1
|
Jain MR, Giri SR, Trivedi CJ, Bhoi BB, Rath AC, Rathod RM, Sundar R, Bandyopadhyay D, Ramdhave R, Patel GD, Srivastava BK, Desai RC. Discovery of ZYDG2: a potent, selective, and safe GPR40 agonist for treatment of type 2 diabetes. J Pharmacol Exp Ther 2025; 392:103534. [PMID: 40158321 DOI: 10.1016/j.jpet.2025.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
GPR40/FFA1 receptor, predominantly expressed in pancreatic β-cells, mediates glucose-stimulated insulin secretion by free fatty acids. Fasiglifam-GPR40 agonist was terminated in phase III clinical trials due to adverse liver effects. ZYDG2 is identified as a novel, potent and selective agonist for GPR40, exhibiting EC50 of 41 nM and 17 nM in cell-based functional inositol 1-phosphate-ELISA assay and Ca2+ mobilization assay, respectively. ZYDG2 has demonstrated dose-dependent improvement in glucose tolerance tests and increased insulin secretion in neonatal streptozotocin Wistar rats. After repeated dose administration for 15 weeks, ZYDG2 showed efficacy without tachyphylaxis. ZYDG2 significantly increased the glucose infusion rate in a hyperglycemic clamp study and demonstrated antidiabetic efficacy in mice models of type 2 diabetes mellitus, which was not reported for fasiglifam. ZYDG2 exhibited 60%-100% oral bioavailability across preclinical species, including mice, rats, dogs, and primates. Liver toxicity of fasiglifam was associated with its bile acid transporter inhibition, whereas ZYDG2 showed no inhibition (up to 300 μM). In rat acute toxicity studies, the maximum tolerated dose for ZYDG2 was 2000 mg/kg, whereas fasiglifam was tolerable up to 300 mg/kg. Fasiglifam treatment at 300 mg/kg for 10 days in rats caused a significant rise in serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin level along with vacuolation, ulceration, and red foci in liver tissue, whereas ZYDG2 showed no liver toxicity up to 300 mg/kg. Moreover, after 28 days of repeated dose treatment of ZYDG2, the no-observed-adverse-effect-level was found to be 300 mg/kg. This robust data conclusively demonstrates that ZYDG2 is a highly promising and unequivocally safe therapeutic candidate for the treatment of type 2 diabetes. SIGNIFICANCE STATEMENT: ZYDG2 is a potent, selective, and safe GPR40 agonist which may be a promising candidate for the treatment of type 2 diabetes as it has shown better efficacy and safety profile compared with fasiglifam.
Collapse
Affiliation(s)
- Mukul R Jain
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Suresh R Giri
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India.
| | - Chitrang J Trivedi
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Bibhuti B Bhoi
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | - Rohan M Rathod
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Rajesh Sundar
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | - Rashmi Ramdhave
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Gautam D Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | - Ranjit C Desai
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Mrosewski I, Mantel V, Urbank M, Schulze-Tanzil G, Werner C, Gögele C, Kokozidou M, Bertsch T. Menaquinone-7 and its therapeutic potential in type 2 diabetes mellitus based on a Zucker diabetic fatty rat model. Heliyon 2024; 10:e40826. [PMID: 39719993 PMCID: PMC11666950 DOI: 10.1016/j.heliyon.2024.e40826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is marked by insulin resistance, low grade chronic inflammation, and endothelial dysfunction. Vitamin K2, especially menaquinone-7 (MK-7), might delay T2DM progression and alleviate its consequences. Hence, this study evaluated the effects of MK-7 on serum and urine markers of diabetes in an animal model of T2DM. Methods Hetero- (fa/+, control) and homozygous (fa/fa, diabetic) male Zucker diabetic fatty (ZDF) rats were supplemented or not with MK-7 for 12 weeks. After euthanasia, vitamin K1, menaquinone-4 and MK-7 serum concentrations were analyzed via reversed phase high pressure liquid chromatography. Glucose (serum), fructosamine (serum) and creatinine (serum and urine) levels were assessed photometrically, serum cystatin C and urinary total protein were turbidimetrically determined. Serum transforming growth factor beta 1 (TGF-β1) and procollagen type III N-terminal peptide (PIIINP) were quantified with enzyme-linked immunosorbent assay. Urinary marker proteins were analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nephropathy was assessed histologically. Results Supplementation led to significantly elevated MK-7 serum levels and a significant reduction of PIIINP serum levels in both hetero- and homozygous ZDF rats. Additionally, not statistically significant reductions of TGF-β1 serum levels, proteinuria as well as the nephropathy score were observed. In vivo body mass, serum fructosamine, glucose, cystatin C and creatinine levels were unaffected. Conclusion MK-7 reduced serum markers of fibrosis, histological features of nephropathy and urinary protein excretion, but failed to affect serum markers of T2DM. The therapeutic potential of MK-7 in T2DM and its mode of action should be further investigated in more detail.
Collapse
Affiliation(s)
- Ingo Mrosewski
- MDI Limbach Berlin GmbH, Aroser Allee 84, 13407, Berlin, Germany
| | - Valeriya Mantel
- MDI Limbach Berlin GmbH, Aroser Allee 84, 13407, Berlin, Germany
- Berlin University of Applied Sciences and Technology, Luxemburger Str. 10, 13353, Berlin, Germany
| | - Matthias Urbank
- MDI Limbach Berlin GmbH, Aroser Allee 84, 13407, Berlin, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| |
Collapse
|
3
|
Yoon J, Lee DG, Song H, Hong D, Park JS, Hong C, An KM, Lee JW, Park JT, Yoon H, Tak J, Kim SG. Xelaglifam, a novel GPR40/FFAR1 agonist, exhibits enhanced β-arrestin recruitment and sustained glycemic control for type 2 diabetes. Biomed Pharmacother 2024; 177:117044. [PMID: 38941892 DOI: 10.1016/j.biopha.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Xelaglifam, developed as a GPR40/FFAR1 agonist, induces glucose-dependent insulin secretion and reduces circulating glucose levels for Type 2 diabetes treatment. This study investigated the effects of Xelaglifam in comparison with Fasiglifam on the in vitro/in vivo anti-diabetic efficacy and selectivity, and the mechanistic basis. In vitro studies on downstream targets of Xelaglifam were performed in GPR40-expressing cells. Xelaglifam treatment exhibited dose-dependent effects, increasing inositol phosphate-1, Ca2+ mobilization, and β-arrestin recruitment (EC50: 0.76 nM, 20 nM, 68 nM), supporting its role in Gq protein-dependent and G-protein-independent mechanisms. Despite a lack of change in the cAMP pathway, the Xelaglifam-treated group demonstrated increased insulin secretion compared to Fasiglifam in HIT-T15 β cells under high glucose conditions. High doses of Xelaglifam (<30 mg/kg) did not induce hypoglycemia in Sprague-Dawley rats. In addition, Xelaglifam lowered glucose and increased insulin levels in diabetic rat models (GK, ZDF, OLETF). In GK rats, 1 mg/kg of Xelaglifam improved glucose tolerance (33.4 % and 15.6 % for the 1 and 5 h) after consecutive glucose challenges. Moreover, repeated dosing in ZDF and OLETF rats resulted in superior glucose tolerance (34 % and 35.1 % in ZDF and OLETF), reducing fasting hyperglycemia (18.3 % and 30 % in ZDF and OLETF) at lower doses; Xelaglifam demonstrated a longer-lasting effect with a greater effect on β-cells including 3.8-fold enhanced insulin secretion. Co-treatment of Xelaglifam with SGLT-2 inhibitors showed additive or synergistic effects. Collectively, these results demonstrate the therapeutic efficacy and selectivity of Xelaglifam on GPR40, supportive of its potential for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Jongmin Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Don-Gil Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Haengjin Song
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dahae Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Soo Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Changhee Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Kyung Mi An
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jung Woo Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Joon-Tae Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Hongchul Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
4
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
5
|
Kim CS, Joo SY, Kim IJ, Choi HI, Bae EH, Kim SW, Ma SK. Anti-Apoptotic Effect of G-Protein-Coupled Receptor 40 Activation on Tumor Necrosis Factor-α-Induced Injury of Rat Proximal Tubular Cells. Int J Mol Sci 2019; 20:ijms20143386. [PMID: 31295865 PMCID: PMC6678114 DOI: 10.3390/ijms20143386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/26/2022] Open
Abstract
G-protein-coupled receptor 40 (GPR40) has an anti-apoptotic effect in pancreatic β-cells. However, its role in renal tubular cell apoptosis remains unclear. To explore the role of GPR40 in renal tubular apoptosis, a two-week unilateral ureteral obstruction (UUO) mouse model was used. The protein expression of GPR40 was decreased, while the Bax/Bcl-2 protein expression ratio, the expression of tumor necrosis factor (TNF)-α mRNA, and angiotensin II type 1 receptor (AT1R) protein were increased in mice with UUO. In vitro, pretreatment of rat proximal tubular (NRK52E) cells with GW9508, a GPR40 agonist, attenuated the decreased cell viability, increased the Bax/Bcl-2 protein expression ratio, increased protein expression of cleaved caspase-3 and activated the nuclear translocation of nuclear factor-κB (NF-κB) p65 subunit induced by TNF-α treatment. TNF-α treatment significantly increased the expression of AT1R protein and the generation of reactive oxygen species (ROS), whereas GW9508 treatment markedly reversed these effects. Pretreatment with GW1100, a GPR40 antagonist, or silencing of GPR40 in NRK52E cells promoted the increased expression of the cleaved caspase-3 protein by TNF-α treatment. Our results demonstrate that decreased expression of GPR40 is associated with apoptosis via TNF-α and AT1R in the ureteral obstructed kidney. The activation of GPR40 attenuates TNF-α-induced apoptosis by inhibiting AT1R expression and ROS generation through regulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Soo Yeon Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|
6
|
Du T, Yang L, Xu X, Shi X, Xu X, Lu J, Lv J, Huang X, Chen J, Wang H, Ye J, Hu L, Shen X. Vincamine as a GPR40 agonist improves glucose homeostasis in type 2 diabetic mice. J Endocrinol 2019; 240:195-214. [PMID: 30400036 DOI: 10.1530/joe-18-0432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
Vincamine, a monoterpenoid indole alkaloid extracted from the Madagascar periwinkle, is clinically used for the treatment of cardio-cerebrovascular diseases, while also treated as a dietary supplement with nootropic function. Given the neuronal protection of vincamine and the potency of β-cell amelioration in treating type 2 diabetes mellitus (T2DM), we investigated the potential of vincamine in protecting β-cells and ameliorating glucose homeostasis in vitro and in vivo. Interestingly, we found that vincamine could protect INS-832/13 cells function by regulating G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathway, while increasing glucose-stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII pathway, which reveals a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells. Moreover, administration of vincamine effectively ameliorated glucose homeostasis in either HFD/STZ or db/db type 2 diabetic mice. To our knowledge, our current work might be the first report on vincamine targeting GPR40 and its potential in the treatment of T2DM.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Glucose/metabolism
- Homeostasis/drug effects
- Insulin Secretion/drug effects
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Mice
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Vasodilator Agents/pharmacology
- Vincamine/pharmacology
Collapse
Affiliation(s)
- Te Du
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofan Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlu Lv
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Heyao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jiming Ye
- School of Health and Biomedical Sciences, RMIT University, Victoria, Australia
| | - Lihong Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Palmitate and insulin counteract glucose-induced thioredoxin interacting protein (TXNIP) expression in insulin secreting cells via distinct mechanisms. PLoS One 2018; 13:e0198016. [PMID: 29813102 PMCID: PMC5973613 DOI: 10.1371/journal.pone.0198016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/12/2018] [Indexed: 01/20/2023] Open
Abstract
Glucose and palmitate synergistically stimulate insulin secretion, but chronically elevated they induce apoptotic β-cell death. The glucotoxic effect has been attributed, at least partly, to the upregulation of the oxidative stress marker thioredoxin interacting protein (TXNIP). Palmitate downregulates TXNIP expression, the functional significance of which is still under debate. This study examines the mechanism and consequence of palmitate-mediated TXNIP regulation in insulin secreting cells. Palmitate (600 μM) reduced TXNIP mRNA levels in isolated human and mouse islets independently of FFAR1/GPR40. Similar effects of palmitate were observed in INS-1E cells and mimicked by other long chain fatty acids. The lowering of TXNIP mRNA was significant already 1 h after addition of palmitate, persisted for 24 h and was directly translated to changes in TXNIP protein. The pharmacological inhibition of palmitate-induced phosphorylation of AMPK, ERK1/2, JNK and PKCα/β by BML-275, PD98059, SP600125 and Gö6976, respectively, did not abolish palmitate-mediated TXNIP downregulation. The effect of palmitate was superimposed by a time-dependent (8 h and 24 h) decline of TXNIP mRNA and protein. This decline correlated with accumulation of secreted insulin into the medium. Accordingly, exogenously added insulin reduced TXNIP mRNA and protein levels, an effect counteracted by the insulin/IGF-1 receptor antagonist linsitinib. The inhibition of PI3K and Akt/PKB increased TXNIP mRNA levels. The histone deacetylase (HDAC1/2/3) inhibitor MS-275 completely abrogated the time-dependent, insulin-mediated reduction of TXNIP, leaving the effect of palmitate unaltered. Acute stimulation of insulin secretion and chronic accentuation of cell death by palmitate occurred independently of TXNIP regulation. On the contrary, palmitate antagonized glucose-augmented ROS production. In conclusion, glucose-induced TXNIP expression is efficiently antagonized by two independent mechanisms, namely via an autocrine activation of insulin/IGF-1 receptors involving HDAC and by palmitate attenuating oxidative stress of β-cells.
Collapse
|
8
|
Sabrautzki S, Kaiser G, Przemeck GKH, Gerst F, Lorza-Gil E, Panse M, Sartorius T, Hoene M, Marschall S, Häring HU, Hrabě de Angelis M, Ullrich S. Point mutation of Ffar1 abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance. Mol Metab 2017; 6:1304-1312. [PMID: 29031729 PMCID: PMC5641630 DOI: 10.1016/j.molmet.2017.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Objective The fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-dependent augmentation of glucose-induced insulin secretion (GIIS) in pancreatic β-cells. Genetically engineered Ffar1-knockout/congenic mice univocally displayed impaired fatty acid-mediated insulin secretion, but in vivo experiments delivered controversial results regarding the function of FFAR1 in glucose homeostasis and liver steatosis. This study presents a new coisogenic mouse model carrying a point mutation in Ffar1 with functional consequence. These mice reflect the situations in humans in which point mutations can lead to protein malfunction and disease development. Methods The Munich N-ethyl-N-nitrosourea (ENU) mutagenesis-derived F1 archive containing over 16,800 sperms and corresponding DNA samples was screened for mutations in the coding region of Ffar1. Two missense mutations (R258W and T146S) in the extracellular domain of the protein were chosen and homozygote mice were generated. The functional consequence of these mutations was examined in vitro in isolated islets and in vivo in chow diet and high fat diet fed mice. Results Palmitate, 50 μM, and the FFAR1 agonist TUG-469, 3 μM, stimulated insulin secretion in islets of Ffar1T146S/T146S mutant mice and of wild-type littermates, while in islets of Ffar1R258W/R258W mutant mice, these stimulatory effects were abolished. Insulin content and mRNA levels of Ffar1, Glp1r, Ins2, Slc2a2, Ppara, and Ppard were not significantly different between wild-type and Ffar1R258W/R258W mouse islets. Palmitate exposure, 600 μM, significantly increased Ppara mRNA levels in wild-type but not in Ffar1R258W/R258W mouse islets. On the contrary, Slc2a2 mRNA levels were significantly reduced in both wild-type and Ffar1R258W/R258W mouse islets after palmitate treatment. HFD feeding induced glucose intolerance in wild-type mice. Ffar1R258W/R258W mutant mice remained glucose tolerant although their body weight gain, liver steatosis, insulin resistance, and plasma insulin levels were not different from those of wild-type littermates. Worth mentioning, fasting plasma insulin levels were lower in Ffar1R258W/R258W mice. Conclusion A point mutation in Ffar1 abrogates the stimulatory effect of palmitate on GIIS, an effect that does not necessarily translate to HFD-induced glucose intolerance. Generation of mice carrying point mutations in Ffar1 using ENU. FFAR1 point mutation R258W abrogates fatty acid-induced insulin secretion. Dysfunctional FFAR1 inhibits the development of diet-induced glucose intolerance.
Collapse
Affiliation(s)
- Sibylle Sabrautzki
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany; Research Unit Comparative Medicine, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Kaiser
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Gerhard K H Przemeck
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Estela Lorza-Gil
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Madhura Panse
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Tina Sartorius
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Miriam Hoene
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Susan Marschall
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany; University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 München, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany; University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Oh YS, Seo E, Park K, Jun HS. Compound 19e, a Novel Glucokinase Activator, Protects against Cytokine-Induced Beta-Cell Apoptosis in INS-1 Cells. Front Pharmacol 2017; 8:169. [PMID: 28405188 PMCID: PMC5370240 DOI: 10.3389/fphar.2017.00169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/14/2017] [Indexed: 01/28/2023] Open
Abstract
Previously, compound 19e, a novel heteroaryl-containing benzamide derivative, was identified as a potent glucokinase activator (GKA) and showed a glucose-lowering effect in diabetic mice. In this study, the anti-apoptotic actions of 19e were evaluated in INS-1 pancreatic beta-cells co-treated with TNF-α and IL-1β to induce cell death. Compound 19e protected INS-1 cells from cytokine-induced cell death, and the effect was similar to treatment with another GKA or exendin-4. Compound 19e reduced annexin-V stained cells and the expression of cleaved caspase-3 and poly (ADP-ribose) polymerase protein, as well as upregulated the expression of B-cell lymphoma-2 protein. Compound 19e inhibited apoptotic signaling via induction of the ATP content, and the effect was correlated with the downregulation of nuclear factor-κB p65 and inducible nitric oxide synthase. Further, 19e increased NAD-dependent protein deacetylase sirtuin-1 (SIRT1) deacetylase activity, and the anti-apoptotic effect of 19e was attenuated by SIRT1 inhibitor or SIRT1 siRNA treatment. Our results demonstrate that the novel GKA, 19e, prevents cytokine-induced beta-cell apoptosis via SIRT1 activation and has potential as a therapeutic drug for the preservation of pancreatic beta-cells.
Collapse
Affiliation(s)
- Yoon Sin Oh
- College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon UniversityIncheon, South Korea; Gachon Medical Research Institute, Gil HospitalIncheon, South Korea; Department of Food and Nutrition, Eulji UniversitySeongnam, South Korea
| | - Eunhui Seo
- College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University Incheon, South Korea
| | - Kaapjoo Park
- Yuhan Research Institute Gyeonggi-do, South Korea
| | - Hee-Sook Jun
- College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon UniversityIncheon, South Korea; Gachon Medical Research Institute, Gil HospitalIncheon, South Korea; College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon UniversityIncheon, South Korea
| |
Collapse
|
10
|
Li Z, Xu X, Huang W, Qian H. Free Fatty Acid Receptor 1 (FFAR1) as an Emerging Therapeutic Target for Type 2 Diabetes Mellitus: Recent Progress and Prevailing Challenges. Med Res Rev 2017; 38:381-425. [DOI: 10.1002/med.21441] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zheng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Xue Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| |
Collapse
|
11
|
Abstract
Of the 415 million people suffering from diabetes worldwide, 90% have type 2 diabetes. Type 2 diabetes is characterized by hyperglycemia and occurs in obese individuals as a result of insulin resistance and inadequate insulin levels. Accordingly, diabetes drugs are tailored to enhance glucose disposal or target the pancreatic islet β cell to increase insulin secretion. The majority of the present-day insulin secretagogues, however, increase the risk of iatrogenic hypoglycemia, and hence alternatives are actively sought. The long-chain fatty acid, G protein-coupled receptor FFA1/Gpr40, is expressed in β cells, and its activation potentiates insulin secretion in a glucose-dependent manner. Preclinical data indicate that FFA1 agonism is an effective treatment to restore glucose homeostasis in rodent models of diabetes. This initial success prompted clinical trials in type 2 diabetes patients, the results of which were promising; however, the field suffered a significant setback when the lead compound TAK-875/fasiglifam was withdrawn from clinical development due to liver safety concerns. Nevertheless, recent developments have brought to light a surprising complexity of FFA1 agonist action, signaling diversity, and biological outcomes, raising hopes that with a greater understanding of the mechanisms at play the second round will be more successful.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM, University of Montreal, 900 rue St Denis, Montreal, QC, Canada, H2X 0A9
| | - Vincent Poitout
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada.
- CRCHUM, University of Montreal, 900 rue St Denis, Montreal, QC, Canada, H2X 0A9.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
12
|
GPR40 agonists for the treatment of type 2 diabetes mellitus: The biological characteristics and the chemical space. Bioorg Med Chem Lett 2016; 26:5603-5612. [DOI: 10.1016/j.bmcl.2016.10.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022]
|
13
|
Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes 2016; 7:354-95. [PMID: 27660695 PMCID: PMC5027002 DOI: 10.4239/wjd.v7.i17.354] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 02/05/2023] Open
Abstract
To achieve good metabolic control in diabetes and keep long term, a combination of changes in lifestyle and pharmacological treatment is necessary. Achieving near-normal glycated hemoglobin significantly, decreases risk of macrovascular and microvascular complications. At present there are different treatments, both oral and injectable, available for the treatment of type 2 diabetes mellitus (T2DM). Treatment algorithms designed to reduce the development or progression of the complications of diabetes emphasizes the need for good glycaemic control. The aim of this review is to perform an update on the benefits and limitations of different drugs, both current and future, for the treatment of T2DM. Initial intervention should focus on lifestyle changes. Moreover, changes in lifestyle have proven to be beneficial, but for many patients is a complication keep long term. Physicians should be familiar with the different types of existing drugs for the treatment of diabetes and select the most effective, safe and better tolerated by patients. Metformin remains the first choice of treatment for most patients. Other alternative or second-line treatment options should be individualized depending on the characteristics of each patient. This article reviews the treatments available for patients with T2DM, with an emphasis on agents introduced within the last decade.
Collapse
|
14
|
Li Z, Qiu Q, Geng X, Yang J, Huang W, Qian H. Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs in preclinical to phase II clinical development. Expert Opin Investig Drugs 2016; 25:871-90. [PMID: 27171154 DOI: 10.1080/13543784.2016.1189530] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The alarming prevalence of type 2 diabetes mellitus (T2DM) stimulated the exploitation of new antidiabetic drugs with extended durability and enhanced safety. In this regard, the free fatty acid receptor 1 (FFA1) and FFA4 have emerged as attractive targets in the last decade. FFA1 has prominent advantages in promoting insulin and incretin secretion while FFA4 shows great potential in incretin secretion, insulin sensitization and anti-inflammatory effects. AREA COVERED Herein, the authors focus specifically on FFA1 and FFA4 agonists in clinical trials and preclinical development. LY2922470, P11187 and SHR0534 are currently active in clinical trials while the CNX-011-67, SAR1, DS-1558 and BMS-986118 are in preclinical phase. The information for this review is retrieved from Integrity, Scifinder, Espacenet and clinicaltrials.gov databases. EXPERT OPINION Current proof-of-concept in clinical trials suggests that FFA1 agonists have a significant improvement for T2DM without the risk of hypoglycemia. However, there are still several challenging problems including the mechanism of the receptor and the efficacy and safety of the ligands.
Collapse
Affiliation(s)
- Zheng Li
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Qianqian Qiu
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Xinqian Geng
- b Department of Endocrinology and Metabolism , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes , Shanghai , PR China
| | - Jianyong Yang
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Wenlong Huang
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China.,c Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease , China Pharmaceutical University , Nanjing , PR China
| | - Hai Qian
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China.,c Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
15
|
|
16
|
Philippe C, Wauquier F, Lyan B, Coxam V, Wittrant Y. GPR40, a free fatty acid receptor, differentially impacts osteoblast behavior depending on differentiation stage and environment. Mol Cell Biochem 2015; 412:197-208. [DOI: 10.1007/s11010-015-2626-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 11/25/2022]
|
17
|
Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models. Biochem Biophys Res Commun 2015; 466:740-7. [PMID: 26417688 DOI: 10.1016/j.bbrc.2015.09.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
G protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic β-cells and activated by long-chain fatty acids. GPR40 has drawn considerable interest as a potential therapeutic target for type 2 diabetes mellitus (T2DM) due to its important role in enhancing glucose-stimulated insulin secretion (GSIS). Encouragingly, GPR40 is also proven to be highly expressed in glucagon-like peptide-1 (GLP-1)-producing enteroendocrine cells afterwards, which opens a potential role of GPR40 in enhancing GLP-1 secretion to exert additional anti-diabetic efficacy. In the present study, we discovered a novel GPR40 agonist, yhhu4488, which is structurally different from other reported GPR40 agonists. Yhhu4488 showed potent agonist activity with EC50 of 49.96 nM, 70.83 nM and 58.68 nM in HEK293 cells stably expressing human, rat and mouse GPR40, respectively. Yhhu4488 stimulated GLP-1 secretion from fetal rat intestinal cells (FRIC) via triggering endogenous calcium store mobilization and extracellular calcium influx. The effect of yhhu4488 on GLP-1 secretion was further confirmed in type 2 diabetic db/db mice. Yhhu4488 exhibited satisfactory potency in in vivo studies. Single administration of yhhu4488 improved glucose tolerance in SD rats. Chronic administration of yhhu4488 effectively decreased fasting blood glucose level, improved β-cell function and lipid homeostasis in type 2 diabetic ob/ob mice. Taken together, yhhu4488 is a novel GPR40 agonist that enhances GLP-1 secretion, improves metabolic control and β-cell function, suggesting its promising potential for the treatment of type 2 diabetes.
Collapse
|
18
|
Mancini AD, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after 'TAKing' a hit. Diabetes Obes Metab 2015; 17:622-9. [PMID: 25604916 DOI: 10.1111/dom.12442] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 12/17/2022]
Abstract
The free fatty acid receptor GPR40 has been proposed as a potential target for type 2 diabetes (T2D) pharmacotherapy. This idea has been validated in both preclinical and clinical studies, in which activation of GPR40 was shown to improve glycaemic control by stimulating glucose-dependent insulin secretion; however, the recent termination of phase III clinical trials using the GPR40 agonist TAK-875 (fasiglifam) has raised important questions regarding the long-term safety and viability of targeting GPR40 and, more specifically, about our understanding of this receptor's basic biology. In the present review, we provide a summary of established and novel concepts related to GPR40's pharmacobiology and discuss the current status and future outlook for GPR40-based drug development for the treatment of T2D.
Collapse
Affiliation(s)
- A D Mancini
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - V Poitout
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Verma MK, Biswas S, Chandravanshi B, Neelima K, Oommen AM, Jagannath MR, Somesh BP. A novel GPR40 agonist, CNX-011-67, suppresses glucagon secretion in pancreatic islets under chronic glucolipotoxic conditions in vitro. BMC Res Notes 2014; 7:595. [PMID: 25186493 PMCID: PMC4161845 DOI: 10.1186/1756-0500-7-595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated glucose concentrations lead to increased insulin secretion and suppression of glucagon secretion. In fact, insulin is a physiological inhibitor of glucagon secretion. Type 2 diabetes mellitus (T2DM) patients have defects in insulin secretion. In addition to this, lack of suppression of glucagon secretion under elevated glucose concentrations is also observed in T2DM patients. We have earlier shown that GPR40 activation by CNX-011-67 stimulates glucose stimulated insulin secretion (GSIS). Here we extended our studies to examine the impact of GPR40 activation by CNX-011-67 on glucagon secretion from intact islets under both normal and glucolipotoxic conditions. FINDINGS Glucagon secretion from intact rat islets was suppressed under elevated glucose concentration. Activation of GPR40 by CNX-011-67 further suppressed glucagon secretion. Culturing islets under chronic glucolipotoxic (GL) conditions, we have observed increased high glucose mediated glucagon secretion and content which were reduced with GPR40 activation by CNX-011-67. Interestingly, expression of pre-proglucagon gene (GCG) remained unchanged under glucolipotoxicity in the presence or absence of GPR40 activation. CONCLUSION Activation of GPR40 by CNX-011-67 can reduce glucagon secretion from pancreatic islets.
Collapse
Affiliation(s)
| | | | | | | | | | - Madanahalli R Jagannath
- Connexios Life Sciences Private Ltd,, No, 49, First Main road, 3rd phase, JP Nagar, Bangalore 560 078, India.
| | | |
Collapse
|
20
|
Ma SK, Joo SY, Choi HI, Bae EH, Nam KI, Lee J, Kim SW. Activation of G-protein-coupled receptor 40 attenuates the cisplatin-induced apoptosis of human renal proximal tubule epithelial cells. Int J Mol Med 2014; 34:1117-23. [PMID: 25092426 DOI: 10.3892/ijmm.2014.1874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor 40 (GPR40) is known to play a role in the regulation of fatty acids, insulin secretion and inflammation. However, the pathophysiological roles of GPR40 in kidney disease have not yet been identified. In the present study, we investigated the expression of GPR40 during cisplatin-induced kidney injury using male Sprague-Dawley rats that were treated with 8 mg/kg cisplatin. Control rats were treated with saline. Following treatment with cisplatin, the protein expression of GPR40 in the kidneys was decreased in association with an increase in serum creatinine levels and the Bax/Bcl-2 expression ratio. To further investigate the function of GPR40, the human renal proximal tubule epithelial cell line (HK-2) was cultured with cisplatin in the absence or presence of GW9508, a selective GPR40 agonist. Pre-treatment of the HK-2 cells with GW9508 attenuated the decrease in cell viability induced by treatment with cisplatin. Treatment with cisplatin increased the number of cells with condensed nuclei, which was ameliorated by GW9508 pre-treatment. TUNEL assay also revealed that pre-treatment with GW9508 ameliorated cisplatin-induced apoptosis. Treatment with cisplatin increased the Bax/Bcl-2 expression ratio and cleaved caspase-3 expression, and promoted the activation of nuclear factor-κB (NF-κB). These changes were attenuated by pre-treatment with GW9508. The cisplatin-induced generation of reactive oxygen species (ROS) and the activation of the Src/epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) pathway were also counteracted by pre-treatment with GW9508. Thus, the activation of GPR40 attenuates cisplatin-induced apoptosis by inhibiting the generation of ROS, the activation of the Src/EGFR/ERK signaling pathway and the nuclear activation of NF-κB and pro-apoptotic factors.
Collapse
Affiliation(s)
- Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Soo Yeon Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Kwang Il Nam
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Jongun Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| |
Collapse
|
21
|
Verma MK, Sadasivuni MK, Yateesh AN, Neelima K, Mrudula S, Reddy M, Smitha R, Biswas S, Chandravanshi B, Pallavi PM, Oommen AM, Jagannath MR, Somesh BB. Activation of GPR40 attenuates chronic inflammation induced impact on pancreatic β-cells health and function. BMC Cell Biol 2014; 15:24. [PMID: 24974801 PMCID: PMC4083038 DOI: 10.1186/1471-2121-15-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023] Open
Abstract
Background Chronic inflammation-mediated β-cell apoptosis is known to decrease β-cell mass in diabetes leading to reduced insulin secretion. Exposure to pro-inflammatory cytokines can stimulate apoptosis in pancreatic β-cells. The G protein coupled receptor 40 (GPR40) is implicated for glucose induced insulin secretion. We hypothesized that GPR40 activation can protect β-cells from inflammation-induced apoptosis and restore glucose stimulated insulin secretion. Results By exposing NIT1 insulinoma cells and rat islets to a cocktail of pro-inflammatory cytokines (TNFα and IL1β), we mimicked inflammatory signaling as seen by JNK and NFκB activation and increased mRNA levels of TNFα, IL1β and NOS2a. These changes were reversed by pharmacological activation of GPR40 by a specific, small molecule, CNX-011-67. Further, GPR40 activation reduced inflammation-mediated oxidative and endoplasmic reticulum (ER) stresses. Importantly, GPR40 activation decreased inflammation-induced apoptosis as measured by key markers. These impacts of GPR40 were mediated through activation of PLC, CaMKII, calcineurin and cAMP. Cell survival was also enhanced by GPR40 activation as seen from the increased phosphorylation of Akt/PKB and enhanced expression of BCL2 and PDX1 genes. Interestingly, GPR40 activation restored both, inflammation-mediated inhibition on insulin secretion and intracellular insulin content. Conclusions In this study, we provide evidences that CNX-011-67, a GPR40 agonist, reduces inflammatory signaling and apoptosis in pancreatic β-cells while promoting insulin secretion and synthesis. Activation of GPR40 leads to attenuation of β-cell dysfunction caused by chronic inflammation and thus could be of immense clinical value to improve insulin secretion and β-cell survival.
Collapse
|
22
|
Abstract
Free fatty acids (FFAs) exert both positive and negative effects on beta cell survival and insulin secretory function, depending on concentration, duration, and glucose abundance. Lipid signals are mediated not only through metabolic pathways, but also through cell surface and nuclear receptors. Toxicity is modulated by positive signals arising from circulating factors such as hormones, growth factors and incretins, as well as negative signals such as inflammatory mediators and cytokines. Intracellular mechanisms of lipotoxicity include metabolic interference and cellular stress responses such as oxidative stress, endoplasmic reticulum (ER) stress, and possibly autophagy. New findings strengthen an old hypothesis that lipids may also impair compensatory beta cell proliferation. Clinical observations continue to support a role for lipid biology in the risk and progression of both type 1 (T1D) and type 2 diabetes (T2D). This review summarizes recent work in this important, rapidly evolving field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | | |
Collapse
|
23
|
Sunil V, Verma MK, Oommen AM, Sadasivuni M, Singh J, Vijayraghav DN, Chandravanshi B, Shetty J, Biswas S, Dandu A, Moolemath Y, Venkataranganna MV, Somesh BP, Jagannath MR. CNX-011-67, a novel GPR40 agonist, enhances glucose responsiveness, insulin secretion and islet insulin content in n-STZ rats and in islets from type 2 diabetic patients. BMC Pharmacol Toxicol 2014; 15:19. [PMID: 24666736 PMCID: PMC3994293 DOI: 10.1186/2050-6511-15-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND GPR40 is a G-protein coupled receptor regulating free fatty acid induced and also glucose induced insulin secretion. We generated neonatally-streptozotocin-treated female rats (n-STZ) and treated them with CNX-011-67, a GPR40 agonist to examine the role of GPR40 in modulation of glucose metabolism, insulin secretion and content. METHODS Female n-STZ animals were orally administered with CNX-011-67 (15 mg/kg body weight, twice daily) or with vehicle for 8 weeks (n = 8 per group). Glucose tolerance in treated animals and insulin secretion, islet insulin content and gene expression in isolated islets were determined. Islets from type 2 diabetic mellitus (T2DM) patients were treated with different concentrations of glucose in presence or absence of CNX-011-67 and insulin secretion was measured. RESULTS Treatment of n-STZ rats with GPR40 agonist CNX-011-67 enhanced insulin secretion in response to oral glucose load on day 0 and this response persisted during the treatment period. The treatment also produced a 'memory effect' during which insulin secretion in response to oral glucose load remained enhanced, for a week, even in absence of the agonist. Activation of GPR40 enhanced responsiveness of islets to glucose and increased glucose induced insulin secretion and islet insulin content. An increase in islet mRNA expression of GCK, PDX1, insulin and PC was also observed. Acute treatment of islets from n-STZ rats with GPR40 agonist enhanced cellular ATP content. Activation of GPR40 enhanced mitochondrial calcium level in NIT-1 insulinoma cells. CNX-011-67 increased insulin secretion in islets from T2DM patients which were non-responsive to increased glucose concentration CONCLUSIONS Our data provide evidence that activation of GPR40 with CNX-011-67 stimulates glucose metabolism, enhances glucose responsiveness, increases insulin secretion and content and that pharmacological activation of GPR40 will prove beneficial for treatment of T2DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Madanahalli R Jagannath
- Connexios Life Sciences Pvt Ltd, #49, "SHILPA VIDYA" 1st Main, 3rd Phase, JP Nagar, Bangalore 560078, India.
| |
Collapse
|
24
|
Huang H, Dai MH, Tao YX. Physiology and Therapeutics of the Free Fatty Acid Receptor GPR40. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:67-94. [DOI: 10.1016/b978-0-12-800101-1.00003-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|