B, Cabañero D, Maldonado R. Sigma-1 receptor modulates neuroinflammation associated with mechanical hypersensitivity and opioid tolerance in a mouse model of osteoarthritis pain. Br J Pharmacol 2019; 176:3939-3955. [PMID: 31332781 PMCID: PMC6811737 DOI: 10.1111/bph.14794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritic pain is a chronic disabling condition lacking effective treatment. Continuous use of opioid drugs during osteoarthritic pain induces tolerance and may result in dose escalation and abuse. Sigma-1 (σ1) receptors, a chaperone expressed in key areas for pain control, modulates μ-opioid receptor activity and represents a promising target to tackle these problems. The present study investigates the efficacy of the σ1 receptor antagonist E-52862 to inhibit pain sensitization, morphine tolerance, and associated electrophysiological and molecular changes in a murine model of osteoarthritic pain. EXPERIMENTAL APPROACH Mice received an intra-knee injection of monoiodoacetate followed by 14-day treatment with E-52862, morphine, or vehicle, and mechanical sensitivity was assessed before and after the daily doses. KEY RESULTS Monoiodoacetate-injected mice developed persistent mechanical hypersensitivity, which was dose-dependently inhibited by E-52862. Mechanical thresholds assessed before the daily E-52862 dose showed gradual recovery, reaching complete restoration by the end of the treatment. When repeated treatment started 15 days after knee injury, E-52862 produced enhanced short-term analgesia, but recovery to baseline threshold was slower. Both a σ1 receptor agonist and a μ receptor antagonist blocked the analgesic effects of E-52862. An acute, sub-effective dose of E-52862 restored morphine analgesia in opioid-tolerant mice. Moreover, E-52862 abolished spinal sensitization in osteoarthritic mice and inhibited pain-related molecular changes. CONCLUSION AND IMPLICATIONS These findings show dual effects of σ1 receptor antagonism alleviating both short- and long-lasting antinociception during chronic osteoarthritis pain. They identify E-52862 as a promising pharmacological agent to treat chronic pain and avoid opioid tolerance.
Collapse
Affiliation(s)
- Mireia Carcolé
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Sami Kummer
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Leonor Gonçalves
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, Laboratories EsteveBarcelona Science ParkBarcelonaSpain
| | - Manuel Merlos
- Drug Discovery and Preclinical Development, Laboratories EsteveBarcelona Science ParkBarcelonaSpain
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Begoña Fernández‐Pastor
- Drug Discovery and Preclinical Development, Laboratories EsteveBarcelona Science ParkBarcelonaSpain
| | - David Cabañero
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Rafael Maldonado
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| |
Collapse
|
18
|
Jerčić L, Kostić S, Vitlov Uljević M, Vukušić Pušić T, Vukojević K, Filipović N. Sigma-1 Receptor Expression in DRG Neurons During a Carrageenan-Provoked Inflammation. Anat Rec (Hoboken) 2019; 302:1620-1627. [PMID: 30614637 DOI: 10.1002/ar.24061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/28/2018] [Accepted: 09/25/2018] [Indexed: 01/21/2023]
Abstract
Sigma 1 receptor (σ1R) is a non-opioid receptor that modulates pain perception and is strongly expressed in dorsal root ganglion (DRG) neurons. We studied the changes in the expression of σ1R in different sub-populations of DRG neurons during the first 48 hr in a carrageenan-induced inflammation rat model, with σ1R being a possible base for the development of neuropathic pain after inflammation. Twenty Sprague Dawley rats were divided into five groups (N = 4 in each group): the control (C) group was sacrificed immediately; all other animals received an intraplantar injection of 0.1 mL 2% carrageenan and were sacrificed in 6, 12, 24 or 48 hr after the injection and DRGs were collected and processed for immunohistochemistry. σ1R fluorescence intensity decreased slightly but significantly in up to 24 hr post-carrageenan injection in all sub-populations of DRG neurons (ib4+; ib4- medium, ib4- large and ib4- in total; P < 0.05 - P < 0.001), with the exception of the ib4- small neurons (<25 μm; P > 0.05). This decrement was followed by a subsequent increase in σ1R fluorescence intensity 48 hr after the plantar carrageenan injection (P < 0.05 - P < 0.0001). The same trend was also observed in the CGRP+ population of the DRG neurons, in the total population as well as in the CGRP+ small (<25 μm) and larger CGRP (>25 μm) sub-populations (P < 0.05 - P < 0.001). The presented results may contribute to further understanding of role of σ1R in the development of peripheral sensitization during inflammation. They may also be valuable for the therapeutic application of σ1R antagonists, particularly in the adjustment of the antagonist's dosage in a particular time window. Anat Rec, 302:1620-1627, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Leo Jerčić
- Department of Anatomy, Histology and Embriology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
| | - Sandra Kostić
- Department of Anatomy, Histology and Embriology, Laboratory for Microscopy, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
| | - Marija Vitlov Uljević
- Department of Anatomy, Histology and Embriology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
| | | | - Katarina Vukojević
- Department of Anatomy, Histology and Embriology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
- Department of Anatomy, Histology and Embriology, Laboratory for Early Human Development, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embriology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
| |
Collapse
|
19
|
Carcolé M, Zamanillo D, Merlos M, Fernández-Pastor B, Cabañero D, Maldonado R. Blockade of the Sigma-1 Receptor Relieves Cognitive and Emotional Impairments Associated to Chronic Osteoarthritis Pain. Front Pharmacol 2019; 10:468. [PMID: 31130863 PMCID: PMC6510262 DOI: 10.3389/fphar.2019.00468] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disease worldwide, often characterized by degradation of the articular cartilage, chronic joint pain and disability. Cognitive dysfunction, anxiety and depression are common comorbidities that impact the quality of life of these patients. In this study, we evaluated the involvement of sigma-1 receptor (σ1R) on the nociceptive, cognitive and emotional alterations associated with chronic osteoarthritis pain. Monosodium iodoacetate (MIA) was injected into the knee of Swiss-albino CD1 mice to induce osteoarthritis pain, which then received a repeated treatment with the σ1R antagonist E-52862 or its vehicle. Nociceptive responses and motor performance were assessed with the von Frey and the Catwalk gait tests. Cognitive alterations were evaluated using the novel object recognition task, anxiety-like behavior with the elevated plus maze and the zero-maze tests, whereas depressive-like responses were determined using the forced swimming test. We also studied the local effect of the σ1R antagonist on cartilage degradation, and its central effects on microglial reactivity in the medial prefrontal cortex. MIA induced mechanical allodynia and gait abnormalities that were prevented by the chronic treatment with the σ1R antagonist. E-52862 also reduced the memory impairment and the depressive-like behavior associated to osteoarthritis pain. Interestingly, the effect of E-52862 on depressive-like behavior was not accompanied by a modification of anxiety-like behavior. The pain-relieving effects of the σ1R antagonist were not due to a local effect on the articular cartilage, since E-52862 treatment did not modify the histological alterations of the knee joints. However, E-52862 induced central effects revealed by a reduction of the cortical microgliosis observed in mice with osteoarthritis pain. These findings show that σ1R antagonism inhibits mechanical hypersensitivity, cognitive deficits and depressive-like states associated with osteoarthritis pain in mice. These effects are associated with central modulation of glial activity but are unrelated to changes in cartilage degradation. Therefore, targeting the σ1R with E-52862 represents a promising pharmacological approach with effects on multiple aspects of chronic osteoarthritis pain that may go beyond the strict inhibition of nociception.
Collapse
Affiliation(s)
- Mireia Carcolé
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, Laboratories Esteve, Barcelona Science Park, Barcelona, Spain
| | - Manuel Merlos
- Drug Discovery and Preclinical Development, Laboratories Esteve, Barcelona Science Park, Barcelona, Spain
| | - Begoña Fernández-Pastor
- Drug Discovery and Preclinical Development, Laboratories Esteve, Barcelona Science Park, Barcelona, Spain
| | - David Cabañero
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
20
|
Peng Y, Dong H, Welsh WJ. Comprehensive 3D-QSAR Model Predicts Binding Affinity of Structurally Diverse Sigma 1 Receptor Ligands. J Chem Inf Model 2019; 59:486-497. [PMID: 30497261 DOI: 10.1021/acs.jcim.8b00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Sigma 1 Receptor (S1R) has attracted intense interest as a pharmaceutical target for various therapeutic indications, including the treatment of neuropathic pain and the potentiation of opioid analgesia. Efforts by drug developers to rationally design S1R antagonists have been spurred recently by the 2016 publication of the high-resolution X-ray crystal structure of the ligand-bound human S1R. Until now, however, the absence in the published literature of a single, large-scale, and comprehensive quantitative structure-activity relationship (QSAR) model that encompasses a structurally diverse collection of S1R ligands has impaired rapid progress. To our best knowledge, the present study represents the first report of a statistically robust and highly predictive 3D-QSAR model (R2 = 0.92, Q2 = 0.62, Rpred2 = 0.81) based on the X-ray crystal structure of human S1R and constructed from a pooled compilation of 180 S1R antagonists that encompass five structurally diverse chemical families investigated using identical experimental protocols. Best practices, as recommended by the Organization for Economic Cooperation and Development (OECD: http://www.oecd.org/ ), were adopted for pooling data from disparate sources and for QSAR model development and both internal and external model validation. The practical utility of the final 3D-QSAR model was tested by virtual screening of the DrugBank database of FDA approved drugs supplemented by eight reported S1R antagonists. Among the top-ranked 40 DrugBank hits, four approved drugs which were previously unknown as S1R antagonists were tested using in vitro radiolabeled human S1R binding assays. Of these, two drugs (diphenhydramine and phenyltoloxamine) exhibited potent S1R binding affinity with Ki = 58 nM and 160 nM, respectively. As diphenhydramine is approved as an antiallergic, and phenyltoloxamine as an analgesic and sedative, each of these compounds represents a viable starting point for a drug discovery campaign aimed at the development of novel S1R antagonists for a wide range of therapeutic indications.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared Resources , Rutgers Cancer Institute of New Jersey , Rutgers, The State University of New Jersey , 195 Little Albany Street , New Brunswick , New Jersey 08903 , United States
| | - Hiep Dong
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - William J Welsh
- Biomedical Informatics Shared Resources , Rutgers Cancer Institute of New Jersey , Rutgers, The State University of New Jersey , 195 Little Albany Street , New Brunswick , New Jersey 08903 , United States
- Department of Pharmacology, Robert Wood Johnson Medical School , Rutgers, The State University of New Jersey , 661 Hoes Lane West , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
21
|
Khangura RK, Sharma J, Bali A, Singh N, Jaggi AS. An integrated review on new targets in the treatment of neuropathic pain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:1-20. [PMID: 30627005 PMCID: PMC6315088 DOI: 10.4196/kjpp.2019.23.1.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023]
Abstract
Neuropathic pain is a complex chronic pain state caused by the dysfunction of somatosensory nervous system, and it affects the millions of people worldwide. At present, there are very few medical treatments available for neuropathic pain management and the intolerable side effects of medications may further worsen the symptoms. Despite the presence of profound knowledge that delineates the pathophysiology and mechanisms leading to neuropathic pain, the unmet clinical needs demand more research in this field that would ultimately assist to ameliorate the pain conditions. Efforts are being made globally to explore and understand the basic molecular mechanisms responsible for somatosensory dysfunction in preclinical pain models. The present review highlights some of the novel molecular targets like D-amino acid oxidase, endoplasmic reticulum stress receptors, sigma receptors, hyperpolarization-activated cyclic nucleotide-gated cation channels, histone deacetylase, Wnt/β-catenin and Wnt/Ryk, ephrins and Eph receptor tyrosine kinase, Cdh-1 and mitochondrial ATPase that are implicated in the induction of neuropathic pain. Studies conducted on the different animal models and observed results have been summarized with an aim to facilitate the efforts made in the drug discovery. The diligent analysis and exploitation of these targets may help in the identification of some promising therapies that can better manage neuropathic pain and improve the health of patients.
Collapse
Affiliation(s)
- Ravneet Kaur Khangura
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Jasmine Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Anjana Bali
- Akal College of Pharmacy and Technical Education, Mastuana Sahib 148002, Sangrur, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
22
|
Yang J, Xie MX, Hu L, Wang XF, Mai JZ, Li YY, Wu N, Zhang C, Li J, Pang RP, Liu XG. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Brain Behav Immun 2018; 71:52-65. [PMID: 29709527 DOI: 10.1016/j.bbi.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 μM or ZC88, 10-1000 μM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 μM) and ZC88 (10 μM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1β) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1β induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1β and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1β over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.
Collapse
Affiliation(s)
- Jie Yang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Man-Xiu Xie
- Department of Anesthesiology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, East 651 Dongfeng Rd, Guangzhou 510060, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Fang Wang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Jie-Zhen Mai
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Cheng Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| |
Collapse
|
23
|
Salgado CG, Pinto P, Bouth RC, Gobbo AR, Messias ACC, Sandoval TV, Dos Santos AMR, Moreira FC, Vidal AF, Goulart LR, Barreto JG, da Silva MB, Frade MAC, Spencer JS, Santos S, Ribeiro-Dos-Santos Â. miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology. Front Immunol 2018; 9:463. [PMID: 29593724 PMCID: PMC5854644 DOI: 10.3389/fimmu.2018.00463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Leprosy remains as a public health problem and its physiopathology is still not fully understood. MicroRNAs (miRNA) are small RNA non-coding that can interfere with mRNA to regulate gene expression. A few studies using DNA chip microarrays have explored the expression of miRNA in leprosy patients using a predetermined set of genes as targets, providing interesting findings regarding the regulation of immune genes. However, using a predetermined set of genes restricted the possibility of finding new miRNAs that might be involved in different mechanisms of disease. Thus, we examined the miRNome of tuberculoid (TT) and lepromatous (LL) patients using both blood and lesional biopsies from classical leprosy patients (LP) who visited the Dr. Marcello Candia Reference Unit in Sanitary Dermatology in the State of Pará and compared them with healthy subjects. Using a set of tools to correlate significantly differentially expressed miRNAs with their gene targets, we identified possible interactions and networks of miRNAs that might be involved in leprosy immunophysiopathology. Using this approach, we showed that the leprosy miRNA profile in blood is distinct from that in lesional skin as well as that four main groups of genes are the targets of leprosy miRNA: (1) recognition and phagocytosis, with activation of immune effector cells, where the immunosuppressant profile of LL and immunoresponsive profile of TT are clearly affected by miRNA expression; (2) apoptosis, with supportive data for an antiapoptotic leprosy profile based on BCL2, MCL1, and CASP8 expression; (3) Schwann cells (SCs), demyelination and epithelial–mesenchymal transition (EMT), supporting a role for different developmental or differentiation gene families, such as Sox, Zeb, and Hox; and (4) loss of sensation and neuropathic pain, revealing that RHOA, ROCK1, SIGMAR1, and aquaporin-1 (AQP1) may be involved in the loss of sensation or leprosy pain, indicating possible new therapeutic targets. Additionally, AQP1 may also be involved in skin dryness and loss of elasticity, which are well known signs of leprosy but with unrecognized physiopathology. In sum, miRNA expression reveals new aspects of leprosy immunophysiopathology, especially on the regulation of the immune system, apoptosis, SC demyelination, EMT, and neuropathic pain.
Collapse
Affiliation(s)
- Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Pablo Pinto
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| | - Raquel Carvalho Bouth
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Angélica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Ana Caroline Cunha Messias
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | | | | | | | | | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Josafá Gonçalves Barreto
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil.,Laboratório de Epidemiologia Espacial (LabEE), Campus Castanhal, UFPA, Belém, Brazil
| | - Moisés Batista da Silva
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Marco Andrey Cipriani Frade
- Divisão de Dermatologia, Departamento de Clínica Médica da Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - John Stewart Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| |
Collapse
|
24
|
Castany S, Gris G, Vela JM, Verdú E, Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci Rep 2018; 8:3873. [PMID: 29497125 PMCID: PMC5832850 DOI: 10.1038/s41598-018-22217-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
Sigma-1 receptor (σ1R) knockout (KO) CD1 mice, generated by homologous recombination, and separate pharmacological studies in wild type (WT) mice were done to investigate the role of this receptor in the development of pain-related behaviours (thermal hyperalgesia and mechanical allodynia) in mice after spinal cord contusion injury (SCI) - a model of central neuropathic pain. The modulatory effect of σ1R KO on extracellular mediators and signalling pathways in the spinal cord was also investigated. In particular, changes in the expression of inflammatory cytokines (tumour necrosis factor TNF-α, interleukin IL-1β) and both the expression and activation (phosphorylation) of the N-methyl-D-aspartate receptor subunit 2B (NR2B-NMDA) and extracellular signal-regulated kinases (ERK1/2) were analysed. Compared with WT mice, both mechanical and thermal hypersensitivity were attenuated in σ1R KO mice following SCI. Accordingly, treatment of WT mice with the σ1R antagonist MR309 (previously developed as E-52862; S1RA) after SCI exerted antinociceptive effects (i.e. reduced mechanical allodynia and thermal hyperalgesia). Attenuated nociceptive responses in σ1R KO were accompanied by reduced expression of TNF- α and IL-1β as well as decreased activation/phosphorylation of NR2B-NMDA receptors and ERK1/2. These findings suggest that σ1R may modulate central neuropathic pain and point to regulation of sensitization-related phenomena as a possible mechanism.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Georgia Gris
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - José Miguel Vela
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain.
| |
Collapse
|
25
|
Arena E, Dichiara M, Floresta G, Parenti C, Marrazzo A, Pittalà V, Amata E, Prezzavento O. Novel Sigma-1 receptor antagonists: from opioids to small molecules: what is new? Future Med Chem 2018; 10:231-256. [PMID: 29185346 DOI: 10.4155/fmc-2017-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Sigma-1 (σ1) receptor has been identified as a chaperone protein that interacts with other proteins, such as N-methyl-D-aspartate (NMDA) and opioid receptors, modulating their activity. σ1 receptor antagonists have been developed to obtain useful compounds for the treatment of psychoses, pain, drug abuse and cancer. Some interesting compounds such as E-5842 (5) and MS-377 (24), haloperidol and piperazine derivatives, respectively, were endowed with high affinity for σ1 receptors (Ki σ1 = 4 and 73 nM; Ki σ2 = 220 and 6900, respectively). They were developed for the treatment of psychotic disorders and 5 also underwent Phase II clinical trials suggesting interesting potential therapeutic applications. Here, σ1 receptor antagonists have been grouped based on chemical structure and reviewed according to structure-activity relationship and potential therapeutic role.
Collapse
Affiliation(s)
- Emanuela Arena
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
26
|
Espinosa-Juárez JV, Jaramillo-Morales OA, López-Muñoz FJ. Haloperidol Decreases Hyperalgesia and Allodynia Induced by Chronic Constriction Injury. Basic Clin Pharmacol Toxicol 2017; 121:471-479. [PMID: 28654186 DOI: 10.1111/bcpt.12839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/21/2017] [Indexed: 01/12/2023]
Abstract
Neuropathic pain has proven to be a difficult condition to treat, so investigational therapy has been sought that may prove useful, such as the use of sigma-1 antagonists. Haloperidol (HAL) is a compound that shows a high affinity with these receptors, acting as an antagonist. Therefore, the objective of this study was to demonstrate its effect in an experimental model of neuropathic pain and corroborate its antagonistic action of the sigma-1 receptors under these conditions. BD-1063 was used as a sigma-1 antagonist control, and gabapentin (Gbp) was used as a positive control. The antihyperalgesic and anti-allodynic effects of the drugs were determined after single-dose trials. In every case, the effects increased in a dose-dependent manner. HAL had the same efficacy as both BD-1063 and Gbp. In the analysis of pharmacological potency, in which the ED50 were compared, HAL was the most potent drug of all. The effect of HAL on chronic constriction injury (CCI) rats was reversed by the sigma-1 agonist (PRE-084). HAL reversed the hyperalgesic and allodynic effects of PRE-084 in naïve rats. The dopamine antagonist, (-)-sulpiride, showed no effect in CCl rats. These results suggest that HAL presents an antinociceptive effect via sigma-1 receptor antagonism at the spinal level in the CCl model.
Collapse
|
27
|
Espinosa-Juárez JV, Jaramillo-Morales OA, Navarrete-Vázquez G, Melo-Hernández LA, Déciga-Campos M, López-Muñoz FJ. N-(2-morpholin-4-yl-ethyl)-2-(1naphthyloxy)acetamide inhibits the chronic constriction injury-generated hyperalgesia via the antagonism of sigma-1 receptors. Eur J Pharmacol 2017; 812:1-8. [PMID: 28648406 DOI: 10.1016/j.ejphar.2017.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022]
Abstract
The most used therapeutic treatment to relieve neuropathic pain is that of neuromodulators such as anti-epileptics or anti-depressants; however, there are alternatives that may be potentially useful. The sigma-1 receptor is a therapeutic target that has shown favorable results at preclinical levels. The aim of this study was to evaluate the anti-hyperalgesic effect of N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy) acetamide (NMIN) in a chronic constriction injury model (CCI) and compare it both a sigma-1 antagonist (BD-1063) and also Gabapentin, as well as determine its possible role as an antagonist of sigma-1 receptors. The anti-hyperalgesic effects of Gabapentin (10.0, 17.8, 31.6, 56.2 and 100mg/kg, s.c.), BD-1063 (5.6, 10.0, 17.8, 31.6 and 56.2mg/kg, s.c.) and NMIN (31.6, 10.0, 316mg/kg and 562mg/kg, s.c.) were determined after single-doses, using the von Frey test in the CCI model. NMIN had the same efficacy as BD-1063, but both show less efficacy than Gabapentin. In an analysis of pharmacological potency, the ED50 were compared with it being found that BD-1063 is the most potent drug, followed by Gabapentin and NMIN. The anti-hyperalgesic effect of NMIN on CCI rats was reversed by (+)-pentazocine (s.c. route) and by PRE-084 (i.t. route), both sigma-1 agonists. Furthermore, NMIN reversed the hyperalgesic effect of PRE-084 in naïve rats. These results suggest that NMIN has an anti-hyperalgesic effect on the CCI model, and that one of its mechanisms of action is as a sigma-1 antagonist, being a significant role the blocking of these receptors at the spinal level.
Collapse
Affiliation(s)
| | | | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | | | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, IPN, Ciudad de México, Mexico.
| | | |
Collapse
|
28
|
Shen B, Behera D, James ML, Reyes ST, Andrews L, Cipriano PW, Klukinov M, Lutz AB, Mavlyutov T, Rosenberg J, Ruoho AE, McCurdy CR, Gambhir SS, Yeomans DC, Biswal S, Chin FT. Visualizing Nerve Injury in a Neuropathic Pain Model with [ 18F]FTC-146 PET/MRI. Theranostics 2017; 7:2794-2805. [PMID: 28824716 PMCID: PMC5562216 DOI: 10.7150/thno.19378] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
The ability to locate nerve injury and ensuing neuroinflammation would have tremendous clinical value for improving both the diagnosis and subsequent management of patients suffering from pain, weakness, and other neurologic phenomena associated with peripheral nerve injury. Although several non-invasive techniques exist for assessing the clinical manifestations and morphological aspects of nerve injury, they often fail to provide accurate diagnoses due to limited specificity and/or sensitivity. Herein, we describe a new imaging strategy for visualizing a molecular biomarker of nerve injury/neuroinflammation, i.e., the sigma-1 receptor (S1R), in a rat model of nerve injury and neuropathic pain. The two-fold higher increase of S1Rs was shown in the injured compared to the uninjured nerve by Western blotting analyses. With our novel S1R-selective radioligand, [18F]FTC-146 (6-(3-[18F]fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one), and positron emission tomography-magnetic resonance imaging (PET/MRI), we could accurately locate the site of nerve injury created in the rat model. We verified the accuracy of this technique by ex vivo autoradiography and immunostaining, which demonstrated a strong correlation between accumulation of [18F]FTC-146 and S1R staining. Finally, pain relief could also be achieved by blocking S1Rs in the neuroma with local administration of non-radioactive [19F]FTC-146. In summary, [18F]FTC-146 S1R PET/MR imaging has the potential to impact how we diagnose, manage and treat patients with nerve injury, and thus warrants further investigation.
Collapse
Affiliation(s)
- Bin Shen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deepak Behera
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle L. James
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samantha T. Reyes
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren Andrews
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter W. Cipriano
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timur Mavlyutov
- Department of Neuroscience, University of Wisconsin, Madison, WI 53726, USA
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arnold E. Ruoho
- Department of Neuroscience, University of Wisconsin, Madison, WI 53726, USA
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Sanjiv S. Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Bioengineering and Materials Sciences & Engineering, Stanford University, Stanford, CA 94305, USA
| | - David C. Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandip Biswal
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frederick T. Chin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Ousman SS, Frederick A, Lim EMF. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury. Front Neurosci 2017; 11:79. [PMID: 28270745 PMCID: PMC5318438 DOI: 10.3389/fnins.2017.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.
Collapse
Affiliation(s)
- Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ariana Frederick
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Erin-Mai F Lim
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
30
|
Merlos M, Burgueño J, Portillo-Salido E, Plata-Salamán CR, Vela JM. Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:85-107. [PMID: 28315267 DOI: 10.1007/978-3-319-50174-1_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy with respect to existing therapies and reduce their unwanted effects. Current preclinical evidence supports the modulatory role of sigma-1 receptors (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pains of different etiologies. σ1R is highly expressed in different pain areas of the CNS and the periphery (particularly dorsal root ganglia), and interacts and modulates the functionality of different receptors and ion channels . The antagonism of σ1R leads to decreased amplification of pain signaling within the spinal cord (central sensitization), but recent data also support a role at the periphery. σ1R antagonists have consistently demonstrated efficacy in neuropathic pain , but also in other types of pain including inflammatory, orofacial, visceral, and post-operative pain. Apart from acting alone, when combined with opioids, σ1R antagonists enhance opioid analgesia but not opioid-induced unwanted effects. Interestingly, unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitive effects in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. Accordingly, σ1R antagonists are not strictly analgesics; they are antiallodynic and antihyperalgesic drugs acting when the system is sensitized following prolonged noxious stimulation or persistent abnormal afferent input (e.g., secondary to nerve injury). These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain .
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Javier Burgueño
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Enrique Portillo-Salido
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Carlos Ramón Plata-Salamán
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
31
|
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy respect to existing therapies and/or reduce their unwanted effects. Current preclinical evidence supports the modulatory role of the sigma-1 receptor (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pain of different etiology, very consistently in neuropathic pain, but also in nociceptive, inflammatory, and visceral pain. σ1R is highly expressed in different pain areas of the CNS and the periphery, particularly dorsal root ganglia (DRG), and interacts and modulates the functionality of different receptors and ion channels. Accordingly, antinociceptive effects of σ1R antagonists both acting alone and in combination with other analgesics have been reported at both central and peripheral sites. At the central level, behavioral, electrophysiological, neurochemical, and molecular findings support a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Moreover, the involvement of σ1R in mechanisms regulating pain at the periphery has been recently confirmed. Unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitivity effects (antihyperalgesic and antiallodynic) in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain.
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Luz Romero
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain.
- Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
32
|
Sánchez-Fernández C, Entrena JM, Baeyens JM, Cobos EJ. Sigma-1 Receptor Antagonists: A New Class of Neuromodulatory Analgesics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:109-132. [PMID: 28315268 DOI: 10.1007/978-3-319-50174-1_9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sigma-1 receptor is a unique ligand-operated chaperone present in key areas for pain control, in both the peripheral and central nervous system. Sigma-1 receptors interact with a variety of protein targets to modify their function. These targets include several G-protein-coupled receptors such as the μ-opioid receptor, and ion channels such as the N-methyl-D-aspartate receptor (NMDAR). Sigma-1 antagonists modify the chaperoning activity of sigma-1 receptor by increasing opioid signaling and decreasing NMDAR responses, consequently enhancing opioid antinociception and decreasing the sensory hypersensitivity that characterizes pathological pain conditions. However, the participation in pain relief of other protein partners of sigma-1 receptors in addition to opioid receptors and NMDARs cannot be ruled out. The enhanced opioid antinociception by sigma-1 antagonism is not accompanied by an increase in opioid side effects , including tolerance, dependence or constipation, so the use of sigma-1 antagonists may increase the therapeutic index of opioids. Furthermore, sigma-1 antagonists (in the absence of opioids) have been shown to exert antinociceptive effects in preclinical models of neuropathic pain induced by nerve trauma or chemical injury (the antineoplastic paclitaxel), and more recently in inflammatory and ischemic pain. Although most studies attributed the analgesic properties of sigma-1 antagonists to their central actions, it is now known that peripheral sigma-1 receptors also participate in their effects. Overwhelming preclinical evidence of the role of sigma-1 receptors in pain has led to the development of the first selective sigma-1 antagonist with an intended indication for pain treatment, which is currently in Phase II clinical trials.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - José Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - José Manuel Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - Enrique José Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain.
- Teófilo Hernando Institute for Drug Discovery, 28029, Madrid, Spain.
| |
Collapse
|
33
|
Entrena JM, Sánchez-Fernández C, Nieto FR, González-Cano R, Yeste S, Cobos EJ, Baeyens JM. Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin. Sci Rep 2016; 6:37835. [PMID: 27886264 PMCID: PMC5122889 DOI: 10.1038/srep37835] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023] Open
Abstract
Sigma-1 receptor antagonists promote antinociception in several models of pain, but the effects of sigma-1 agonists on nociception (particularly when the nociceptive system is primed) are not so well characterized; therefore we evaluated the effects of sigma-1 agonists on pain under different experimental conditions. The systemic administration of the selective sigma-1 agonists (+)-pentazocine and PRE-084, as well as the nonselective sigma-1 agonist carbetapentane (used clinically as an antitussive drug), did not alter sensitivity to mechanical stimulation under baseline conditions. However, they greatly promoted secondary mechanical allodynia after priming the nociceptive system with capsaicin. These effects of sigma-1 agonists were consistent in terms potency with the affinities of these drugs for sigma-1 receptors, were reversed by sigma-1 antagonists, and were not observed in sigma-1 knockout mice, indicating that they are sigma-1-mediated. Repeated systemic treatment with PRE-084 induced proallodynic effects even 24 h after treatment completion, but only after the nociceptive system was primed. However, neither the presence of this drug in the organism nor changes in sigma-1 receptor expression in areas involved in pain processing explains its long-term effects, suggesting that sustained sigma-1 agonism induces plastic changes in the nociceptive system that promote nociception.
Collapse
Affiliation(s)
- J. M. Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - C. Sánchez-Fernández
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - F. R. Nieto
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - R. González-Cano
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - S. Yeste
- Drug Discovery and Preclinical Development, Esteve, 08041, Barcelona, Spain
| | - E. J. Cobos
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain
| | - J. M. Baeyens
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
34
|
Jadhav AD, Wei L, Shi P. Compartmentalized Platforms for Neuro-Pharmacological Research. Curr Neuropharmacol 2016; 14:72-86. [PMID: 26813122 PMCID: PMC4787287 DOI: 10.2174/1570159x13666150516000957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023] Open
Abstract
Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology.
Collapse
Affiliation(s)
| | | | - Peng Shi
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
35
|
Mavlyutov TA, Duellman T, Kim HT, Epstein ML, Leese C, Davletov BA, Yang J. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience 2016; 331:148-57. [PMID: 27339730 PMCID: PMC5047027 DOI: 10.1016/j.neuroscience.2016.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Sigma-1 receptor (S1R) is a unique pluripotent modulator of living systems and has been reported to be associated with a number of neurological diseases including pathological pain. Intrathecal administration of S1R antagonists attenuates the pain behavior of rodents in both inflammatory and neuropathic pain models. However, the S1R localization in the spinal cord shows a selective ventral horn motor neuron distribution, suggesting the high likelihood of S1R in the dorsal root ganglion (DRG) mediating the pain relief by intrathecally administered drugs. Since primary afferents are the major component in the pain pathway, we examined the mouse and rat DRGs for the presence of the S1R. At both mRNA and protein levels, quantitative RT-PCR (qRT-PCR) and Western confirmed that the DRG contains greater S1R expression in comparison to spinal cord, cortex, or lung but less than liver. Using a custom-made highly specific antibody, we demonstrated the presence of a strong S1R immuno-fluorescence in all rat and mouse DRG neurons co-localizing with the Neuron-Specific Enolase (NSE) marker, but not in neural processes or GFAP-positive glial satellite cells. In addition, S1R was absent in afferent terminals in the skin and in the dorsal horn of the spinal cord. Using immuno-electron microscopy, we showed that S1R is detected in the nuclear envelope and endoplasmic reticulum (ER) of DRG cells. In contrast to other cells, S1R is also located directly at the plasma membrane of the DRG neurons. The presence of S1R in the nuclear envelope of all DRG neurons suggests an exciting potential role of S1R as a regulator of neuronal nuclear activities and/or gene expression, which may provide insight toward new molecular targets for modulating nociception at the level of primary afferent neurons.
Collapse
MESH Headings
- Animals
- Antibodies
- Blotting, Western
- Cell Membrane/metabolism
- Endoplasmic Reticulum/metabolism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Immunohistochemistry
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Neurons/metabolism
- Neurons/ultrastructure
- Nuclear Envelope/metabolism
- Phosphopyruvate Hydratase/metabolism
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Receptors, sigma/genetics
- Receptors, sigma/immunology
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| | - Tyler Duellman
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Hung Tae Kim
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Miles L Epstein
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Bazbek A Davletov
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| |
Collapse
|
36
|
Kwon SG, Roh DH, Yoon SY, Choi SR, Choi HS, Moon JY, Kang SY, Kim HW, Han HJ, Beitz AJ, Oh SB, Lee JH. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors. Eur J Pain 2016; 20:594-606. [PMID: 26358747 DOI: 10.1002/ejp.774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. METHODS We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. RESULTS Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. CONCLUSION Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain.
Collapse
Affiliation(s)
- S G Kwon
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - D H Roh
- Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - S Y Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Korea
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Korea
| | - S R Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - H S Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - J Y Moon
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - S Y Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - H W Kim
- Department of Physiology, Institute of Brain Research, Chungnam National University Medical School, Daejeon, Korea
| | - H J Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - A J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, USA
| | - S B Oh
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Korea
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Korea
| | - J H Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| |
Collapse
|
37
|
Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37:262-278. [PMID: 26869505 PMCID: PMC4811735 DOI: 10.1016/j.tips.2016.01.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | - Tzu-Chieh Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| |
Collapse
|
38
|
Navarrete-Vázquez G, Austrich-Olivares A, Godínez-Chaparro B, Hidalgo-Figueroa S, Estrada-Soto S, Hernández-Núñez E, Torres-Gómez H, Schepmann D, Wünsch B. Discovery of 2-(3,4-dichlorophenoxy)-N-(2-morpholin-4-ylethyl)acetamide: A selective σ1 receptor ligand with antinociceptive effect. Biomed Pharmacother 2016; 79:284-93. [PMID: 27044839 DOI: 10.1016/j.biopha.2016.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Compound 2-(3,4-dichlorophenoxy)-N-(2-morpholin-4-ylethyl)acetamide (1) was designed, prepared and the in vitro binding evaluation against σ1 and σ2 receptors was measured. Compound 1 showed high σ1 receptor affinity (Ki=42 nM) and it was 36-times more selective for σ1 than σ2 receptor. Also, it was performed a molecular docking of compound 1 into the ligand binding pocket homology model of σ1 receptor, showing a salt bridge between the ionized morpholine ring and Asp126, as well as important short contacts with residues Tyr120, His154 and Trp164. Ligand efficiency indexes and predicted toxicity analysis revealed an excellent intrinsic quality of 1. The antinociceptive effect of compound 1 was determined using the formalin test. The ipsilateral local peripheral (10-300 μg/paw) and intrathecal (100 μg/rat) administration of 1 produced a reduction in formalin-induced nociception. The in vivo results indicated that 1 may be effective in treating inflammatory pain.
Collapse
Affiliation(s)
- Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico.
| | - Amaya Austrich-Olivares
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México D.F., 04960, Mexico, Mexico
| | - Sergio Hidalgo-Figueroa
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, 97310 Yucatán, Mexico, Mexico
| | - Héctor Torres-Gómez
- Institute for Chemistry and Chemical Biology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland, Switzerland; Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany, Germany
| |
Collapse
|
39
|
Romero L, Merlos M, Vela JM. Antinociception by Sigma-1 Receptor Antagonists: Central and Peripheral Effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:179-215. [PMID: 26920013 DOI: 10.1016/bs.apha.2015.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is plenty of evidence supporting the modulatory role of sigma-1 receptors (σ1Rs) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists, particularly in nonacute sensitizing conditions involving sustained afferent drive, activity-dependent plasticity/sensitization, and ultimately pain hypersensitivity, as it is the case in chronic pains of different etiology. Antinociceptive effects of σ1R antagonists both when acting alone and in combination with opioids (to enhance opioid analgesia) have been reported at both central and peripheral sites. At the central level, findings at the behavioral (animal pain models), electrophysiological (spinal wind-up recordings), neurochemical (spinal release of neurotransmitters) and molecular (NMDAR function) level supports a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Attenuation of activity-induced plastic changes (central sensitization) following tissue injury/inflammation or nerve damage could thus underlie the central inhibitory effect of σ1R antagonists. Moreover, recent pieces of information confirm the involvement of σ1R in mechanisms regulating pain at the periphery, where σ1Rs are highly expressed, particularly in dorsal root ganglia. Indeed, local peripheral administration of σ1R antagonists reduces inflammatory hyperalgesia. Potentiation of opioid analgesia is also supported, particularly at supraspinal sites and at the periphery, where locally administered σ1R antagonists unmask opioid analgesia. Altogether, whereas σ1R activation is coupled to pain facilitation and inhibition of opioid antinociception, σ1R antagonism inhibits pain hypersensitivity and "releases the brake" enabling opioids to exert enhanced antinociceptive effects, both at the central nervous system and at the periphery.
Collapse
Affiliation(s)
- Luz Romero
- Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain
| | - Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain.
| |
Collapse
|
40
|
Denk F, Ramer LM, Erskine ELKS, Nassar MA, Bogdanov Y, Signore M, Wood JN, McMahon SB, Ramer MS. Tamoxifen induces cellular stress in the nervous system by inhibiting cholesterol synthesis. Acta Neuropathol Commun 2015; 3:74. [PMID: 26610346 PMCID: PMC4660723 DOI: 10.1186/s40478-015-0255-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Background Tamoxifen (TAM) is an important cancer therapeutic and an experimental tool for effecting genetic recombination using the inducible Cre-Lox technique. Despite its widespread use in the clinic and laboratory, we know little about its effects on the nervous system. This is of significant concern because TAM, via unknown mechanisms, induces cognitive impairment in humans. A hallmark of cellular stress is induction of Activating Transcription Factor 3 (Atf3), and so to determine whether TAM induces cellular stress in the adult nervous system, we generated a knock-in mouse in which Atf3 promoter activity drives transcription of TAM-dependent Cre recombinase (Cre-ERT2); when crossed with tdtomato reporter mice, Atf3 induction results in robust and permanent genetic labeling of cells in which it is up-regulated even transiently. Results We found that granular neurons of the olfactory bulb and dentate gyrus, vascular cells and ependymal cells throughout the brain, and peripheral sensory neurons expressed tdtomato in response to TAM treatment. We also show that TAM induced Atf3 up-regulation through inhibition of cholesterol epoxide hydrolase (ChEH): reporter expression was mitigated by delivery in vitamin E-rich wheat germ oil (vitamin E depletes ChEH substrates), and was partially mimicked by a ChEH-specific inhibitor. Conclusions This work demonstrates that TAM stresses cells of the adult central and peripheral nervous systems and highlights concerns about clinical and experimental use of TAM. We propose TAM administration in vitamin E-rich vehicles such as wheat germ oil as a simple remedy.
Collapse
|
41
|
Tomohisa M, Junpei O, Aki M, Masato H, Mika F, Kazumi Y, Teruo H, Tsutomu S. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain. Synapse 2015; 69:526-32. [PMID: 26234785 DOI: 10.1002/syn.21844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/22/2015] [Accepted: 06/24/2015] [Indexed: 12/28/2022]
Abstract
Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy.
Collapse
Affiliation(s)
- Mori Tomohisa
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Ohya Junpei
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Masumoto Aki
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Harumiya Masato
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Fukase Mika
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Yoshizawa Kazumi
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | - Suzuki Tsutomu
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
42
|
Abstract
INTRODUCTION Neuropathic pain is difficult to relieve with standard analgesics and tends to be resistant to opioid therapy. Sigma-1 receptors activated during neuropathic injury may sustain pain. Neuropathic injury activates sigma-1 receptors, which results in activation of various kinases, modulates the activity of multiple ion channels, ligand activated ion channels and voltage-gated ion channels; alters monoamine neurotransmission and dampens opioid receptors G-protein activation. Activation of sigma-1 receptors tonically inhibits opioid receptor G-protein activation and thus dampens analgesic responses. Therefore, sigma-1 receptor antagonists are potential analgesics for neuropathic and adjuvants to opioid therapy. AREAS COVERED This article reviews the importance of sigma-1 receptors as pain generators in multiple animal models in order to illustrate both the importance of these unique receptors in pathologic pain and the potential benefits to sigma-1 receptor antagonists as analgesics. EXPERT OPINION Sigma-1 receptor antagonists have a great potential as analgesics for acute neuropathic injury (herpes zoster, acute postoperative pain and chemotherapy induced neuropathy) and may, as an additional benefit, prevent the development of chronic neuropathic pain. Antagonists are potentially effective as adjuvants to opioid therapy when used early to prevent analgesic tolerance. Drug development is complicated by the complexity of sigma-1 receptor pharmacodynamics and its multiple targets, the lack of a specific sigma-1 receptor antagonist, and potential side effects due to on-target toxicities (cognitive impairment, depression).
Collapse
Affiliation(s)
- Mellar P Davis
- Case Western Reserve University, Taussig Cancer Institute, Cleveland Clinic Lerner School of Medicine, Palliative Medicine and Supportive Oncology Services, Division of Solid Tumor, The Cleveland Clinic , 9500 Euclid Ave, Cleveland, OH 44195 , USA
| |
Collapse
|
43
|
Yoon SY, Kang SY, Kim HW, Kim HC, Roh DH. Clonidine Reduces Nociceptive Responses in Mouse Orofacial Formalin Model: Potentiation by Sigma-1 Receptor Antagonist BD1047 without Impaired Motor Coordination. Biol Pharm Bull 2015; 38:1320-7. [PMID: 26328487 DOI: 10.1248/bpb.b15-00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Although the administration of clonidine, an alpha-2 adrenoceptor agonist, significantly attenuates nociception and hyperalgesia in several pain models, clinical trials of clonidine are limited by its side effects such as drowsiness, hypotension and sedation. Recently, we determined that the sigma-1 receptor antagonist BD1047 dose-dependently reduced nociceptive responses in a mouse orofacial formalin model. Here we examined whether intraperitoneal injection of clonidine suppressed the nociceptive responses in the orofacial formalin test, and whether co-administration with BD1047 enhances lower-dose clonidine-induced anti-nociceptive effects without the disruption of motor coordination and blood pressure. Formalin (5%, 10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with the ipsilateral fore- or hind-paw were counted for 45 min. Clonidine (10, 30 or 100 µg/kg) was intraperitoneally administered 30 min before formalin injection. Clonidine alone dose-dependently reduced nociceptive responses in both the first and second phases. Co-localization for alpha-2A adrenoceptors and sigma-1 receptors was determined in trigeminal ganglion cells. Interestingly, the sub-effective dose of BD1047 (3 mg/kg) significantly potentiated the anti-nociceptive effect of lower-dose clonidine (10 or 30 µg/kg) in the second phase. In particular, the middle dose of clonidine (30 µg/kg) in combination with BD1047 produced an anti-nociceptive effect similar to that of the high-dose clonidine, but without a significant motor dysfunction or hypotension. In contrast, mice treated with the high dose of clonidine developed severe impairment in motor coordination and blood pressure. These data suggest that a combination of low-dose clonidine with BD1047 may be a novel and safe therapeutic strategy for orofacial pain management.
Collapse
Affiliation(s)
- Seo-Yeon Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University
| | | | | | | | | |
Collapse
|
44
|
Tejada MA, Montilla-García A, Sánchez-Fernández C, Entrena JM, Perazzoli G, Baeyens JM, Cobos EJ. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl) 2014; 231:3855-69. [PMID: 24639046 DOI: 10.1007/s00213-014-3524-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 02/26/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE Sigma-1 (σ1) receptor inhibition ameliorates neuropathic pain by inhibiting central sensitization. However, it is unknown whether σ1 receptor inhibition also decreases inflammatory hyperalgesia, or whether peripheral σ1 receptors are involved in this process. OBJECTIVE The purpose of this study was to determine the role of σ1 receptors in carrageenan-induced inflammatory hyperalgesia, particularly at the inflammation site. RESULTS The subcutaneous (s.c.) administration of the selective σ1 antagonists BD-1063 and S1RA to wild-type mice dose-dependently and fully reversed inflammatory mechanical (paw pressure) and thermal (radiant heat) hyperalgesia. These antihyperalgesic effects were abolished by the s.c. administration of the σ1 agonist PRE-084 and also by the intraplantar (i.pl.) administration of this compound in the inflamed paw, suggesting that blockade of peripheral σ1 receptors in the inflamed site is involved in the antihyperalgesic effects induced by σ1 antagonists. In fact, the i.pl. administration of σ1 antagonists in the inflamed paw (but not in the contralateral paw) was sufficient to completely reverse inflammatory hyperalgesia. σ1 knockout (σ1-KO) mice did not develop mechanical hyperalgesia but developed thermal hypersensitivity; however, the s.c. administration of BD-1063 or S1RA had no effect on thermal hyperalgesia in σ1-KO mice, supporting on-target mechanisms for the effects of both drugs. The antiedematous effects of σ1 inhibition do not account for the decreased hyperalgesia, since carrageenan-induced edema was unaffected by σ1 knockout or systemic σ1 pharmacological antagonism. CONCLUSIONS σ1 receptors play a major role in inflammatory hyperalgesia. Targeting σ1 receptors in the inflamed tissue may be useful for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- M A Tejada
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Pan B, Guo Y, Kwok WM, Hogan Q, Wu HE. Sigma-1 receptor antagonism restores injury-induced decrease of voltage-gated Ca2+ current in sensory neurons. J Pharmacol Exp Ther 2014; 350:290-300. [PMID: 24891452 PMCID: PMC4109486 DOI: 10.1124/jpet.114.214320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 01/01/2023] Open
Abstract
Sigma-1 receptor (σ1R), an endoplasmic reticulum-chaperone protein, can modulate painful response after peripheral nerve injury. We have demonstrated that voltage-gated calcium current is inhibited in axotomized sensory neurons. We examined whether σ1R contributes to the sensory dysfunction of voltage-gated calcium channel (VGCC) after peripheral nerve injury through electrophysiological approach in dissociated rat dorsal root ganglion (DRG) neurons. Animals received either skin incision (Control) or spinal nerve ligation (SNL). Both σ1R agonists, (+)pentazocine (PTZ) and DTG [1,3-di-(2-tolyl)guanidine], dose dependently inhibited calcium current (ICa) with Ba(2+) as charge carrier in control sensory neurons. The inhibitory effect of σ1R agonists on ICa was blocked by σ1R antagonist, BD1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride) or BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide). PTZ and DTG showed similar effect on ICa in axotomized fifth DRG neurons (SNL L5). Both PTZ and DTG shifted the voltage-dependent activation and steady-state inactivation of VGCC to the left and accelerated VGCC inactivation rate in both Control and axotomized L5 SNL DRG neurons. The σ1R antagonist, BD1063 (10 μM), increases ICa in SNL L5 neurons but had no effect on Control and noninjured fourth lumbar neurons in SNL rats. Together, the findings suggest that activation of σR1 decreases ICa in sensory neurons and may play a pivotal role in pain generation.
Collapse
Affiliation(s)
- Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
| | - Yuan Guo
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
| | - Quinn Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
| | - Hsiang-en Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
| |
Collapse
|
46
|
Nieto FR, Cendán CM, Cañizares FJ, Cubero MA, Vela JM, Fernández-Segura E, Baeyens JM. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014; 10:11. [PMID: 24517272 PMCID: PMC3924235 DOI: 10.1186/1744-8069-10-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/07/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Paclitaxel, a widely-used antineoplastic drug, produces a painful peripheral neuropathy that in rodents is associated with peripheral-nerve mitochondrial alterations. The sigma-1 receptor (σ1R) is a ligand-regulated molecular chaperone involved in mitochondrial calcium homeostasis and pain hypersensitivity. This receptor plays a key role in paclitaxel-induced neuropathic pain, but it is not known whether it also modulates mitochondrial abnormalities.In this study, we used a mouse model of paclitaxel-induced neuropathic pain to test the involvement of the σ1R in the mitochondrial abnormalities associated with paclitaxel, by using genetic (σ1R knockout mice) and pharmacological (σ1R antagonist) approaches. RESULTS Paclitaxel administration to wild-type (WT) mice produced cold- and mechanical-allodynia, and an increase in the frequency of swollen and vacuolated mitochondria in myelinated A-fibers, but not in C-fibers, of the saphenous nerve. Behavioral and mitochondrial alterations were marked at 10 days after paclitaxel-administration and had resolved at day 28. In contrast, paclitaxel treatment did not induce allodynia or mitochondrial abnormalities in σ1R knockout mice. Moreover, the prophylactic treatment of WT mice with BD-1063 also prevented the neuropathic pain and mitochondrial abnormalities induced by paclitaxel. CONCLUSIONS These results suggest that activation of the σ1R is necessary for development of the sensory nerve mitochondrial damage and neuropathic pain produced by paclitaxel. Therefore, σ1R antagonists might have therapeutic value for the prevention of paclitaxel-induced neuropathy.
Collapse
Affiliation(s)
- Francisco R Nieto
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
- Current address: Wolfson Centre for Age-Related Diseases, King’s College London, Wolfson Wing, Hodgkin Building, SE1 1UL London, UK
| | - Cruz M Cendán
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - Francisco J Cañizares
- Department of Histology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - María A Cubero
- Department of Histology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - José M Vela
- Esteve, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Carrer Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| | - Eduardo Fernández-Segura
- Department of Histology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - José M Baeyens
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| |
Collapse
|