1
|
Ding J, Ji C, Wang C, Wang S, Ding G, Shi L, Xu F, Cai H. OsMYB67 Knockout Promotes Rice Heading and Yield by Facilitating Copper Distribution in Panicles. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230315 DOI: 10.1111/pce.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
Copper (Cu) is an essential micronutrient required for rice flowering and seed setting. Here, we identified that Cu-induced R2R3-MYB transcription factor, OsMYB67, acts as a negative regulator that controls rice heading and yield production by affecting Cu distribution in panicles. OsMYB67 was constitutively expressed, with the highest expression in the roots. OsMYB67 knockout did not affect plant growth, but significantly increased Cu concentrations in roots, shoots, and xylem sap at the seedling stage. At the reproductive stage, OsMYB67 mutants displayed an early heading phenotype, with significantly increased Cu distribution in panicles but decreased Cu distribution in leaves, whereas OsMYB67-overexpressing plants showed the opposite result. In addition, higher grain yield and Cu concentrations in seeds were observed in OsMYB67 mutants compared to the wild-type. The results of Y1H, transient co-expression, EMSA, in situ RT-PCR, and RT-qPCR showed that OsMYB67 directly binds to the promoter region of OsHMA9 and upregulates its expression. Significantly increased Cu concentrations were also observed in the roots, shoots, and seeds of oshma9 mutants, consistent with the results observed in OsMYB67 mutants. Interestingly, dramatically higher expression levels of OsATX1 and OsYSL16 were observed in the OsMYB67 mutants, which may contribute to the increased Cu distribution in the panicles.
Collapse
Affiliation(s)
- Jingli Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chenchen Ji
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Hu Y, Zhang M, Wang K, Tan P, Jing S, Han W, Wang S, Zhang K, Zhao X, Yang X, Wang Y. ZmNPF7.10 confers potassium and nitrogen distribution from node to leaf in maize. THE NEW PHYTOLOGIST 2025; 245:2698-2714. [PMID: 39888029 DOI: 10.1111/nph.20422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
In graminaceous plants, nodes play vital roles in nutrient allocation, especially for preferential nutrient distribution to developing leaves and reproductive organs. However, the molecular mechanisms underlying this distribution remain poorly understood. In this study, we identified a transporter named ZmNPF7.10 that is involved in potassium (K) and nitrogen (N) distribution in maize nodes. In Xenopus oocytes, ZmNPF7.10 showed NO3 - and K+ transport activity in a pH-dependent manner. ZmNPF7.10 is predominantly expressed in the nodes at the reproductive growth stage, and preferentially expressed in the xylem parenchyma cells of enlarged vascular bundles (EVBs) in nodes. Disruption of ZmNPF7.10 resulted in the decline of K and N in leaves, but accumulation of K and N in nodes, suggesting ZmNPF7.10 conducts K and N distribution from nodes to leaves in maize. We identified a natural variant of 7.1-kb InDel in the promoter region that was significantly associated with ZmNPF7.10 transcript level in nodes, leaf K and N concentration, as well as grain yield. These findings demonstrate that ZmNPF7.10 functions as a dual role transporter that mediates K and N distribution in nodes. This study provides important insights into the molecular mechanisms of nutrient distribution in maize.
Collapse
Affiliation(s)
- Yingying Hu
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Natural History Museum of China (NHMC), Beijing, 100050, China
| | - Man Zhang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kangqi Wang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peipei Tan
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Si Jing
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wu Han
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhao
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Zhang W, Shi M, Yang K, Zhang J, Gao Z, El-Kassaby YA, Li Q, Cao T, Deng S, Qing H, Wang Z, Song X. Regulatory networks of senescence-associated gene-transcription factors promote degradation in Moso bamboo shoots. PLANT, CELL & ENVIRONMENT 2024; 47:3654-3667. [PMID: 38752443 DOI: 10.1111/pce.14950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 08/16/2024]
Abstract
Bamboo cultivation, particularly Moso bamboo (Phyllostachys edulis), holds significant economic importance in various regions worldwide. Bamboo shoot degradation (BSD) severely affects productivity and economic viability. However, despite its agricultural consequences, the molecular mechanisms underlying BSD remain unclear. Consequently, we explored the dynamic changes of BSD through anatomy, physiology and the transcriptome. Our findings reveal ruptured protoxylem cells, reduced cell wall thickness and the accumulation of sucrose and reactive oxygen species (ROS) during BSD. Transcriptomic analysis underscored the importance of genes related to plant hormone signal transduction, sugar metabolism and ROS homoeostasis in this process. Furthermore, BSD appears to be driven by the coexpression regulatory network of senescence-associated gene transcription factors (SAG-TFs), specifically PeSAG39, PeWRKY22 and PeWRKY75, primarily located in the protoxylem of vascular bundles. Yeast one-hybrid and dual-luciferase assays demonstrated that PeWRKY22 and PeWRKY75 activate PeSAG39 expression by binding to its promoter. This study advanced our understanding of the molecular regulatory mechanisms governing BSD, offering a valuable reference for enhancing Moso bamboo forest productivity.
Collapse
Affiliation(s)
- Wenyu Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Kebin Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Tingting Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shixin Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Hongsheng Qing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhikang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
An Y, Jiao X, Yang S, Wang S, Chen N, Huang L, Jiang C, Lu M, Zhang J. Evaluation of novel promoters for vascular tissue-specific gene expression in Populus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112083. [PMID: 38588982 DOI: 10.1016/j.plantsci.2024.112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Due to the extended generation cycle of trees, the breeding process for forest trees tends to be time-consuming. Genetic engineering has emerged as a viable approach to expedite the genetic breeding of forest trees. However, current genetic engineering techniques employed in forest trees often utilize continuous expression promoters such as CaMV 35S, which may result in unintended consequences by introducing genes into non-target tissues. Therefore, it is imperative to develop specific promoters for forest trees to facilitate targeted and precise design and breeding. In this study, we utilized single-cell RNA-Seq data and co-expression network analysis during wood formation to identify three vascular tissue-specific genes in poplar, PP2-A10, PXY, and VNS07, which are expressed in the phloem, cambium/expanding xylem, and mature xylem, respectively. Subsequently, we cloned the promoters of these three genes from '84K' poplar and constructed them into a vector containing the eyGFPuv visual selection marker, along with the 35S mini enhancer to drive GUS gene expression. Transgenic poplars expressing the ProPagPP2-A10::GUS, ProPagPXY::GUS, and ProPagVNS07::GUS constructs were obtained. To further elucidate the tissue specificity of these promoters, we employed qPCR, histochemical staining, and GUS enzyme activity. Our findings not only establish a solid foundation for the future utilization of these promoters to precisely express of specific functional genes in stems but also provide a novel perspective for the modular breeding of forest trees.
Collapse
Affiliation(s)
- Yi An
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xue Jiao
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Song Yang
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shiqi Wang
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ningning Chen
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
5
|
Ji C, Li H, Ding J, Yu L, Jiang C, Wang C, Wang S, Ding G, Shi L, Xu F, Cai H. Rice transcription factor OsWRKY37 positively regulates flowering time and grain fertility under copper deficiency. PLANT PHYSIOLOGY 2024; 195:2195-2212. [PMID: 38589996 DOI: 10.1093/plphys/kiae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 04/10/2024]
Abstract
Efficient uptake, translocation, and distribution of Cu to rice (Oryza sativa) spikelets is crucial for flowering and yield production. However, the regulatory factors involved in this process remain unidentified. In this study, we isolated a WRKY transcription factor gene induced by Cu deficiency, OsWRKY37, and characterized its regulatory role in Cu uptake and transport in rice. OsWRKY37 was highly expressed in rice roots, nodes, leaf vascular bundles, and anthers. Overexpression of OsWRKY37 promoted the uptake and root-to-shoot translocation of Cu in rice under -Cu condition but not under +Cu condition. While mutation of OsWRKY37 significantly decreased Cu concentrations in the stamen, the root-to-shoot translocation and distribution ratio in brown rice affected pollen development, delayed flowering time, decreased fertility, and reduced grain yield under -Cu condition. yeast one-hybrid, transient co-expression and EMSAs, together with in situ RT-PCR and RT-qPCR analysis, showed that OsWRKY37 could directly bind to the upstream promoter region of OsCOPT6 (copper transporter) and OsYSL16 (yellow stripe-like protein) and positively activate their expression levels. Analyses of oscopt6 mutants further validated its important role in Cu uptake in rice. Our study demonstrated that OsWRKY37 acts as a positive regulator involved in the uptake, root-to-shoot translocation, and distribution of Cu through activating the expression of OsCOPT6 and OsYSL16, which is important for pollen development, flowering, fertility, and grain yield in rice under Cu deficient conditions. Our results provide a genetic strategy for improving rice yield under Cu deficient condition.
Collapse
Affiliation(s)
- Chenchen Ji
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Haixing Li
- Department of Research and Development, Kenfeng Changjiang Seed Technology Co., Ltd., 430070 Wuhan, China
| | - Jingli Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuncang Jiang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Chen J, Ham BK, Kochian LV, Lucas WJ. A cucumber protein, Phloem Phosphate Stress-Repressed 1, rapidly degrades in response to a phosphate stress condition. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2176-2190. [PMID: 38113277 DOI: 10.1093/jxb/erad504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Under depleted external phosphate (Pi), many plant species adapt to this stress by initiating downstream signaling cascades. In plants, the vascular system delivers nutrients and signaling agents to control physiological and developmental processes. Currently, limited information is available regarding the direct role of phloem-borne long-distance signals in plant growth and development under Pi stress conditions. Here, we report on the identification and characterization of a cucumber protein, Cucumis sativus Phloem Phosphate Stress-Repressed 1 (CsPPSR1), whose level in the phloem translocation stream rapidly responds to imposed Pi-limiting conditions. CsPPSR1 degradation is mediated by the 26S proteasome; under Pi-sufficient conditions, CsPPSR1 is stabilized by its phosphorylation within the sieve tube system through the action of CsPPSR1 kinase. Further, we discovered that CsPPSR1 kinase was susceptible to Pi starvation-induced degradation in the sieve tube system. Our findings offer insight into a molecular mechanism underlying the response of phloem-borne proteins to Pi-limited stress conditions.
Collapse
Affiliation(s)
- Jieyu Chen
- Department of Plant Biology, University of California, Davis, CA, USA
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byung-Kook Ham
- Department of Plant Biology, University of California, Davis, CA, USA
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Plant Sciences & Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - William J Lucas
- Department of Plant Biology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Hang T, Lin C, Asim M, Ramakrishnan M, Deng S, Yang P, Zhou M. Low phosphorus impact on Moso bamboo (Phyllostachys edulis) root morphological polymorphism and expression pattern of the related genes. TREE PHYSIOLOGY 2024; 44:tpad138. [PMID: 38035777 DOI: 10.1093/treephys/tpad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Moso bamboo typically grows in phosphorus (P)-deficient soil that limits its growth and development. In this study, 10 Moso bamboo genotypes (Ph-1 to Ph-10) were evaluated for their responses to P deficiency during the seedling stage by growing them in both P-sufficient and P-deficient conditions. Adaptive responses to low P (LP) conditions were observed in the majority of genotypes. Under P deficiency conditions, the total biomass decreased in several genotypes, but at the same time, the root-to-shoot ratio increased. Principal component analysis identified two main comprehensive traits (PC1 and PC2) related to the root volume and surface area and P concentration and accumulation. Based on the analysis, two genotypes (Ph-6 and Ph-10) were identified with significantly different levels of tolerance to P deficiency. The results revealed that the genotype Ph-10 responded to P deficiency by significantly increasing the root surface area and volume, while simultaneously reducing the number of root cortex cells when compared with the genotype Ph-6, which showed the lowest tolerance (intolerant). The genotype Ph-10 exhibited a robust response to external LP conditions, marked by elevated expression levels of PHOSPHATE TRANSPORTERs and SYG1/PHO81/XPR1s. In situ Polymerase Chain Reaction (PCR) analysis also revealed distinct tissue-specific expression patterns of the genes in the roots, particularly highlighting the differences between Ph-6 and Ph-10. The results provide a foundation for elucidating the mechanism of LP tolerance, thus potentially contributing to developing high P-use efficiency in Moso bamboo species.
Collapse
Affiliation(s)
- Tingting Hang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Chenjun Lin
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Muhammad Asim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shixin Deng
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
8
|
Liu L, Luo Y, Ding G, Wang C, Cai H, Shi L, Xu F, Bao X, Wang S. Identification and function characterization of BnaBOR4 genes reveal their potential for Brassica napus cultivation under high boron stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116011. [PMID: 38266356 DOI: 10.1016/j.ecoenv.2024.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/11/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Boron (B) is essential for plant growth, but toxic in excess. In several countries, soil toxic B levels are always a severe agricultural problem in arid and semi-arid regions. Phytoremediation of excess B containing soil is still in its infancy, while high B tolerant plants with elevated protein abundance of B efflux transporter were successfully established or explored. Brassica napus (B. napus) is one of the most important oil crops. However, B efflux transporters underlying excess B tolerance in B. napus remain unknown. Here, we reported that in Brassicaceae species, B. napus had four homologous genes of Arabidopsis AtBOR4 , which were renamed BnaBOR4.1, BnaBOR4.2, BnaBOR4.3 and BnaBOR4.4. BnaBOR4.1, BnaBOR4.2 and BnaBOR4.3 showed constitutive expression and BnaBOR4.4 appeared to be a pseudogene. BnaBOR4.2 and BnaBOR4.3 were expressed in inner cell layers and BnaBOR4.1 in the outer cell layer in root tip, and all were expressed in vascular tissue in the mature zone. B efflux activity assays in yeast demonstrated that BnaBOR4.1, BnaBOR4.2 and AtBOR4 but not BnaBOR4.3 had comparable levels of B transport activity. Structure-functional analysis between BnaBOR4.3 and BnaBOR4.2 demonstrated that amino acid residue substitution at position 297 (Ala vs Pro) and 427 (Met vs Leu) is critical for the B transport activity. Mutant BnaBOR4.3M427L partially restored the B efflux activity, and both mutants BnaBOR4.3A297P and BnaBOR4.3A297P&M427L fully restored B efflux activity, indicating that the Pro297 residue is critical for their function. Further validation of BnaBOR4 was accomplished by growing transgenic Arabidopsis plants under high B conditions. Taken together, our study identified two functional B efflux genes BnaBOR4.1 and BnaBOR4.2 in B. napus, and a key amino acid residue proline 297 associated with B efflux activity. This study highlights the potential of BanBOR4 genes for B. napus cultivation under high B stress.
Collapse
Affiliation(s)
- Ling Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiulan Bao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
He X, He Y, Dong Y, Gao Y, Sun X, Chen W, Xu X, Su C, Lv Y, Ren B, Yin H, Zeng J, Ma W, Mu P. Genome-wide analysis of FRF gene family and functional identification of HvFRF9 under drought stress in barley. FRONTIERS IN PLANT SCIENCE 2024; 15:1347842. [PMID: 38328701 PMCID: PMC10847358 DOI: 10.3389/fpls.2024.1347842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ping Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Laines-Hidalgo JI, Kú-González AF, Vázquez-Flota FA. A Novel Method for In Situ RT-PCR Based on Capsules from Centrifuge Tubes, Ideal for Transcripts Detection in Plant Tissues. Methods Mol Biol 2024; 2827:417-433. [PMID: 38985286 DOI: 10.1007/978-1-0716-3954-2_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In situ RT-PCR presents advantages over other expression analysis methods due to its rapid processing and low-cost equipment. However, this technique is not without its challenges. A protocol based on a capsule made from centrifuge tubes that offers advantages over slides is presented. This capsule protects histological sections from drying out, and its easy assembly reduces time pauses between incubations. In addition, the container size where the sample is deposited allows the addition and withdrawal of the different solutions. The capsule does not need previous sealing after each incubation, and, above all, it is a low-cost and accessible material. A guideline for tissue sectioning using a cryostat that offers advantages over other sectioning methods is also described.
Collapse
Affiliation(s)
| | - Angela F Kú-González
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Merida, Yucatán, Mexico
| | - Felipe A Vázquez-Flota
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Merida, Yucatán, Mexico.
| |
Collapse
|
11
|
Song Y, Guo X, Wu J, Liang J, Lin R, Yan Z, Wang X. An Optimized Protocol for Detecting Guard Cell-specific Gene Expression by in situ RT-PCR in Brassica rapa. Bio Protoc 2023; 13:e4810. [PMID: 37719070 PMCID: PMC10501917 DOI: 10.21769/bioprotoc.4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023] Open
Abstract
Since the genetic transformation of Chinese cabbage (Brassica rapa) has not been well developed, in situ RT-PCR is a valuable option for detecting guard cell-specific genes. We reported an optimized protocol of in situ RT-PCR by using a FAMA homologous gene Bra001929 in Brassica rapa. FAMA in Arabidopsis has been verified to be especially expressed in guard cells. We designed specific RT-PCR primers and optimized the protocol in terms of the (a) reverse transcription time, (b) blocking time, (c) antigen-antibody incubation time, and (d) washing temperature. Our approach provides a sensitive and effective in situ RT-PCR method that can detect low-abundance transcripts in cells by elevating their levels by RT-PCR in the guard cells in Brassica rapa.
Collapse
Affiliation(s)
- Yingying Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zifu Yan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Lin C, Hang T, Jiang C, Yang P, Zhou M. Effects of different phosphorus levels on tiller bud development in hydroponic Phyllostachys edulis seedlings. TREE PHYSIOLOGY 2023; 43:1416-1431. [PMID: 37099799 DOI: 10.1093/treephys/tpad055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
An appropriate amount of phosphate fertilizer can improve the germination rate of bamboo buds and increase the bamboo shoot output. However, the underlying biological mechanisms of phosphate fertilizer in bamboo shoot development have not been systematically reported. Herein, the effects of low (LP, 1 μM), normal (NP, 50 μM) and high (HP, 1000 μM) phosphorus (P) on the growth and development of moso bamboo (Phyllostachys edulis) tiller buds were first investigated. Phenotypically, the seedling biomass, average number of tiller buds and bud height growth rate under the LP and HP treatments were significantly lower than those under the NP treatment. Next, the microstructure difference of tiller buds in the late development stage (S4) at three P levels was analyzed. The number of internode cells and vascular bundles were significantly lower in the LP treatments than in the NP treatments. The relative expression levels of eight P transport genes, eight hormone-related genes and four bud development genes at the tiller bud developmental stage (S2-S4) and the tiller bud re-tillering stage were analyzed with real-time polymerase chain reaction. The results showed that the expression trends for most P transport genes, hormone-related genes and bud development genes from S2 to S4 were diversified at different P levels, and the expression levels were also different at different P levels. In the tiller bud re-tillering stage, the expression levels of seven P transport genes and six hormone-related genes showed a downward trend with increasing P level. REV expression level decreased under LP and HP conditions. TB1 expression level increased under HP condition. Therefore, we conclude that P deficiency inhibits tiller bud development and re-tillering, and that P depends on the expression of REV and TB1 genes and auxin, cytokinin and strigolactones synthesis and transporter genes to mediate tiller bud development and re-tillering.
Collapse
Affiliation(s)
- Chenjun Lin
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Tingting Hang
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Chenhao Jiang
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Ping Yang
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| |
Collapse
|
13
|
Dixon LE, Pasquariello M, Badgami R, Levin KA, Poschet G, Ng PQ, Orford S, Chayut N, Adamski NM, Brinton J, Simmonds J, Steuernagel B, Searle IR, Uauy C, Boden SA. MicroRNA-resistant alleles of HOMEOBOX DOMAIN-2 modify inflorescence branching and increase grain protein content of wheat. SCIENCE ADVANCES 2022; 8:eabn5907. [PMID: 35544571 PMCID: PMC9094671 DOI: 10.1126/sciadv.abn5907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 05/26/2023]
Abstract
Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain.
Collapse
Affiliation(s)
- Laura E. Dixon
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marianna Pasquariello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Roshani Badgami
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kara A. Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gernot Poschet
- Centre of Organismal Studies (COS), University of Heidelberg, Heidelberg 69120, Germany
| | - Pei Qin Ng
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Simon Orford
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Noam Chayut
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nikolai M. Adamski
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jemima Brinton
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Burkhard Steuernagel
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain R. Searle
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott A. Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
14
|
Fu L, Wu D, Zhang X, Xu Y, Kuang L, Cai S, Zhang G, Shen Q. Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles. PLANT PHYSIOLOGY 2022; 188:1248-1263. [PMID: 34791461 PMCID: PMC8825340 DOI: 10.1093/plphys/kiab538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 05/06/2023]
Abstract
Vacuolar H+-pumping pyrophosphatases (VPs) provide a proton gradient for Na+ sequestration in the tonoplast; however, the regulatory mechanisms of VPs in developing salt tolerance have not been fully elucidated. Here, we cloned a barley (Hordeum vulgare) VP gene (HVP10) that was identified previously as the HvNax3 gene. Homology analysis showed VP10 in plants had conserved structure and sequence and likely originated from the ancestors of the Ceramiales order of Rhodophyta (Cyanidioschyzon merolae). HVP10 was mainly expressed in roots and upregulated in response to salt stress. After salt treatment for 3 weeks, HVP10 knockdown (RNA interference) and knockout (CRISPR/Cas9 gene editing) barley plants showed greatly inhibited growth and higher shoot Na+ concentration, Na+ transportation rate and xylem Na+ loading relative to wild-type (WT) plants. Reverse transcription quantitative polymerase chain reaction and microelectronic Ion Flux Estimation results indicated that HVP10 likely modulates Na+ sequestration into the root vacuole by acting synergistically with Na+/H+ antiporters (HvNHX1 and HvNHX4) to enhance H+ efflux and K+ maintenance in roots. Moreover, transgenic rice (Oryza sativa) lines overexpressing HVP10 also showed higher salt tolerance than the WT at both seedling and adult stages with less Na+ translocation to shoots and higher grain yields under salt stress. This study reveals the molecular mechanism of HVP10 underlying salt tolerance and highlights its potential in improving crop salt tolerance.
Collapse
Affiliation(s)
- Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xincheng Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yunfeng Xu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
- Author for communication:
| |
Collapse
|
15
|
Papolu PK, Ramakrishnan M, Wei Q, Vinod KK, Zou LH, Yrjala K, Kalendar R, Zhou M. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC PLANT BIOLOGY 2021; 21:585. [PMID: 34886797 PMCID: PMC8656106 DOI: 10.1186/s12870-021-03339-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND LTR retrotransposons play a significant role in plant growth, genome evolution, and environmental stress response, but their regulatory response to heat stress remains unclear. We have investigated the activities of two LTR retrotransposons, PHRE1 and PHRE2, of moso bamboo (Phyllostachys edulis) in response to heat stress. RESULTS The differential overexpression of PHRE1 and PHRE2 with or without CaMV35s promoter showed enhanced expression under heat stress in transgenic plants. The transcriptional activity studies showed an increase in transposition activity and copy number among moso bamboo wild type and Arabidopsis transgenic plants under heat stress. Comparison of promoter activity in transgenic plants indicated that 5'LTR promoter activity was higher than CaMV35s promoter. Additionally, yeast one-hybrid (Y1H) system and in planta biomolecular fluorescence complementation (BiFC) assay revealed interactions of heat-dependent transcription factors (TFs) with 5'LTR sequence and direct interactions of TFs with pol and gag. CONCLUSIONS Our results conclude that the 5'LTR acts as a promoter and could regulate the LTR retrotransposons in moso bamboo under heat stress.
Collapse
Affiliation(s)
- Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | | | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Kim Yrjala
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
16
|
He M, Zhang C, Chu L, Wang S, Shi L, Xu F. Specific and multiple-target gene silencing reveals function diversity of BnaA2.NIP5;1 and BnaA3.NIP5;1 in Brassica napus. PLANT, CELL & ENVIRONMENT 2021; 44:3184-3194. [PMID: 33937996 DOI: 10.1111/pce.14077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Rapeseed (Brassica napus) is an economically important oilseed crop in the world, but its production is strongly dependent on boron (B) supplies. Major intrinsic protein NIP5;1 is essential for B uptake and plant development under B limitation. In this study, phylogenetic and expression analyses identified two NIP5;1 orthologue genes, BnaA2.NIP5;1 and BnaA3.NIP5;1, which are mainly expressed in roots of B. napus. Specific and multiple-target RNAi was used to suppress BnaA3.NIP5;1 or both BnaA2.NIP5;1 and BnaA3.NIP5;1 expression in B-efficient rapeseed Qingyou 10 (QY10), respectively, for revealing the roles of BnaA2.NIP5;1 and BnaA3.NIP5;1 in low-B tolerance in B. napus. We found that both BnaA2.NIP5;1 and BnaA3.NIP5;1 are important for B. napus normal growth under low-B conditions, while these two genes have distinct roles. BnaA2.NIP5;1 is mainly expressed in the epidermis cells, which is required for efficient B uptake into roots, hence for B translocation to the shoots. BnaA3.NIP5;1 is specifically localized in the distal part of lateral root cap cells to promoter root elongation under low-B conditions, which is important for seed production in the maturity stage of B. napus. Taken together, our specific and multiple-target RNAi strategy provides novel insights into the gene function diversification between BnaA2.NIP5;1 and BnaA3.NIP5;1, such an approach can be potentially applicable to other polyploid crops.
Collapse
Affiliation(s)
- Mingliang He
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Liuyang Chu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
He M, Wang S, Zhang C, Liu L, Zhang J, Qiu S, Wang H, Yang G, Xue S, Shi L, Xu F. Genetic variation of BnaA3.NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus. PLoS Genet 2021; 17:e1009661. [PMID: 34197459 PMCID: PMC8279314 DOI: 10.1371/journal.pgen.1009661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/14/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022] Open
Abstract
Boron (B) is essential for vascular plants. Rapeseed (Brassica napus) is the second leading crop source for vegetable oil worldwide, but its production is critically dependent on B supplies. BnaA3.NIP5;1 was identified as a B-efficient candidate gene in B. napus in our previous QTL fine mapping. However, the molecular mechanism through which this gene improves low-B tolerance remains elusive. Here, we report genetic variation in BnaA3.NIP5;1 gene, which encodes a boric acid channel, is a key determinant of low-B tolerance in B. napus. Transgenic lines with increased BnaA3.NIP5;1 expression exhibited improved low-B tolerance in both the seedling and maturity stages. BnaA3.NIP5;1 is preferentially polar-localized in the distal plasma membrane of lateral root cap (LRC) cells and transports B into the root tips to promote root growth under B-deficiency conditions. Further analysis revealed that a CTTTC tandem repeat in the 5'UTR of BnaA3.NIP5;1 altered the expression level of the gene, which is tightly associated with plant growth and seed yield. Field tests with natural populations and near-isogenic lines (NILs) confirmed that the varieties carried BnaA3.NIP5;1Q allele significantly improved seed yield. Taken together, our results provide novel insights into the low-B tolerance of B. napus, and the elite allele of BnaA3.NIP5;1 could serve as a direct target for breeding low-B-tolerant cultivars.
Collapse
Affiliation(s)
- Mingliang He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Liu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinyao Zhang
- Institute of Agricultural Resource and Regional Planning, CAAS, Beijing, China
| | - Shou Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hong Wang
- Institute of Agricultural Resource and Regional Planning, CAAS, Beijing, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Sensing Methodologies in Agriculture for Monitoring Biotic Stress in Plants Due to Pathogens and Pests. INVENTIONS 2021. [DOI: 10.3390/inventions6020029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reducing agricultural losses is an effective way to sustainably increase agricultural output efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the development of innovative sensing technologies for detecting crop stresses/stressors and deploying efficient measures. This article aims to present the current state of the methodologies applied in the field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working principles are described, and key recent works discussed. The detection methods overviewed for phytopathogen-related stress identification include nucleic acid-based methods, immunological methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods, monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors, and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have been made between different sensing techniques as well as recently reported works, where the strengths and limitations are identified. Finally, the prospective future directions for monitoring biotic stress in crops are discussed.
Collapse
|
19
|
Ben-Amar A, Mliki A. Timely gene detection assay and reliable screening of genetically engineered plants using an improved direct PCR-based technology. Transgenic Res 2021; 30:263-274. [PMID: 33880718 DOI: 10.1007/s11248-021-00250-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Engineered plants have been widely produced for fundamental and practical use. Several methods have been developed for genetically modified crop detection and quantification; however; they still laborious and expensive. Efforts are needed to set-up diagnosis-oriented techniques as alternatives to overcome DNA extraction which remains a tedious and time-consuming procedure. Here, we established a standard direct PCR workflow using a regular Taq polymerase without prior DNA purification over a wide range of plant species. Only a small amount of fresh tissue allowed direct amplification of target gene sequences. Evaluation of accuracy, sensitivity, and reproducibility of direct PCR assay was investigated for proof-of-concept, and subsequently applied to gene detection assays and rapid transgenic revealing. The newly established method achieved full success and has amplified constitutive housekeeping genes from several plant specimens in a reproducible manner with high-quality sequencing profiles. In our case, the screening of transgenic plants confirmed that both the gfp-ER reporter gene and the npt II selectable marker were integrated into the plant genome. This direct PCR approach provides a powerful tool for large-scale PCR-based gene detection making DNA purification irrelevant. It could be easily implemented for downstream applications in the field of genetic fingerprinting, plant biotechnology, and functional genomics.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia.
| | - Ahmed Mliki
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
20
|
Mounier T, Navarro-Sanz S, Bureau C, Antoine L, Varoquaux F, Durandet F, Périn C. A fast, efficient and high-throughput procedure involving laser microdissection and RT droplet digital PCR for tissue-specific expression profiling of rice roots. BMC Mol Cell Biol 2020; 21:92. [PMID: 33302866 PMCID: PMC7727186 DOI: 10.1186/s12860-020-00312-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/10/2020] [Indexed: 11/22/2022] Open
Abstract
Background In rice, the cortex and outer tissues play a key role in submergence tolerance. The cortex differentiates into aerenchyma, which are air-containing cavities that allow the flow of oxygen from shoots to roots, whereas exodermis suberification and sclerenchyma lignification limit oxygen loss from the mature parts of roots by forming a barrier to root oxygen loss (ROL). The genes and their networks involved in the cellular identity and differentiation of these tissues remain poorly understood. Identification and characterization of key regulators of aerenchyma and ROL barrier formation require determination of the specific expression profiles of these tissues. Results We optimized an approach combining laser microdissection (LM) and droplet digital RT-PCR (ddRT-PCR) for high-throughput identification of tissue-specific expression profiles. The developed protocol enables rapid (within 3 days) extraction of high-quality RNA from root tissues with a low contamination rate. We also demonstrated the possibility of extracting RNAs from paraffin blocks stored at 4 °C without any loss of quality. We included a detailed troubleshooting guide that should allow future users to adapt the proposed protocol to other tissues and/or species. We demonstrated that our protocol, which combines LM with ddRT-PCR, can be used as a complementary tool to in situ hybridization for tissue-specific characterization of gene expression even with a low RNA concentration input. We illustrated the efficiency of the proposed approach by validating three of four potential tissue-specific candidate genes detailed in the RiceXpro database. Conclusion The detailed protocol and the critical steps required to optimize its use for other species will democratize tissue-specific transcriptome approaches combining LM with ddRT-PCR for analyses of plants.
Collapse
Affiliation(s)
- Thibault Mounier
- CIRAD, UMR-AGAP, Université de Montpellier, Avenue Agropolis, F-34398, Montpellier Cedex 5, France
| | - Sergi Navarro-Sanz
- CIRAD, UMR-AGAP, Université de Montpellier, Avenue Agropolis, F-34398, Montpellier Cedex 5, France
| | - Charlotte Bureau
- CIRAD, UMR-AGAP, Université de Montpellier, Avenue Agropolis, F-34398, Montpellier Cedex 5, France
| | - Lefeuvre Antoine
- IAGE Company, Avenue Agropolis, F-34398, Montpellier Cedex 5, France
| | - Fabrice Varoquaux
- CIRAD, UMR-AGAP, Université de Montpellier, Avenue Agropolis, F-34398, Montpellier Cedex 5, France
| | - Franz Durandet
- IAGE Company, Avenue Agropolis, F-34398, Montpellier Cedex 5, France
| | - Christophe Périn
- CIRAD, UMR-AGAP, Université de Montpellier, Avenue Agropolis, F-34398, Montpellier Cedex 5, France.
| |
Collapse
|
21
|
Shen Q, Fu L, Su T, Ye L, Huang L, Kuang L, Wu L, Wu D, Chen ZH, Zhang G. Calmodulin HvCaM1 Negatively Regulates Salt Tolerance via Modulation of HvHKT1s and HvCAMTA4. PLANT PHYSIOLOGY 2020; 183:1650-1662. [PMID: 32554472 PMCID: PMC7401103 DOI: 10.1104/pp.20.00196] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) signaling modulates sodium (Na+) transport in plants; however, the role of the Ca2+ sensor calmodulin (CaM) in salt tolerance is elusive. We previously identified a salt-responsive calmodulin (HvCaM1) in a proteome study of barley (Hordeum vulgare) roots. Here, we employed bioinformatic, physiological, molecular, and biochemical approaches to determine the role of HvCaM1 in barley salt tolerance. CaM1s are highly conserved in green plants and probably originated from ancestors of green algae of the Chlamydomonadales order. HvCaM1 was mainly expressed in roots and was significantly up-regulated in response to long-term salt stress. Localization analyses revealed that HvCaM1 is an intracellular signaling protein that localizes to the root stele and vascular systems of barley. After treatment with 200 mm NaCl for 4 weeks, HvCaM1 knockdown (RNA interference) lines showed significantly larger biomass but lower Na+ concentration, xylem Na+ loading, and Na+ transportation rates in shoots compared with overexpression lines and wild-type plants. Thus, we propose that HvCaM1 is involved in regulating Na+ transport, probably via certain class I high-affinity potassium transporter (HvHKT1;5 and HvHKT1;1)-mediated Na+ translocation in roots. Moreover, we demonstrated that HvCaM1 interacted with a CaM-binding transcription activator (HvCAMTA4), which may be a critical factor in the regulation of HKT1s in barley. We conclude that HvCaM1 negatively regulates salt tolerance, probably via interaction with HvCAMTA4 to modulate the down-regulation of HvHKT1;5 and/or the up-regulation of HvHKT1;1 to reduce shoot Na+ accumulation under salt stress in barley.
Collapse
Affiliation(s)
- Qiufang Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liangbo Fu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tingting Su
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lingzhen Ye
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lu Huang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liuhui Kuang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liyuan Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Yang H, Zhao X, Li L, Zhang J. Detecting the colonization of ericoid mycorrhizal fungi in Vaccinium uliginosum using in situ polymerase chain reaction and green fluorescent protein. PLANT METHODS 2020; 16:102. [PMID: 32760433 PMCID: PMC7391682 DOI: 10.1186/s13007-020-00645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Ericoid mycorrhizal fungi (EMF) play important roles in mineral cycling and plant nutrient acquisition, and they increase plant survival in nutrient-poor environments. In this study, we detected the colonization of EMF using a green fluorescent protein (GFP) expression method and in situ PCR. RESULTS Genetic transformants of Cryptosporiopsis ericae and Sordariomycetes sp. expressing GFP were obtained via Agrobacterium tumefaciens-mediated transformation. GFP transformants were able to infect Vaccinium uliginosum, and their fluorescence was visible in the hair roots. Both in situ PCR and the GFP-expressing method indicated that EMF could colonize the hair roots of V. uliginosum 2 weeks after inoculation. CONCLUSIONS This research represents the first attempt to detect ericoid mycorrhizal colonization using in situ PCR. A GFP-expressing method is an excellent system for detecting the colonization of EMF, but it is dependent on the successful transformation and expression of the gfp gene. In situ PCR and the GFP expression may be developed as new tools to study the interactions of EMF both with ericaceous plants and with the environment.
Collapse
Affiliation(s)
- Hongyi Yang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 China
| | - Xingyu Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, 150081 China
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 China
| |
Collapse
|
23
|
Houston K, Qiu J, Wege S, Hrmova M, Oakey H, Qu Y, Smith P, Situmorang A, Macaulay M, Flis P, Bayer M, Roy S, Halpin C, Russell J, Schreiber M, Byrt C, Gilliham M, Salt DE, Waugh R. Barley sodium content is regulated by natural variants of the Na + transporter HvHKT1;5. Commun Biol 2020; 3:258. [PMID: 32444849 PMCID: PMC7244711 DOI: 10.1038/s42003-020-0990-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/04/2022] Open
Abstract
During plant growth, sodium (Na+) in the soil is transported via the xylem from the root to the shoot. While excess Na+ is toxic to most plants, non-toxic concentrations have been shown to improve crop yields under certain conditions, such as when soil K+ is low. We quantified grain Na+ across a barley genome-wide association study panel grown under non-saline conditions and identified variants of a Class 1 HIGH-AFFINITY-POTASSIUM-TRANSPORTER (HvHKT1;5)-encoding gene responsible for Na+ content variation under these conditions. A leucine to proline substitution at position 189 (L189P) in HvHKT1;5 disturbs its characteristic plasma membrane localisation and disrupts Na+ transport. Under low and moderate soil Na+, genotypes containing HvHKT1:5P189 accumulate high concentrations of Na+ but exhibit no evidence of toxicity. As the frequency of HvHKT1:5P189 increases significantly in cultivated European germplasm, we cautiously speculate that this non-functional variant may enhance yield potential in non-saline environments, possibly by offsetting limitations of low available K+.
Collapse
Affiliation(s)
- Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Stefanie Wege
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Maria Hrmova
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Life Science, Huaiyin Normal University, 223300, Huaian, China
| | - Helena Oakey
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Yue Qu
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Pauline Smith
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Micha Bayer
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Stuart Roy
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot Dry Climate, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Claire Halpin
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Caitlin Byrt
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- Research School of Biology, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT, 2601, Australia
| | - Matt Gilliham
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK.
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
24
|
Wang F, Deng M, Chen J, He Q, Jia X, Guo H, Xu J, Liu Y, Zhang S, Shou H, Mao C. CASEIN KINASE2-Dependent Phosphorylation of PHOSPHATE2 Fine-tunes Phosphate Homeostasis in Rice. PLANT PHYSIOLOGY 2020; 183:250-262. [PMID: 32161109 PMCID: PMC7210639 DOI: 10.1104/pp.20.00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
Plants have evolved complex physiological and biochemical mechanisms to adapt to a heterogeneous soil phosphorus environment. PHOSPHATE2 (PHO2) is a phosphate (Pi) starvation-signaling regulator involved in maintaining Pi homeostasis in plants. Arabidopsis (Arabidopsis thaliana) PHO2 targets PHOSPHATE TRANSPORTER1 (PHT1) and PHO1 for degradation, whereas rice (Oryza sativa) PHO2 is thought to mediate PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 degradation. However, it is unclear whether and how PHO2 is post-translationally regulated. Here, we show that in rice, the CASEIN KINASE2 (OsCK2) catalytic subunit OsCK2α3 interacts with OsPHO2 in vitro and in vivo in vascular tissues cells, and phosphorylates OsPHO2 at Ser-841. Phosphorylated OsPHO2 is degraded more rapidly than native OsPHO2 in cell-free degradation assays. OsPHO2 interacts with OsPHO1 and targets it for degradation through a multivesicular body-mediated pathway. PHO1 mutation partially rescued the pho2 mutant phenotype. Further genetic analysis showed that a nonphosphorylatable version of OsPHO2 rescued the Ospho2 phenotype of high Pi accumulation in leaves better than native OsPHO2. In addition to the previously established role of OsCK2 in negatively regulating endoplasmic reticulum exit of PHT1 phosphate transporters, this work uncovers a role for OsCK2α3 in modulating Pi homeostasis through regulating the phosphorylation status and abundance of OsPHO2 in rice.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiju Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jieyu Chen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinye Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaxing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
26
|
Lentini Z, Tabares E, Buitrago ME. Vibratome Sectioning and Clearing for Easing Studies of Cassava Embryo Formation. FRONTIERS IN PLANT SCIENCE 2020; 11:1180. [PMID: 32849730 PMCID: PMC7417605 DOI: 10.3389/fpls.2020.01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 05/09/2023]
Abstract
This work describes the application of clearing on vibratome sections to study the embryo formation in cassava. This procedure provides high-resolution images and reduces significantly the number of sections that need to be analyzed per ovule. This methodology was instrumental for the development of the protocol for embryo rescue in cassava. It has been also applied to monitor the embryo formation response when optimizing seed setting from regular and broad crosses for cassava breeding. Broad crosses between cassava and castor bean (incompatible-euphorbiaceae species) were made aiming to induce doubled haploids through the elimination of the incompatible-male parent genome as done in cereals. Castor bean is widely available and provides continues supply of pollen. Our results suggest that this methodology is easy and effective to assess the response of hundreds of cassava ovules pollinated with castor bean pollen, allowing the identification of multicellular structures in the embryo sac without apparent formation of endosperm. The protocol is also useful when developing and optimizing a methodology to induce doubled haploids in cassava via gynogenesis or from ovules pollinated with irradiated cassava pollen.
Collapse
|
27
|
Laser Microdissection as a Useful Tool to Study Gene Expression in Plant and Fungal Partners in AM Symbiosis. Methods Mol Biol 2020; 2146:171-184. [PMID: 32415603 DOI: 10.1007/978-1-0716-0603-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laser microdissection (LMD) technology has been widely applied to plant tissues, offering novel information on the role of different cell-type populations during plant-microbe interactions. In this chapter, protocols to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations from arbuscular mycorrhizal (AM) roots are described in detail, starting from the biological material preparation to gene expression analyses by RT-PCR and RT-qPCR.
Collapse
|
28
|
Huang L, Kuang L, Wu L, Shen Q, Han Y, Jiang L, Wu D, Zhang G. The HKT Transporter HvHKT1;5 Negatively Regulates Salt Tolerance. PLANT PHYSIOLOGY 2020; 182:584-596. [PMID: 31690708 PMCID: PMC6945855 DOI: 10.1104/pp.19.00882] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 05/18/2023]
Abstract
Maintaining low intracellular Na+ concentrations is an essential physiological strategy in salt stress tolerance in most cereal crops. Here, we characterized a member of the high-affinity K+ transporter (HKT) family in barley (Hordeum vulgare), HvHKT1;5, which negatively regulates salt tolerance and has different functions from its homology in other cereal crops. HvHKT1;5 encodes a plasma membrane protein localized to root stele cells, particularly in xylem parenchyma cells adjacent to the xylem vessels. Its expression was highly induced by salt stress. Heterogenous expression of HvHKT1;5 in Xenopus laevis oocytes showed that HvHKT1;5 was permeable to Na+, but not to K+, although its Na+ transport activity was inhibited by external K+ HvHKT1;5 knockdown barley lines showed improved salt tolerance, a dramatic decrease in Na+ translocation from roots to shoots, and increases in K+/Na+ when compared with wild-type plants under salt stress. The negative regulation of HvHKT1;5 in salt tolerance distinguishes it from other HKT1;5 members, indicating that barley has a distinct Na+ transport system. These findings provide a deeper understanding of the functions of HKT family members and the regulation of HvHKT1;5 in improving salt tolerance of barley.
Collapse
Affiliation(s)
- Lu Huang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Liyuan Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Yong Han
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Lixi Jiang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
29
|
Xiang D, Quilichini TD, Liu Z, Gao P, Pan Y, Li Q, Nilsen KT, Venglat P, Esteban E, Pasha A, Wang Y, Wen R, Zhang Z, Hao Z, Wang E, Wei Y, Cuthbert R, Kochian LV, Sharpe A, Provart N, Weijers D, Gillmor CS, Pozniak C, Datla R. The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. THE PLANT CELL 2019; 31:2888-2911. [PMID: 31628162 PMCID: PMC6925018 DOI: 10.1105/tpc.19.00397] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Modern wheat production comes from two polyploid species, Triticum aestivum and Triticum turgidum (var durum), which putatively arose from diploid ancestors Triticum urartu, Aegilops speltoides, and Aegilops tauschii How gene expression during embryogenesis and grain development in wheats has been shaped by the differing contributions of diploid genomes through hybridization, polyploidization, and breeding selection is not well understood. This study describes the global landscape of gene activities during wheat embryogenesis and grain development. Using comprehensive transcriptomic analyses of two wheat cultivars and three diploid grasses, we investigated gene expression at seven stages of embryo development, two endosperm stages, and one pericarp stage. We identified transcriptional signatures and developmental similarities and differences among the five species, revealing the evolutionary divergence of gene expression programs and the contributions of A, B, and D subgenomes to grain development in polyploid wheats. The characterization of embryonic transcriptional programming in hexaploid wheat, tetraploid wheat, and diploid grass species provides insight into the landscape of gene expression in modern wheat and its ancestral species. This study presents a framework for understanding the evolution of domesticated wheat and the selective pressures placed on grain production, with important implications for future performance and yield improvements.plantcell;31/12/2888/FX1F1fx1.
Collapse
Affiliation(s)
- Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Ziying Liu
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Peng Gao
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Youlian Pan
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kirby T Nilsen
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Prakash Venglat
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Rui Wen
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Zhongjuan Zhang
- Laboratory of Biochemistry, Wageningen University, 6703HA Wageningen, The Netherlands
| | - Zhaodong Hao
- Laboratory of Biochemistry, Wageningen University, 6703HA Wageningen, The Netherlands
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yangdou Wei
- College of Art and Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A5, Canada
| | - Richard Cuthbert
- Agriculture and Agri-Food Canada, Swift Current, Saskatchewan S9H 3X2, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada
| | - Andrew Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703HA Wageningen, The Netherlands
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato 36824, México
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| |
Collapse
|
30
|
Ye L, Wang Y, Long L, Luo H, Shen Q, Broughton S, Wu D, Shu X, Dai F, Li C, Zhang G. A Trypsin Family Protein Gene Controls Tillering and Leaf Shape in Barley. PLANT PHYSIOLOGY 2019; 181:701-713. [PMID: 31427466 PMCID: PMC6776861 DOI: 10.1104/pp.19.00717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 05/05/2023]
Abstract
Tillering or branching is an important agronomic trait in plants, especially cereal crops. Previously, in barley (Hordeum vulgare) 'Vlamingh', we identified the high number of tillers1 (hnt1) mutant from a γ-ray-treated segregating population. hnt1 exhibited more tillers per plant, narrower leaves, and reduced plant height compared with the wild-type parent. In this study, we show that the hnt1-increased tiller number per plant is caused by accelerated outgrowth of tiller buds and that hnt1 narrower leaves are caused by a reduction in vascular tissue and cell number. Genetic analysis revealed that a 2-bp deletion in the gene HORVU2Hr1G098820 (HvHNT1), encoding a trypsin family protein, was responsible for the hnt1 mutant phenotype. Gene function was further confirmed by transgenic complementation with HvHNT1 and RNA interference experiments. HvHNT1 was expressed in vascular tissue, leaf axils, and adventitious root primordia and shown to negatively regulate tiller development. Mutation of HvHNT1 led to the accumulation of a putative cyclophilin-type peptidyl-prolyl cis/trans-isomerase (HvPPIase), which physically interacts with the HvHNT1 protein in the nucleus of plant cells. Our data suggest that HvHNT1 controls tiller development and leaf width through HvPPIase, thus contributing to understanding of the molecular players that control tillering in barley.
Collapse
Affiliation(s)
- Lingzhen Ye
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
- New Rural Development Institute, Zhejiang University, Hangzhou 310058, China
| | - Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Lizhi Long
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Luo
- Western Barley Genetics Alliance/State Agricultural Biotechnology Centre, Murdoch University, Murdoch Western Australia 6132, Australia
| | - Qiufang Shen
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Sue Broughton
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, Western Australia 6151, Australia
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Chengdao Li
- Western Barley Genetics Alliance/State Agricultural Biotechnology Centre, Murdoch University, Murdoch Western Australia 6132, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, Western Australia 6151, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Hubei Jingzhou 434025, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Zhu J, Li Y, Lin J, Wu Y, Guo H, Shao Y, Wang F, Wang X, Mo X, Zheng S, Yu H, Mao C. CRD1, an Xpo1 domain protein, regulates miRNA accumulation and crown root development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:328-342. [PMID: 31257621 DOI: 10.1111/tpj.14445] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Crown root (CR) is the main component of the fibrous root system in cereal crops, but the molecular mechanism underlying CR development is still unclear. Here, we isolated the crown root defect 1 (crd1) mutant from ethyl methane sulfonate-mutated mutant library, which significantly inhibited CR development. The CRD1 was identified through genome resequencing and complementation analysis, which encodes an Xpo1 domain protein: the rice ortholog of Arabidopsis HASTY (HST) and human exportin-5 (XPO5). CRD1 is ubiquitously expressed, with the highest expression levels in the CR primordium at the stem base. CRD1 is a nucleocytoplasmic protein. The crd1 mutant contains significantly reduced miRNA levels in the cytoplasm and nucleus, suggesting that CRD1 is essential for maintaining normal miRNA levels in plant cells. The altered CR phenotype of crd1 was simulated by target mimicry of miR156, suggesting that this defect is due to the disruption of miR156 regulatory pathways. Our analysis of CRD1, the HST ortholog identified in monocots, expands our understanding of the molecular mechanisms underlying miRNA level and CR development.
Collapse
Affiliation(s)
- Jianshu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaxing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanlin Shao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofei Wang
- School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
32
|
Olsen S, Krause K. A rapid preparation procedure for laser microdissection-mediated harvest of plant tissues for gene expression analysis. PLANT METHODS 2019; 15:88. [PMID: 31388345 PMCID: PMC6676614 DOI: 10.1186/s13007-019-0471-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Gene expression changes that govern essential biological processes can occur at the cell-specific level. To gain insight into such events, laser microdissection is applied to cut out specific cells or tissues from which RNA for gene expression analysis is isolated. However, the preparation of plant tissue sections for laser microdissection and subsequent RNA isolation usually involves fixation and embedding, processes that are often time-consuming and can lower the yield and quality of isolated RNA. RESULTS Infection sites of the parasitic plant Cuscuta reflexa growing on its compatible host plant Pelargonium zonale were sectioned using a vibratome and dried on glass slides at 4 °C before laser microdissection. High quality RNA (RQI > 7) was isolated from 1 mm2, 3 mm2 and 6 mm2 total surface areas of laser microdissection-harvested C. reflexa tissue, with the yield of RNA correlating to the amount of collected material (on average 7 ng total RNA/mm2). The expression levels of two parasite genes previously found to be highly expressed during host plant infection were shown to differ individually between specific regions of the infection site. By drying plant sections under low pressure to reduce the dehydration time, the induced expression of two wound-related genes during preparation was avoided. CONCLUSIONS Plants can be prepared quickly and easily for laser microdissection by direct sectioning of fresh tissue followed by dehydration on glass slides. We show that RNA isolated from material treated in this manner maintains high quality and enables the investigation of differential gene expression at a high morphological resolution.
Collapse
Affiliation(s)
- Stian Olsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| |
Collapse
|
33
|
Preparing thin cross sections of Arabidopsis roots without embedding. Biotechniques 2017; 63:281-283. [DOI: 10.2144/000114621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/01/2017] [Indexed: 11/23/2022] Open
Abstract
Here, we describe a method for obtaining thin cross sections of Arabidopsis thaliana roots without fixation and embedding. Roots were grown in pinholes made in a solidified growth medium, and cross sections were prepared without pretreatment. Using this method, we detected unique distributions of two polar-localized proteins—green fluorescent protein (GFP)-tagged BOR1 and NIP5;1—with less sample preparation time than conventional methods. This method is simple, rapid, and yields high-quality cross-section images that are free from artifacts commonly associated with embedding or the sample preparation procedures used in many conventional methods.
Collapse
|
34
|
Wen Z, Tyerman SD, Dechorgnat J, Ovchinnikova E, Dhugga KS, Kaiser BN. Maize NPF6 Proteins Are Homologs of Arabidopsis CHL1 That Are Selective for Both Nitrate and Chloride. THE PLANT CELL 2017; 29:2581-2596. [PMID: 28887406 PMCID: PMC5774558 DOI: 10.1105/tpc.16.00724] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/21/2017] [Accepted: 09/05/2017] [Indexed: 05/02/2023]
Abstract
Nitrate uptake by plant cells requires both high- and low-affinity transport activities. Arabidopsis thaliana nitrate transporter 1/peptide transporter family (NPF) 6.3 is a dual-affinity plasma membrane transport protein that has both high- and low-affinity functions. At-NPF6.3 imports and senses nitrate and is regulated by phosphorylation at Thr-101 (T101). A detailed functional analysis of two maize (Zea mays) homologs of At-NPF6.3 (Zm-NPF6.6 and Zm-NPF6.4) showed that Zm-NPF6.6 was a pH-dependent nonbiphasic high-affinity nitrate-specific transport protein. By contrast, maize NPF6.4 was a low-affinity nitrate transporter with efflux activity. When supplied chloride, NPF6.4 switched to a high-affinity chloride selective transporter, while NPF6.6 had only a low-affinity chloride transport activity. Structural predictions identified a nitrate binding His (H362) in NPF6.6 but not in NPF6.4. Mutation of NPF6.4 Tyr-370 to His (Y370H) resulted in saturable high-affinity nitrate transport activity and nitrate selectivity. Loss of H362 in NPF6.6 (H362Y) eliminated both nitrate and chloride transport. Furthermore, alterations to Thr-104, a conserved phosphorylation site in NPF6.6, resulted in a similar high-affinity nitrate transport activity with increased Km, whereas equivalent changes in NPF6.4 (T106) disrupted high-affinity chloride transport activity. NPF6 proteins exhibit different substrate specificity in plants and regulate nitrate transport affinity/selectivity using a conserved His residue.
Collapse
Affiliation(s)
- Zhengyu Wen
- School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Stephen D Tyerman
- Australian Research Centre of Excellence in Plant Energy Biology, School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Julie Dechorgnat
- School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| | - Evgenia Ovchinnikova
- School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| | | | - Brent N Kaiser
- School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
35
|
Hocking B, Conn SJ, Manohar M, Xu B, Athman A, Stancombe MA, Webb AR, Hirschi KD, Gilliham M. Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4171-4183. [PMID: 28645169 PMCID: PMC5853972 DOI: 10.1093/jxb/erx209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Arabidopsis thaliana cation exchangers (CAX1 and CAX3) are closely related tonoplast-localized calcium/proton (Ca2+/H+) antiporters that contribute to cellular Ca2+ homeostasis. CAX1 and CAX3 were previously shown to interact in yeast; however, the function of this complex in plants has remained elusive. Here, we demonstrate that expression of CAX1 and CAX3 occurs in guard cells. Additionally, CAX1 and CAX3 are co-expressed in mesophyll tissue in response to wounding or flg22 treatment, due to the induction of CAX3 expression. Having shown that the transporters can be co-expressed in the same cells, we demonstrate that CAX1 and CAX3 can form homomeric and heteromeric complexes in plants. Consistent with the formation of a functional CAX1-CAX3 complex, CAX1 and CAX3 integrated into the yeast genome suppressed a Ca2+-hypersensitive phenotype of mutants defective in vacuolar Ca2+ transport, and demonstrated enzyme kinetics different from those of either CAX protein expressed by itself. We demonstrate that the interactions between CAX proteins contribute to the functioning of stomata, because stomata were more closed in cax1-1, cax3-1, and cax1-1/cax3-1 loss-of-function mutants due to an inability to buffer Ca2+ effectively. We hypothesize that the formation of CAX1-CAX3 complexes may occur in the mesophyll to affect intracellular Ca2+ signaling during defense responses.
Collapse
Affiliation(s)
- Bradleigh Hocking
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
| | - Simon J Conn
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Murli Manohar
- US Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Bo Xu
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
| | - Asmini Athman
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
| | | | - Alex R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Kendal D Hirschi
- US Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Correspondence: ;
| | - Matthew Gilliham
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
- Correspondence: ;
| |
Collapse
|
36
|
Andersen TB, Martinez-Swatson KA, Rasmussen SA, Boughton BA, Jørgensen K, Andersen-Ranberg J, Nyberg N, Christensen SB, Simonsen HT. Localization and in-Vivo Characterization of Thapsia garganica CYP76AE2 Indicates a Role in Thapsigargin Biosynthesis. PLANT PHYSIOLOGY 2017; 174:56-72. [PMID: 28275147 PMCID: PMC5411132 DOI: 10.1104/pp.16.00055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
The Mediterranean plant Thapsia garganica (dicot, Apiaceae), also known as deadly carrot, produces the highly toxic compound thapsigargin. This compound is a potent inhibitor of the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase calcium pump in mammals and is of industrial importance as the active moiety of the anticancer drug mipsagargin, currently in clinical trials. Knowledge of thapsigargin in planta storage and biosynthesis has been limited. Here, we present the putative second step in thapsigargin biosynthesis, by showing that the cytochrome P450 TgCYP76AE2, transiently expressed in Nicotiana benthamiana, converts epikunzeaol into epidihydrocostunolide. Furthermore, we show that thapsigargin is likely to be stored in secretory ducts in the roots. Transcripts from TgTPS2 (epikunzeaol synthase) and TgCYP76AE2 in roots were found only in the epithelial cells lining these secretory ducts. This emphasizes the involvement of these cells in the biosynthesis of thapsigargin. This study paves the way for further studies of thapsigargin biosynthesis.
Collapse
Affiliation(s)
- Trine Bundgaard Andersen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Karen Agatha Martinez-Swatson
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Silas Anselm Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Berin Alain Boughton
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Kirsten Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Johan Andersen-Ranberg
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Nils Nyberg
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Søren Brøgger Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Henrik Toft Simonsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.);
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.);
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.);
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| |
Collapse
|
37
|
Jaime-Pérez N, Pineda B, García-Sogo B, Atares A, Athman A, Byrt CS, Olías R, Asins MJ, Gilliham M, Moreno V, Belver A. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. PLANT, CELL & ENVIRONMENT 2017; 40:658-671. [PMID: 27987209 DOI: 10.1111/pce.12883] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/05/2016] [Indexed: 05/20/2023]
Abstract
Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+ /K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+ /K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.
Collapse
Affiliation(s)
- Noelia Jaime-Pérez
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Prof. Albareda 1, E-18008, Granada, Spain
| | - Benito Pineda
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Begoña García-Sogo
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Alejandro Atares
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Asmini Athman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Raquel Olías
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Prof. Albareda 1, E-18008, Granada, Spain
| | - Maria José Asins
- Plant Protection and Biotechnology Center, Instituto Valenciano de Investigaciones Agrarias (IVIA), E46113 Moncada, Valencia, Spain
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Vicente Moreno
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Andrés Belver
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Prof. Albareda 1, E-18008, Granada, Spain
| |
Collapse
|
38
|
Pornsiriwong W, Estavillo GM, Chan KX, Tee EE, Ganguly D, Crisp PA, Phua SY, Zhao C, Qiu J, Park J, Yong MT, Nisar N, Yadav AK, Schwessinger B, Rathjen J, Cazzonelli CI, Wilson PB, Gilliham M, Chen ZH, Pogson BJ. A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. eLife 2017; 6. [PMID: 28323614 PMCID: PMC5406205 DOI: 10.7554/elife.23361] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/16/2017] [Indexed: 02/06/2023] Open
Abstract
Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.
Collapse
Affiliation(s)
- Wannarat Pornsiriwong
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia.,Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Gonzalo M Estavillo
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia.,CSIRO Agriculture and Food, Acton, Australia
| | - Kai Xun Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | - Estee E Tee
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | - Diep Ganguly
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | - Peter A Crisp
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | - Su Yin Phua
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | - Chenchen Zhao
- School of Science and Health, Western Sydney University, Richmond, Australia
| | - Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia.,Waite Research Institute, University of Adelaide, Glen Osmond, Australia
| | - Jiyoung Park
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, San Diego, United States
| | - Miing Tiem Yong
- School of Science and Health, Western Sydney University, Richmond, Australia
| | - Nazia Nisar
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | - Arun Kumar Yadav
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | | | - John Rathjen
- Research School of Biology, The Australian National University, Acton, Australia
| | - Christopher I Cazzonelli
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia
| | - Philippa B Wilson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Richmond, Australia.,College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australia
| |
Collapse
|
39
|
Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ. Differential expression of microRNAs and potential targets under drought stress in barley. PLANT, CELL & ENVIRONMENT 2017; 40:11-24. [PMID: 27155357 DOI: 10.1111/pce.12764] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 05/04/2023]
Abstract
Drought is a crucial environmental constraint limiting crop production in many parts of the world. microRNA (miRNA) based gene regulation has been shown to act in several pathways, including crop response to drought stress. Sequence based profiling and computational analysis have revealed hundreds of miRNAs and their potential targets in different plant species under various stress conditions, but few have been biologically verified. In this study, 11 candidate miRNAs were tested for their expression profiles in barley. Differences in accumulation of only four miRNAs (Ath-miR169b, Osa-miR1432, Hv-miRx5 and Hv-miR166b/c) were observed between drought-treated and well-watered barley in four genotypes. miRNA targets were predicted using degradome analysis of two, different genotypes, and genotype-specific target cleavage was observed. Inverse correlation of mature miRNA accumulation with miRNA target transcripts was also genotype dependent under drought treatment. Drought-responsive miRNAs accumulated predominantly in mesophyll tissues. Our results demonstrate genotype-specific miRNA regulation under drought stress and evidence for their role in mediating expression of target genes for abiotic stress response in barley.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Juan Carlos Sanchez-Ferrero
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Linda Milne
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jamil Chowdhury
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Cell Walls, PMB1, Glen Osmond, SA, 5064, Australia
| | - Chris Brien
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Penny J Tricker
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
40
|
Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). THE NEW PHYTOLOGIST 2015; 207:1097-109. [PMID: 25904503 DOI: 10.1111/nph.13413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/17/2015] [Indexed: 05/20/2023]
Abstract
Low zinc (Zn) in soils reduces yield and grain Zn content. Regulation of ZRT/IRT-like protein (ZIP) family genes is a major mechanism in plant adaptation to low and fluctuating Zn in soil. Although several Zn deficiency-inducible ZIP genes are identified in cereals, there has been no systematic study on the association of Zn deficiency-induced uptake and root-to-shoot translocation with expression of ZIP family genes. We measured Zn deficiency-induced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare) plants by resupplying 0.5 μM Zn, and quantified the transcripts of thirteen HvZIP genes. Subcellular localization and tissue-specific expression were also determined for Zn deficiency-inducible HvZIP genes. Zn deficiency enhanced the capacity of uptake and root-to-shoot translocation of Zn, and sustained the enhanced capacity for 6 d after Zn resupply. Six HvZIP genes were highly induced in roots of Zn-deficient plants, and their proteins were localized in the plasma membrane. Tissue-specific expression in roots supports their roles in uptake and root-to-shoot translocation of Zn under low Zn conditions. Our results provide a comprehensive view on the physiological roles of ZIP genes in plant adaptation to low and fluctuating Zn in soil, and pave the way for development of new strategies to improve Zn-deficiency tolerance and biofortification in cereals.
Collapse
Affiliation(s)
- Jingwen Tiong
- Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, the University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Glenn McDonald
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Yusuf Genc
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Neil Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, the University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Chun Y Huang
- Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, the University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
41
|
Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:937-50. [PMID: 25292417 DOI: 10.1111/tpj.12695] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 05/18/2023]
Abstract
The identification of genes that improve the salt tolerance of crops is essential for the effective utilization of saline soils for agriculture. Here, we use fine mapping in a soybean (Glycine max (L.) Merr.) population derived from the commercial cultivars Tiefeng 8 and 85-140 to identify GmSALT3 (salt tolerance-associated gene on chromosome 3), a dominant gene associated with limiting the accumulation of sodium ions (Na+) in shoots and a substantial enhancement in salt tolerance in soybean. GmSALT3 encodes a protein from the cation/H+ exchanger family that we localized to the endoplasmic reticulum and which is preferentially expressed in the salt-tolerant parent Tiefeng 8 within root cells associated with phloem and xylem. We identified in the salt-sensitive parent, 85-140, a 3.78-kb copia retrotransposon insertion in exon 3 of Gmsalt3 that truncates the transcript. By sequencing 31 soybean landraces and 22 wild soybean (Glycine soja) a total of nine haplotypes including two salt-tolerant haplotypes and seven salt-sensitive haplotypes were identified. By analysing the distribution of haplotypes among 172 Chinese soybean landraces and 57 wild soybean we found that haplotype 1 (H1, found in Tiefeng 8) was strongly associated with salt tolerance and is likely to be the ancestral allele. Alleles H2-H6, H8 and H9, which do not confer salinity tolerance, were acquired more recently. H1, unlike other alleles, has a wide geographical range including saline areas, which indicates it is maintained when required but its potent stress tolerance can be lost during natural selection and domestication. GmSALT3 is a gene associated with salt tolerance with great potential for soybean improvement.
Collapse
Affiliation(s)
- Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, 100081, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M, Gilliham M. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:516-26. [PMID: 25158883 DOI: 10.1111/tpj.12651] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/09/2014] [Accepted: 08/19/2014] [Indexed: 05/05/2023]
Abstract
Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.
Collapse
Affiliation(s)
- Caitlin Siobhan Byrt
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia; School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, SA, 5064, Australia; Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Research Precinct, Glen Osmond, SA, 5064, Australia; Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Research Precinct, Glen Osmond, SA, 5064, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Research Precinct, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|