1
|
De Lorenzi G, Gherpelli Y, Luppi A, Pupillo G, Bassi P, Dottori M, Di Donato A, Merialdi G, Bonilauri P. In vitro susceptibility of Brachyspira hyodysenteriae strains isolated in pigs in northern Italy between 2005 and 2022. Res Vet Sci 2024; 168:105152. [PMID: 38219471 DOI: 10.1016/j.rvsc.2024.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Pleuromutilins (tiamulin and valnemulin) are often used to treat swine dysentery due to recurrent resistance to macrolides and lincosamides. Recently, reduced susceptibility of B. hyodysenteriae to pleuromutilin has been reported. 536 strains of B. hyodysenteriae were isolated from symptomatic pigs weighing 30-150 kg in northern Italy between 2005 and 2022. B. hyodysenteriae was isolated by standard methods and confirmed by PCR. The minimum inhibitory concentration (MIC) to doxycycline, lincomycin, tiamulin, tylosin, tylvalosine and valnemulin was evaluated according to CLSI procedures and MIC data were reported as MIC 50 and MIC 90. The temporal trend of the MIC values was evaluated by dividing the data into two groups (2005-2013 and 2014-2022). Comparison of the distribution in frequency classes in the two periods was performed using Pearson's chi-squared test (p < 0.01). MIC 50 was close to the highest values tested for lincomycin and tylosin, while MIC 90 was close to the highest values tested for all antibiotics. 71.7% of the strains were susceptible to tylvalosin, while 75%-80.4% had reduced susceptibility to valnemulin and tiamulin, respectively. The difference in the distribution of MIC classes was statistically significant in the two periods for doxycycline, tiamulin, tylvalosin and valnemulin, and more MIC classes above the epidemiological cut-off were observed in 2014-2022 compared with 2005-2013. The evaluation of the trends during the period considered shows a decreasing rate of wild-type strains with MIC values below the epidemiological cut-off over time and confirms the presence of resistant strains in northern Italy.
Collapse
Affiliation(s)
- Giorgia De Lorenzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Yuri Gherpelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Andrea Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Giovanni Pupillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Patrizia Bassi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Alessandra Di Donato
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| |
Collapse
|
2
|
Stubberfield E, AbuOun M, Card RM, Welchman D, Anjum MF. Molecular characterization of antimicrobial resistance in Brachyspira species isolated from UK chickens: Identification of novel variants of pleuromutilin and beta-lactam resistance genes. Vet Microbiol 2024; 290:109992. [PMID: 38306769 DOI: 10.1016/j.vetmic.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Brachyspira species are Gram negative, anaerobic bacteria that colonise the gut of many animals, including poultry. In poultry, Brachyspira species can be commensal (B. innocens, B. murdochii, 'B. pulli') or pathogenic (B. pilosicoli, B. intermedia, B. alvinipulli or rarely B. hyodysenteriae), the latter causing avian intestinal spirochaetosis (AIS). Antimicrobial therapy options for treatment is limited, frequently involving administration of the pleuromutilin, tiamulin, in water. In this study 38 Brachyspira isolates from chickens in the UK, representing both commensal and pathogenic species, were whole genome sequenced to identify antimicrobial resistance (AMR) mechanisms and the minimum inhibitory concentration (MIC) to a number of antimicrobials was also determined. We identified several new variants of blaOXA in B. pilosicoli and B. pulli isolates, and variations in tva which led to two new tva variants in B.murdochii and B.pulli. A number of isolates also harboured mutations known to encode AMR in the 16S and 23S rRNA genes. The percentage of isolates that were genotypically multi-drug resistance (MDR) was 16%, with the most common resistance profile being: tetracycline, pleuromutilin and beta-lactam, which were found in three 'B. pulli' and one B. pilosicoli. There was good correlation with the genotype and the corresponding antibiotic MIC phenotypes: pleuromutilins (tiamulin and valnemulin), macrolides (tylosin and tylvalosin), lincomycin and doxycycline. The occurrence of resistance determinants identified in this study in pathogenic Brachyspira, especially those which were MDR, is likely to impact treatment of AIS and clearance of infections on farm.
Collapse
Affiliation(s)
- Emma Stubberfield
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Manal AbuOun
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | - Roderick M Card
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - David Welchman
- Animal and Plant Health Agency Winchester, Itchen Abbas, Winchester SO21 1BX, UK
| | - Muna F Anjum
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
3
|
Hakimi M, Ye F, Stinman CC, Sahin O, Burrough ER. Antimicrobial susceptibility of U.S. porcine Brachyspira isolates and genetic diversity of B. hyodysenteriae by multilocus sequence typing. J Vet Diagn Invest 2024; 36:62-69. [PMID: 37968893 PMCID: PMC10734594 DOI: 10.1177/10406387231212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Swine dysentery, caused by Brachyspira hyodysenteriae and the newly recognized Brachyspira hampsonii in grower-finisher pigs, is a substantial economic burden in many swine-rearing countries. Antimicrobial therapy is the only commercially available measure to control and prevent Brachyspira-related colitis. However, data on antimicrobial susceptibility trends and genetic diversity of Brachyspira species from North America is limited. We evaluated the antimicrobial susceptibility profiles of U.S. Brachyspira isolates recovered between 2013 and 2022 to tiamulin, tylvalosin, lincomycin, doxycycline, bacitracin, and tylosin. In addition, we performed multilocus sequence typing (MLST) on 64 B. hyodysenteriae isolates. Overall, no distinct alterations in the susceptibility patterns over time were observed among Brachyspira species. However, resistance to the commonly used antimicrobials was seen sporadically with a higher resistance frequency to tylosin compared to other tested drugs. B. hampsonii was more susceptible to the tested drugs than B. hyodysenteriae and B. pilosicoli. MLST revealed 16 different sequence types (STs) among the 64 B. hyodysenteriae isolates tested, of which 5 STs were previously known, whereas 11 were novel. Most isolates belonged to the known STs: ST93 (n = 32) and ST107 (n = 13). Our findings indicate an overall low prevalence of resistance to clinically important antimicrobials other than tylosin and bacitracin, and high genetic diversity among the clinical Brachyspira isolates from pigs in the United States during the past decade. Further molecular, epidemiologic, and surveillance studies are needed to better understand the infection dynamics of Brachyspira on swine farms and to help develop effective control measures.
Collapse
Affiliation(s)
- Maria Hakimi
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Fangshu Ye
- Statistics, Iowa State University, Ames, IA, USA
| | - Chloe C. Stinman
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Eric R. Burrough
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
Predictive Power of Long-Read Whole-Genome Sequencing for Rapid Diagnostics of Multidrug-Resistant Brachyspira hyodysenteriae Strains. Microbiol Spectr 2023; 11:e0412322. [PMID: 36602320 PMCID: PMC9927316 DOI: 10.1128/spectrum.04123-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infections with Brachyspira hyodysenteriae, the etiological agent of swine dysentery, result in major economic losses in the pig industry worldwide. Even though microbial differentiation of various Brachyspira species can be obtained via PCR, no quick diagnostics for antimicrobial susceptibility testing are in place, which is mainly due to the time-consuming (4 to 7 days) anaerobic growth requirements of these organisms. Veterinarians often rely on a clinical diagnosis for initiating antimicrobial treatment. These treatments are not always effective, which may be due to high levels of acquired resistance in B. hyodysenteriae field isolates. By using long-read-only whole-genome sequencing and a custom-trained Bonito base-calling model, 81 complete B. hyodysenteriae genomes with median Q51 scores and 99% completeness were obtained from 86 field strains. This allowed the assessment of the predictive potential of genetic markers in relation to the observed acquired resistance phenotypes obtained via agar dilution susceptibility testing. Multidrug resistance was observed in 77% and 21% of the tested strains based on epidemiological cutoff and clinical breakpoint values, respectively. The predictive power of genetic hallmarks (genes and/or gene mutations) for antimicrobial susceptibility testing was promising. Sensitivity and specificity for tiamulin [tva(A) and 50SL3N148S, 99% and 67%], valnemulin [tva(A), 97% and 92%), lincomycin (23SA2153T/G and lnuC, 94% and 100%), tylvalosin (23SA2153T/G, 99% and 93%), and doxycycline (16SG1026C, 93% and 87%) were determined. The predictive power of these genetic hallmarks is promising for use in sequencing-based workflows to speed up swine dysentery diagnostics in veterinary medicine and determine proper antimicrobial use. IMPORTANCE Diagnostics for swine dysentery rely on the identification of Brachyspira species using molecular techniques. Nevertheless, no quick diagnostic tools are available for antimicrobial susceptibility testing due to extended growth requirements (7 to 14 days). To enable practitioners to tailor antimicrobial treatment to specific strains, long-read sequencing-based methods are expected to lead to rapid methods in the future. Nevertheless, their potential implementation should be validated extensively. This mainly implies assessing sequencing accuracy and the predictive power of genetic hallmarks in relation to their observed (multi)resistance phenotypes.
Collapse
|
5
|
Vega C, Pérez-Pérez L, Argüello H, Gómez-García M, Puente H, Fernández-Usón I, Rubio P, Carvajal A. In vitro evaluation of gentamicin activity against Spanish field isolates of Brachyspira hyodysenteriae. Porcine Health Manag 2022; 8:48. [DOI: 10.1186/s40813-022-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The treatment of swine dysentery (SD) has become constrained in recent years due to the limited availability of effective drugs combined with a rise in antimicrobial resistance. Gentamicin, an aminoglycoside antibiotic, is authorised for the control of this disease in several European countries but has not been extensively used so far. In this study, the in vitro susceptibility of 56 Brachyspira hyodysenteriae field isolates was evaluated against gentamicin using a broth microdilution test. The molecular basis of decreased susceptibility to gentamicin was also investigated by sequencing the 16S rRNA gene and phylogenetic relatedness by multiple-locus variable number tandem-repeat analysis (MLVA).
Results
Most B. hyodysenteriae isolates presented low minimum inhibitory concentration (MIC) values to gentamicin, with a mode of 2 µg/mL, a median or MIC50 of 4 µg/mL and percentile 90 or MIC90 of 16 µg/mL. The distribution of these values over the period studied (2011–2019) did not show a tendency towards the development of resistance to gentamicin. Differences in susceptibility among isolates could be explained by two point-mutations in the 16S rRNA gene, C990T and A1185G, which were only present in isolates with high MICs. These isolates were typed in three different MLVA clusters. Analyses of co-resistance between gentamicin and antimicrobials commonly used for the treatment of SD revealed that resistance to tiamulin and valnemulin was associated with low MICs for gentamicin.
Conclusions
The results provide an accurate characterisation of antimicrobial sensitivity to gentamicin and possible mechanisms of resistance in Spanish B. hyodysenteriae isolates. These findings allow us to propose gentamicin as an alternative in the antibiotic management of SD, particularly in outbreaks caused by pleuromutilin resistant isolates.
Collapse
|
6
|
Arnold M, Schmitt S, Collaud A, Rossano A, Hübschke E, Zeeh F, Nathues H, Perreten V. Distribution, genetic heterogeneity, and antimicrobial susceptibility of Brachyspira pilosicoli in Swiss pig herds. Vet Microbiol 2022; 269:109421. [DOI: 10.1016/j.vetmic.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/27/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
7
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Van der Stede Y, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Brachyspira hyodysenteriae in swine. EFSA J 2022; 20:e07124. [PMID: 35317125 PMCID: PMC8922405 DOI: 10.2903/j.efsa.2022.7124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brachyspira hyodysenteriae (B. hyodysenteriae) was identified among the most relevant antimicrobial-resistant (AMR) bacteria in the EU for swine in a previous scientific opinion. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR B. hyodysenteriae can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33-66% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-10%, 10-33% and 10-33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Sections 4 and 5 (Categories D and E, 50-90% and 33-66% probability of meeting the criteria, respectively). The main animal species to be listed for AMR B. hyodysenteriae according to Article 8 criteria are pigs and some species of birds, such as chickens and ducks.
Collapse
|
8
|
Dual Antimicrobial Effect of Medium-Chain Fatty Acids against an Italian Multidrug Resistant Brachyspira hyodysenteriae Strain. Microorganisms 2022; 10:microorganisms10020301. [PMID: 35208756 PMCID: PMC8875639 DOI: 10.3390/microorganisms10020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The fastidious nature of Brachyspira hyodysenteriae limits an accurate in vitro pre-screening of conventionally used antibiotics and other candidate alternative antimicrobials. This results in a non-judicious use of antibiotics, leading to an exponential increase of the antibiotic resistance issue and a slowdown in the research for new molecules that might stop this serious phenomenon. In this study we tested four antibiotics (tylosin, lincomycin, doxycycline, and tiamulin) and medium-chain fatty acids (MCFA; hexanoic, octanoic, decanoic, and dodecanoic acid) against an Italian field strain of B. hyodysenteriae and the ATCC 27164 strain as reference. We determined the minimal inhibitory concentrations of these substances, underlining the multidrug resistance pattern of the field strain and, on the contrary, a consistent and stable inhibitory effect of the tested MCFA against both strains. Then, sub-inhibitory concentrations of antibiotics and MCFA were examined in modulating a panel of B. hyodysenteriae virulence genes (tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f). Results of gene expression analysis were variable, with up- and downregulations not properly correlated with particular substances or target genes. Decanoic and dodecanoic acid with their direct and indirect antimicrobial property were the most effective among MCFA, suggesting them as good candidates for subsequent in vivo trials.
Collapse
|
9
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MA, Padalino B, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Dewulf J, Guardabassi L, Hilbert F, Mader R, Baldinelli F, Alvarez J. Assessment of animal diseases caused by bacteria resistant to antimicrobials: Swine. EFSA J 2022; 19:e07113. [PMID: 34987628 PMCID: PMC8703240 DOI: 10.2903/j.efsa.2021.7113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this opinion, the antimicrobial-resistant bacteria responsible for transmissible diseases that constitute a threat to the health of pigs have been assessed. The assessment has been performed following a methodology based on information collected by an extensive literature review and expert judgement. Details of the methodology used for this assessment are explained in a separate opinion. A global state of play of antimicrobial resistant Escherichia coli, Streptococcus suis, Actinobacillus pleuropneumoniae, Pasteurella multocida, Glaeserella parasuis, Bordetella bronchiseptica, Staphylococcus aureus, Staphylococcus hyicus, Brachyspira hyodysenteriae, Trueperella pyogenes, Erysipelothrix rhusiopathiae, Streptococcus dysgalactiae, Mycoplasma hyosynoviae, Mycoplasma hyorhinis, Mycoplasma hyopneumoniae and Brachyspira pilosicoli has been provided. Among those bacteria, EFSA identified E. coli and B. hyodysenteriae with > 66% certainty as being the most relevant antimicrobial resistant bacteria in the EU based on the available evidence. The animal health impact of these most relevant bacteria, as well as their eligibility for being listed and categorised within the animal health law framework will be assessed in separate scientific opinions.
Collapse
|
10
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA J 2021; 19:e06860. [PMID: 34729088 PMCID: PMC8546795 DOI: 10.2903/j.efsa.2021.6860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.
Collapse
|
11
|
Stubberfield E, Sheldon J, Card RM, AbuOun M, Rogers J, Williamson S, Kay GL, Pallen MJ, Anjum MF. Whole-Genome Sequencing of Brachyspira hyodysenteriae Isolates From England and Wales Reveals Similarities to European Isolates and Mutations Associated With Reduced Sensitivity to Antimicrobials. Front Microbiol 2021; 12:713233. [PMID: 34531838 PMCID: PMC8439570 DOI: 10.3389/fmicb.2021.713233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Brachyspira hyodysenteriae is the principal cause of swine dysentery, a disease that threatens economic productivity of pigs in many countries as it can spread readily within and between farms, and only a small number of antimicrobials are authorized for treatment of pigs. In this study, we performed whole-genome sequencing (WGS) of 81 B. hyodysenteriae archived at the Animal and Plant Health Agency (APHA) from diagnostic submissions and herd monitoring in England and Wales between 2004 and 2015. The resulting genome sequences were analyzed alongside 34 genomes we previously published. Multi-locus sequence typing (MLST) showed a diverse population with 32 sequence types (STs) among the 115 APHA isolates, 25 of them identified only in England; while also confirming that the dominant European clonal complexes, CC8 and CC52, were common in the United Kingdom. A core-genome SNP tree typically clustered the isolates by ST, with isolates from some STs detected only within a specific region in England, although others were more widespread, suggesting transmission between different regions. Also, some STs were more conserved in their core genome than others, despite these isolates being from different holdings, regions and years. Minimum inhibitory concentrations to commonly used antimicrobials (Tiamulin, Valnemulin, Doxycycline, Lincomycin, Tylosin, Tylvalosin) were determined for 82 of the genome-sequenced isolates; genomic analysis revealed mutations generally correlated well with the corresponding resistance phenotype. There was a major swine dysentery intervention program in 2009–2010, and antimicrobial survival curves showed a significant reduction in sensitivity to tiamulin and valnemulin in isolates collected in and after 2010, compared to earlier isolates. This correlated with a significant increase in post-2009 isolates harboring the pleuromutilin resistance gene tva(A), which if present, may facilitate higher levels of resistance. The reduction in susceptibility of Brachyspira from diagnostic submissions to pleuromutilins, emphasizes the need for prudent treatment, control and eradication strategies.
Collapse
Affiliation(s)
- Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jonathan Sheldon
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Roderick M Card
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jon Rogers
- Animal and Plant Health Agency, Bury St Edmunds, United Kingdom
| | | | - Gemma L Kay
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
12
|
Implementation and evaluation of different eradication strategies for Brachyspira hyodysenteriae. Porcine Health Manag 2020; 6:27. [PMID: 32944272 PMCID: PMC7489031 DOI: 10.1186/s40813-020-00162-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Brachyspira infections are causing major losses to the pig industry and lead to high antimicrobial use. Treatment of Brachyspira (B.) hyodysenteriae infections may be problematic due to the high level of antimicrobial resistance. The present study implemented and evaluated farm-specific eradication programmes for B. hyodysenteriae in 10 different infected pig farms in Belgium. Results Ten pig farms clinically infected with B. hyodysenteriae volunteered to implement a farm-specific eradication programme. The programme depended on the farm and management characteristics, antimicrobial susceptibility of the B. hyodysenteriae strain and the motivation of the farmer. Two farms practiced total depopulation, six farms partial depopulation and two farms antimicrobial medication without depopulation. In addition, all farms implemented biosecurity measures, and faeces samples were tested for the presence of B. hyodysenteriae at 6, 9 and 12 months after the start of the program. Single Brachyspira isolates from before and after the programme were typed using multilocus sequence typing (MLST).Eradication was successful in four farms. Two of them (farrow-to-finish and finishing herd) had applied total depopulation and respected a vacancy period of at least 3 weeks. A third farm (gilt farm) practised partial depopulation, the rooms remained empty for 28 days and changed the source of breeding gilts. The fourth farm practised partial depopulation, the stables remained empty for 3 weeks, and used antimicrobial medication. The eradication programme was not successful in six farms. Two of the latter farms only used medication without partial depopulation. Four farms practiced partial depopulation, one of them combined it with antimicrobial medication. The cleaning and disinfection procedures, rodent control, stand-empty period and/or other biosecurity measures in the six farms were not always implemented properly. In two of three farms, isolates belonging to the same MLST type were found before and after eradication. Conclusions Total depopulation or partial depopulation combined with implementing strict biosecurity measures allowed eradication of B. hyodysenteriae from clinically infected pig farms. Programmes based on antimicrobials without depopulation or partial depopulation without strictly adhering to all suggested biosecurity measures were not successful. Stockmanship and motivation of the farmer to permanently maintain high biosecurity standards are essential for success.
Collapse
|
13
|
Konradt G, Bassuino DM, Siqueira LC, Bianchi MV, Sonne L, Driemeier D, Pavarini SP. Infectious diseases dynamics in growing/finishing pigs in Southern Brazil (2005-2016). PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT: This study aimed to determine the frequency and distribution of infectious diseases diagnosed through necropsy examination and histopathological analysis in growing/finishing pigs along 12 years (2005-2016) in Southern Brazil. We evaluated 1906 anatomopathological exams of pigs at growing/finishing phases, of which the infectious diseases corresponded to 75.6% of the cases (1,441/1,906). Porcine circovirus type 2 (PCV2) infections were the most frequent, accounting for 51.3% of the cases (739/1,441) with a higher frequency from 2005 to 2007, characterizing an epidemic distribution, with a gradual decline after 2008. Infectious diseases affecting the respiratory system were the second major cause with 30.1% of the cases. Among these, necrotizing bronchiolitis caused by swine Influenza (15.1%, 218/1,441) and bacterial pneumonia (15%, 216/1,441) were the main conditions. Influenza was mostly diagnosed from 2010 to 2013, accounting for 43.1% (167/387) of the cases. After this period, both respiratory infectious diseases were endemic. Digestive system infectious diseases accounted for 10.5% of the diagnoses (151/1,441), with the following main conditions: Salmonella spp. enterocolitis (43.7%, 66/151), Lawsonia spp. proliferative enteropathy (41.7%, 63/151), and Brachyspira spp. colitis (14.6%, 22/151). The latter had a higher incidence from 2012 to 2014 with all cases detected in this period. Polyserositis and bacterial meningitis represented, respectively, 5.8% (84/1,441) and 2.3% (33/1,441) of the cases diagnosed, with a constant endemic character.
Collapse
Affiliation(s)
- Guilherme Konradt
- Universidade Federal do Rio Grande do Sul, Brazil; Universidade de Cruz Alta, Brazil
| | - Daniele M. Bassuino
- Universidade Federal do Rio Grande do Sul, Brazil; Universidade de Cruz Alta, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Stubberfield E, Pringle M, Landén A, Veldman KT, Geurts Y, Jouy E, Le Devendec L, Rubin JE, Kulathunga DGRS, Kristensen KA, Chanter J, Bollard A, Johnson P, Maycock J, Habighorst-Blome K, Rohde J, Card RM. Validation of an antimicrobial susceptibility testing protocol for Brachyspira hyodysenteriae and Brachyspira pilosicoli in an international ring trial. Vet Microbiol 2020; 244:108645. [PMID: 32402332 DOI: 10.1016/j.vetmic.2020.108645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Brachyspira hyodysenteriae and Brachyspira pilosicoli cause economically important enteric disease in pigs. Treatment of these infections often includes antimicrobial administration, which can be most effective when therapeutic options are informed by antimicrobial susceptibility testing data. Here we describe a method for broth dilution antimicrobial susceptibility testing of these bacteria, both of which are difficult to culture in vitro. The protocol was evaluated for its fitness for use in an inter-laboratory ring trial involving eight laboratories from seven countries, and employing eleven test strains (5 Brachyspira hyodysenteriae including the type strain B78T and 6 Brachyspira pilosicoli) and six antibiotics. Overall intra- and inter-laboratory reproducibility of this method was very good (>90 % MICs at mode +/- 1 log2). Whole genome sequencing revealed good correspondence between reduced susceptibility and the presence of previously defined antimicrobial resistance determinants. Interestingly, lnu(C) was identified in B. pilosicoli isolates with elevated MICs of lincomycin, whilst tva(B) was associated with elevated MICs of pleuromutilins in this species. We designated two new control strains with MICs lying within currently tested ranges, including for the pleuromutilins, in contrast to the control strain B. hyodysenteriae B78T. These were deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures GmbH. The validation of a standard protocol and identification of new control strains facilitates comparisons between studies, establishment of robust interpretative criteria, and ultimately contributes to rational antimicrobial use when treating infected livestock.
Collapse
Affiliation(s)
- E Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB, United Kingdom
| | - M Pringle
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, SVA, SE-751 89, Uppsala, Sweden
| | - A Landén
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, SVA, SE-751 89, Uppsala, Sweden
| | - K T Veldman
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Y Geurts
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - E Jouy
- Mycoplasmology-Bacteriology-Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - L Le Devendec
- Mycoplasmology-Bacteriology-Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - J E Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - D G R S Kulathunga
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - K A Kristensen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - J Chanter
- Animal and Plant Health Agency, Starcross VIC, Devon, United Kingdom
| | - A Bollard
- VETQAS Quality Assurance Unit, Animal and Plant Health Agency, Sutton Bonington, Leicestershire, United Kingdom
| | - P Johnson
- VETQAS Quality Assurance Unit, Animal and Plant Health Agency, Sutton Bonington, Leicestershire, United Kingdom
| | - J Maycock
- VETQAS Quality Assurance Unit, Animal and Plant Health Agency, Sutton Bonington, Leicestershire, United Kingdom
| | - K Habighorst-Blome
- Institute for Microbiology, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - J Rohde
- Institute for Microbiology, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - R M Card
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB, United Kingdom.
| |
Collapse
|
15
|
Archambault M, Rubin JE. Antimicrobial Resistance in Clostridium and Brachyspira spp. and Other Anaerobes. Microbiol Spectr 2020; 8:10.1128/microbiolspec.arba-0020-2017. [PMID: 31971162 PMCID: PMC10773235 DOI: 10.1128/microbiolspec.arba-0020-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.
Collapse
Affiliation(s)
- Marie Archambault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
16
|
La T, Phillips ND, Dunlop H, Lugsomya K, Coiacetto F, Hampson DJ. Testing the efficacy of kitasamycin for use in the control and treatment of swine dysentery in experimentally infected pigs. Aust Vet J 2019; 97:452-464. [PMID: 31529470 DOI: 10.1111/avj.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Swine dysentery (SD) caused by Brachyspira hyodysenteriae is an important disease in Australia. AIM The aim of this study is to evaluate the macrolide antibiotic kitasamycin for use in SD control. METHODS The minimum inhibitory concentrations (MICs) of kitasamycin, tylosin and lincomycin for 32 Australian isolates of B. hyodysenteriae were evaluated. Mutations in the 23S rRNA gene were examined. Isolate '13' with a low kitasamycin MIC was used to challenge weaner pigs. Sixty pigs were housed in 20 pens each containing three pigs: pigs in four pens received 2 kg/tonne of a product containing kitasamycin (3.1% active) prophylactically in their food starting 4 days before B. hyodysenteriae challenge (group 1); pigs in four pens were challenged and received the same dose therapeutically once one pig in a pen showed diarrhoea (group 2); four pens were challenged and received 4 kg/tonne of the product therapeutically (group 3); four pens were challenged but not medicated (group 4); two pens were unmedicated and unchallenged (group 5) and two pens received 2 kg/tonne and were unchallenged (group 6). Pigs were monitored for B. hyodysenteriae excretion and disease. RESULTS Macrolide resistance was widespread, and mutations in the 23S rRNA gene were identified in 23 isolates. Four isolates with kitasamycin MICs < 5 μg/mL were considered susceptible. Following experimental challenge, 10 of 12 unmedicated pigs developed SD. No pigs receiving kitasamycin prophylactical or therapeutically developed SD. Medicated pigs shed low numbers of B. hyodysenteriae in their faeces. CONCLUSIONS Kitasamycin can help control SD in pigs infected with susceptible isolates of B. hyodysenteriae.
Collapse
Affiliation(s)
- T La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - N D Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - H Dunlop
- Apiam Animal Health, Bendigo, Victoria, 3550, Australia
| | - K Lugsomya
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - F Coiacetto
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - D J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.,Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
17
|
Le Roy CI, Woodward MJ, Ellis RJ, La Ragione RM, Claus SP. Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Vet Res 2019; 15:37. [PMID: 30683093 PMCID: PMC6347850 DOI: 10.1186/s12917-018-1761-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Background Infection of the digestive track by gastro-intestinal pathogens results in the development of symptoms ranging from mild diarrhea to more severe clinical signs such as dysentery, severe dehydration and potentially death. Although, antibiotics are efficient to tackle infections, they also trigger dysbiosis that has been suggested to result in variation in weight gain in animal production systems. Results Here is the first study demonstrating the metabolic impact of infection by a gastro-intestinal pathogen (Brachyspira pilosicoli) and its resolution by antibiotic treatment (tiamulin) on the host (chicken) systemic metabolism and gut microbiota composition using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy and 16S rDNA next generation sequencing (NGS). Clear systemic metabolic markers of infections such as glycerol and betaine were identified. Weight loss in untreated animals was in part explained by the observation of a modification of systemic host energy metabolism characterized by the utilization of glycerol as a glucose precursor. However, antibiotic treatment triggered an increased VLDL/HDL ratio in plasma that may contribute to reducing weight loss observed in treated birds. All metabolic responses co-occurred with significant shift of the microbiota upon infection or antibiotic treatment. Conclusion This study indicates that infection and antibiotic treatment trigger dysbiosis that may impact host systemic energy metabolism and cause phenotypic and health modifications. Electronic supplementary material The online version of this article (10.1186/s12917-018-1761-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Ivanne Le Roy
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK. .,Present Address: Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK.
| | - Martin John Woodward
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Richard John Ellis
- Central Sequencing Unit, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Roberto Marcello La Ragione
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, Surrey, GU2 7AL, UK
| | - Sandrine Paule Claus
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
18
|
García-Martín AB, Perreten V, Rossano A, Schmitt S, Nathues H, Zeeh F. Predominance of a macrolide-lincosamide-resistant Brachyspira hyodysenteriae of sequence type 196 in Swiss pig herds. Vet Microbiol 2018; 226:97-102. [PMID: 30389050 DOI: 10.1016/j.vetmic.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 01/31/2023]
Abstract
Worldwide emergence of antimicrobial-resistant Brachyspira (B.) hyodysenteriae led us question whether specific clones are present in Switzerland. Fifty-one B. hyodysenteriae isolates originating from 27 different Swiss pig herds sampled between 2010 and 2017 were characterised. Multilocus sequence typing revealed the presence of four different sequence types (STs) ST6, ST66, ST196 and ST197 with ST196 being predominant. Antimicrobial susceptibility to six different antimicrobial agents was determined by measurement of the minimal inhibitory concentration by broth dilution. Isolates were examined for the presence of point mutations and genes known to be associated with antimicrobial resistance in B. hyodysenteriae by PCR and sequence analysis. Forty-one isolates belonging to ST6 (n = 1), ST66 (n = 4) and ST196 (n = 36) exhibited decreased susceptibility to macrolides and lincomycin associated with an A2058 T/G mutation in the 23S rRNA gene. One isolate of ST66 and five isolates of ST196 exhibited decreased susceptibility to doxycycline associated with a G1058C mutation in the 16S rRNA gene. The Swiss B. hyodysenteriae population is characterised by a low genetic diversity, with macrolide-lincosamide-resistant isolates of ST196 being predominant.
Collapse
Affiliation(s)
- Ana B García-Martín
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Alexandra Rossano
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sarah Schmitt
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Heiko Nathues
- Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Friederike Zeeh
- Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Massacci FR, De Luca S, Cucco L, Tentellini M, Perreten V, Pezzotti G, Magistrali CF. Multiresistant Brachyspira hyodysenteriae
shedding by pigs during the fattening period. Vet Rec 2018; 183:264. [DOI: 10.1136/vr.104886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 06/04/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Francesca Romana Massacci
- Research and Development Unit; Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche; Perugia Umbria Italy
| | - Silvio De Luca
- Research and Development Unit; Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche; Perugia Umbria Italy
| | - Lucilla Cucco
- Research and Development Unit; Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche; Perugia Umbria Italy
| | - Michele Tentellini
- Research and Development Unit; Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche; Perugia Umbria Italy
| | - Vincent Perreten
- Vetsuisse Faculty; Institute of Veterinary Bacteriology, University of Bern; Bern Switzerland
| | - Giovanni Pezzotti
- Research and Development Unit; Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche; Perugia Umbria Italy
| | - Chiara Francesca Magistrali
- Research and Development Unit; Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche; Perugia Umbria Italy
| |
Collapse
|
20
|
Card RM, Stubberfield E, Rogers J, Nunez-Garcia J, Ellis RJ, AbuOun M, Strugnell B, Teale C, Williamson S, Anjum MF. Identification of a New Antimicrobial Resistance Gene Provides Fresh Insights Into Pleuromutilin Resistance in Brachyspira hyodysenteriae, Aetiological Agent of Swine Dysentery. Front Microbiol 2018; 9:1183. [PMID: 29971045 PMCID: PMC6018095 DOI: 10.3389/fmicb.2018.01183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022] Open
Abstract
Brachyspira hyodysenteriae is the aetiological agent of swine dysentery, a globally distributed disease that causes profound economic loss, impedes the free trade and movement of animals, and has significant impact on pig health. Infection is generally treated with antibiotics of which pleuromutilins, such as tiamulin, are widely used for this purpose, but reports of resistance worldwide threaten continued effective control. In Brachyspira hyodysenteriae pleuromutilin resistance has been associated with mutations in chromosomal genes encoding ribosome-associated functions, however the dynamics of resistance acquisition are poorly understood, compromising stewardship efforts to preserve pleuromutilin effectiveness. In this study we undertook whole genome sequencing (WGS) and phenotypic susceptibility testing of 34 UK field isolates and 3 control strains to investigate pleuromutilin resistance in Brachyspira hyodysenteriae. Genome-wide association studies identified a new pleuromutilin resistance gene, tva(A) (tiamulin valnemulin antibiotic resistance), encoding a predicted ABC-F transporter. In vitro culture of isolates in the presence of inhibitory or sub-inhibitory concentrations of tiamulin showed that tva(A) confers reduced pleuromutilin susceptibility that does not lead to clinical resistance but facilitates the development of higher-level resistance via mutations in genes encoding ribosome-associated functions. Genome sequencing of antibiotic-exposed isolates identified both new and previously described mutations in chromosomal genes associated with reduced pleuromutilin susceptibility, including the 23S rRNA gene and rplC, which encodes the L3 ribosomal protein. Interesting three antibiotic-exposed isolates harboured mutations in fusA, encoding Elongation Factor G, a gene not previously associated with pleuromutilin resistance. A longitudinal molecular epidemiological examination of two episodes of swine dysentery at the same farm indicated that tva(A) contributed to development of tiamulin resistance in vivo in a manner consistent with that seen experimentally in vitro. The in vitro studies further showed that tva(A) broadened the mutant selection window and raised the mutant prevention concentration above reported in vivo antibiotic concentrations obtained when administered at certain doses. We show how the identification and characterisation of tva(A), a new marker for pleuromutilin resistance, provides evidence to inform treatment regimes and reduce the development of resistance to this class of highly important antimicrobial agents.
Collapse
Affiliation(s)
- Roderick M Card
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Emma Stubberfield
- APHA Veterinary Investigation Centre Bury St. Edmunds, Bury St Edmunds, United Kingdom
| | - Jon Rogers
- APHA Veterinary Investigation Centre Bury St. Edmunds, Bury St Edmunds, United Kingdom
| | - Javier Nunez-Garcia
- Central Sequencing Unit, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Richard J Ellis
- Central Sequencing Unit, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Ben Strugnell
- Farm Post Mortems Ltd., Bishop Auckland, United Kingdom
| | - Christopher Teale
- APHA Veterinary Investigation Centre Shrewsbury, Shrewsbury, United Kingdom
| | - Susanna Williamson
- APHA Veterinary Investigation Centre Bury St. Edmunds, Bury St Edmunds, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| |
Collapse
|
21
|
Guardabassi L, Apley M, Olsen JE, Toutain PL, Weese S. Optimization of Antimicrobial Treatment to Minimize Resistance Selection. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0018-2017. [PMID: 29932044 PMCID: PMC11633575 DOI: 10.1128/microbiolspec.arba-0018-2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Optimization of antimicrobial treatment is a cornerstone in the fight against antimicrobial resistance. Various national and international authorities and professional veterinary and farming associations have released generic guidelines on prudent antimicrobial use in animals. However, these generic guidelines need to be translated into a set of animal species- and disease-specific practice recommendations. This article focuses on prevention of antimicrobial resistance and its complex relationship with treatment efficacy, highlighting key situations where the current antimicrobial drug products, treatment recommendations, and practices may be insufficient to minimize antimicrobial selection. The authors address this topic using a multidisciplinary approach involving microbiology, pharmacology, clinical medicine, and animal husbandry. In the first part of the article, we define four key targets for implementing the concept of optimal antimicrobial treatment in veterinary practice: (i) reduction of overall antimicrobial consumption, (ii) improved use of diagnostic testing, (iii) prudent use of second-line, critically important antimicrobials, and (iv) optimization of dosage regimens. In the second part, we provided practice recommendations for achieving these four targets, with reference to specific conditions that account for most antimicrobial use in pigs (intestinal and respiratory disease), cattle (respiratory disease and mastitis), dogs and cats (skin, intestinal, genitourinary, and respiratory disease), and horses (upper respiratory disease, neonatal foal care, and surgical infections). Lastly, we present perspectives on the education and research needs for improving antimicrobial use in the future.
Collapse
Affiliation(s)
- Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Mike Apley
- Kansas State University College of Veterinary Medicine, Manhattan, Kansas, 66506
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
22
|
Yeh JC, Lo DY, Chang SK, Kuo HC. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated in Taiwan. Microb Drug Resist 2018; 24:685-692. [PMID: 29653474 DOI: 10.1089/mdr.2017.0188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some members of the Brachyspira genus cause diseases such as swine dysentery (SD) and porcine intestinal (or colonic) spirochetosis. Severe economic losses are caused by decreased feed intake and increased feed conversion ratio, as well as costs associated with treatment and death. A loss of clinical efficacy of some antimicrobial agents authorized for treating SD has been observed in many countries. The aim of this study was to analyze the antimicrobial susceptibility of Brachyspira isolated from Taiwan and to investigate the mechanism of decreased susceptibility to macrolides. A total of 55 Brachyspira isolates obtained from the grower-finisher period were evaluated in this study. These isolates included B. hyodysenteriae (n = 37), B. murdochii (n = 11), B. pilosicoli (n = 5), B. intermedia (n = 1), and B. innocens (n = 1). Antimicrobial susceptibility testing was performed to examine 12 selected antimicrobial agents. The results showed that the 50% and 90% minimum inhibitory concentration (MIC) values of the tested macrolides were all >256 μg/ml. The MIC50 of lincomycin, tiamulin, carbadox, olaquindox, ampicillin, amoxicillin, doxycycline, oxytetracycline, and gentamicin were 32, 1, ≤0.125, ≤0.125, 0.5, 0.25, 2, 2, and 2 μg/ml. The genetic basis of the decreased susceptibility to tylosin and lincomycin in Brachyspira spp. was investigated and the results showed a possible connection to the mutations at position A2058 and G2032 of the 23S rRNA gene. These findings demonstrated that, in Taiwan, there may be a decrease in susceptibility of Brachyspira spp. to antimicrobials commonly used for the treatment of SD.
Collapse
Affiliation(s)
- Jih-Ching Yeh
- 1 Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University , Chiayi, Taiwan , ROC
| | - Dan-Yuan Lo
- 1 Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University , Chiayi, Taiwan , ROC
| | - Shao-Kuang Chang
- 2 Graduate Institute of Veterinary Medicine, National Taiwan University , Taipei, Taiwan , ROC
| | - Hung-Chih Kuo
- 1 Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University , Chiayi, Taiwan , ROC
| |
Collapse
|
23
|
De Luca S, Nicholson P, Magistrali CF, García-Martín AB, Rychener L, Zeeh F, Frey J, Perreten V. Transposon-associated lincosamide resistance lnu (C) gene identified in Brachyspira hyodysenteriae ST83. Vet Microbiol 2018; 214:51-55. [DOI: 10.1016/j.vetmic.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 11/15/2022]
|
24
|
Joerling J, Barth SA, Schlez K, Willems H, Herbst W, Ewers C. Phylogenetic diversity, antimicrobial susceptibility and virulence gene profiles of Brachyspira hyodysenteriae isolates from pigs in Germany. PLoS One 2018; 13:e0190928. [PMID: 29324785 PMCID: PMC5764319 DOI: 10.1371/journal.pone.0190928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/24/2017] [Indexed: 11/19/2022] Open
Abstract
Swine dysentery (SD) is an economically important diarrheal disease in pigs caused by different strongly hemolytic Brachyspira (B.) species, such as B. hyodysenteriae, B. suanatina and B. hampsonii. Possible associations of epidemiologic data, such as multilocus sequence types (STs) to virulence gene profiles and antimicrobial susceptibility are rather scarce, particularly for B. hyodysenteriae isolates from Germany. In this study, B. hyodysenteriae (n = 116) isolated from diarrheic pigs between 1990 and 2016 in Germany were investigated for their STs, susceptibility to the major drugs used for treatment of SD (tiamulin and valnemulin) and genes that were previously linked with virulence and encode for hemolysins (tlyA, tlyB, tlyC, hlyA, BHWA1_RS02885, BHWA1_RS09085, BHWA1_RS04705, and BHWA1_RS02195), outer membrane proteins (OMPs) (bhlp16, bhlp17.6, bhlp29.7, bhmp39f, and bhmp39h) as well as iron acquisition factors (ftnA and bitC). Multilocus sequence typing (MLST) revealed that 79.4% of the isolates belonged to only three STs, namely ST52 (41.4%), ST8 (12.1%), and ST112 (25.9%) which have been observed in other European countries before. Another 24 isolates belonged to twelve new STs (ST113-118, ST120-123, ST131, and ST193). The temporal distribution of STs revealed the presence of new STs as well as the regular presence of ST52 over three decades (1990s-2000s). The proportion of strains that showed resistance to both tiamulin und valnemulin (39.1%) varied considerably among the most frequent STs ranging from 0% (0/14 isolates resistant) in ST8 isolates to 46.7% (14/30), 52.1% (25/48), and 85.7% (6/7) in isolates belonging to ST112, ST52, and ST114, respectively. All hemolysin genes as well as the iron-related gene ftnA and the OMP gene bhlp29.7 were regularly present in the isolates, while the OMP genes bhlp17.6 and bhmp39h could not be detected. Sequence analysis of hemolysin genes of selected isolates revealed co-evolution of tlyB, BHWA1_RS02885, BHWA1_RS09085, and BHWA1_RS02195 with the core genome and suggested independent evolution of tlyA, tlyC, and hlyA. Our data indicate that in Germany, swine dysentery might be caused by a limited number of B. hyodysenteriae clonal groups. Major STs (ST8, ST52, and ST112) are shared with other countries in Europe suggesting a possible role of the European intra-Community trade of pigs in the dissemination of certain clones. The identification of several novel STs, some of which are single or double locus variants of ST52, may on the other hand hint towards an ongoing diversification of the pathogen in the studied area. The linkage of pleuromutilin susceptibility and sequence type of an isolate might reflect a clonal expansion of the underlying resistance mechanism, namely mutations in the ribosomal RNA genes. A linkage between single virulence-associated genes (VAGs) or even VAG patterns and the phylogenetic background of the isolates could not be established, since almost all VAGs were regularly present in the isolates.
Collapse
Affiliation(s)
- Jessica Joerling
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Stefanie A. Barth
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
- Friedrich-Loeffler-Institut/ Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Karen Schlez
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Hermann Willems
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Giessen, Germany
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
van Duijkeren E, Schink AK, Roberts MC, Wang Y, Schwarz S. Mechanisms of Bacterial Resistance to Antimicrobial Agents. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0019-2017. [PMID: 29327680 PMCID: PMC11633570 DOI: 10.1128/microbiolspec.arba-0019-2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
During the past decades resistance to virtually all antimicrobial agents has been observed in bacteria of animal origin. This chapter describes in detail the mechanisms so far encountered for the various classes of antimicrobial agents. The main mechanisms include enzymatic inactivation by either disintegration or chemical modification of antimicrobial agents, reduced intracellular accumulation by either decreased influx or increased efflux of antimicrobial agents, and modifications at the cellular target sites (i.e., mutational changes, chemical modification, protection, or even replacement of the target sites). Often several mechanisms interact to enhance bacterial resistance to antimicrobial agents. This is a completely revised version of the corresponding chapter in the book Antimicrobial Resistance in Bacteria of Animal Origin published in 2006. New sections have been added for oxazolidinones, polypeptides, mupirocin, ansamycins, fosfomycin, fusidic acid, and streptomycins, and the chapters for the remaining classes of antimicrobial agents have been completely updated to cover the advances in knowledge gained since 2006.
Collapse
Affiliation(s)
- Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-7234
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
26
|
The Spirochete Brachyspira pilosicoli, Enteric Pathogen of Animals and Humans. Clin Microbiol Rev 2017; 31:31/1/e00087-17. [PMID: 29187397 DOI: 10.1128/cmr.00087-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Brachyspira pilosicoli is a slow-growing anaerobic spirochete that colonizes the large intestine. Colonization occurs commonly in pigs and adult chickens, causing colitis/typhlitis, diarrhea, poor growth rates, and reduced production. Colonization of humans also is common in some populations (individuals living in village and peri-urban settings in developing countries, recent immigrants from developing countries, homosexual males, and HIV-positive patients), but the spirochete rarely is investigated as a potential human enteric pathogen. In part this is due to its slow growth and specialized growth requirements, meaning that it is not detectable in human fecal samples using routine diagnostic methods. Nevertheless, it has been identified histologically attached to the colon and rectum in patients with conditions such as chronic diarrhea, rectal bleeding, and/or nonspecific abdominal discomfort, and one survey of Australian Aboriginal children showed that colonization was significantly associated with failure to thrive. B. pilosicoli has been detected in the bloodstream of elderly patients or individuals with chronic conditions such as alcoholism and malignancies. This review describes the spirochete and associated diseases. It aims to encourage clinicians and clinical microbiologists to consider B. pilosicoli in their differential diagnoses and to develop and use appropriate diagnostic protocols to identify the spirochete in clinical specimens.
Collapse
|
27
|
Yeh JC, Lo DY, Chang SK, Chou CC, Kuo HC. Antimicrobial susceptibility, serotypes and genotypes of Pasteurella multocida
isolates associated with swine pneumonia in Taiwan. Vet Rec 2017; 181:323. [DOI: 10.1136/vr.104023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 11/04/2022]
Affiliation(s)
- Jih-Ching Yeh
- Department of Veterinary Medicine; National Chiayi University; Chiayi Taiwan
| | - Dan-Yuan Lo
- Department of Veterinary Medicine; National Chiayi University; Chiayi Taiwan
| | - Shao-Kuang Chang
- Graduate Institute of Veterinary Medicine, National Taiwan University; Taipei Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine; College of Veterinary Medicine, National Chung-Hsing University; Taichung Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine; National Chiayi University; Chiayi Taiwan
| |
Collapse
|
28
|
Establishment of valnemulin susceptibility breakpoint against Clostridium perfringens in rabbits. Anaerobe 2017; 48:118-120. [PMID: 28801120 DOI: 10.1016/j.anaerobe.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 01/07/2023]
Abstract
Susceptibility breakpoints provide fundamental information for rational administration of antibiotics. The present investigation reports the first valnemulin susceptibility breakpoint (MIC<0.25 μg/mL) against Clostridium perfringens infections in rabbits based on the wild-type cutoff (COWT) and the pharmacokinetics/pharmacodynamic (PK/PD) cutoff (COPD). The established susceptibility breakpoint of valnemulin might be useful in resistance surveillance of pleuromutilins and development of clinical breakpoints.
Collapse
|
29
|
Mahu M, Pasmans F, Vranckx K, De Pauw N, Vande Maele L, Vyt P, Vandersmissen T, Martel A, Haesebrouck F, Boyen F. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes. Vet Microbiol 2017; 207:125-132. [DOI: 10.1016/j.vetmic.2017.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 11/17/2022]
|
30
|
Vadillo S, San-Juan C, Calderón M, Risco D, Fernández-Llario P, Pérez-Sancho M, Redondo E, Hurtado MA, Igeño MI. Isolation of Brachyspira species from farmed wild boar in Spain. Vet Rec 2017; 181:vetrec-2017-104348. [PMID: 28765497 DOI: 10.1136/vr.104348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/06/2017] [Accepted: 06/04/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Santiago Vadillo
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Carlos San-Juan
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Marta Calderón
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - David Risco
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Eloy Redondo
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Miguel A Hurtado
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - M Isabel Igeño
- Departamento de Bioquímica y Biología Molecular y Genética, IPROCAR, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
31
|
Gasparrini S, Alborali GL, Pitozzi A, Guarneri F, Giacomini E, Baldo V, Scali F, Lazzaro M, Boniotti MB. Characterization of Brachyspira hyodysenteriae isolates from Italy by multilocus sequence typing and multiple locus variable number tandem repeat analysis. J Appl Microbiol 2017; 123:340-351. [PMID: 28510989 DOI: 10.1111/jam.13492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
AIMS To evaluate and compare the capabilities of multilocus sequence typing (MLST) and multiple locus variable number tandem repeat analysis (MLVA) techniques to characterize Brachyspira hyodysenteriae isolates and to investigate the relationship between pleuromutilin resistance and genetic variability. METHODS AND RESULTS MLST genotyping was performed on 180 B. hyodysenteriae isolates, and the results were evaluated considering profiles from 108 other strains previously reported in the database. In total, 37 sequence types were obtained. The MLVA approach completely characterized 172 strains and grouped the isolates into 22 different profiles. The combination of MLST and MLVA showed a slight increase in the discriminatory power, identifying 33 joint profiles. An antibiotic resistance analysis showed a reduction in the susceptibility to pleuromutilins over time, and a weak association between susceptibility to valnemulin and inclusion in clonal complex 4. CONCLUSION MLST and MLVA are reliable methods for characterizing B. hyodysenteriae strains and they have comparable discriminatory power. SIGNIFICANCE AND IMPACT OF THE STUDY The genotyping of B. hyodysenteriae isolates and a database of all the genetic profiles collected during the diagnostic activities could support traditional epidemiological investigations in identifying infection sources and routes of transmission among herds, and in developing more effective control measures.
Collapse
Affiliation(s)
- S Gasparrini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - G L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - A Pitozzi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - F Guarneri
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - E Giacomini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - V Baldo
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - F Scali
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - M Lazzaro
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - M B Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna "Bruno Ubertini", Brescia, Italy
| |
Collapse
|
32
|
Kulathunga D, Rubin J. A review of the current state of antimicrobial susceptibility test methods for Brachyspira. Can J Microbiol 2017; 63:465-474. [DOI: 10.1139/cjm-2016-0756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The re-emergence of swine dysentery (Brachyspira-associated muco-haemorrhagic colitis) since the late 2000s has illuminated diagnostic challenges associated with this genus. The methods used to detect, identify, and characterize Brachyspira from clinical samples have not been standardized, and laboratories frequently rely heavily on in-house techniques. Particularly concerning is the lack of standardized methods for determining and interpreting the antimicrobial susceptibility of Brachyspira spp. The integration of laboratory data into a treatment plan is a critical component of prudent antimicrobial usage. Therefore, the lack of standardized methods is an important limitation to the evidence-based use of antimicrobials. This review will focus on describing the methodological limitations and inconsistencies between current susceptibility testing schemes employed for Brachyspira, provide an overview of what we do know about the susceptibility of these organisms, and suggest future directions to improve and standardize diagnostic strategies.
Collapse
Affiliation(s)
- D.G.R.S. Kulathunga
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - J.E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
33
|
Alban L, Ellis-Iversen J, Andreasen M, Dahl J, Sönksen UW. Assessment of the Risk to Public Health due to Use of Antimicrobials in Pigs-An Example of Pleuromutilins in Denmark. Front Vet Sci 2017; 4:74. [PMID: 28603717 PMCID: PMC5445126 DOI: 10.3389/fvets.2017.00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Antibiotic consumption in pigs can be optimized by developing treatment guidelines, which encourage veterinarians to use effective drugs with low probability of developing resistance of importance for human health. In Denmark, treatment guidelines for use in swine production are currently under review at the Danish Veterinary and Food Administration. Use of pleuromutilins in swine has previously been associated with a very low risk for human health. However, recent international data and sporadic findings of novel resistance genes suggest a change of risk. Consequently, a reassessment was undertaken inspired by a risk assessment framework developed by the European Medicines Agency. Livestock-associated methicillin-resistant Staphylococcus aureus of clonal complex 398 (MRSA CC398) and enterococci were identified as relevant hazards. The release assessment showed that the probability of development of pleuromutilin resistance was high in MRSA CC398 (medium uncertainty) and low in enterococci (high uncertainty). A relatively small proportion of Danes has an occupational exposure to pigs, and foodborne transmission was only considered of relevance for enterococci, resulting in an altogether low exposure risk. The human consequences of infection with pleuromutilin-resistant MRSA CC398 or enterococci were assessed as low for the public in general but high for vulnerable groups such as hospitalized and immunocompromised persons. For MRSA CC398, the total risk was estimated as low (low uncertainty), among other due to the current guidelines on prevention of MRSA in place at Danish hospitals, which include screening of patients with daily contact to pigs on admittance. Moreover, MRSA CC398 has a medium human–human transmission potential. For enterococci, the total risk was estimated as low due to low prevalence of resistance, low probability of spread to humans, low virulence, but no screening of hospitalized patients, high ability of acquiring resistance genes, and a limited number of alternative antimicrobials (high uncertainty). This assessment reflects the current situation and should be repeated if pleuromutilin consumption increases substantially, resulting in increased prevalence of mobile, easily transmissible resistance mechanisms. Continuous monitoring of pleuromutilin resistance in selected human pathogens should therefore be considered. This also includes monitoring of linezolid resistance, since resistance mechanisms for pleuromutilins and oxazolidones are often coupled.
Collapse
Affiliation(s)
- Lis Alban
- Risk Assessment Group, Department for Food Safety and Veterinary Issues, Danish Agriculture and Food Council, Copenhagen, Denmark
| | | | - Margit Andreasen
- Danish Association of the Veterinary Pharmaceutical Industry, Copenhagen, Denmark
| | - Jan Dahl
- Risk Assessment Group, Department for Food Safety and Veterinary Issues, Danish Agriculture and Food Council, Copenhagen, Denmark
| | - Ute W Sönksen
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
34
|
Casas V, Rodríguez-Asiain A, Pinto-Llorente R, Vadillo S, Carrascal M, Abian J. Brachyspira hyodysenteriae and B. pilosicoli Proteins Recognized by Sera of Challenged Pigs. Front Microbiol 2017; 8:723. [PMID: 28522991 PMCID: PMC5415613 DOI: 10.3389/fmicb.2017.00723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
The spirochetes Brachyspira hyodysenteriae and B. pilosicoli are pig intestinal pathogens that are the causative agents of swine dysentery (SD) and porcine intestinal spirochaetosis (PIS), respectively. Although some inactivated bacterin and recombinant vaccines have been explored as prophylactic treatments against these species, no effective vaccine is yet available. Immunoproteomics approaches hold the potential for the identification of new, suitable candidates for subunit vaccines against SD and PIS. These strategies take into account the gene products actually expressed and present in the cells, and thus susceptible of being targets of immune recognition. In this context, we have analyzed the immunogenic pattern of two B. pilosicoli porcine isolates (the Spanish farm isolate OLA9 and the commercial P43/6/78 strain) and one B. hyodysenteriae isolate (the Spanish farm V1). The proteins from the Brachyspira lysates were fractionated by preparative isoelectric focusing, and the fractions were analyzed by Western blot with hyperimmune sera from challenged pigs. Of the 28 challenge-specific immunoreactive bands detected, 21 were identified as single proteins by MS, while the other 7 were shown to contain several major proteins. None of these proteins were detected in the control immunoreactive bands. The proteins identified included 11 from B. hyodysenteriae and 28 from the two B. pilosicoli strains. Eight proteins were common to the B. pilosicoli strains (i.e., elongation factor G, aspartyl-tRNA synthase, biotin lipoyl, TmpB outer membrane protein, flagellar protein FlaA, enolase, PEPCK, and VspD), and enolase and PEPCK were common to both species. Many of the identified proteins were flagellar proteins or predicted to be located on the cell surface and some of them had been previously described as antigenic or as bacterial virulence factors. Here we report on the identification and semiquantitative data of these immunoreactive proteins which constitute a unique antigen collection from these bacteria.
Collapse
Affiliation(s)
- Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPSBarcelona, Spain.,Faculty of Medicine, Autonomous University of BarcelonaBarcelona, Spain
| | | | | | - Santiago Vadillo
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de ExtremaduraCáceres, Spain
| | | | - Joaquin Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPSBarcelona, Spain.,Faculty of Medicine, Autonomous University of BarcelonaBarcelona, Spain
| |
Collapse
|
35
|
Daniel AG, Sato JP, Gabardo MP, Resende TP, Barcellos DED, Pereira CE, Vannucci FA, Guedes RM. Minimum inhibitory concentration of Brazilian Brachyspira hyodysenteriae strains. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000400006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: The objectives of this study were to characterize Brachyspira hyodysenteriae isolates and to evaluate the antimicrobial susceptibility patterns of strains obtained from pigs in Brazil based on the minimal inhibitory concentration test (MIC). The MIC was performed for 22 B. hyodysenteriae isolates obtained from 2011 to 2013 using the following antimicrobial drugs: tylosin, tiamulin, valnemulin, doxycycline, lincomycin and tylvalosin. Outbreaks of swine dysentery were diagnosed based on clinical presentation, bacterial isolation, gross and microscopic lesions, duplex PCR for B. hyodysenteriae and B. pilosicoli and nox gene sequencing. All obtained MIC values were consistently higher or equal to the microbiological cut-off described in the literature. The MIC 90 values for the tested drugs were 8μg/ml for doxycycline, >4μg/ml for valnemulin, 8μg/ml for tiamulin, 32μg/ml for tylvalosin, >64μg/ml for lincomycin and >128μg/ml for tylosin. These results largely corroborate those reported in the literature. Tiamulin, doxycycline and tylvalosin showed the lowest MIC results. All of the samples subjected to phylogenetic analysis based on the nox gene sequence exhibited similar results, showing 100% identity to B. hyodysenteriae. This is the first study describing the MIC pattern of B. hyodysenteriae isolated in Brazil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fábio A. Vannucci
- Microvet-Microbiologia Veterinária Especial, Brasil; University of Minnesota, USA
| | | |
Collapse
|
36
|
Le Roy CI, Passey JL, Woodward MJ, La Ragione RM, Claus SP. Metabonomics-based analysis of Brachyspira pilosicoli's response to tiamulin reveals metabolic activity despite significant growth inhibition. Anaerobe 2017; 45:71-77. [PMID: 28373121 DOI: 10.1016/j.anaerobe.2017.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Pathogenic anaerobes Brachyspira spp. are responsible for an increasing number of Intestinal Spirochaetosis (IS) cases in livestock against which few approved treatments are available. Tiamulin is used to treat swine dysentery caused by Brachyspira spp. and recently has been used to handle avian intestinal spirochaetosis (AIS). The therapeutic dose used in chickens requires further evaluation since cases of bacterial resistance to tiamulin have been reported. In this study, we evaluated the impact of tiamulin at varying concentrations on the metabolism of B. pilosicoli using a 1H-NMR-based metabonomics approach allowing the capture of the overall bacterial metabolic response to antibiotic treatment. Based on growth curve studies, tiamulin impacted bacterial growth even at very low concentration (0.008 μg/mL) although its metabolic activity was barely affected 72 h post exposure to antibiotic treatment. Only the highest dose of tiamulin tested (0.250 μg/mL) caused a major metabolic shift. Results showed that below this concentration, bacteria could maintain a normal metabolic trajectory despite significant growth inhibition by the antibiotic, which may contribute to disease reemergence post antibiotic treatment. Indeed, we confirmed that B. pilosicoli remained viable even after exposition to the highest antibiotic dose. This paper stresses the need to ensure new evaluation of bacterial viability post bacteriostatic exposure such as tiamulin to guarantee treatment efficacy and decrease antibiotic resistance development.
Collapse
Affiliation(s)
- Caroline Ivanne Le Roy
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK6 6AP, UK
| | - Jade Louise Passey
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, Surrey GU2 7XH, UK
| | - Martin John Woodward
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK6 6AP, UK
| | - Roberto Marcello La Ragione
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, Surrey GU2 7XH, UK
| | - Sandrine Paule Claus
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK6 6AP, UK.
| |
Collapse
|
37
|
La T, Phillips ND, Hampson DJ. An Investigation into the Etiological Agents of Swine Dysentery in Australian Pig Herds. PLoS One 2016; 11:e0167424. [PMID: 27907102 PMCID: PMC5131991 DOI: 10.1371/journal.pone.0167424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Swine dysentery (SD) is a mucohemorrhagic colitis, classically seen in grower/finisher pigs and caused by infection with the anaerobic intestinal spirochete Brachyspira hyodysenteriae. More recently, however, the newly described species Brachyspira hampsonii and Brachyspira suanatina have been identified as causing SD in North America and/or Europe. Furthermore, there have been occasions where strains of B. hyodysenteriae have been recovered from healthy pigs, including in multiplier herds with high health status. This study investigated whether cases of SD in Australia may be caused by the newly described species; how isolates of B. hyodysenteriae recovered from healthy herds compared to isolates from herds with disease; and how contemporary isolates compare to those recovered in previous decades, including in their plasmid gene content and antimicrobial resistance profiles. In total 1103 fecal and colon samples from pigs in 97 Australian herds were collected and tested. Of the agents of SD only B. hyodysenteriae was found, being present in 34 (35.1%) of the herds, including in 14 of 24 (58%) herds that had been considered to be free of SD. Multilocus sequence typing applied to 96 isolates from 30 herds and to 53 Australian isolates dating from the 1980s through the early 2000s showed that they were diverse, distinct from those reported in other countries, and that the 2014/16 isolates generally were different from those from earlier decades. These findings provided evidence for ongoing evolution of B. hyodysenteriae strains in Australia. In seven of the 20 herds where multiple isolates were available, two to four different sequence types (STs) were identified. Isolates with the same STs also were found in some herds with epidemiological links. Analysis of a block of six plasmid virulence-associated genes showed a lack of consistency between their presence or absence and their origin from herds currently with or without disease; however, significantly fewer isolates from the 2000s and from 2014/16 had this block of genes compared to isolates from the 1980s and 1990s. It is speculated that loss of these genes may have been responsible for the occurrence of milder disease occurring in recent years. In addition, fewer isolates from 2014/16 were susceptible to the antimicrobials lincomycin, and to a lesser extent tiamulin, than those from earlier Australian studies. Four distinct multi-drug resistant strains were identified in five herds, posing a threat to disease control.
Collapse
Affiliation(s)
- Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Nyree D. Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
38
|
Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States. J Clin Microbiol 2016; 54:2109-19. [PMID: 27252458 DOI: 10.1128/jcm.00834-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered "Brachyspira hampsonii," have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies.
Collapse
|
39
|
Mirajkar NS, Gebhart CJ. Comparison of agar dilution and antibiotic gradient strip test with broth microdilution for susceptibility testing of swine Brachyspira species. J Vet Diagn Invest 2016; 28:133-43. [DOI: 10.1177/1040638716629154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea ( B. hyodysenteriae and “ B. hampsonii”) or mild colitis ( B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species ( B. hyodysenteriae, “ B. hampsonii”, B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1–5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics.
Collapse
Affiliation(s)
- Nandita S. Mirajkar
- Department of Veterinary and Biomedical Sciences (Mirajkar, Gebhart), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN
- Veterinary Diagnostic Laboratory (Gebhart), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN
| | - Connie J. Gebhart
- Department of Veterinary and Biomedical Sciences (Mirajkar, Gebhart), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN
- Veterinary Diagnostic Laboratory (Gebhart), College of Veterinary Medicine, University of Minnesota, Saint Paul, MN
| |
Collapse
|
40
|
Le Roy CI, Mappley LJ, La Ragione RM, Woodward MJ, Claus SP. Brachyspira pilosicoli-induced avian intestinal spirochaetosis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:28853. [PMID: 26679774 PMCID: PMC4683989 DOI: 10.3402/mehd.v26.28853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022]
Abstract
Avian intestinal spirochaetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally, the ileum, caeca, and colon), which can cause symptoms such as diarrhoea, reduced growth rate, and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summarises the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS.
Collapse
Affiliation(s)
- Caroline I Le Roy
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Luke J Mappley
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Roberto M La Ragione
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, UK.,Department of Bacteriology, APHA, Weybridge, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK;
| |
Collapse
|
41
|
Affiliation(s)
- Cóilín Nunan
- Alliance to Save Our Antibiotics, South Plaza, Marlborough Street, Bristol BS1 3NX e-mail:
| | - Richard Young
- Sustainable Food Trust, 38 Richmond Street, Bristol BS3 4TQ e-mail:
| |
Collapse
|
42
|
Woodward MJ, Mappley L, Le Roy C, Claus SP, Davies P, Thompson G, La Ragione RM. Drinking water application of Denagard® Tiamulin for control of Brachyspira pilosicoli infection of laying poultry. Res Vet Sci 2015; 103:87-95. [PMID: 26679801 DOI: 10.1016/j.rvsc.2015.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 11/28/2022]
Abstract
Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diarrhoea, increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no definitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challenged with B. pilosicoli strain B2904 with three oral doses two days apart. All birds were colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p=0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p<0.001) to approaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the effectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.
Collapse
Affiliation(s)
- Martin J Woodward
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights Parks, P.O. Box 226, Reading RG6 6AP, UK
| | - Luke Mappley
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights Parks, P.O. Box 226, Reading RG6 6AP, UK
| | - Caroline Le Roy
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights Parks, P.O. Box 226, Reading RG6 6AP, UK
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights Parks, P.O. Box 226, Reading RG6 6AP, UK
| | - Paul Davies
- Animal Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Gavin Thompson
- Animal Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Roberto M La Ragione
- Animal Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
43
|
Vande Maele L, Heyndrickx M, Maes D, De Pauw N, Mahu M, Verlinden M, Haesebrouck F, Martel A, Pasmans F, Boyen F. In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components. J Vet Med Sci 2015; 78:325-8. [PMID: 26369432 PMCID: PMC4785128 DOI: 10.1292/jvms.15-0341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The antibacterial potential of organic acids and essential oil components against Brachyspira
hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory
concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay.
In addition, possible synergism was determined. MIC values for the three tested strains were similar. For
organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most
sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary
combinations were additive, however, for thymol and carvacrol, synergism could be observed. In
vitro results demonstrate the antibacterial action of certain essential oil components and organic
acids against B. hyodysenteriae.
Collapse
Affiliation(s)
- Lien Vande Maele
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rugna G, Bonilauri P, Carra E, Bergamini F, Luppi A, Gherpelli Y, Magistrali CF, Nigrelli A, Alborali GL, Martelli P, La T, Hampson DJ, Merialdi G. Sequence types and pleuromutilin susceptibility of Brachyspira hyodysenteriae isolates from Italian pigs with swine dysentery: 2003-2012. Vet J 2015; 203:115-9. [PMID: 25486860 DOI: 10.1016/j.tvjl.2014.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Swine dysentery is a mucohaemorrhagic colitis of pigs caused by infection with Brachyspira hyodysenteriae. The disease can be controlled by treatment with antimicrobial agents, with the pleuromutilins tiamulin and valnemulin being widely used. In recent years, the occurrence of B. hyodysenteriae with reduced susceptibility to these drugs has been increasing. The aim of this study was to determine temporal changes in genetic groups and pleuromutilin susceptibility amongst B. hyodysenteriae isolates from Italy. Multilocus sequence typing (MLST) was performed on 108 isolates recovered from 87 farms in different regions of Italy from 2003 to 2012, and their minimum inhibitory concentrations (MICs) for tiamulin and valnemulin were determined. Logistic regression was performed to assess associations between susceptibility to the two antimicrobial agents and genetic group, year and region of isolation. The isolates were allocated to 23 sequence types (STs), with five clonal clusters (Ccs) and seven singletons. More than 50% of isolates were resistant to both pleuromutilins (MIC >2.0 µg/mL for tiamulin and >1.0 µg/mL for valnemulin). All 10 isolates in ST 83 were resistant; these were first isolated in 2011 and came from nine farms, suggesting recent widespread dissemination of a resistant strain. Significant associations were found between the proportion of pleuromutilin susceptible isolates and the genetic group and year of isolation. Although resistant isolates were found in all Ccs, isolates in Ccs 2 and 7 were over five times more likely to be susceptible than those in the other Ccs. A significant trend in the reduction of susceptibility over time also was observed.
Collapse
Affiliation(s)
- G Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - P Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - E Carra
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - F Bergamini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - A Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - Y Gherpelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - C F Magistrali
- Istituto Zooprofilattico Sperimentale Umbria e Marche, Via G. Salvemini 1, 06126 Perugia, Italy
| | - A Nigrelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - G L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - P Martelli
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy
| | - T La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - D J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - G Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
45
|
Wilberts B, Arruda P, Warneke H, Erlandson K, Hammer J, Burrough E. Cessation of clinical disease and spirochete shedding after tiamulin treatment in pigs experimentally infected with “Brachyspira hampsonii”. Res Vet Sci 2014; 97:341-7. [DOI: 10.1016/j.rvsc.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/29/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022]
|
46
|
van Duijkeren E, Greko C, Pringle M, Baptiste KE, Catry B, Jukes H, Moreno MA, Pomba MCMF, Pyörälä S, Rantala M, Ružauskas M, Sanders P, Teale C, Threlfall EJ, Torren-Edo J, Törneke K. Pleuromutilins: use in food-producing animals in the European Union, development of resistance and impact on human and animal health. J Antimicrob Chemother 2014; 69:2022-31. [PMID: 24793902 DOI: 10.1093/jac/dku123] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pleuromutilins (tiamulin and valnemulin) are antimicrobial agents that are used mainly in veterinary medicine, especially for swine and to a lesser extent for poultry and rabbits. In pigs, tiamulin and valnemulin are used to treat swine dysentery, spirochaete-associated diarrhoea, porcine proliferative enteropathy, enzootic pneumonia and other infections where Mycoplasma is involved. There are concerns about the reported increases in the MICs of tiamulin and valnemulin for porcine Brachyspira hyodysenteriae isolates from different European countries, as only a limited number of antimicrobials are available for the treatment of swine dysentery where resistance to these antimicrobials is already common and widespread. The loss of pleuromutilins as effective tools to treat swine dysentery because of further increases in resistance or as a consequence of restrictions would present a considerable threat to pig health, welfare and productivity. In humans, only one product containing pleuromutilins (retapamulin) is authorized currently for topical use; however, products for oral and intravenous administration to humans with serious multidrug-resistant skin infections and respiratory infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA), are being developed. The objective of this review is to summarize the current knowledge on the usage of pleuromutilins, resistance development and the potential impact of this resistance on animal and human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Helen Jukes
- Veterinary Medicines Directorate, Addlestone, UK
| | - Miguel A Moreno
- Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | | | - Satu Pyörälä
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Merja Rantala
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Modestas Ružauskas
- Veterinary Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Pascal Sanders
- Agence Nationale de Sécurité Sanitaire (ANSES), Fougères, France
| | | | | | | | | |
Collapse
|
47
|
Antibiotic susceptibility of Brachyspira hyodysenteriae isolates from Czech swine farms: a 10-year follow-up study. ACTA VET BRNO 2014. [DOI: 10.2754/avb201483010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brachyspira hyodysenteriae is the causative agent of swine dysentery. Loss of clinical efficacy of some antimicrobial agents authorized for treating swine dysentery was observed on certain Czech pig farms. The aim of the present study was to evaluate the antimicrobial sensitivity of six antibiotics using a set of 202 randomly selected B. hyodysenteriae isolates obtained from farms in the Czech Republic between years 1997 and 2006. Minimum inhibitory concentration of antibiotics tylosin, lincomycin, tylvalosin, chlortetracyclin, tiamulin and valnemulin were tested, using an agar dilution method. All antibiotics tested showed an increase in minimal inhibitory concentrations. Continual decrease in susceptibility of B. hyodysenteriae isolates to tiamulin and valnemulin was observed. Multiresistant B. hyodysenteriae were isolated more frequently in the past years. Only a careful use of antibiotics can ensure their efficacy, especially in case of pleuromutilins, in the strategic therapy of swine dysentery. This rare study demonstrates the minimal inhibitory concentration changes of selected antidysenterics among Czech isolates of Brachyspira hyodysenteriae during a ten-year period.
Collapse
|
48
|
Herbst W, Schlez K, Heuser J, Baljer G. Antimicrobial susceptibility of Brachyspira hyodysenteriae determined by a broth microdilution method. Vet Rec 2014; 174:382. [PMID: 24659031 DOI: 10.1136/vr.102169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- W Herbst
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-Universität Giessen, Frankfurter Strasse 89, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
49
|
Pyörälä S, Baptiste KE, Catry B, van Duijkeren E, Greko C, Moreno MA, Pomba MCMF, Rantala M, Ružauskas M, Sanders P, Threlfall EJ, Torren-Edo J, Törneke K. Macrolides and lincosamides in cattle and pigs: use and development of antimicrobial resistance. Vet J 2014; 200:230-9. [PMID: 24685099 DOI: 10.1016/j.tvjl.2014.02.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
Macrolides and lincosamides are important antibacterials for the treatment of many common infections in cattle and pigs. Products for in-feed medication with these compounds in combination with other antimicrobials are commonly used in Europe. Most recently approved injectable macrolides have very long elimination half-lives in both pigs and cattle, which allows once-only dosing regimens. Both in-feed medication and use of long-acting injections result in low concentrations of the active substance for prolonged periods, which causes concerns related to development of antimicrobial resistance. Acquired resistance to macrolides and lincosamides among food animal pathogens, including some zoonotic bacteria, has now emerged. A comparison of studies on the prevalence of resistance is difficult, since for many micro-organisms no agreed standards for susceptibility testing are available. With animal pathogens, the most dramatic increase in resistance has been seen in the genus Brachyspira. Resistance towards macrolides and lincosamides has also been detected in staphylococci isolated from pigs and streptococci from cattle. This article reviews the use of macrolides and lincosamides in cattle and pigs, as well as the development of resistance in target and some zoonotic pathogens. The focus of the review is on European conditions.
Collapse
Affiliation(s)
- Satu Pyörälä
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 04920 Saarentaus, Finland.
| | | | - Boudewijn Catry
- Scientific Institute of Public Health, Healthcare Associated Infections and Antimicrobial Resistance, 1050 Brussels, Belgium
| | - Engeline van Duijkeren
- National Institute for Public Health and the Environment, PO Box 13720, BA, Bilthoven, The Netherlands
| | | | - Miguel A Moreno
- Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Merja Rantala
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014, Finland
| | | | - Pascal Sanders
- Agence Nationale de Sécurité Sanitaire (ANSES), 35302 Fougères Cedex, France
| | - E John Threlfall
- Health Protection Agency, Centre for Infections, Laboratory of Enteric Pathogens, London NW9 5EQ, UK
| | - Jordi Torren-Edo
- European Medicines Agency, Animal and Public Health, London E14 8HB, UK
| | | |
Collapse
|
50
|
Martínez-Lobo FJ, Hidalgo Á, García M, Argüello H, Naharro G, Carvajal A, Rubio P. First identification of "Brachyspira hampsonii" in wild European waterfowl. PLoS One 2013; 8:e82626. [PMID: 24349322 PMCID: PMC3857821 DOI: 10.1371/journal.pone.0082626] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
Anseriformes deserve special attention in the epidemiology of Brachyspira spp. because diverse Anseriformes species have been described to act as highly efficient carriers of several Brachyspira spp. that can also infect livestock. The aim of this study was to investigate the prevalence and diversity of Brachyspira spp. in waterfowl that winter in Spain. Brachyspira spp. were isolated from 51 of the 205 faecal samples collected from graylag geese and mallards in the Villafáfila Lagoons Nature Reserve (Northwestern Spain). The Brachyspira species identified through phenotyping, PCR and sequencing of the nox gene were B. pilosicoli (5.9%), B. alvinipulli (11.8%), "B. hampsonii" (19.6%), B. murdochii (23.5%) and B. innocens (39.2%). The most relevant finding of this study is the description of "B. hampsonii" in specimens from birds for the first time. Phylogenetic analysis of the nox gene sequences grouped all of the obtained "B. hampsonii" isolates into a cluster with Brachyspira strains previously identified by others as "B. hampsonii" and separated from other Brachyspira spp. isolates and reference strains. Additionally, this cluster was related to clades that grouped B. murdochii and B. innocens isolates. The identification of "B. hampsonii" was also achieved in 8 of the 10 isolates by sequencing the16S rRNA gene and tlyA gene. Regardless of the species identified, no antimicrobial resistance was observed in any of the enteropathogenic isolates recovered. This is the first description of "B. hampsonii" in European waterfowl, which might represent hosts that serve as natural reservoirs of this Brachyspira species. This finding indicates that this spirochete is not limited to North America, and its presence in wild birds in Europe poses a risk of transmission to livestock.
Collapse
Affiliation(s)
| | - Álvaro Hidalgo
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Marta García
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Héctor Argüello
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Germán Naharro
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Ana Carvajal
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Pedro Rubio
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| |
Collapse
|