1
|
Okano M, Ogata A, Aboshi H, Kondo M. Effect of early-life stress on LINE-1 in animal model of child neglect. Biochem Biophys Res Commun 2025; 763:151787. [PMID: 40228384 DOI: 10.1016/j.bbrc.2025.151787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
The need for objective methods to assess child neglect has intensified. However, no biological indicators have been established for this purpose. Recently, early-life environments such as maternal attachment have been shown to affect the activity of long-interspersed nuclear element-1 (LINE-1, L1) in human infants and mouse pups. Herein, we hypothesized that the L1 copy number may correlate with the duration of neglect stress. To test this hypothesis, we employed a well-established mouse model of maternal separation that simulates early-life neglect. C57BL6/J mouse pups were subjected to daily maternal separation for either three or 6 h for two weeks from postnatal day (PND) one. We minimized the potential confounding effects of variations in maternal care by designating half of the littermates as untreated controls. L1 copy number in DNA extracted from the hippocampus and amygdala tissues at PND15 was quantified using real-time PCR with two different genes (5s-rRNA and Pthlh) as references. The results showed significantly higher L1 copy numbers in the hippocampus of pups separated for 6 h than in untreated controls. In addition, maternal separation duration was found to be correlated with L1 copy number in the hippocampus (r = 0.46, p < 0.001). Furthermore, the amplification of L1 in the hippocampus induced by 6 h of maternal separation was sustained until PND60. This study introduced a novel approach to understanding neglect-related L1 activity and highlighted the potential of L1 elements as an indicator in forensic medicine.
Collapse
Affiliation(s)
- Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Ayano Ogata
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Hirofumi Aboshi
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Masahiro Kondo
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
2
|
Koshizaka M, Eguchi A, Takaguchi K, Yamamoto M, Takatani R, Hisada A, Kawanami A, Konno Y, Watanabe M, Tsumura K, Shimatani K, Suzuki N, Mori C, Sakurai K. Second phase Chiba study of mother and child health (C-MACH): Japanese birth cohort study with multiomics analyses. BMJ Open 2024; 14:e085682. [PMID: 39653579 PMCID: PMC11628962 DOI: 10.1136/bmjopen-2024-085682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
PURPOSE Epidemiological studies have reported that environmental factors from fetal period to early childhood can influence the risk of non-communicable diseases in adulthood. This concept has been termed the developmental origins of health and disease (DOHaD). The Chiba study of Mother and Child Health (C-MACH) is a DOHaD concept-based birth cohort study which started in 2014. This study aims to investigate the effects of genetic and environmental factors, particularly fetal and postnatal living environment, on children's health. We also aim to identify candidate biomarkers for their health status. Moreover, the second phase study of C-MACH which was initiated in 2021 aimed at expanding the sample size, especially for gut microbiota and epigenomic analysis; it also aimed at clarifying the impact of the coronavirus disease 2019 (COVID-19) pandemic on children's health. PARTICIPANTS This study consists of four hospital-based cohorts. Women who were <13 weeks pregnant and their partners were enrolled in the study. All data and biological samples will be stored in the Chiba University Centre for Preventive Medical Sciences. FINDINGS TO DATE A total of 561 women and their partners provided their consent to participate in this study. Of these women, 505 completed the questionnaire during the early gestational period. The mean age of the 505 women at enrolment was 33.0 (SD, 4.5) years. The mean prepregnancy body mass index (BMI) was 21.7 (SD, 3.6) kg/m2, with 74.5% of the women having a BMI of 18.5-24.9 kg/m2. About 5.2% of the women smoked cigarettes during the early stages of pregnancy. FUTURE PLANS The primary study outcomes are allergies, obesity, endocrine and metabolic disorders and developmental difficulties in children. Variables related to genome, metabolome, epigenome, gut microbiota and exposome will be evaluated as health-related factors. The relationships between these outcomes and the health-related factors will be analysed.
Collapse
Affiliation(s)
- Masaya Koshizaka
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kohki Takaguchi
- Endowed course on Indoor Air Quality (Sekisui House, Ltd.), Center for PreventiveMedical Sciences, Chiba University, Chiba, Japan
| | - Midori Yamamoto
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Rieko Takatani
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Aya Hisada
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Akiko Kawanami
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Yuki Konno
- Department of Environmental Preventive Medicine (Yamada Bee Company, Inc.), Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Masahiro Watanabe
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kayo Tsumura
- Endowed course on Indoor Air Quality (Sekisui House, Ltd.), Center for PreventiveMedical Sciences, Chiba University, Chiba, Japan
| | - Keiichi Shimatani
- Endowed course on Indoor Air Quality (Sekisui House, Ltd.), Center for PreventiveMedical Sciences, Chiba University, Chiba, Japan
| | - Norimichi Suzuki
- Department of Healthy Cities and Built Environment, Center for Preventive MedicalSciences, Chiba University, Chiba, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Özkan-Kotiloğlu S, Kaya-Akyüzlü D, Güven E, Doğan Ö, Ağtaş-Ertan E, Özgür-İlhan İ. A case control study investigating the methylation levels of GHRL and GHSR genes in alcohol use disorder. Mol Biol Rep 2024; 51:663. [PMID: 38771494 DOI: 10.1007/s11033-024-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a relapsing disease described as excessive use of alcohol. Evidence of the role of DNA methylation in addiction is accumulating. Ghrelin is an important peptide known as appetite hormone and its role in addictive behavior has been identified. Here we aimed to determine the methylation levels of two crucial genes (GHRL and GHSR) in ghrelin signaling and further investigate the association between methylation ratios and plasma ghrelin levels. METHODS Individuals diagnosed with (n = 71) and without (n = 82) AUD were recruited in this study. DNA methylation levels were measured through methylation-sensitive high-resolution melting (MS-HRM). Acylated ghrelin levels were detected by ELISA. The GHRL rs696217 polymorphism was analyzed by the standard PCR-RFLP method. RESULTS GHRL was significantly hypermethylated (P < 0.0022) in AUD between 25 and 50% methylation than in control subjects but no significant changes of GHSR methylation were observed. Moreover, GHRL showed significant positive correlation of methylation ratio between 25 and 50% with age. A significant positive correlation between GHSR methylation and ghrelin levels in the AUD group was determined (P = 0.037). The level of GHRL methylation and the ghrelin levels showed a significant association in the control subjects (P = 0.042). CONCLUSION GHSR and GHRL methylation levels did not change significantly between control and AUD groups. However, GHRL and GHSR methylations seemed to have associations with plasma ghrelin levels in two groups. This is the first study investigating the DNA methylation of GHRL and GHSR genes in AUD.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Türkiye.
| | | | - Emine Güven
- Department of Biomedical Engineering, Faculty of Engineering, Düzce University, Düzce, Türkiye
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, USA
| | - Özlem Doğan
- Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ece Ağtaş-Ertan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - İnci Özgür-İlhan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| |
Collapse
|
4
|
Tang Q, Ojiro R, Ozawa S, Zou X, Nakahara J, Nakao T, Koyanagi M, Jin M, Yoshida T, Shibutani M. DNA methylation-altered genes in the rat hippocampal neurogenic niche after continuous exposure to amorphous curcumin. J Chem Neuroanat 2024; 137:102414. [PMID: 38490283 DOI: 10.1016/j.jchemneu.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Rat offspring who are exposed to an amorphous formula of curcumin (CUR) from the embryonic stage have anti-anxiety-like behaviors, enhanced fear extinction learning, and increased synaptic plasticity in the hippocampal dentate gyrus (DG). In the present study, we investigated the links between genes with altered methylation status in the neurogenic niche and enhanced neural functions after CUR exposure. We conducted methylation and RNA sequencing analyses of the DG of CUR-exposed rat offspring on day 77 after delivery. Methylation status and transcript levels of candidate genes were validated using methylation-sensitive high-resolution melting and real-time reverse-transcription PCR, respectively. In the CUR group, we confirmed the hypermethylation and downregulation of Gpr150, Mmp23, Rprml, and Pcdh8 as well as the hypomethylation and upregulation of Ppm1j, Fam222a, and Opn3. Immunohistochemically, reprimo-like+ hilar cells and protocadherin-8+ granule cells were decreased and opsin-3+ hilar cells were increased by CUR exposure. Both reprimo-like and opsin-3 were partially expressed on subpopulations of glutamic acid decarboxylase 67+ γ-aminobutyric acid-ergic interneurons. Furthermore, the transcript levels of genes involved in protocadherin-8-mediated N-cadherin endocytosis were altered with CUR exposure; this was accompanied by Ctnnb1 and Syp upregulation and Mapk14, Map2k3, and Grip1 downregulation, suggesting that CUR-induced enhanced synaptic plasticity is associated with cell adhesion. Together, our results indicate that functionally different genes have altered methylation and expression in different neuronal populations of the hippocampal neurogenic niche, thus enhancing synaptic plasticity after CUR exposure.
Collapse
Affiliation(s)
- Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tomohiro Nakao
- Emulsion Laboratory, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
5
|
Botezatu IV, Kondratova VN, Stroganova AM, Dranko SL, Lichtenstein AV. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clin Chim Acta 2023; 551:117591. [PMID: 37832390 DOI: 10.1016/j.cca.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The generally accepted method of quantifying hypermethylated DNA by qPCR using methylation-specific primers has the risk of underestimating DNA methylation and requires data normalization. This makes the analysis complicated and less reliable. METHODS The end-point PCR method, called qDMA-HP (for quantitative DNA Melting Analysis with hybridization probes), which excludes the normalization procedure, is multiplexed and quantitative, has been proposed. qDMA-HP is characterized by the following features: (i) asymmetric PCR with methylation-independent primers; (ii) fluorescent dual-labeled, self-quenched probes (commonly known as TaqMan probes) covering several interrogated CpGs; (iii) post-PCR melting analysis of amplicon/probe hybrids; (iv) quantitation of unmethylated and methylated DNA alleles by measuring the areas under the corresponding melt peaks. RESULTS qDMA-HP was tested in liquid biopsy of colorectal cancer by evaluating SEPT9 and HIST1H4F methylations simultaneously in the single-tube reaction. Differences in the methylation levels in healthy donors versus cancer patients were statistically significant (p < 0.0001), AUCROC values were 0.795-0.921 for various marker combinations. CONCLUSIONS This proof-of-concept study shows that qDMA-HP is a simple, normalization-independent, quantitative, multiplex and "closed tube" method easily adapted to clinical settings. It is demonstrated, for the first time, that HIST1H4F is a perspective marker for liquid biopsy of colorectal cancer.
Collapse
Affiliation(s)
- Irina V Botezatu
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Valentina N Kondratova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anna M Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Svetlana L Dranko
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anatoly V Lichtenstein
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia.
| |
Collapse
|
6
|
Gorzkiewicz M, Łoś-Rycharska E, Gawryjołek J, Gołębiewski M, Krogulska A, Grzybowski T. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between Polish infants with the food allergy and/or atopic dermatitis and without the disease. Front Immunol 2023; 14:1209190. [PMID: 37520545 PMCID: PMC10373304 DOI: 10.3389/fimmu.2023.1209190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives Epigenetic dynamics has been indicated to play a role in allergy development. The environmental stimuli have been shown to influence the methylation processes. This study investigated the differences in CpGs methylation rate of immune-attached genes between healthy and allergic infants. The research was aimed at finding evidence for the impact of environmental factors on methylation-based regulation of immunological processes in early childhood. Methods The analysis of methylation level of CpGs in the IL4, IL5, IL10, IFNG and FOXP3 genes was performed using high resolution melt real time PCR technology. DNA was isolated from whole blood of Polish healthy and allergic infants, with food allergy and/or atopic dermatitis, aged under six months. Results The significantly lower methylation level of FOXP3 among allergic infants compared to healthy ones was reported. Additional differences in methylation rates were found, when combining with environmental factors. In different studied groups, negative correlations between age and the IL10 and FOXP3 methylation were detected, and positive - in the case of IL4. Among infants with different allergy symptoms, the decrease in methylation level of IFNG, IL10, IL4 and FOXP3 associated with passive smoke exposure was observed. Complications during pregnancy were linked to different pattern of the IFNG, IL5, IL4 and IL10 methylation depending on allergy status. The IFNG and IL5 methylation rates were higher among exclusively breastfed infants with atopic dermatitis compared to the non-breastfed. A decrease in the IFNG methylation was noted among allergic patients fed exclusively with milk formula. In different study groups, a negative correlation between IFNG, IL5 methylation and maternal BMI or IL5 methylation and weight was noted. Some positive correlations between methylation rate of IL10 and child's weight were found. A higher methylation of IL4 was positively correlated with the number of family members with allergy. Conclusion The FOXP3 methylation in allergic infants was lower than in the healthy ones. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between the studied groups. The results offer insights into epigenetic regulation of immunological response in early childhood.
Collapse
Affiliation(s)
- Marta Gorzkiewicz
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Łoś-Rycharska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julia Gawryjołek
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Aneta Krogulska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
7
|
Marie-Claire C, Courtin C, Bellivier F, Gard S, Leboyer M, Scott J, Etain B. Methylomic biomarkers of lithium response in bipolar disorder: a clinical utility study. Int J Bipolar Disord 2023; 11:16. [PMID: 37119343 PMCID: PMC10148930 DOI: 10.1186/s40345-023-00296-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Response to lithium (Li) is highly variable in bipolar disorders (BD). Despite decades of research, no clinical predictor(s) of response to Li prophylaxis have been consistently identified. Recently, we developed epigenetic Methylation Specific High-Resolution Melting (MS-HRM) assays able to discriminate good responders (GR) from non-responders (NR) to Li in individuals with BD type 1 (BD-I). This study examined whether a combination of clinical and epigenetic markers can distinguish NR from other types of Li responders. METHODS We recorded clinical variables that are potentially associated with Li response in 64 individuals with BD-I. MS-HRM assays were performed on DNA isolated from peripheral blood. We used backward stepwise logistic regression analyses, followed by receiver operating characteristic (ROC) curve analysis to estimate the performance of the clinical variables, alone then in combination with the epigenetic biomarkers, to identify GR and partial responders (PaR) vs NR. RESULTS Polarity at onset, psychotic symptoms at onset and family history of BD classified correctly 70% of individuals according to their Li response (PaR + GR = 86%; NR = 35%). When combined with the epigenetic biomarkers, these three clinical variables plus alcohol misuse (and one DMR: Differentially Methylated Region) correctly classified 86% of individuals, improving the prediction of PaR + GR (93%) and of NR (70%). The ROC analysis demonstrated an improvement in the area under the curve from 0.75 (clinical variables alone) to 0.87 (combination of clinical and epigenetic markers). CONCLUSIONS Combining clinical predictors and DNA methylation markers of Li response may have greater utility in clinical practice than relying on clinical characteristics alone.
Collapse
Affiliation(s)
- C Marie-Claire
- Inserm UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 4 Avenue de l'observatoire, 75006, Paris, France.
| | - C Courtin
- Inserm UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 4 Avenue de l'observatoire, 75006, Paris, France
| | - F Bellivier
- Inserm UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 4 Avenue de l'observatoire, 75006, Paris, France
- Département de Psychiatrie et de Médecine AddictologiqueHôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord Université de Paris, 75010, Paris, France
- Fondation Fondamental, 94010, Créteil, France
| | - S Gard
- Fondation Fondamental, 94010, Créteil, France
- Centre Hospitalier Charles Perrens, Pôle de Psychiatrie Générale et Universitaire, Bordeaux, France
| | - M Leboyer
- Fondation Fondamental, 94010, Créteil, France
- Translational Neuro-Psychiatry, Université Paris Est Créteil, INSERM U955, IMRB, Créteil, France
- Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - J Scott
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - B Etain
- Inserm UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 4 Avenue de l'observatoire, 75006, Paris, France
- Département de Psychiatrie et de Médecine AddictologiqueHôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord Université de Paris, 75010, Paris, France
- Fondation Fondamental, 94010, Créteil, France
| |
Collapse
|
8
|
Samsø Mathiasen S, Bińkowski J, Kjeldsen T, Wojdacz TK, Hansen LL. Methylation levels assessment with Methylation-Sensitive High-Resolution Melting (MS-HRM). PLoS One 2022; 17:e0273058. [PMID: 36067175 PMCID: PMC9447921 DOI: 10.1371/journal.pone.0273058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Testing for disease-related DNA methylation changes provides clinically relevant information in personalized patient care. Methylation-Sensitive High-Resolution Melting (MS-HRM) is a method used for measuring methylation changes and has already been used in diagnostic settings. This method utilizes one set of primers that initiate the amplification of both methylated and non-methylated templates. Therefore, the quantification of the methylation levels using MS-HRM is hampered by the PCR bias phenomenon. Some approaches have been proposed to calculate the methylation level of samples using the high-resolution melting (HRM) curves. However, limitations of the methylation calculation using MS-HRM have not been evaluated systematically and comprehensively. We used the Area Under the Curve (AUC), a derivative of the HRM curves, and least square approximation (LSA) to establish a procedure that allowed us to infer methylation levels in an MS-HRM experiment and assess the limitations of that procedure for the assays’ specific methylation level measurement. The developed procedure allowed, with certain limitations, estimation of the methylation levels using HRM curves.
Collapse
Affiliation(s)
| | - Jan Bińkowski
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tina Kjeldsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tomasz K. Wojdacz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, Szczecin, Poland
- * E-mail:
| | | |
Collapse
|
9
|
Javadmanesh A, Mojtabanezhad Shariatpanahi A, Shams Davodly E, Azghandi M, Yassi M, Heidari M, Kerachian M, Kerachian MA. MS-HRM protocol: a simple and low-cost approach for technical validation of next-generation methylation sequencing data. Mol Genet Genomics 2022; 297:1101-1109. [PMID: 35616708 DOI: 10.1007/s00438-022-01906-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
DNA methylation is a fundamental epigenetic process and have a critical role in many biological processes. The study of DNA methylation at a large scale of genomic levels is widely conducted by several techniques that are next-generation sequencing (NGS)-based methods. Methylome data revealed by DNA methylation next-generation sequencing (mNGS), should be always verified by another technique which they usually have a high cost. In this study, we offered a low-cost approach to corroborate the mNGS data. In this regard, mNGS was performed on 6 colorectal cancer (case group) and 6 healthy individual colon tissue (control group) samples. An R-script detected differentially methylated regions (DMRs), was further validated by high resolution melting (MS-HRM) analysis. After analyzing the data, the algorithm found 194 DMRs. Two locations with the highest level of methylation difference were verified by MS-HRM, which their results were in accordance with the mNGS. Therefore, in the present study, we suggested MS-HRM as a simple, accurate and low-cost method, useful for confirming methylation sequencing results.
Collapse
Affiliation(s)
- Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | | | - Ehsan Shams Davodly
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Marjan Azghandi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Maryam Yassi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Mehdi Heidari
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Matin Kerachian
- Faculty of Medicine, McGill University, Montreal, Canada
- Research Institute at McGill University Health Center, Montreal, Canada
| | - Mohammad Amin Kerachian
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
- Cancer Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran.
| |
Collapse
|
10
|
Challenges in promoter methylation analysis in the new era of translational oncology: a focus on liquid biopsy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166390. [PMID: 35296416 DOI: 10.1016/j.bbadis.2022.166390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Toward the discovery of novel reliable biomarkers, epigenetic alterations have been repeatedly proposed for the diagnosis and the development of therapeutic strategies against cancer. Indeed, for promoter methylation to actively become a tumor marker for clinical use, it must be combined with a highly informative technology evaluated in an appropriate biospecimen. Methodological standardization related to epigenetic research is, in fact, one of the most challenging tasks. Moreover, tissue-based biopsy is being complemented and, in some cases, replaced by liquid biopsy. This review will highlight the advancements made for both pre-analytical and analytical implementation for the prospective use of methylation biomarkers in clinical settings, with particular emphasis on liquid biopsy.
Collapse
|
11
|
Marie-Claire C, Courtin C, Bellivier F, Scott J, Etain B. Methylomic Biomarkers of Lithium Response in Bipolar Disorder: A Proof of Transferability Study. Pharmaceuticals (Basel) 2022; 15:ph15020133. [PMID: 35215246 PMCID: PMC8877131 DOI: 10.3390/ph15020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
Response to lithium (Li) is highly variable in bipolar disorders (BD) and no clinical or biological predictors of long-term response have been validated to date. Using a genome-wide methylomic approach (SeqCapEpi), we previously identified seven differentially methylated regions (DMRs) that discriminated good from non-responders (prophylactic response phenotype defined using the “Alda” scale). This study is a proof of transferability from bench to bedside of this epigenetic signature. For this purpose, we used Methylation Specific High-Resolution Melting (MS-HRM), a PCR based method that can be implemented in any medical laboratory at low cost and with minimal equipment. In 23 individuals with BD, MS-HRM measures of three out of seven DMRs were technically feasible and consistencies between SeqCapEpi and MS-HRM-measures were moderate to high. In an extended sample of individuals with BD (n = 70), the three MS-HRM-measured DMRs mainly predicted nonresponse, with AUC between 0.70–0.80 according to different definitions of the phenotype (Alda- or machine-learning-based definitions). Classification tree analyses further suggested that the MS-HRM-measured DMRs correctly classified up to 84% of individuals as good or non-responders. This study suggested that epigenetic biomarkers, identified in a retrospective sample, accurately discriminate non-responders from responders to Li and may be transferrable to routine practice.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie (OTeN), Université de Paris, F-75006 Paris, France; (C.C.); (F.B.); (B.E.)
- Correspondence:
| | - Cindie Courtin
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie (OTeN), Université de Paris, F-75006 Paris, France; (C.C.); (F.B.); (B.E.)
| | - Frank Bellivier
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie (OTeN), Université de Paris, F-75006 Paris, France; (C.C.); (F.B.); (B.E.)
- AP-HP, GH Saint-Louis—Lariboisière—F. Widal, Pole de Psychiatrie et de Médecine Addictologique, F-75475 Paris, France
- Fondation Fonda Mental, F-94000 Créteil, France
| | - Jan Scott
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Bruno Etain
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie (OTeN), Université de Paris, F-75006 Paris, France; (C.C.); (F.B.); (B.E.)
- AP-HP, GH Saint-Louis—Lariboisière—F. Widal, Pole de Psychiatrie et de Médecine Addictologique, F-75475 Paris, France
- Fondation Fonda Mental, F-94000 Créteil, France
| |
Collapse
|
12
|
Derghal M, Tebai A, Balti G, Souguir-Omrani H, Chemkhi J, Rhim A, Bouattour A, Guizani I, M’Ghirbi Y, Guerbouj S. High-resolution melting analysis identifies reservoir hosts of zoonotic Leishmania parasites in Tunisia. Parasit Vectors 2022; 15:12. [PMID: 34996507 PMCID: PMC8742351 DOI: 10.1186/s13071-021-05138-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/19/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Leishmaniasis is endemic in Tunisia and presents with different clinical forms, caused by the species Leishmania infantum, Leishmania major, and Leishmania tropica. The life cycle of Leishmania is complex and involves several phlebotomine sand fly vectors and mammalian reservoir hosts. The aim of this work is the development and evaluation of a high-resolution melting PCR (PCR-HRM) tool to detect and identify Leishmania parasites in wild and domestic hosts, constituting confirmed (dogs and Meriones rodents) or potential (hedgehogs) reservoirs in Tunisia. METHODS Using in vitro-cultured Leishmania isolates, PCR-HRM reactions were developed targeting the 7SL RNA and HSP70 genes. Animals were captured or sampled in El Kef Governorate, North West Tunisia. DNA was extracted from the liver, spleen, kidney, and heart from hedgehogs (Atelerix algirus) (n = 3) and rodents (Meriones shawi) (n = 7) and from whole blood of dogs (n = 12) that did not present any symptoms of canine leishmaniasis. In total, 52 DNA samples were processed by PCR-HRM using both pairs of primers. RESULTS The results showed melting curves enabling discrimination of the three Leishmania species present in Tunisia, and were further confirmed by Sanger sequencing. Application of PCR-HRM assays on reservoir host samples showed that overall among the examined samples, 45 were positive, while seven were negative, with no Leishmania infection. Meriones shawi were found infected with L. major, while dogs were infected with L. infantum. However, co-infections with L. major/L. infantum species were detected in four Meriones specimens and in all tested hedgehogs. In addition, multiple infections with the three Leishmania species were found in one hedgehog specimen. Sequence analyses of PCR-HRM products corroborated the Leishmania species found in analyzed samples. CONCLUSIONS The results of PCR-HRM assays applied to field specimens further support the possibility of hedgehogs as reservoir hosts of Leishmania. In addition, we showed their usefulness in the diagnosis of canine leishmaniasis, specifically in asymptomatic dogs, which will ensure a better evaluation of infection extent, thus improving elaboration of control programs. This PCR-HRM method is a robust and reliable tool for molecular detection and identification of Leishmania and can be easily implemented in epidemiological surveys in endemic regions.
Collapse
Affiliation(s)
- Moufida Derghal
- Laboratoire d’Epidémiologie Moléculaire Et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses (LR16IPT04), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Faculté Des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Abir Tebai
- Laboratoire d’Epidémiologie Moléculaire Et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses (LR16IPT04), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ghofrane Balti
- Laboratoire d’épidémiologie Et Microbiologie Vétérinaire (LR16IPT03), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Laboratoire Des Virus, Vecteurs Et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Hajer Souguir-Omrani
- Laboratoire d’Epidémiologie Moléculaire Et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses (LR16IPT04), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Jomaa Chemkhi
- Laboratoire d’Epidémiologie Moléculaire Et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses (LR16IPT04), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Adel Rhim
- Laboratoire d’épidémiologie Et Microbiologie Vétérinaire (LR16IPT03), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Laboratoire Des Virus, Vecteurs Et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ali Bouattour
- Laboratoire d’épidémiologie Et Microbiologie Vétérinaire (LR16IPT03), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Laboratoire Des Virus, Vecteurs Et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ikram Guizani
- Laboratoire d’Epidémiologie Moléculaire Et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses (LR16IPT04), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Youmna M’Ghirbi
- Laboratoire d’épidémiologie Et Microbiologie Vétérinaire (LR16IPT03), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Laboratoire Des Virus, Vecteurs Et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Souheila Guerbouj
- Laboratoire d’Epidémiologie Moléculaire Et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses (LR16IPT04), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
13
|
DNA Methylation Is Correlated with Oxidative Stress in Myelodysplastic Syndrome-Relevance as Complementary Prognostic Biomarkers. Cancers (Basel) 2021; 13:cancers13133138. [PMID: 34201739 PMCID: PMC8268426 DOI: 10.3390/cancers13133138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a hematological malignancy with a high propensity to evolve to acute myeloid leukemia. Oxidative stress and abnormal DNA methylation are important in this neoplasia’s development and progression. We investigate whether oxidative stress parameters were correlated with localized and global DNA methylations in the peripheral blood of patients with MDS. We found that oxidative stress was positively correlated with DNA methylation and associated with worse overall survival. Biologically, these facts suggest a relationship between oxidative stress and DNA methylation, two common pathogenic mechanisms involved in MDS. Clinically, our findings can improve an MDS patient’s management if used as complementary prognostic biomarkers. Abstract Oxidative stress and abnormal DNA methylation have been implicated in cancer, including myelodysplastic syndromes (MDSs). This fact leads us to investigate whether oxidative stress is correlated with localized and global DNA methylations in the peripheral blood of MDS patients. Sixty-six MDS patients and 26 healthy individuals were analyzed. Several oxidative stress and macromolecule damage parameters were analyzed. Localized (gene promotor) and global DNA methylations (5-mC and 5-hmC levels; LINE-1 methylation) were assessed. MDS patients had lower levels of reduced glutathione and total antioxidant status (TAS) and higher levels of peroxides, nitric oxide, peroxides/TAS, and 8-hydroxy-2-deoxyguanosine compared with controls. These patients had higher 5-mC levels and lower 5-hmC/5-mC ratio and LINE-1 methylation and increased methylation frequency of at least one methylated gene. Peroxide levels and peroxide/TAS ratio were higher in patients with methylated genes than those without methylation and negatively correlated with LINE-1 methylation and positively with 5-mC levels. The 5-hmC/5-mC ratio was significantly associated with progression to acute leukemia and peroxide/TAS ratio with overall survival. This study points to a relationship between oxidative stress and DNA methylation, two common pathogenic mechanisms involved in MDS, and suggests the relevance of 5-hmC/5-mC and peroxide/TAS ratios as complementary prognostic biomarkers.
Collapse
|
14
|
Bagley JR, Burghardt KJ, McManus R, Howlett B, Costa PB, Coburn JW, Arevalo JA, Malek MH, Galpin AJ. Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men. J Strength Cond Res 2020; 34:1574-1580. [PMID: 32459413 DOI: 10.1519/jsc.0000000000003185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6): 1574-1580, 2020-Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEM: age = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.
Collapse
Affiliation(s)
- James R Bagley
- Department of Kinesiology, Muscle Physiology Laboratory, San Francisco State University, San Francisco, California
| | - Kyle J Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Ryan McManus
- Department of Kinesiology, Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California; and
| | - Bradley Howlett
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Pablo B Costa
- Department of Kinesiology, Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California; and
| | - Jared W Coburn
- Department of Kinesiology, Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California; and
| | - Jose A Arevalo
- Department of Kinesiology, Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California; and
| | - Moh H Malek
- Integrative Physiology of Exercise Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Andrew J Galpin
- Department of Kinesiology, Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California; and
| |
Collapse
|
15
|
Pinzon-Reyes E, Alvarez WA, Rondon-Villarreal P, Hernandez HG. Softepigen: Primers Design Web-Based Tool for MS-HRM Technique. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:354-357. [PMID: 30176603 DOI: 10.1109/tcbb.2018.2867600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymerase Chain Reaction (PCR) based techniques for DNA methylation techniques includes the MS-HRM technique. Methylation Sensitive High-Resolution Melting (MS-HRM) primer-design requires a set of necessary recommendations for such DNA methylation assessment. However, there were not any available software that allows an automatic design of this kind primers. We present Softepigen, the first complete MS-HRM primer design software. Softepigen allows to search for primers in a genomic region following Wojdacz's recommendations and targets primer binding regions with high linguistic complexity sequences that increase the specificity of the converted sequence of the human genome. We performed in-silico PCR analysis through BiSearch ePCR tool to validate the specificity of the of the primers designed using Softepigen. Softepigen for MS-HRM performance in our genomic regions of interest show satisfactory specificity measurements, and we implemented it for freely available use in the web-based interface at www.soft-epigen.com.
Collapse
|
16
|
Huang KT, Shen YL, Lee CN, Chu KY, Ku WC, Liu CY, Huang RFS. Using Differential Threshold Effects of Individual and Combined Periconceptional Methyl Donor Status on Maternal Genomic LINE-1 and Imprinted H19 DNA Methylation to Predict Birth Weight Variance in the Taiwan Pregnancy-Newborn Epigenetics (TPNE) Cohort Study. J Nutr 2020; 150:108-117. [PMID: 31504733 DOI: 10.1093/jn/nxz204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Few studies have comprehensively examined the effect of methyl donor status on maternal DNA methylation and birth outcomes. OBJECTIVES This study examined associations between periconceptional methyl donor status and genome-wide and specific imprinted gene methylation and fetal growth indices in the Taiwan Pregnancy-Newborn Epigenetics cohort. METHODS Plasma folate, choline (free form), and betaine concentrations of the participants enrolled at 7-10 weeks of gestation were analyzed. DNA methylation at regulatory sequences of the imprinted H19 gene and genomic long interspersed nuclear element 1 (LINE-1) were measured in maternal lymphocytes using bisulfite/high-resolution melt polymerase chain reaction. Associations with birth weight (BW) were estimated through multiple regressions from 112 mother-newborn pairs. RESULTS A nonlinear "L-shaped" relation and an inverse association between maternal plasma folate in T1 (mean ± SE: 17.6 ± 5.1 nmol/L) and lymphocytic LINE-1 methylation (β: -0.49, P = 0.027) were characterized. After adjusting for LINE-1 methylation, individual maternal folate concentrations were positively associated with BW variance (β = 0.24, P = 0.035), and the association was more pronounced in mothers with choline in T1 (mean ± SE: 5.4 ± 0.6 μmol/L; β: 0.40, P = 0.039). Choline status of the mothers in T2 (mean ± SE: 7.2 ± 0.6 μmol/L) was inversely associated with LINE-1 methylation (β: -0.43, P = 0.035), and a positive association was evident between T1 choline and H19 methylation (β: 0.48, P = 0.011). After adjusting for epigenetic modification, maternal choline status predicted a positive association with BW (β: 0.56, P = 0.005), but the effect was limited to mothers with high betaine concentrations in T3 (mean ± SE: 36.4 ± 8.8 μmol/L), depending on folate status. CONCLUSIONS Our data highlight the differential threshold effects of periconceptional folate, choline, and betaine status on genomic LINE-1 and H19 DNA methylation and how their interplay has a long-term effect on BW variance.
Collapse
Affiliation(s)
- Kuang-Ta Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Loving Care Maternity and Children's Health Centers, New Taipei City, Taiwan
| | - Yu-Li Shen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Nan Lee
- Department of Gynecology and Obstetrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kuan-Yu Chu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chieh-Yu Liu
- Biostatistical Consultant Lab, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Rwei-Fen S Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
17
|
Skeletal muscle DNA methylation modifications and psychopharmacologic treatment in bipolar disorder. Eur Neuropsychopharmacol 2019; 29:1365-1373. [PMID: 31635791 PMCID: PMC6924624 DOI: 10.1016/j.euroneuro.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
Both severe mental illness and atypical antipsychotics have been independently associated with insulin resistance and weight gain. Altered regulation of skeletal muscle DNA methylation may play a role. We aimed to evaluate DNA methylation modifications in human skeletal muscle samples to further understand its potential role in the metabolic burden observed in psychiatric patients and psychopharmacologic treatment. Subjects were included in our study if they had a bipolar diagnosis and were currently treated with a mood stabilizer or atypical antipsychotic. A healthy control group free of psychiatric or physical disease was also included for comparisons. Anthropometric, BMI and hemoglobin A1C (HbA1C%) were measured. Fasting skeletal muscle biopsies were obtained and methylation levels of 5-methycytosine (5-mC), 5-hydroxymethylcytosine (5-hmC) and 5-formylcytosine (5-fC) were measured. Skeletal muscle global methylation of 5-mC and 5-fC were significantly higher in bipolar subjects compared to healthy controls. 5-mC was significantly higher in the AAP group compared to the mood stabilizer group. Significant correlations were observed between 5-fC methylation and HbA1C%. Our findings suggest that psychiatric disease and treatment may influence some methylation measures in the skeletal muscle of patients with bipolar disorder, which may be further influenced by medication treatment.
Collapse
|
18
|
Šestáková Š, Šálek C, Remešová H. DNA Methylation Validation Methods: a Coherent Review with Practical Comparison. Biol Proced Online 2019; 21:19. [PMID: 31582911 PMCID: PMC6771119 DOI: 10.1186/s12575-019-0107-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Here, we present a practical overview of four commonly used validation methods for DNA methylation assessment: methylation specific restriction endonucleases (MSRE) analysis, pyrosequencing, methylation specific high-resolution DNA melting (MS-HRM) and quantitative methylation specific polymerase chain reaction (qMSP). Using these methods, we measured DNA methylation levels of three loci in human genome among which one was highly methylated, one intermediately methylated and one unmethylated. We compared the methods in terms of primer design demands, methods' feasibility, accuracy, time and money consumption, and usability for clinical diagnostics. Pyrosequencing and MS-HRM proved to be the most convenient methods. Using pyrosequencing, it is possible to analyze every CpG in a chosen region. The price of the instrument may represent the main limitation of this methodology. MS-HRM is a simple PCR-based method. The measurement was quick, cheap and very accurate. MSRE analysis is based on a methylation specific digestion of DNA. It does not require a bisulfite conversion of DNA as the other methods. MSRE analysis was very easy to perform, however, it was not suitable for intermediately methylated regions and it was also quite expensive. qMSP is a qPCR-based method that uses primers designed specifically for methylated and unmethylated alleles of a chosen region. This was the least accurate method and also the primer design and optimization of PCR conditions were highly demanding.
Collapse
Affiliation(s)
- Šárka Šestáková
- 1Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University and Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,2Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Cyril Šálek
- 1Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University and Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,2Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Remešová
- 2Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
19
|
Yuan J, Liu Y, Wang J, Zhao Y, Li K, Jing Y, Zhang X, Liu Q, Geng X, Li G, Wang F. Long-term Persistent Organic Pollutants Exposure Induced Telomere Dysfunction and Senescence-Associated Secretary Phenotype. J Gerontol A Biol Sci Med Sci 2019; 73:1027-1035. [PMID: 29360938 PMCID: PMC6037063 DOI: 10.1093/gerona/gly002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Environmentally persistent organic pollutant (POP) is the general term for refractory organic compounds that show long-range atmospheric transport, environmental persistence, and bioaccumulation. It has been reported that the accumulation of POPs could lead to cellular DNA damage and adverse effects of on metabolic health. To better understand the mechanism of the health risks associated with POPs, we conducted an evidence-based cohort investigation (n = 5,955) at the Jinghai e-waste disposal center in China from 2009 to 2016, where people endure serious POP exposure. And high levels of aging-related diseases, including hypertension, diabetes, autoimmune diseases, and reproductive disorders were identified associated with the POP exposure. In the subsequent molecular level study, an increased telomere dysfunction including telomere multiple telomere signals, telomere signal-free ends, telomere shortening and activation of alternative lengthening of telomeres were observed, which might result from the hypomethylated DNA modification induced telomeric repeat-containing RNA overexpression. Moreover, dysfunctional telomere-leaded senescence-associated secretory phenotype was confirmed, as the proinflammatory cytokines and immunosenescence hallmarks including interleukin-6, P16INK4a, and P14ARF were stimulated. Thus, we proposed that the dysfunctional telomere and elevated systemic chronic inflammation contribute to the aging-associated diseases, which were highly developed among the POP exposure individuals.
Collapse
Affiliation(s)
- Jinghua Yuan
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Keqiu Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Xiaoning Zhang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Qiang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Geng
- Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| |
Collapse
|
20
|
Ren J, Cui JP, Luo M, Liu H, Hao P, Wang X, Zhang GH. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019; 14:e0220500. [PMID: 31381583 PMCID: PMC6681966 DOI: 10.1371/journal.pone.0220500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant DNA methylation patterns are common in cancers and environmental pollutant exposed subjects. Up to date, few studies have examined the aberrant DNA methylation patterns in benzene exposed workers. We recruited 141 benzene-exposed workers, including 83 benzene-exposed workers from a shoe factory in Wenzhou and 58 workers from a painting workshop in Wuhu, 35 workers in Wuhu were followed from 2009 to 2013, and 48 indoor workers as controls from Wenzhou. We used high-resolution melting (HRM) to quantitate human samples of DNA methylation in long interspersed nuclear element-1 (LINE-1), (6)-methylguanine-DNA methyltransferase (MGMT), and DNA mismatch repair gene human mutator L homologue 1 (hMLH1). AML-5 cells were treated with benzoquinone (BQ) and hydroquinone (HQ), and the promoter methylation of MGMT and hMLH1 was detected using the bisulfite sequencing PCR method. The degree of LINE-1 methylation in benzene-exposed workers was significantly lower than that of the controls (p<0.001), and the degree of MGMT (p<0.001) and hMLH1 (p = 0.01) methylation was significantly higher than that of the controls. The in vitro study validated the aberrant hypermethylation of hMLH1 after treatment with BQ. Among the cohort workers who were followed from 2009 to 2013, the LINE1 methylation elevated in 2013 than 2009 (p = 0.004), and premotor methylation in hMLH1 reduced in 2013 than 2009 (p = 0.045) with the reduction of the benzene exposure. This study provides evidence that benzene exposure can induce LINE-1 hypomethylation and DNA repair gene hypermethylation.
Collapse
Affiliation(s)
- Jingchao Ren
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jun-peng Cui
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Mengkai Luo
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Pengfei Hao
- Xinxiang Center for Disease Control and Prevention, Xinxiang, China
| | - Xiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| | - Guang-hui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| |
Collapse
|
21
|
Yamashita S, Yokogami K, Matsumoto F, Saito K, Mizuguchi A, Ohta H, Takeshima H. MGMT promoter methylation in patients with glioblastoma: is methylation-sensitive high-resolution melting superior to methylation-sensitive polymerase chain reaction assay? J Neurosurg 2019; 130:780-788. [PMID: 29726772 DOI: 10.3171/2017.11.jns171710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/10/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a prognostic factor in adults with glioblastoma (GBM); it also yields information that is useful for clinical decision-making in elderly GBM patients. While pyrosequencing is the gold standard for the evaluation of the methylation status of MGMT, methylation-sensitive polymerase chain reaction (MS-PCR) assay continues to be used widely. Although MS-PCR results exhibited a good correlation with the prognosis of patients with GBM treated under the Stupp protocol, interpretation of the bands is based on subjective judgment, and the assay cannot be used to analyze heterogeneously methylated samples. We assessed whether methylation-sensitive high-resolution melting (MS-HRM) is an alternative to MS-PCR. METHODS The authors prepared 3 primer sets that covered CpG 72–89 for MS-HRM analysis to determine the methylation levels of 6 human glioma cell lines. The results were validated by bisulfite sequencing of cloned alleles. The authors also subjected surgical samples from 75 GBM patients treated with temozolomide (TMZ) to MS-HRM to assess the MGMT methylation status and compared the findings with MS-PCR results using receiver operating characteristic (ROC), univariate, and multivariate analyses. RESULTS There was a strong correlation between the methylation levels of the 6 glioma cell lines evaluated by MSHRM and by bisulfite sequencing; with primers 1 and 2, the correlation was significant (r = 0.959 and r = 0.960, respectively, p < 0.01). Based on log-rank analysis, MS-HRM was significantly better than MS-PCR for predicting progressionfree survival (PFS) and overall survival (OS) based on the methylation status of the MGMT promoter (PFS predicted by MS-HRM and MS-PCR = 0.00023 and 0.0035, respectively; OS = 0.00019 and 0.00028, respectively). ROC analysis showed that the area under the curve was larger with MS-HRM than with MS-PCR (PFS: 0.723 vs 0.635; OS: 0.716 vs 0.695). Based on multivariate Cox regression analysis, MS-HRM was significantly better than MS-PCR for predicting the treatment outcome (MS-HRM vs MS-PCR: PFS, p = 0.001 vs 0.207; OS, p = 0.013 vs 0.135). CONCLUSIONS The authors’ findings show that MS-HRM is superior to MS-PCR for the detection of MGMT promoter methylation. They suggest MS-HRM as an alternative to MS-PCR for assessing the prognosis of patients with GBM.
Collapse
|
22
|
Marqueta-Gracia JJ, Álvarez-Álvarez M, Baeta M, Palencia-Madrid L, Prieto-Fernández E, Ordoñana JR, de Pancorbo MM. Differentially methylated CpG regions analyzed by PCR-high resolution melting for monozygotic twin pair discrimination. Forensic Sci Int Genet 2018; 37:e1-e5. [PMID: 30245065 DOI: 10.1016/j.fsigen.2018.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
Abstract
Discrimination between monozygotic (MZ) twins is a forensic limitation when using conventional DNA profiling techniques for human identification. Recent works based on epigenetics seem to open a new way to solve this issue due to methylation status of MZ twins change during their lifetime. Methylation analysis through BeadChip platforms allows the study up to 850 K CpG sites revealing that numerous differential methylation regions exist between MZ twins. However, this methodology is difficult to implement in forensic laboratories. On the contrary, PCR-HRM (High Resolution Melting) technology is one of the easiest methods for analyzing DNA methylation and it has been capable to discriminate between MZ twins. The purpose of this study is to contribute with new differential methylation regions in MZ twins to those that have been previously studied through PCR-HRM. Here, we have selected 6 CpG regions located at the ITGA2B, ASPA, PDE4C, ZIC5, USP11 and NOP14 loci that have shown methylation status variation during lifetime. The study has been carried out from saliva-derived DNA of 18 MZ twin pairs. The most discriminating regions were those located at ITGA2B, ASPA and ZIC5 loci showing significant within-pair differences in 44.4% of the cases. Non evidences of relation between age and significant differences between MZ twins were found, although the 50% of MZ twin pairs were discrimnated in the oldest age range (59-66 years old). These results support the use of these regions to increase the number of epigenetics age-related markers available to discriminate between MZ twins in a pair by PCR-HRM in forensic laboratories.
Collapse
Affiliation(s)
- José Javier Marqueta-Gracia
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Maite Álvarez-Álvarez
- Proteomics and Genomics General Services: DNA Bank Unit (SGIker) University of Basque Country UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Miriam Baeta
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Endika Prieto-Fernández
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Juan Ramón Ordoñana
- Department of Human Anatomy and Psychobiology and Murcia Institute for BioHealth Research (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
23
|
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. Int J Mol Sci 2018; 19:ijms19072018. [PMID: 29997345 PMCID: PMC6073196 DOI: 10.3390/ijms19072018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between −583 and −212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.
Collapse
|
24
|
Gogna P, O'Sullivan DE, King WD. The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation. Epigenomics 2018; 10:785-796. [PMID: 29888958 DOI: 10.2217/epi-2017-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the relationship between inflammation-related lifestyle factors and long interspersed nuclear element-1 (LINE-1) DNA methylation, and test for interaction by gene variants involved in one-carbon metabolism. PATIENTS & METHODS The study population consisted of 280 individuals undergoing colonoscopy screening. Multivariable linear regression was employed to examine associations of physical activity, BMI and NSAID use with LINE-1 DNA methylation and interactions with MTR and MTHFR gene variants. RESULTS The highest quartile of physical activity compared with the lowest was associated with higher LINE-1 DNA methylation (p = 0.005). Long-term NSAID use and a normal BMI were associated with increased LINE-1 DNA methylation among individuals with the variant MTR allele (p = 0.02; p = 0.03). CONCLUSION This study provides evidence that inflammation-related exposures may influence LINE-1 DNA methylation.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Abstract
BACKGROUND Epigenetic factors have been identified in the past years as interesting candidates for psychiatric disorders and related endophenotypes. It has been found that the methylenetetrahydrofolate reductase (MTHFR) gene is associated with major depressive disorder, and the aim of the current study was to examine the possible association between perceived stress and MTHFR methylation, taking into account depressive symptoms as a covariate. PARTICIPANTS AND METHODS Seventy-eight healthy Colombian participants (mean age=20.9 years; SD=3.0) were evaluated with the Perceived Stress Scale and with the Patient Health Questionnaire-9 for depressive symptomatology. MTHFR methylation levels were measured with a methylation-sensitive high-resolution melting method. A multiple regression analysis (adjusting for age, sex, and depressive symptoms) was carried out to assess the association between MTHFR methylation and perceived stress scores. RESULTS We found a significant inverse correlation between MTHFR methylation levels and perceived stress scores (r=-0.502; P=5.9×10(-5)), which remained significant after being adjusted for age, sex, and depressive symptomatology. CONCLUSION To our knowledge, this is the first study that reports an association between perceived stress and MTHFR methylation levels. This report adds evidence to the emerging role of epigenetic changes in endophenotypes related to affective disorders.
Collapse
|
26
|
Burghardt KJ, Seyoum B, Dass SE, Sanders E, Mallisho A, Yi Z. Association of Protein Kinase B (AKT) DNA Hypermethylation with Maintenance Atypical Antipsychotic Treatment in Patients with Bipolar Disorder. Pharmacotherapy 2018; 38:428-435. [PMID: 29484683 DOI: 10.1002/phar.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
STUDY OBJECTIVE Atypical antipsychotics cause insulin resistance that leads to an increased risk of diabetes mellitus and cardiovascular disease. Skeletal muscle is the primary tissue for uptake of glucose, and its dysfunction is considered one of the primary defects in the development of insulin resistance. Protein kinase B (AKT) plays an important role in overall skeletal muscle health and glucose uptake into the muscle. The objective of this study was to measure AKT isoform-specific gene methylation differences in the skeletal muscle of patients with bipolar disorder treated with atypical antipsychotic or mood stabilizer maintenance therapy. DESIGN Cross-sectional observational study. SETTING Clinical research services center at an academic center. PATIENTS Thirty patients with a confirmed diagnosis of bipolar disorder who were treated with either an atypical antipsychotic (16 patients) or mood stabilizer (14 patients) at a consistent dose for at least 3 months. INTERVENTIONS A fasting skeletal muscle biopsy was performed in the vastus lateralis in each patient. Patients also underwent fasting blood sample collection and a standard 75-g oral glucose tolerance test. MEASUREMENTS AND MAIN RESULTS Skeletal muscle DNA methylation near the promoter region for three genes, AKT1, AKT2, and AKT3, was measured by methylation-sensitive high-resolution melting. Gene methylation was analyzed based on atypical antipsychotic versus mood stabilizer maintenance therapy. Associations between gene methylation, insulin resistance, and glucose tolerance were also analyzed. In patients treated with atypical antipsychotics, AKT1 and AKT2 methylation was increased compared with patients treated with mood stabilizers (p=0.03 and p=0.02, respectively). In addition, for patients receiving atypical antipsychotics, a positive trend for AKT2 hypermethylation with increasing insulin resistance was observed, whereas for patients receiving mood stabilizers, a trend for decreased AKT2 methylation with increasing insulin resistance was observed. CONCLUSION Overall, our findings suggest that the AKT gene is differentially methylated in the skeletal muscle of patients taking atypical antipsychotics or mood stabilizer maintenance therapy. These results may direct future approaches to reduce the harmful adverse effects of atypical antipsychotic treatment.
Collapse
Affiliation(s)
- Kyle J Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Berhane Seyoum
- Division of Endocrinology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sabrina E Dass
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Elani Sanders
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Abdullah Mallisho
- Division of Endocrinology, Wayne State University School of Medicine, Detroit, Michigan
| | - Zhengping Yi
- Department of Pharmaceutical Science, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
27
|
Liu L, Ying C, Zhao Z, Sui L, Zhang X, Qian C, Wang Q, Chen L, Guo Q, Wu J. Identification of reliable biomarkers of human papillomavirus 16 methylation in cervical lesions based on integration status using high-resolution melting analysis. Clin Epigenetics 2018; 10:10. [PMID: 29410710 PMCID: PMC5781301 DOI: 10.1186/s13148-018-0445-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/11/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The dynamic methylation of human papillomavirus (HPV) 16 DNA is thought to be associated with the progression of cervical lesions. Previous studies that did not consider the physical status of HPV 16 may have incorrectly mapped HPV 16 methylomes. In order to identify reliable biomarkers for squamous cervical cancer (SCC), we comprehensively evaluated the methylation of HPV 16 depending on the integration incidence of each sample. METHODS Based on the integration status of 115 HPV 16-infected patients (50 SCC, 30 high-grade squamous intraepithelial lesion [HSIL], and 35 low-grade squamous intraepithelial lesion [LSIL]) and HPV 16-infected Caski cell lines by PCR detection of integrated papillomavirus sequences, we designed a series of primers that would not be influenced by breakpoints for a high-resolution melting (HRM) PCR method to detect the genome methylation. RESULTS A few regions with recurrent interruptions were identified in E1, E2/E4, L1, and L2 despite scattering of breakpoints throughout all eight genes of HPV 16. Frequent integration sites often occurred concomitantly with methylated CpG sites. The HRM PCR method showed 100% agreement with pyrosequencing when 3% was set as the cutoff value. A panel of CpG sites such as nt5606, nt5609, nt5615, and nt5378 can be combined in reweighing calculations to distinguish SCC from HSIL and LSIL patients which have high sensitivity and specificity (88% and 92.31%, respectively). CONCLUSIONS Our research shows that combination of CpG sites nt5606, nt5609, nt5615, and nt5378 can be used as potential diagnosis biomarkers for SCC, and the HRM PCR method is suitable for clinical methylation analysis.
Collapse
Affiliation(s)
- Lu Liu
- Department of Clinical Laboratory, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Chunmei Ying
- Department of Clinical Laboratory, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Zhen Zhao
- Department of Clinical Laboratory, Minhang District Central Hospital, Shanghai, China
| | - Long Sui
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Xinyan Zhang
- The Research Institute of Obstetrics and Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunyan Qian
- Yuhang Branch, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Qing Wang
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Limei Chen
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Qisang Guo
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Jiangnan Wu
- Department of Clinical Statistics, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
28
|
Abstract
Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.
Collapse
Affiliation(s)
- Dianna Hussmann
- Institute of Biomedicine, Aarhus University, Bartholins Allé 6, Aarhus C, 8000, Denmark
| | - Lise Lotte Hansen
- Institute of Biomedicine, Aarhus University, Bartholins Allé 6, Aarhus C, 8000, Denmark.
| |
Collapse
|
29
|
Heuslein JL, Gorick CM, Song J, Price RJ. DNA Methyltransferase 1-Dependent DNA Hypermethylation Constrains Arteriogenesis by Augmenting Shear Stress Set Point. J Am Heart Assoc 2017; 6:JAHA.117.007673. [PMID: 29191807 PMCID: PMC5779061 DOI: 10.1161/jaha.117.007673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Arteriogenesis is initiated by increased shear stress and is thought to continue until shear stress is returned to its original “set point.” However, the molecular mechanism(s) through which shear stress set point is established by endothelial cells (ECs) are largely unstudied. Here, we tested the hypothesis that DNA methyltransferase 1 (DNMT1)–dependent EC DNA methylation affects arteriogenic capacity via adjustments to shear stress set point. Methods and Results In femoral artery ligation–operated C57BL/6 mice, collateral artery segments exposed to increased shear stress without a change in flow direction (ie, nonreversed flow) exhibited global DNA hypermethylation (increased 5‐methylcytosine staining intensity) and constrained arteriogenesis (30% less diameter growth) when compared with segments exposed to both an increase in shear stress and reversed‐flow direction. In vitro, ECs exposed to a flow waveform biomimetic of nonreversed collateral segments in vivo exhibited a 40% increase in DNMT1 expression, genome‐wide hypermethylation of gene promoters, and a DNMT1‐dependent 60% reduction in proarteriogenic monocyte adhesion compared with ECs exposed to a biomimetic reversed‐flow waveform. These results led us to test whether DNMT1 regulates arteriogenic capacity in vivo. In femoral artery ligation–operated mice, DNMT1 inhibition rescued arteriogenic capacity and returned shear stress back to its original set point in nonreversed collateral segments. Conclusions Increased shear stress without a change in flow direction initiates arteriogenic growth; however, it also elicits DNMT1‐dependent EC DNA hypermethylation. In turn, this diminishes mechanosensing, augments shear stress set point, and constrains the ultimate arteriogenic capacity of the vessel. This epigenetic effect could impact both endogenous collateralization and treatment of arterial occlusive diseases.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
30
|
Hamano Y, Manabe S, Morimoto C, Fujimoto S, Tamaki K. Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: exploratory application for cigarette butts. Sci Rep 2017; 7:10444. [PMID: 28874809 PMCID: PMC5585169 DOI: 10.1038/s41598-017-10752-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
There is high demand for forensic age prediction in actual crime investigations. In this study, a novel age prediction model for saliva samples using methylation-sensitive high resolution melting (MS-HRM) was developed. The methylation profiles of ELOVL2 and EDARADD showed high correlations with age and were used to predict age with support vector regression. ELOVL2 was first reported as an age predictive marker for saliva samples. The prediction model showed high accuracy with a mean absolute deviation (MAD) from chronological age of 5.96 years among 197 training samples. The model was further validated with an additional 50 test samples (MAD = 6.25). In addition, the age prediction model was applied to saliva extracted from seven cigarette butts, as in an actual crime scene. The MAD (7.65 years) for these samples was slightly higher than that of intact saliva samples. A smoking habit or the ingredients of cigarettes themselves did not significantly affect the prediction model and could be ignored. MS-HRM provides a quick (2 hours) and cost-effective (95% decreased compared to that of DNA chips) method of analysis. Thus, this study may provide a novel strategy for predicting the age of a person of interest in actual crime scene investigations.
Collapse
Affiliation(s)
- Yuya Hamano
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Forensic Science Laboratory, Kyoto Prefectural Police Headquarters, Kyoto, Japan
| | - Sho Manabe
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chie Morimoto
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuntaro Fujimoto
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
31
|
Lopez-Pascual A, Lasa A, Portillo MP, Arós F, Mansego ML, González-Muniesa P, Martinez JA. Low Oxygen Consumption is Related to a Hypomethylation and an Increased Secretion of IL-6 in Obese Subjects with Sleep Apnea-Hypopnea Syndrome. ANNALS OF NUTRITION AND METABOLISM 2017; 71:16-25. [DOI: 10.1159/000478276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/07/2017] [Indexed: 12/17/2022]
Abstract
Background: Deoxyribonucleic acid (DNA) methylation is an epigenetic modification involved in gene expression regulation, usually via gene silencing, which contributes to the risks of many multifactorial diseases. The aim of the present study was to analyze the influence of resting oxygen consumption on global and gene DNA methylation as well as protein secretion of inflammatory markers in blood cells from obese subjects with sleep apnea-hypopnea syndrome (SAHS). Methods: A total of 44 obese participants with SAHS were categorized in 2 groups according to their resting oxygen consumption. DNA methylation levels were evaluated using a methylation-sensitive high resolution melting approach. Results: The analyzed interleukin 6 (IL6) gene cytosine phosphate guanine (CpG) islands showed a hypomethylation, while serum IL-6 was higher in the low compared to the high oxygen consumption group (p < 0.05). Moreover, an age-related loss of DNA methylation of tumor necrosis factor (B = -0.82, 95% CI -1.33 to -0.30) and long interspersed nucleotide element 1 (B = -0.46; 95% CI -0.87 to -0.04) gene CpGs were found. Finally, studied CpG methylation levels of serpin peptidase inhibitor, clade E member 1 (r = 0.43; p = 0.01), and IL6 (r = 0.41; p = 0.02) were positively associated with fat-free mass. Conclusions: These findings suggest a potential role of oxygen in the regulation of inflammatory genes. Oxygen consumption measurement at rest could be proposed as a clinical biomarker of metabolic health.
Collapse
|
32
|
Forensic age prediction for dead or living samples by use of methylation-sensitive high resolution melting. Leg Med (Tokyo) 2016; 21:5-10. [DOI: 10.1016/j.legalmed.2016.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
|
33
|
High-resolution melt analysis of DNA methylation to discriminate semen in biological stains. Anal Biochem 2016; 494:40-5. [DOI: 10.1016/j.ab.2015.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 12/29/2022]
|
34
|
Sakurai K, Miyaso H, Eguchi A, Matsuno Y, Yamamoto M, Todaka E, Fukuoka H, Hata A, Mori C. Chiba study of Mother and Children's Health (C-MACH): cohort study with omics analyses. BMJ Open 2016; 6:e010531. [PMID: 26826157 PMCID: PMC4735302 DOI: 10.1136/bmjopen-2015-010531] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Recent epidemiological studies have shown that environmental factors during the fetal period to early childhood might affect the risk of non-communicable diseases in adulthood. This is referred to as the developmental origins of health and disease (DOHaD) concept. The Chiba study of Mother and Children's Health (C-MACH) is a birth cohort study based on the DOHaD hypothesis and involves multiomics analysis. This study aims to explore the effects of genetic and environmental factors--particularly the fetal environment and postbirth living environment--on children's health, and to identify potential biomarkers for these effects. PARTICIPANTS The C-MACH consists of three hospital-based cohorts. The study participants are pregnant women at <13 weeks gestation. Women who underwent an examination in one of the three hospitals received an explanation of the study. The participants consented to completing questionnaire surveys and the collection and storage of biological and house/environmental samples. Participants were provided unique study numbers. All of the data and biological specimens will be stored in the Chiba University Center for Preventive Medical Sciences and Chiba University Center for Preventive Medical Sciences BioBank, respectively. FINDINGS TO DATE Consent to participate was obtained from 433 women. Of these women, 376 women completed questionnaires in the early gestational period. The mean age was 32.5 (4.4) years. The mean body mass index (BMI) was 21.1 (3.0) kg/m(2). Before pregnancy, 72.3% of the women had a BMI of 18.5-24.9 kg/m(2). During early pregnancy, 5.0% of the participants smoked. FUTURE PLANS Primary outcomes are allergy, obesity, endocrine and metabolic disorders, and developmental disorders. Genome-level, metabolome-level, umbilical cord DNA methylation (epigenome), gut microbiota and environmental chemical exposure variables will be evaluated. We will analyse the relationships between the outcomes and analytical variables.
Collapse
Affiliation(s)
- Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Hidenobu Miyaso
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Yoshiharu Matsuno
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Midori Yamamoto
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Hideoki Fukuoka
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Akira Hata
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
35
|
Marques-Rocha JL, Milagro FI, Mansego ML, Mourão DM, Martínez JA, Bressan J. LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals. Epigenetics 2016; 11:49-60. [PMID: 26786189 DOI: 10.1080/15592294.2015.1135286] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
With the goal of investigating if epigenetic biomarkers from white blood cells (WBC) are associated with dietary, anthropometric, metabolic, inflammatory and oxidative stress parameters in young and apparently healthy individuals. We evaluated 156 individuals (91 women, 65 men; age: 23.1±3.5 years; body mass index: 22.0±2.9 kg/m(2)) for anthropometric, biochemical and clinical markers, including some components of the antioxidant defense system and inflammatory response. DNA methylation of LINE-1, TNF-α and IL-6 and the expression of some genes related to the inflammatory process were analyzed in WBC. Adiposity was lower among individuals with higher LINE-1 methylation. On the contrary, body fat-free mass was higher among those with higher LINE-1 methylation. Individuals with higher LINE-1 methylation had higher daily intakes of calories, iron and riboflavin. However, those individuals who presented lower percentages of LINE-1 methylation reported higher intakes of copper, niacin and thiamin. Interestingly, the group with higher LINE-1 methylation had a lower percentage of current smokers and more individuals practicing sports. On the other hand, TNF-α methylation percentage was negatively associated with waist girth, waist-to-hip ratio and waist-to-stature ratio. Plasma TNF-α levels were lower in those individuals with higher TNF-α methylation. This study suggests that higher levels of LINE-1 and TNF-α methylation are associated with better indicators of adiposity status in healthy young individuals. In addition, energy and micronutrient intake, as well as a healthy lifestyle, may have a role in the regulation of DNA methylation in WBC and the subsequent metabolic changes may affect epigenetic biomarkers.
Collapse
Affiliation(s)
| | - Fermin I Milagro
- b Department of Nutrition , Food Science and Physiology, Center for Nutrition Research, University of Navarra , Pamplona , Spain.,c CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute , Madrid , Spain
| | - Maria Luisa Mansego
- b Department of Nutrition , Food Science and Physiology, Center for Nutrition Research, University of Navarra , Pamplona , Spain
| | - Denise Machado Mourão
- a Department of Nutrition and Health , Universidade Federal de Viçosa , Viçosa , Brazil
| | - J Alfredo Martínez
- b Department of Nutrition , Food Science and Physiology, Center for Nutrition Research, University of Navarra , Pamplona , Spain.,c CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute , Madrid , Spain.,d IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| | - Josefina Bressan
- a Department of Nutrition and Health , Universidade Federal de Viçosa , Viçosa , Brazil
| |
Collapse
|
36
|
King WD, Ashbury JE, Taylor SA, Tse MY, Pang SC, Louw JA, Vanner SJ. A cross-sectional study of global DNA methylation and risk of colorectal adenoma. BMC Cancer 2014; 14:488. [PMID: 24998982 PMCID: PMC4227295 DOI: 10.1186/1471-2407-14-488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 06/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background The methylation of DNA is recognized as a key epigenetic mechanism and evidence for its role in the development of several malignancies is accumulating. We evaluated the relationship between global methylation in DNA derived from normal appearing colon mucosal tissue and blood leukocytes, and colorectal adenoma risk. Methods Patients, aged 40 to 65, scheduled for a screening colonoscopy were recruited. During the colonoscopy, two pinch biopsies of healthy, normal appearing mucosa were obtained from the descending colon. A fasting blood sample was also collected. The methylation status of LINE-1 (long interspersed nuclear element-1) repetitive sequences, as a surrogate measure of global methylation, was quantified in DNA extracted from normal colon mucosa and blood leukocytes. Statistical analysis of the relationship between global DNA methylation and adenoma risk was conducted on 317 participants, 108 subjects with at least one pathologically confirmed adenoma and 209 subjects with a normal colonoscopy. Results A statistically significant inverse relationship was observed between LINE-1 methylation in colon tissue DNA and adenoma risk for males and for both sexes combined for the lowest methylation quartile compared to the highest (adjusted ORs = 2.94 and 2.26 respectively). For blood, although the overall pattern of odds ratio estimates was towards an increase in risk for lower methylation quartiles compared to the highest methylation quartile, there were no statistically significant relationships observed. A moderate correlation was found between LINE-1 methylation levels measured in tissue and blood (Pearson correlation 0.36). Conclusions We observed that lower levels of LINE-1 DNA methylation in normal appearing background colon mucosa were associated with increased adenoma risk for males, and for both sexes combined. Though these findings provide some support for a relationship between LINE-1 DNA methylation in colon mucosal tissue and adenoma risk, large prospective cohort studies are needed to confirm results. Until such investigations are done, the clinical usefulness of LINE-1 methylation as a biomarker of increased adenoma risk is uncertain. Regardless, this study contributes to a better understanding of the role of global DNA methylation as an early event in CR carcinogenesis with implications for future etiologic research.
Collapse
Affiliation(s)
- Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ashbury JE, Taylor SA, Tse MY, Pang SC, Louw JA, Vanner SJ, King WD. Biomarkers measured in buccal and blood leukocyte DNA as proxies for colon tissue global methylation. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2014; 5:120-4. [PMID: 24959316 PMCID: PMC4065400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
There is increasing interest in clarifying the role of global DNA methylation levels in colorectal cancer (CRC) etiology. Most commonly, in epidemiologic studies, methylation is measured in DNA derived from blood leukocytes as a proxy measure of methylation changes in colon tissue. However, little is known about the correlations between global methylation levels in DNA derived from colon tissue and more accessible tissues such as blood or buccal cells. This cross-sectional study utilized DNA samples from a screening colonoscopy population to determine to what extent LINE-1 methylation levels (as a proxy for genome-wide methylation) in non-target tissue (e.g., blood, buccal cells) reflected methylation patterns of colon mucosal tissue directly at risk of developing CRC. The strongest Pearson correlation was observed between LINE-1 methylation levels in buccal and blood leukocyte DNA (r = 0.50; N = 67), with weaker correlations for comparisons between blood and colon tissue (r = 0.36; N = 280), and buccal and colon tissue (r = 0.27; N = 72). These findings of weak/moderate correlations have important implications for interpreting and planning future investigations of epigenetic markers and CRC risk.
Collapse
Affiliation(s)
- Janet E Ashbury
- Department of Public Health Sciences, Queen’s UniversityKingston, ON, Canada
| | - Sherryl A Taylor
- Department of Medical Genetics, University of AlbertaEdmonton AB, Canada
- Molecular Diagnostics, Genetic Laboratory Services, Alberta Health ServicesEdmonton, AB, Canada
| | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingston, ON, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingston, ON, Canada
| | - Jacob A Louw
- Department of Medicine, Division of Gastroenterology, Hotel Dieu Hospital/Queen’s UniversityKingston, ON, Canada
| | - Stephen J Vanner
- Department of Medicine, Division of Gastroenterology, Hotel Dieu Hospital/Queen’s UniversityKingston, ON, Canada
- Gastrointestinal Diseases Research Unit (GIDRU), Queen’s UniversityKingston, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen’s UniversityKingston, ON, Canada
| |
Collapse
|
38
|
Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 2014; 55:181-97. [PMID: 24107250 DOI: 10.2144/000114087] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 09/10/2013] [Indexed: 02/07/2023] Open
Abstract
Comprehensive analysis of DNA methylation patterns is critical for understanding the molecular basis of many human diseases. While hundreds of PCR-based DNA methylation studies are published every year, the selection and implementation of appropriate methods for these studies can be challenging for molecular genetics researchers not yet familiar with methylation analysis. Here we review the most commonly used PCR-based DNA methylation analysis techniques: bisulfite sequencing PCR (BSP), methylation specific PCR (MSP), MethyLight, and methylation-sensitive high resolution melting (MS-HRM). We provide critical analysis of the strengths and weaknesses of each approach as well as a series of guidelines to assist in selecting and implementing an appropriate method.
Collapse
|
39
|
Hernández HG, Mahecha MF, Mejía A, Arboleda H, Forero DA. Global long interspersed nuclear element 1 DNA methylation in a Colombian sample of patients with late-onset Alzheimer's disease. Am J Alzheimers Dis Other Demen 2014; 29:50-3. [PMID: 24164934 PMCID: PMC11008131 DOI: 10.1177/1533317513505132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in DNA methylation have implicated as an epigenetic event in the pathogenesis of late-onset Alzheimer's disease (LOAD). The objective of this work was to evaluate global DNA methylation levels for long interspersed nuclear element 1 (LINE-1) repetitive sequences in Colombian patients with LOAD and controls. The LINE-1 DNA methylation levels in peripheral blood samples from 28 Colombian patients with LOAD and 30 healthy participants were assessed using a methylation-sensitive high-resolution melting (MS-HRM) quantitative assay. We did not find differences in LINE-1 methylation levels between patients with Alzheimer's disease (AD; median 76.2%, interquartile range [IQR]: 69.8-81.9) and control participants (median 79.8%, IQR: 73.2-83.8; P = .3). Additional stratified analyses did not show differences in LINE-1 methylation levels for male or female patients versus controls nor for apolipoprotein E4 carriers and noncarriers. This is the first report of LINE-1 methylation levels in patients with LOAD using the cost-effective MS-HRM technique, and this is the first global DNA methylation study in Latin American patients with AD.
Collapse
Affiliation(s)
- Hernán G. Hernández
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
- Neurosciences Research Group, School of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- Biomedical Sciences Doctoral Program, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María F. Mahecha
- Neurosciences Research Group, School of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adriana Mejía
- Neurosciences Research Group, School of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Humberto Arboleda
- Neurosciences Research Group, School of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego A. Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
40
|
Methylation of human papillomavirus Type 16 CpG sites at E2-binding site 1 (E2BS1), E2BS2, and the Sp1-binding site in cervical cancer samples as determined by high-resolution melting analysis-PCR. J Clin Microbiol 2013; 51:3207-15. [PMID: 23863566 DOI: 10.1128/jcm.01106-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High-risk (HR) human papillomavirus (HPV)-associated carcinogenesis is driven mainly by the overexpression of E7 and E6 oncoproteins following viral DNA integration and the concomitant loss of the E2 open reading frame (ORF). However, the integration of HR-HPV DNA is not systematically observed in cervical cancers. The E2 protein acts as a transcription factor that governs viral oncogene expression. The methylation of CpGs in the E2-binding sites (E2BSs) in the viral long control region abrogates E2 binding, thus impairing the E2-mediated regulation of E7/E6 transcription. Here, high-resolution melting (HRM)-PCR was developed to quantitatively analyze the methylation statuses of E2BS1, E2BS2, and the specificity protein 1 (Sp1)-binding site in 119 HPV16-positive cervical smears. This is a rapid assay that is suitable for the analysis of cervical samples. The proportion of cancer samples with methylated E2BS1, E2BS2, and Sp1-binding site CpGs was 47%, whereas the vast majority of samples diagnosed as being within normal limits, low-grade squamous intraepithelial lesions (LSIL), or high-grade squamous intraepithelial lesions (HSIL) harbored unmethylated CpGs. Methylation levels varied widely, since some cancer samples harbored up to 60% of methylated HPV16 genomes. A pyrosequencing approach was used as a confirmation test and highlighted that quantitative measurement of methylation can be achieved by HRM-PCR. Its prognostic value deserves to be investigated alone or in association with other biomarkers. The reliability of this single-tube assay offers great opportunities for the investigation of HPV16 methylation in other HPV-related cancers, such as head and neck cancers, which are a major public health burden.
Collapse
|
41
|
Validation of methylation-sensitive high resolution melting for the detection of DNA methylation in cholangiocarcinoma. Clin Biochem 2012; 45:1092-4. [PMID: 22569599 DOI: 10.1016/j.clinbiochem.2012.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To validate methylation-sensitive high resolution melting (MS-HRM) for detection of DNA methylation. DESIGN AND METHODS Methylation of two independent loci, OPCML and DcR1, was analyzed in cholangiocarcinoma and adjacent normal samples by using MS-HRM, methylation-specific PCR and pyrosequencing. RESULTS There was significant agreement between methods at both loci. CONCLUSIONS MS-HRM represents the excellent potential and reliability for quantifying DNA methylation levels in clinical samples.
Collapse
|