1
|
Lim HS, Lee SH, Seo H, Park G. Changes in RBM47 expression based on the timing of melatonin administration and its effects on Nrf2 activity in the hippocampus. Free Radic Biol Med 2023; 208:794-806. [PMID: 37751802 DOI: 10.1016/j.freeradbiomed.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Melatonin is an endogenous indoleamine that plays a significant role in various physiological processes, including the sleep-wake cycle, anxiety, immunity, and circadian rhythms. However, it is important to clarify that melatonin does not directly control circadian rhythms. Circadian rhythms are primarily synchronized by light, which acts on the suprachiasmatic nucleus (SCN) and subsequently regulates melatonin production. This light-mediated synchronization of circadian rhythms is essential for maintaining the alignment of the body with the light-dark cycle. In this study, we investigated the efficacy of melatonin administration during different times of the day or night and explored its neuroprotective effects. Furthermore, we aimed to apply these findings to rodent models of dementia, aging, and neuro-inflammation for potential therapeutic applications. Our study uncovered novel evidence suggesting the involvement of RNA-binding motif protein (RBM)-47 and Nrf2 in the signaling pathways associated with melatonin administration during both day and night. We examined the role of RBM47 in Nrf2 activity through siRNA or CRISPR-mediated knockdown experiments using hippocampal neuronal cells and lentivirus injections in mice. In 5xFAD/aging/neuroinflammatory mouse models, antioxidant effects were enhanced when melatonin was administered during the day compared to nighttime administration. Furthermore, mRNA analysis and molecular biology experiments revealed the differential expression of RBM47 depending on the timing of melatonin administration. These findings suggest that a decrease in RBM47 expression may improve the antioxidant defense system in the hippocampus. Consequently, administering melatonin during the day rather than at night may present a plausible therapeutic strategy as an antioxidant.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Seung Hoon Lee
- Department of Biochemistry, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major, Campus of Korea Institute of Oriental Medicine, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
James BD, Allen JB. Sex-Specific Response to Combinations of Shear Stress and Substrate Stiffness by Endothelial Cells In Vitro. Adv Healthc Mater 2021; 10:e2100735. [PMID: 34142471 PMCID: PMC8458248 DOI: 10.1002/adhm.202100735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/25/2022]
Abstract
By using a full factorial design of experiment, the combinatorial effects of biological sex, shear stress, and substrate stiffness on human umbilical vein endothelial cell (HUVEC) spreading and Yes-associated protein 1 (YAP1) activity are able to be efficiently evaluated. Within the range of shear stress (0.5-1.5 Pa) and substrate stiffness (10-100 kPa), male HUVECs are smaller than female HUVECs. Only with sufficient mechanical stimulation do they spread to a similar size. More importantly, YAP1 nuclear localization in female HUVECs is invariant to mechanical stimulation within the range of tested conditions whereas for male HUVECs it increases nonlinearly with increasing shear stress and substrate stiffness. The sex-specific response of HUVECs to combinations of shear stress and substrate stiffness reinforces the need to include sex as a biological variable and multiple mechanical stimuli in experiments, informs the design of precision biomaterials, and offers insight for understanding cardiovascular disease sexual dimorphisms. Moreover, here it is illustrated that different complex mechanical microenvironments can lead to sex-specific phenotypes and sex invariant phenotypes in cultured endothelial cells.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| |
Collapse
|
3
|
Affiliation(s)
- Virginia M Miller
- Departments of Surgery and Physiology and Biomedical Engineering, Specialized Center of Research Excellence on Sex Differences, Women's Health Research Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
James BD, Guerin P, Allen JB. Let's Talk About Sex-Biological Sex Is Underreported in Biomaterial Studies. Adv Healthc Mater 2021; 10:e2001034. [PMID: 33043626 PMCID: PMC7791002 DOI: 10.1002/adhm.202001034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to better individualize healthcare. It requires that biomaterials be designed for the physiological characteristics of a specific patient. To make this a reality, biomaterials research and development must address differences of biological sex. More specifically, biomaterials should be designed with properties optimized and appropriate for male and female patients. In analyzing research articles from seven prominent biomaterials journals, sex as a biological variable is missing from an overwhelming majority of in vitro biomaterial studies. From the survey, the reporting of the sex of primary cell cultures happened only 10.3% of the time. Contributing to this trend is that commercial vendors bias cell lines toward one sex or another by not disclosing information of cell line sex at the time of purchase; researchers do not communicate this pertinent information in published studies; and many journal policies have little to no requirements for reporting cell line characteristics. Omitting this valuable information leads to a gap in the understanding of sex-specific cell-biomaterial interactions and it creates a bias in research findings towards one sex or another. To curb this concerning trend and make precision biomaterials a reality will require the biomaterials field to "talk about sex" by reporting cell sex more broadly.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| | - Paxton Guerin
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| |
Collapse
|
5
|
McCabe JT, Tucker LB. Sex as a Biological Variable in Preclinical Modeling of Blast-Related Traumatic Brain Injury. Front Neurol 2020; 11:541050. [PMID: 33101170 PMCID: PMC7554632 DOI: 10.3389/fneur.2020.541050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Approaches to furthering our understanding of the bioeffects, behavioral changes, and treatment options following exposure to blast are a worldwide priority. Of particular need is a more concerted effort to employ animal models to determine possible sex differences, which have been reported in the clinical literature. In this review, clinical and preclinical reports concerning blast injury effects are summarized in relation to sex as a biological variable (SABV). The review outlines approaches that explore the pertinent role of sex chromosomes and gonadal steroids for delineating sex as a biological independent variable. Next, underlying biological factors that need exploration for blast effects in light of SABV are outlined, including pituitary, autonomic, vascular, and inflammation factors that all have evidence as having important SABV relevance. A major second consideration for the study of SABV and preclinical blast effects is the notable lack of consistent model design—a wide range of devices have been employed with questionable relevance to real-life scenarios—as well as poor standardization for reporting of blast parameters. Hence, the review also provides current views regarding optimal design of shock tubes for approaching the problem of primary blast effects and sex differences and outlines a plan for the regularization of reporting. Standardization and clear description of blast parameters will provide greater comparability across models, as well as unify consensus for important sex difference bioeffects.
Collapse
Affiliation(s)
- Joseph T McCabe
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B Tucker
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
6
|
Vallabhajosyula S, Ponamgi SP, Shrivastava S, Sundaragiri PR, Miller VM. Reporting of sex as a variable in cardiovascular studies using cultured cells: A systematic review. FASEB J 2020; 34:8778-8786. [PMID: 32946179 PMCID: PMC7383819 DOI: 10.1096/fj.202000122r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Reporting the sex of biological material is critical for transparency and reproducibility in science. This study examined the reporting of the sex of cells used in cardiovascular studies. Articles from 16 cardiovascular journals that publish peer-reviewed studies in cardiovascular physiology and pharmacology in the year 2018 were systematically reviewed using terms "cultured" and "cells." Data were collected on the sex of cells, the species from which the cells were isolated, and the type of cells, and summarized as a systematic review. Sex was reported in 88 (38.6%) of the 228 studies meeting inclusion criteria. Reporting rates varied with Circulation, Cardiovascular Research and American Journal of Physiology: Heart and Circulatory Physiology having the highest rates of sex reporting (>50%). A majority of the studies used cells from male (54.5%) or both male and female animals (32.9%). Humans (31.8%), rats (20.4%), and mice (43.8%) were the most common sources for cells. Cardiac myocytes were the most commonly used cell type (37.0%). Overall reporting of sex of experimental material remains below 50% and is inconsistent among journals. Sex chromosomes in cells have the potential to affect protein expression and molecular signaling pathways and should be consistently reported.
Collapse
Affiliation(s)
- Saraschandra Vallabhajosyula
- Department of Cardiovascular MedicineMayo ClinicRochesterMNUSA
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineMayo ClinicRochesterMNUSA
- Center for Clinical and Translational ScienceMayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMNUSA
| | - Shiva P. Ponamgi
- Division of Hospital Internal MedicineDepartment of MedicineMayo ClinicRochesterMNUSA
| | | | | | - Virginia M. Miller
- Department of SurgeryMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
7
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
8
|
Kantarci K, Morrow MM, Miller VM. Incorporating Sex as a Biological Variable into Clinical and Translational Research Training. J Womens Health (Larchmt) 2020; 29:865-867. [PMID: 32208053 PMCID: PMC7307681 DOI: 10.1089/jwh.2019.8066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Incorporating sex as a biological variable (SABV) into basic and medical research requires a deliberate plan that weaves concepts of basic genetics, cellular and molecular physiology, and pharmacology into translational medicine. An R4 approach (Right content to the Right learner at the Right time with the Right modality) allows for content to be available in a variety of formats that reinforces the concepts at staged levels of integration. Weaving SABV throughout the varied formats of the R4 approach within the Clinical and Translational Research Training Programs, into the mentoring and training of scholars in NIH Building Interdisciplinary Careers in Women's Health (BIRCWH), and into the Career Enhancement Core of the Specialized Centers of Research Excellence (SCORE) on sex differences through curriculum, case-based approach and journal clubs, and workshops ensures that learners grasp its fundamental relevancy to their own research and beyond. In addition, the collaborative work among the BIRCWH and SCORE programs brings collective expertise from centers around the United States to individual programs through development of best practices and materials. These collective efforts assure that the next generation of basic, clinical, and translational scientists will bring the dimension of SABV into their research and clinical practice.
Collapse
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Melissa M Morrow
- Department of Health Sciences Research, and Mayo Clinic, Rochester, Minnesota
| | - Virginia M Miller
- Department of Surgery and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Stone G, Choi A, Meritxell O, Gorham J, Heydarpour M, Seidman CE, Seidman JG, Aranki SF, Body SC, Carey VJ, Raby BA, Stranger BE, Muehlschlegel JD. Sex differences in gene expression in response to ischemia in the human left ventricular myocardium. Hum Mol Genet 2020; 28:1682-1693. [PMID: 30649309 DOI: 10.1093/hmg/ddz014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 01/28/2023] Open
Abstract
Sex differences exist in the prevalence, presentation and outcomes of ischemic heart disease (IHD). Females have higher risk of heart failure post-myocardial infarction relative to males and are two to three times more likely to die after coronary artery bypass grafting surgery. We examined sex differences in human myocardial gene expression in response to ischemia. Left ventricular biopsies from 68 male/46 female patients undergoing aortic valve replacement surgery were obtained at baseline and after a median 74 min of cold cardioplegic arrest/ischemia. Transcriptomes were quantified by RNA-sequencing. Cell-type enrichment analysis was used to estimate the identity and relative proportions of different cell types in each sample. A sex-specific response to ischemia was observed for 271 genes. Notably, the expression FAM5C, PLA2G4E and CYP1A1 showed an increased expression in females compared to males due to ischemia and DIO3, MT1G and CMA1 showed a decreased expression in females compared to males due to ischemia. Functional annotation analysis revealed sex-specific modulation of the oxytocin signaling pathway and common pathway of fibrin clot formation. Expression quantitative trait locus (eQTL) analysis identified variant-by-sex interaction eQTLs, indicative of sex differences in the genotypic effects on gene expression. Cell-type enrichment analysis showed sex-bias in proportion of specific cell types. Common lymphoid progenitor cells and M2 macrophages were found to increase in female samples from pre- to post-ischemia, but no change was observed in male samples. These differences in response to myocardial ischemia provide insight into the sexual dimorphism of IHD and may aid in the development of sex-specific therapies that reduce myocardial injury.
Collapse
Affiliation(s)
- Gregory Stone
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley Choi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliva Meritxell
- Institute for Genomics and Systems Biology, Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jon G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sary F Aranki
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent J Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara E Stranger
- Institute for Genomics and Systems Biology, Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Sex-related differences in patients undergoing surgery for shoulder instability: a Multicenter Orthopaedic Outcomes Network (MOON) Shoulder Instability cohort study. J Shoulder Elbow Surg 2019; 28:1013-1021. [PMID: 31003889 DOI: 10.1016/j.jse.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/01/2023]
Abstract
HYPOTHESIS AND BACKGROUND Male sex has been identified as a risk factor for both primary shoulder dislocation and recurrent instability, and male patients more often undergo surgery for instability. Despite published discrepancies between sexes regarding the incidence and surgical rates of shoulder instability, there is little detail on the differences in presentation, mechanism of injury, and intraoperative findings. The purpose of this study was to explore these differences. METHODS Prospective baseline data from 1010 patients in the Multicenter Orthopaedic Outcomes Network (MOON) Shoulder Instability cohort were analyzed for sex-related differences using demographic characteristics, patient-reported outcomes, radiographic findings, intraoperative findings, and surgical procedures performed. Two-tailed t tests and χ2 tests were used to compare the continuous and categorical data, respectively. Patients were categorized using the Frequency, Etiology, Direction, Severity (FEDS) classification system. RESULTS Male patients comprised 81.3% of the cohort. Male patients had a significantly higher rate of traumatic instability and rate of initial instability while playing sports, as well as significantly higher activity scores. Female patients had significantly lower preoperative American Shoulder and Elbow Surgeons, Western Ontario Shoulder Instability Index, 36-Item Health Survey, and Single Assessment Numeric Evaluation scores. No difference in the number of dislocations was found between male and female patients. Intraoperatively, male patients had higher rates of labral pathology and bone loss whereas female patients had higher rates of capsular laxity. These differences resulted in more Latarjet procedures for male patients and more soft-tissue procedures for female patients. CONCLUSION There are differences between male and female patients in the etiology of their instability, baseline patient-reported outcomes, and associated shoulder pathology, likely reflecting intrinsic and activity-related variation. These differences may influence clinical decision making and patient outcomes.
Collapse
|
11
|
Moreno JM, Tapia A, Martinez CM, Reverte V, Oltra L, Llinas MT, Salazar FJ. Sex-dependent differences in the adverse renal changes induced by an early in life exposure to a high-fat diet. Am J Physiol Renal Physiol 2018; 316:F332-F340. [PMID: 30516421 DOI: 10.1152/ajprenal.00394.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examines whether the intake of a high-fat diet very early in life leads to changes in arterial pressure and renal function and evaluates whether the mechanisms involved in these changes are sex-dependent. Experiments were performed in male and female Sprague-Dawley rats fed a normal or high-fat diet from weaning to 4 mo of age. This exposure to a high-fat diet lead to an angiotensin II-dependent elevation in arterial pressure and to significant increments in fat abdominal volume and plasma leptin that were similar in both sexes. In addition, the angiotensin II-induced increment in renal vascular resistance was greater ( P < 0.05) in male (106 ± 14%) and female (97 ± 15%) rats fed a high-fat diet than in rats fed a normal-fat diet (51 ± 8%). However, the high-fat intake during early life induced increments in albuminuria, interleukin-6, and infiltration of CD3 lymphocytes in the renal parenchyma that were greater ( P < 0.05) in male than in female rats. Other sex-dependent differences in response to high-fat intake were that adiponectin levels only decreased in females (21%, P < 0.05), and renal NF-κB expression only increased in males (31%, P < 0.05). In summary, the early exposure to a high-fat diet leads to angiotensin II-dependent arterial pressure elevations and to increments in abdominal fat and in the renal sensitivity to angiotensin II that are similar in both sexes. However, the mechanisms involved in the renal changes associated with early exposure to a high-fat diet are different in males and females.
Collapse
Affiliation(s)
- Juan M Moreno
- Department of Physiology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia , Murcia , Spain
| | - Antonio Tapia
- Department of Physiology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia , Murcia , Spain
| | - Carlos M Martinez
- Pathology Unit, Biomedical Research Institute of Murcia , Murcia , Spain
| | - Virginia Reverte
- Department of Physiology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia , Murcia , Spain
| | - Lidia Oltra
- Department of Physiology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia , Murcia , Spain
| | - Maria Teresa Llinas
- Department of Physiology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia , Murcia , Spain
| | - Francisco Javier Salazar
- Department of Physiology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia , Murcia , Spain
| |
Collapse
|
12
|
Relationship Between Haemostasis Parameters and Anxiety Under Examination Stress: A Pilot Study. Indian J Hematol Blood Transfus 2018; 34:727-730. [PMID: 30369749 DOI: 10.1007/s12288-018-0980-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/03/2018] [Indexed: 10/28/2022] Open
Abstract
This work aims to clarify how blood coagulation parameters reflect mild stress response in males and females. Healthy student volunteers of both sexes were used in this pilot study. A new global sensitive assay of haemostasis, spatial thrombodynamics, along with conventional coagulometry approach were used to evaluate of blood coagulation parameters. Psychodiagnostics scales (according to Spielberger and Taylor) are employed to evaluate anxiety as stress-induced response. We have selected exam stress, which despite being a mild stressor may nevertheless cause somatic disorders. We provide the first evidence of a statistically significant increase in initial clot growth velocity in women, but not men, in response to exam stress. The exam situation produces higher situational anxiety in female volunteers, and so they express remarkable stress-induced haemostatic responses, including plasma- and platelet-based changes. In contrast, male volunteers do not express pronounced stress-induced changes in haemostasis, and only display a decrease in plateletcrit value and an increase in prothrombin time. Mild form of stress (exam) induces changes in some blood coagulation parameters. A statistically significant remarkable increase in Vinit value and some other plasma- and platelet-based parameters has been seen in female students (but not male ones) under exam stress.
Collapse
|
13
|
Rich-Edwards JW, Kaiser UB, Chen GL, Manson JE, Goldstein JM. Sex and Gender Differences Research Design for Basic, Clinical, and Population Studies: Essentials for Investigators. Endocr Rev 2018; 39:424-439. [PMID: 29668873 PMCID: PMC7263836 DOI: 10.1210/er.2017-00246] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
A sex- and gender-informed perspective increases rigor, promotes discovery, and expands the relevance of biomedical research. In the current era of accountability to present data for males and females, thoughtful and deliberate methodology can improve study design and inference in sex and gender differences research. We address issues of motivation, subject selection, sample size, data collection, analysis, and interpretation, considering implications for basic, clinical, and population research. In particular, we focus on methods to test sex/gender differences as effect modification or interaction, and discuss why some inferences from sex-stratified data should be viewed with caution. Without careful methodology, the pursuit of sex difference research, despite a mandate from funding agencies, will result in a literature of contradiction. However, given the historic lack of attention to sex differences, the absence of evidence for sex differences is not necessarily evidence of the absence of sex differences. Thoughtfully conceived and conducted sex and gender differences research is needed to drive scientific and therapeutic discovery for all sexes and genders.
Collapse
Affiliation(s)
- Janet W Rich-Edwards
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Grace L Chen
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts
| | - JoAnn E Manson
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jill M Goldstein
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Harris AN, Lee HW, Osis G, Fang L, Webster KL, Verlander JW, Weiner ID. Differences in renal ammonia metabolism in male and female kidney. Am J Physiol Renal Physiol 2018; 315:F211-F222. [PMID: 29561185 DOI: 10.1152/ajprenal.00084.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Sex differences are well recognized as an important biological variable in many aspects of renal function, including fluid and electrolyte metabolism. However, sex differences in renal ammonia metabolism have not been previously reported. Therefore, the purpose of the current study was to investigate sex differences in renal ammonia metabolism. We studied 4-mo-old wild-type C57BL/6 mice fed a normal diet. Despite similar levels of food intake, and, thus, protein intake, which is the primary determinant of endogenous acid production, female mice excreted greater amounts of ammonia, but not titratable acids, than did male mice. This difference in ammonia metabolism was associated with fundamental structural differences between the female and male kidney. In the female mouse kidney, proximal tubules account for a lower percentage of the renal cortical parenchyma compared with the male kidney, whereas collecting ducts account for a greater percentage of the renal parenchyma than in male kidneys. To further investigate the mechanism(s) behind the greater ammonia excretion in female mice, we examined differences in the expression of proteins involved in renal ammonia metabolism and transport. Greater basal ammonia excretion in females was associated with greater expression of PEPCK, glutamine synthetase, NKCC2, Rhbg, and Rhcg than was observed in male mice. We conclude that there are sex differences in basal ammonia metabolism that involve both renal structural differences and differences in expression of proteins involved in ammonia metabolism.
Collapse
Affiliation(s)
- Autumn N Harris
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Kierstin L Webster
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center , Gainesville, Florida
| |
Collapse
|
15
|
Clayton JA, Arnegard ME. Taking cardiology clinical trials to the next level: A call to action. Clin Cardiol 2018; 41:179-184. [PMID: 29480590 PMCID: PMC6489876 DOI: 10.1002/clc.22907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Physicians previously perceived heart disease to be a man's disease; yet, since 1984, more women have died of ischemic heart disease. Because women who develop obstructive coronary heart disease and heart failure tend to do so 10 years later than men, cardiology clinical trials that use arbitrary age cutoffs or exclusion criteria based on comorbidities and polypharmacy often limit the pool of potential participants to a greater extent for women. Issues related to trial design and insufficient accounting for female-predominant disease patterns have contributed to low rates of enrollment of women in certain domains of cardiology research. Accordingly, women do not benefit from as rich an evidence base for cardiology as men. Here, we review major sex differences in heart disease and discuss areas of cardiology research in which women have been underrepresented. Considering the widespread sex differences in cardiovascular structure and function, it is important to include balanced numbers of women and men in cardiovascular clinical trials. Beyond inclusion, sex-specific reporting is also essential. Moreover, with ongoing developments of clinical-trial methodology, it is imperative to seek innovative ways to learn as much as possible about how interventions behave in women and men. Adaptive trials are specifically identified as promising opportunities to consider sex-based analyses at interim stages, allowing sex-specific flexibility as these trials unfold. Finally, we emphasize the importance of factoring sex as a biological variable into the design, analysis, and reporting of preclinical research, because this research critically informs the design and execution of clinical trials.
Collapse
Affiliation(s)
- Janine A. Clayton
- Office of Research on Women's HealthNational Institutes of HealthBethesdaMaryland
| | - Matthew E. Arnegard
- Office of Research on Women's HealthNational Institutes of HealthBethesdaMaryland
| |
Collapse
|
16
|
Preclinical models in the study of sex differences. Clin Sci (Lond) 2017; 131:449-469. [PMID: 28265036 DOI: 10.1042/cs20160847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023]
Abstract
The biology of sex differences deals with the study of the disparities between females and males and the related biological mechanisms. Gender medicine focuses on the impact of gender and sex on human physiology, pathophysiology and clinical features of diseases that are common to women and men. The term gender refers to a complex interrelation and integration of sex-as a biological and functional determinant-and psychological and cultural behaviours (due to ethnical, social or religious background). The attention to the impact of gender differences on the pathophysiology and, therefore, on the clinical management of the most common diseases, such as cardiovascular diseases (CVD), neurodegenerative disorders, immune and autoimmune diseases as well as several tumours, is in fact often neglected. Hence, studies covering different fields of investigation and including sex differences in the pathogenesis, in diagnostic and prognostic criteria as well as in response to therapy appear mandatory. However, prerequisites for this development are preclinical studies, including in vitro and in vivo approaches. They represent the first step in the development of a drug or in the comprehension of the pathogenetic mechanisms of diseases, in turn a necessary step for the development of new or more appropriate therapeutic strategies. However, sex differences are still poorly considered and the great majority of preclinical studies do not take into account the relevance of such disparities. In this review, we describe the state of the art of these studies and provide some paradigmatic examples of key fields of investigation, such as oncology, neurology and CVD, where preclinical models should be improved.
Collapse
|
17
|
Coiado OC, O'Brien WD. The Negative Chronotropic Effect in Rat Heart Stimulated by Ultrasonic Pulses: Role of Sex and Age. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:799-808. [PMID: 28072471 PMCID: PMC5359037 DOI: 10.7863/ultra.16.02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES The goal of this study is to investigate the role of sex and age of the negative chronotropic effect after exposure of 3.5-MHz pulsed ultrasound (US) to the rat heart. METHODS Forty F344 rats were exposed transthoracically to ultrasonic pulses at a duty factor of approximately 1.0% at 2.0-MPa peak rarefactional pressure amplitude. The transthoracic ultrasonic bursts were delivered consecutively in five 10-s intervals, that is, 10 s of 6-Hz pulse repetition frequency (PRF), 10 s of 5-Hz PRF, 10 s of 4-Hz PRF, 10 s of 5-Hz PRF, and 10 s of 6-Hz, for a 50-s total exposure duration. The rats were divided into 8 groups (n = 5 each): US young male, control young male, US young female, control young female, US old male, control old male, US old female, and control old female. RESULTS Two-way ANOVA for repeated measures was used to compare heart rate, cardiac output, arterial pressure, and other hemodynamic values (baseline) before and after US stimulation. Sex versus age versus US interaction was detected for heart rate. Cardiac output showed an age effect, and ejection fraction showed age and US effects. The arterial pressure showed a sex effect. A negative chronotropic effect (∼30% decrease in heart rate) was observed for young female rats. An hypothesis is that the US effect is weight (menopause) dependent, because the young (premenopausal) female rats weighed approximately 40 to 60% less than other groups of rats. CONCLUSIONS It is likely that the ovarian hormones are responsible for different US-induced cardiac bioeffects in different ages and sexes.
Collapse
Affiliation(s)
- Olivia C Coiado
- Donald P. Shiley School of Engineering, University of Portland, Portland, Oregon USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| |
Collapse
|
18
|
|
19
|
Mudrovcic N, Arefin S, Van Craenenbroeck AH, Kublickiene K. Endothelial maintenance in health and disease: Importance of sex differences. Pharmacol Res 2017; 119:48-60. [PMID: 28108363 DOI: 10.1016/j.phrs.2017.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The vascular endothelium has emerged as more than just an inert monolayer of cells lining the vascular bed. It represents the interface between the blood stream and vessel wall, and has a strategic role in regulating vascular homeostasis by the release of vasoactive substances. Endothelial dysfunction contributes to the development and progression of cardiovascular disease. Recognition of sex-specific factors implicated in endothelial cell biology is important for the identification of clinically relevant preventive and/or therapeutic strategies. This review aims to give an overview of the recent advances in understanding the importance of sex specific observations in endothelial maintenance, both in healthy and diseased conditions. The female endothelium is highlighted in the context of polycystic ovary syndrome and pre-eclampsia. Furthermore, sex differences are explored in chronic kidney disease, which is currently appreciated as one of public health priorities. Overall, this review endorses integration of sex analysis in experimental and patient-oriented research in the exciting field of vascular biology.
Collapse
Affiliation(s)
- Neja Mudrovcic
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Amaryllis H Van Craenenbroeck
- Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Gender Medicine, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Morrison HW, Filosa JA. Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. Neuroscience 2016; 339:85-99. [PMID: 27717807 PMCID: PMC5118180 DOI: 10.1016/j.neuroscience.2016.09.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. In this study we assessed astrocyte Ca2+ dynamics, aquaporin 4 (AQP4) polarity, S100β expression pattern, as well as, microglia morphology and phagocytic marker CD11b in male and female mice following 60min of middle cerebral artery (MCA) occlusion. We reveal sex differences in the frequency of intracellular astrocyte Ca2+ elevations (F(1,86)=8.19, P=0.005) and microglia volume (F(1,40)=12.47, P=0.009) immediately following MCA occlusion in acute brain slices. Measured in fixed tissue, AQP4 polarity was disrupted (F(5,86)=3.30, P=0.009) and the area of non-S100β immunoreactivity increased in ipsilateral brain regions after 60min of MCA occlusion (F(5,86)=4.72, P=0.007). However, astrocyte changes were robust in male mice when compared to females. Additional sex differences were discovered regarding microglia phagocytic receptor CD11b. In sham mice, constitutively high CD11b immunofluorescence was observed in females when compared to males (P=0.03). When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P=0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.
Collapse
Affiliation(s)
- Helena W Morrison
- Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| | - Jessica A Filosa
- Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| |
Collapse
|
21
|
McGregor AJ, Hasnain M, Sandberg K, Morrison MF, Berlin M, Trott J. How to study the impact of sex and gender in medical research: a review of resources. Biol Sex Differ 2016; 7:46. [PMID: 27785348 PMCID: PMC5073798 DOI: 10.1186/s13293-016-0099-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
There is a growing appreciation by the biomedical community that studying the impact of sex and gender on health, aging, and disease will lead to improvements in human health. Sex- and gender-based comparisons can inform research on disease mechanisms and the development of new therapeutics as well as enhance scientific rigor and reproducibility. This review will assist basic researchers, clinical investigators, as well as epidemiologists, population, and social scientists by providing an annotated bibliography of currently available resource tools on how to consider sex and gender as independent variables in research design and methodology. These resources will assist investigators applying for funding from the National Institutes of Health since all grant applicants will be required (as of January 25, 2016) to address the role of sex as a biological variable in vertebrate animal and human studies.
Collapse
Affiliation(s)
- Alyson J McGregor
- Division of Sex and Gender in Emergency Medicine, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI USA
| | - Memoona Hasnain
- Department of Family Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| | - Mary F Morrison
- Department of Psychiatry, Temple University School of Medicine, Philadelphia, PA USA ; Department of Internal Medicine, Temple University School of Medicine, Philadelphia, PA USA
| | - Michelle Berlin
- Center for Women's Health, Oregon Health & Science University, Portland, OR USA
| | | |
Collapse
|
22
|
Howe CG, Gamble MV. Influence of Arsenic on Global Levels of Histone Posttranslational Modifications: a Review of the Literature and Challenges in the Field. Curr Environ Health Rep 2016; 3:225-37. [PMID: 27352015 PMCID: PMC4967376 DOI: 10.1007/s40572-016-0104-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arsenic is a human carcinogen and also increases the risk for non-cancer outcomes. Arsenic-induced epigenetic dysregulation may contribute to arsenic toxicity. Although there are several reviews on arsenic and epigenetics, these have largely focused on DNA methylation. Here, we review investigations of the effects of arsenic on global levels of histone posttranslational modifications (PTMs). Multiple studies have observed that arsenic induces higher levels of H3 lysine 9 dimethylation (H3K9me2) and also higher levels of H3 serine 10 phosphorylation (H3S10ph), which regulate chromosome segregation. In contrast, arsenic causes a global loss of H4K16ac, a histone PTM that is a hallmark of human cancers. Although the findings for other histone PTMs have not been entirely consistent across studies, we discuss biological factors which may contribute to these inconsistencies, including differences in the dose, duration, and type of arsenic species examined; the tissue or cell line evaluated; differences by sex; and exposure timing. We also discuss two important considerations for the measurement of histone PTMs: proteolytic cleavage of histones and arsenic-induced alterations in histone expression.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. Address: 11 Floor, 722 W. 168 Street, New York, New York, 10032. . Phone: 212-305-1205. Fax: 212-305-3857
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. Address: 11 Floor, 722 W. 168 Street, New York, New York, 10032. . Phone: 212-305-7949. Fax: 212-305-3857
| |
Collapse
|
23
|
Franconi F, Rosano G, Campesi I. Need for gender-specific pre-analytical testing: the dark side of the moon in laboratory testing. Int J Cardiol 2014; 179:514-35. [PMID: 25465806 DOI: 10.1016/j.ijcard.2014.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Many international organisations encourage studies in a sex-gender perspective. However, research with a gender perspective presents a high degree of complexity, and the inclusion of sex-gender variable in experiments presents many methodological questions, the majority of which are still neglected. Overcoming these issues is fundamental to avoid erroneous results. Here, pre-analytical aspects of the research, such as study design, choice of utilised specimens, sample collection and processing, animal models of diseases, and the observer's role, are discussed. Artefacts in this stage of research could affect the predictive value of all analyses. Furthermore, the standardisation of research subjects according to their lifestyles and, if female, to their life phase and menses or oestrous cycle, is urgent to harmonise research worldwide. A sex-gender-specific attention to pre-analytical aspects could produce a decrease in the time for translation from the bench to bedside. Furthermore, sex-gender-specific pre-clinical pharmacological testing will enable adequate assessment of pharmacokinetic and pharmacodynamic actions of drugs and will enable, where appropriate, an adequate gender-specific clinical development plan. Therefore, sex-gender-specific pre-clinical research will increase the gender equity of care and will produce more evidence-based medicine.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy; Vicepresident of Basilicata Region.
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy
| |
Collapse
|
24
|
Arnold AP. Conceptual frameworks and mouse models for studying sex differences in physiology and disease: why compensation changes the game. Exp Neurol 2014; 259:2-9. [PMID: 24509348 PMCID: PMC4125548 DOI: 10.1016/j.expneurol.2014.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
A sophisticated mechanistic understanding of physiology and disease requires knowledge of how sex-biasing factors cause sex differences in phenotype. In therian mammals, all sex differences are downstream of the unequal effects of XX vs. XY sex chromosomes. Three major categories of sex-biasing factors are activational and organizational effects of gonadal hormones, and sex chromosome effects operating outside of the gonads. These three types of effects can be discriminated from each other with established experimental designs and animal models. Two important mouse models, which allow conclusions regarding the sex-biasing effects of sex chromosome complement, interacting with gonadal hormone effects, are the Four Core Genotypes model and the XY* model. Chromosome Y consomic strains give information about the role of the Y chromosome. An important recent change in sexual differentiation theory is the increasing realization that sex-biasing factors can counteract the effects of each other, reducing rather than producing sex differences in phenotype. This change in viewpoint rationalizes a change in experimental strategies for dissecting sex chromosome effects. The overall goal is to understand the sexome, defined as the sum of effects of sex-biasing factors on gene systems and networks.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, USA.
| |
Collapse
|
25
|
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol 2014; 389:31-9. [PMID: 24462775 PMCID: PMC5709037 DOI: 10.1016/j.mce.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/05/2014] [Indexed: 12/24/2022]
Abstract
Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system.
Collapse
Affiliation(s)
- A A Knowlton
- The Department of Veteran's Affairs, Northern California VA, Sacramento, CA, USA; Molecular & Cellular Cardiology, Departments of Medicine and Pharmacology, University of California, Davis, USA.
| | - D H Korzick
- Intercollege Program in Physiology and Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
26
|
Lopes RAM, Neves KB, Pestana CR, Queiroz AL, Zanotto CZ, Chignalia AZ, Valim YM, Silveira LR, Curti C, Tostes RC. Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement. Am J Physiol Heart Circ Physiol 2014; 306:H1485-94. [PMID: 24658017 DOI: 10.1152/ajpheart.00809.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Testosterone exerts both beneficial and harmful effects on the cardiovascular system. Considering that testosterone induces reactive oxygen species (ROS) generation and ROS activate cell death signaling pathways, we tested the hypothesis that testosterone induces apoptosis in vascular smooth muscle cells (VSMCs) via mitochondria-dependent ROS generation. Potential mechanisms were addressed. Cultured VSMCs were stimulated with testosterone (10(-7) mol/l) or vehicle (2-12 h) in the presence of flutamide (10(-5) mol/l), CCCP (10(-6) mol/l), mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP; 3 × 10(-5) mol/l), Z-Ile-Glu(O-ME)-Thr-Asp(O-Me) fluoromethyl ketone (Z-IETD-FMK; 10(-5) mol/l), or vehicle. ROS were determined with lucigenin and dichlorodihydrofluorescein; apoptosis, with annexin V and calcein; O2 consumption, with a Clark-type electrode, and procaspases, caspases, cytochrome c, Bax, and Bcl-2 levels by immunoblotting. Testosterone induced ROS generation (relative light units/mg protein, 2 h; 162.6 ± 16 vs. 100) and procaspase-3 activation [arbitrary units, (AU), 6 h; 166.2 ± 19 vs. 100]. CCCP, MnTMPyP, and flutamide abolished these effects. Testosterone increased annexin-V fluorescence (AU, 197.6 ± 21.5 vs. 100) and decreased calcein fluorescence (AU, 34.4 ± 6.4 vs. 100), and O2 consumption (nmol O2/min, 18.6 ± 2.0 vs. 34.4 ± 3.9). Testosterone also reduced Bax-to-Bcl-2 ratio but not cytochrome-c release from mitochondria. Moreover, testosterone (6 h) induced cleavage of procaspase 8 (AU, 161.1 ± 13.5 vs. 100) and increased gene expression of Fas ligand (2(ΔΔCt), 3.6 ± 1.2 vs. 0.7 ± 0.5), and TNF-α (1.7 ± 0.4 vs. 0.3 ± 0.1). CCCP, MnTMPyP, and flutamide abolished these effects. These data indicate that testosterone induces apoptosis in VSMCs via the extrinsic apoptotic pathway with the involvement of androgen receptor activation and mitochondria-generated ROS.
Collapse
Affiliation(s)
| | - Karla Bianca Neves
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil; and
| | - Cezar Rangel Pestana
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil; and
| | - André Lima Queiroz
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Andréia Z Chignalia
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Yara Maria Valim
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil; and
| | - Leonardo R Silveira
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Curti
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil; and
| | - Rita C Tostes
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
27
|
Franconi F, Campesi I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women. Br J Pharmacol 2014; 171:580-94. [PMID: 23981051 PMCID: PMC3969074 DOI: 10.1111/bph.12362] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/05/2013] [Accepted: 08/16/2013] [Indexed: 12/16/2022] Open
Abstract
Pharmacological response depends on multiple factors and one of them is sex-gender. Data on the specific effects of sex-gender on pharmacokinetics, as well as the safety and efficacy of numerous medications, are beginning to emerge. Nevertheless, the recruitment of women for clinical research is inadequate, especially during the first phases. In general, pharmacokinetic differences between males and females are more numerous and consistent than disparities in pharmacodynamics. However, sex-gender pharmacodynamic differences are now increasingly being identified at the molecular level. It is now even becoming apparent that sex-gender influences pharmacogenomics and pharmacogenetics. Sex-related differences have been reported for several parameters, and it is consistently shown that women have a worse safety profile, with drug adverse reactions being more frequent and severe in women than in men. Overall, the pharmacological status of women is less well studied than that of men and deserves much more attention. The design of clinical and preclinical studies should have a sex-gender-based approach with the aim of tailoring therapies to an individual's needs and concerns.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of SassariSassari, Italy
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and BiosystemsOsilo, Italy
| | - Ilaria Campesi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and BiosystemsOsilo, Italy
- Department of Surgical, Microsurgical and Medical Sciences, University of SassariSassari, Italy
| |
Collapse
|
28
|
Lang CH, Korzick DH. Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats. Am J Physiol Regul Integr Comp Physiol 2013; 306:R23-33. [PMID: 24226028 DOI: 10.1152/ajpregu.00414.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardiography, as well as myocardial protein synthesis and proteolysis did not differ in either alcohol- versus control-fed adult rats or in adult versus aged control-fed rats. In contrast, cardiac function was impaired in alcohol-fed aged rats compared with age-matched control rats. Additionally, alcohol feeding decreased cardiac protein synthesis that was associated with decreased phosphorylation of 4E-BP1 and S6K1. This reduction in mammalian target of rapamycin (mTOR) kinase activity was associated with reduced eIF3f and binding of both Raptor and eIF4G to eIF3. Proteasome activity was increased in alcohol-fed aged rats with a coordinate elevation in the E3 ligases atrogin-1 and muscle RING-finger protein-1 (MuRF1). These changes were associated with increased regulated in development and DNA damage response 1 (REDD1) and phosphorylation of AMP-activated protein kinase (AMPK) but no increase in AKT or forkhead transcription factor (FOXO)3 phosphorylation. Finally, markers of autophagy (e.g., LC3B, Atg7, Atg12) and TNF-α were increased to a greater extent in alcohol-fed aged rats. These data demonstrate that aged female rats exhibit an enhanced sensitivity to alcohol compared with adult animals. Our data are consistent with a model whereby alcohol increases proteolysis via FOXO-independent increase in atrogin-1, which degrades eIF3f and therefore impairs formation of a functional preinitiation complex and protein synthesis.
Collapse
|
29
|
Should there be sex-specific criteria for the diagnosis and treatment of heart failure? J Cardiovasc Transl Res 2013; 7:139-55. [PMID: 24214112 PMCID: PMC3935102 DOI: 10.1007/s12265-013-9514-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
All-cause mortality from cardiovascular disease is declining in the USA. However, there remains a significant difference in risk factors for disease and in mortality between men and women. For example, prevalence and outcomes for heart failure with preserved ejection fraction differ between men and women. The reasons for these differences are multifactorial, but reflect, in part, an incomplete understanding of sex differences in the etiology of cardiovascular diseases and a failure to account for sex differences in pre-clinical studies including those designed to develop new diagnostic and treatment modalities. This review focuses on the underlying physiology of these sex differences and provides evidence that inclusion of female animals in pre-clinical studies of heart failure and in development of imaging modalities to assess cardiac function might provide new information from which one could develop sex-specific diagnostic criteria and approaches to treatment.
Collapse
|
30
|
Conjugated equine estrogens and estradiol benzoate differentially modulate the natriuretic peptide system in spontaneously hypertensive rats. Menopause 2013; 20:554-60. [PMID: 23615647 DOI: 10.1097/gme.0b013e318276c4cc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to compare the effects of conjugated equine estrogens (CEE) and estradiol benzoate on the blood pressure and body weight of spontaneously hypertensive rats (SHRs) and the associated changes in several components of the natriuretic peptide system. METHODS The blood pressure of randomly distributed female SHRs and Wistar rats was determined by tail plethysmography. The rats were ovariectomized and, after 3 weeks, injected daily for 4 days with estradiol benzoate (5 μg/100 g/d), CEE (50 μg/100 g/d), or vehicle (corn oil 0.1 mL/100 g/d). One day after the last injection, the rats were decapitated, and their blood was collected to measure atrial natriuretic peptide (ANP) and estradiol. The atria were removed to measure ANP levels using radioimmunoassay and to quantify ANP messenger RNA expression using real-time polymerase chain reaction. The kidneys and adipose tissue were removed to analyze the expression of natriuretic peptide clearance receptor messenger RNA. RESULTS A reduction in blood pressure was observed in estradiol-treated SHRs, but CEE treatment had no effect. Estradiol decreased the body weight and parametrial adipose tissue mass of SHRs. Estradiol-induced alterations in SHRs were accompanied by increased synthesis and release of ANP. CEE had no effect on body weight but increased the mesenteric adipose tissue mass of SHRs. CONCLUSIONS These results indicate that estradiol and CEE have different effects on the reduction in body weight and blood pressure. These results are correlated with changes in plasma ANP levels.
Collapse
|
31
|
Abstract
Women continue to be underrepresented in clinical trials, particularly in Phases I and II of experimental drug studies in spite of legislative guidelines in the USA, Canada, the European Union, Australia, and Japan requiring the inclusion of women in clinical trials. As such, women remain a vulnerable population subject to the adverse effects of pharmacological therapies. Thus, women experience higher rates of adverse drug reactions than do men and for women of reproductive age or who may be pregnant, therapeutic options may be limited. This chapter provides a brief history of inclusion of sex and gender as variables in clinical trials, summarizes governmental legislation for consideration of sex and gender in clinical trials and provides specific examples of drugs which have been withdrawn from the market because of side effects in women. Additional information related to sex and gender in preclinical testing, trial design, challenges to recruitment of women for clinical trials and statistical methods for analysis of data also is considered.
Collapse
|
32
|
Barton M. Position paper: The membrane estrogen receptor GPER--Clues and questions. Steroids 2012; 77:935-42. [PMID: 22521564 DOI: 10.1016/j.steroids.2012.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 12/25/2022]
Abstract
Rapid signaling of estrogen involves membrane estrogen receptors (ERs), including membrane subpopulations of ERα and ERβ. In the mid-1990s, several laboratories independently reported the cloning of an orphan G protein-coupled receptor from vascular and cancer cells that was named GPR30. Research published between 2000 and 2005 provided evidence that GPR30 binds and signals via estrogen indicating that this intracellular receptor is involved in rapid, non-genomic estrogen signaling. The receptor has since been designated as the G protein-coupled estrogen receptor (GPER) by the International Union of Pharmacology. The availability of genetic tools such as different lines of GPER knock-out mice, as well as GPER-selective agonists and antagonists has advanced our understanding, but also added some confusion about the new function of this receptor. GPER not only binds estrogens but also other substances, including SERMs, SERDs, and environmental ER activators (endocrine disruptors; xenoestrogens) and also interacts with other proteins. This article represents a summary of a lecture given at the 7(th) International Meeting on Rapid Responses to Steroid Hormones in September 2011 in Axos, Crete, and reviews the current knowledge and questions about GPER-dependent signaling and function. Controversies that have complicated our understanding of GPER, including interactions with human ERα-36 and aldosterone as a potential ligand, will also be discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, LTK Y44 G22, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
33
|
Miller VM. In pursuit of scientific excellence: sex matters. ADVANCES IN PHYSIOLOGY EDUCATION 2012; 36:83-84. [PMID: 22665420 DOI: 10.1152/advan.00039.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
34
|
|
35
|
Miller VM. In pursuit of scientific excellence: sex matters. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1023-4. [DOI: 10.1152/ajpregu.00105.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Virginia M. Miller
- Departments of Surgery and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Affiliation(s)
- Virginia M. Miller
- Departments of Surgery and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
37
|
Affiliation(s)
- Virginia M. Miller
- Departments of Surgery and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Affiliation(s)
- Virginia M. Miller
- Departments of Surgery and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
39
|
Lopes RAM, Neves KB, Carneiro FS, Tostes RC. Testosterone and vascular function in aging. Front Physiol 2012; 3:89. [PMID: 22514541 PMCID: PMC3322529 DOI: 10.3389/fphys.2012.00089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/25/2012] [Indexed: 11/13/2022] Open
Abstract
Androgen receptors are widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Through classic cytosolic androgen receptors or membrane receptors, testosterone induces genomic and non-genomic effects, respectively. Testosterone interferes with the vascular function by increasing the production of pro-inflammatory cytokines and arterial thickness. Experimental evidence indicates that sex steroid hormones, such as testosterone modulate the synthesis and bioavailability of NO and, consequently, endothelial function, which is key for a healthy vasculature. Of interest, aging itself is accompanied by endothelial and vascular smooth muscle dysfunction. Aging-associated decline of testosterone levels is accompanied by age-related diseases, such as metabolic and cardiovascular diseases, indicating that very low levels of androgens may contribute to cardiovascular dysfunction observed in these age-related disorders or, in other words, that testosterone may have beneficial effects in the cardiovascular system. However, testosterone seems to play a negative role in the severity of renal disease. In this mini-review, we briefly comment on the interplay between aging and testosterone levels, the vascular actions of testosterone and its implications for vascular aging. Renal effects of testosterone and the use of testosterone to prevent vascular dysfunction in elderly are also addressed.
Collapse
Affiliation(s)
- Rhéure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, Ribeirao Preto São Paulo, Brazil
| | | | | | | |
Collapse
|
40
|
Miller VM. In pursuit of scientific excellence: sex matters. Am J Physiol Lung Cell Mol Physiol 2012; 302:L801-2. [PMID: 22427527 DOI: 10.1152/ajplung.00095.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
|
42
|
|
43
|
|