1
|
Hsiao CY, Lu CY, Su HJ, Huang KW. Plasma Cell-Free Adenomatous Polyposis Coli Gene Promoter Methylation as a Prognostic Biomarker for Hepatocellular Carcinoma. Oncology 2024; 102:935-943. [PMID: 38527449 PMCID: PMC11548096 DOI: 10.1159/000538455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Lack of biomarkers for follow-up after treatment is a clinical challenge. DNA methylation has been proposed to be a potential biomarker in HCC. However, there is still a lack of evidence of its clinical use. This study aimed to evaluate the value of using plasma Adenomatous Polyposis Coli promoter methylation level (APC-MET) as a potential biomarker in HCC treatment. METHOD A total of 96 patients with HCC at BCLC stage B who underwent local tumor ablation treatment were prospectively included in this study. APC-MET was examined in the plasma of each patient before and 1 month after treatment. The prediction value of APC-MET for survival outcome and disease status after treatment was analyzed and adjusted with alpha-fetoprotein and protein induced by vitamin K absence-II using Cox regression analysis. RESULTS Univariate Cox regression analysis showed preoperative APC-MET >0 (HR, 2.9, 95% CI: 1.05-8.05, p = 0.041) and postoperative APC-MET >0 (HR, 3.47, 95% CI: 1.16-10.4, p = 0.026) were both predictors of death, and preoperative APC-MET >0 was a predictor of disease progression after treatment (HR, 2.04, 95% CI: 1.21-3.44, p = 0.007). In multivariate models, preoperative APC-MET >0 was a significant predictor of disease progression after adjusting with the other two traditional biomarkers (HR, 1.82, 95% CI: 1.05-3.17, p = 0.034). CONCLUSIONS Hypermethylation of APC promoter appears to be a potential biomarker that could predict patient survival and disease progression outcomes in patients with intermediate-stage HCC after local ablation treatment.
Collapse
Affiliation(s)
- Chih-Yang Hsiao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan,
- Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan,
| | | | | | - Kai-Wen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
van der Meeren PE, de Wilde RF, Sprengers D, IJzermans JNM. Benefit and harm of waiting time in liver transplantation for HCC. Hepatology 2023:01515467-990000000-00646. [PMID: 37972979 DOI: 10.1097/hep.0000000000000668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Liver transplantation is the most successful treatment for limited-stage HCC. The waiting time for liver transplantation (LT) can be a critical factor affecting the oncological prognosis and outcome of patients with HCC. Efficient strategies to optimize waiting time are essential to maximize the benefits of LT and to reduce the harm of delay in transplantation. The ever-increasing demand for donor livers emphasizes the need to improve the organization of the waiting list for transplantation and to optimize organ availability for patients with and without HCC. Current progress in innovations to expand the donor pool includes the implementation of living donor LT and the use of grafts from extended donors. By expanding selection criteria, an increased number of patients are eligible for transplantation, which necessitates criteria to prevent futile transplantations. Thus, the selection criteria for LT have evolved to include not only tumor characteristics but biomarkers as well. Enhancing our understanding of HCC tumor biology through the analysis of subtypes and molecular genetics holds significant promise in advancing the personalized approach for patients. In this review, the effect of waiting time duration on outcome in patients with HCC enlisted for LT is discussed.
Collapse
Affiliation(s)
- Pam Elisabeth van der Meeren
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Roeland Frederik de Wilde
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology & Hepatology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jan Nicolaas Maria IJzermans
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Chang Y, Jeong SW, Jang JY, Eun H, Lee Y, Song DS, Yu SJ, Lee SH, Kim W, Lee HW, Kim SG, Ryu S, Park S. The diagnostic value of circulating tumor DNA in hepatitis B virus induced hepatocellular carcinoma: a systematic review and meta-analysis. JOURNAL OF LIVER CANCER 2022; 22:167-177. [PMID: 37383408 PMCID: PMC10035733 DOI: 10.17998/jlc.2022.09.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 06/30/2023]
Abstract
Background/Aim New biomarkers are urgently needed to aid in the diagnosis of early stage hepatocellular carcinoma (HCC). We performed a meta-analysis on the diagnostic utility of circulating tumor DNA (ctDNA) levels in patients with hepatitis B virus-induced HCC. Methods We retrieved relevant articles from PubMed, Embase, and the Cochrane Library up to February 8, 2022. Two subgroups were defined; one subset of studies analyzed the ctDNA methylation status, and the other subset combined tumor markers and ctDNA assays. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the summary receiver operating characteristic curve (AUC) were analyzed. Results Nine articles including 2,161 participants were included. The overall SEN and SPE were 0.705 (95% confidence interval [CI], 0.629-0.771) and 0.833 (95% CI, 0.769-0.882), respectively. The DOR, PLR, and NLR were 11.759 (95% CI, 7.982-17.322), 4.285 (95% CI, 3.098-5.925), and 0.336 (0.301-0.366), respectively. The ctDNA assay subset exhibited an AUC of 0.835. The AUC of the combined tumor marker and ctDNA assay was 0.848, with an SEN of 0.761 (95% CI, 0.659-0.839) and an SPE of 0.828 (95% CI, 0.692-0.911). Conclusions Circulating tumor DNA has promising diagnostic potential for HCC. It can serve as an auxiliary tool for HCC screening and detection, especially when combined with tumor markers.
Collapse
Affiliation(s)
- Young Chang
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Soung Won Jeong
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jae Young Jang
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hyuksoo Eun
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young‑Sun Lee
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sae Hwan Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Hospital, Seoul, Korea
- Department of Applied Statistics, Chung-Ang University, Seoul, Korea
| |
Collapse
|
4
|
Grinspan LT, Villanueva A. Biomarker Development Using Liquid Biopsy in Hepatocellular Carcinoma. Semin Liver Dis 2022; 42:188-201. [PMID: 35738257 DOI: 10.1055/s-0042-1748924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver cancer incidence rate continues to increase and currently ranks third in the total number of annual deaths, behind only lung and colorectal cancer. Most patients with hepatocellular carcinoma (HCC) are diagnosed at advanced stages, and they live for less than 2 years after diagnosis on average. This contrasts with those diagnosed at an early stage, who can be cured with surgery. However, even after curative resection, there remains a risk of up to 70% of postoperative HCC recurrence. There have been major changes in the management of HCC in the past 5 years, particularly for patients at advanced stages. Despite this multitude of new therapies, there is a lack of clear biomarkers to guide providers on the best approach to sequence therapies, which would maximize efficacy while minimizing toxicity. There are several areas in clinical management of HCC that are particularly challenging, and would benefit from development and implementation of new biomarkers to improve patient overall survival. Here, we review the major advances in liquid biopsy biomarkers for early detection of HCC, minimum residual disease, and predicting response to treatment.
Collapse
Affiliation(s)
- Lauren Tal Grinspan
- Division of Liver Diseases, Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Chalasani NP, Ramasubramanian TS, Bhattacharya A, Olson MC, Edwards V DK, Roberts LR, Kisiel JB, Reddy KR, Lidgard GP, Johnson SC, Bruinsma JJ. A Novel Blood-Based Panel of Methylated DNA and Protein Markers for Detection of Early-Stage Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2021; 19:2597-2605.e4. [PMID: 32889146 DOI: 10.1016/j.cgh.2020.08.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) can be treated effectively if detected at an early stage. Recommended surveillance strategies for at-risk patients include ultrasound with or without α-fetoprotein (AFP), but their sensitivity is suboptimal. We sought to develop a novel, blood-based biomarker panel with improved sensitivity for early-stage HCC detection. METHODS In a multicenter, case-control study, we collected blood specimens from patients with HCC and age-matched controls with underlying liver disease but without HCC. Ten previously reported methylated DNA markers (MDMs) associated with HCC, methylated B3GALT6 (reference DNA marker), and 3 candidate proteins, including AFP, were assayed and analyzed by a logistic regression algorithm to predict HCC cases. The accuracy of the multi-target HCC panel was compared with that of other blood-based biomarkers for HCC detection. RESULTS The study included 135 HCC cases and 302 controls. We identified a multi-target HCC panel of 3 MDMs (HOXA1, EMX1, and TSPYL5), B3GALT6 and 2 protein markers (AFP and AFP-L3) with a higher sensitivity (71%, 95% CI: 60-81%) at 90% specificity for early-stage HCC than the GALAD score (41%, 95% CI: 30-53%) or AFP ≥7.32 ng/mL (45%, 95% CI: 33-57%). The AUC for the multi-target HCC panel for detecting any stage HCC was 0.92 compared with 0.87 for the GALAD score and 0.81 for AFP alone. The panel performed equally well in important subgroups based on liver disease etiology, presence of cirrhosis, or sex. CONCLUSIONS We developed a novel, blood-based biomarker panel that demonstrates high sensitivity for early-stage HCC. These data support the potential for liquid biopsy detection of early-stage HCC to clinically benefit at-risk patients. This study was registered on ClinicalTrials.gov (NCT03628651).
Collapse
Affiliation(s)
- Naga P Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana.
| | | | | | | | | | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
6
|
Cui D, Li W, Jiang D, Wu J, Xie J, Wu Y. Advances in Multi-Omics Applications in HBV-Associated Hepatocellular Carcinoma. Front Med (Lausanne) 2021; 8:754709. [PMID: 34660653 PMCID: PMC8514776 DOI: 10.3389/fmed.2021.754709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) specifically infects liver cells, leading to progressive liver cirrhosis and significantly increasing the risk of hepatocellular carcinoma (HCC). The maturity of sequencing technology, improvement in bioinformatics data analysis and progress of omics technologies had improved research efficiency. The occurrence and progression of HCC are affected by multisystem and multilevel pathological changes. With the application of single-omics technologies, including genomics, transcriptomics, metabolomics and proteomics in tissue and body fluid samples, and even the novel development of multi-omics analysis on a single-cell platform, HBV-associated HCC changes can be better analyzed. The review summarizes the application of single omics and combined analysis of multi-omics data in HBV-associated HCC and proposes the importance of multi-omics analysis in the type of HCC, which provide the possibility for the precise diagnosis and therapy of HBV-associated HCC.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingping Wu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
7
|
Abo El-Khair SM, Elalfy H, Diasty M, Ebrahim EE, Elsamanoudy AZ. Methylation degree of metalloproteinase inhibitor RECK gene: Links to RECK protein level and hepatocellular carcinoma in chronic HCV infection patients. J Biochem Mol Toxicol 2021; 35:e22886. [PMID: 34392581 DOI: 10.1002/jbt.22886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
The RECK gene, a tumor suppressor gene, inhibits angiogenesis, invasion, and tumor metastasis. Epigenetic regulation of the RECK gene constitutes a potent approach to the molecular basis of liver malignancy. This study aims to evaluate the promoter methylation status of the RECK gene and its serum level in patients with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) and the potential association of RECK gene methylation with clinical criteria of HCC. One hundred and fifty-five subjects were included (healthy control [55], chronic HCV patients [55], HCV-related HCC patients [45]). The methylation status of the RECK gene promoter and serum RECK level were investigated by methylation-specific PCR and enzyme-linked immunosorbent assay techniques, respectively. RECK gene promoter hypermethylation was recorded in 46.7% of HCC patients, and 10.9% of HCV patients, but not in control subjects (0%). It was related to RECK protein level, varices, edema, ascites, lymph node metastasis, vascular invasion, and the largest diameter of focal lesions. Meanwhile, it was not associated with focal lesion number nor distant metastasis of HCC. In conclusion, RECK gene promoter hypermethylation is linked to HCV genotype-4-related HCC. Moreover, different degrees of RECK gene promoter methylation are associated with serum RECK level, lymph node metastasis, and vascular invasion, which could prove its pathogenic role in hepatocarcinogenesis in chronic HCV-infected patients.
Collapse
MESH Headings
- Adult
- Aged
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Case-Control Studies
- DNA Methylation/genetics
- Epigenesis, Genetic
- Female
- GPI-Linked Proteins/blood
- GPI-Linked Proteins/genetics
- Genes, Tumor Suppressor
- Genotype
- Hepacivirus/genetics
- Hepacivirus/immunology
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/virology
- Humans
- Liver Neoplasms/blood
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Lymphatic Metastasis/genetics
- Male
- Metalloproteases/antagonists & inhibitors
- Middle Aged
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Salwa M Abo El-Khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem Elalfy
- Tropical Medicine Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Muhammad Diasty
- Tropical Medicine Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman E Ebrahim
- Tropical Medicine Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Z Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Adeniji N, Dhanasekaran R. Current and Emerging Tools for Hepatocellular Carcinoma Surveillance. Hepatol Commun 2021; 5:1972-1986. [PMID: 34533885 PMCID: PMC8631096 DOI: 10.1002/hep4.1823] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer‐related mortality worldwide. Early detection of HCC enables patients to avail curative therapies that can improve patient survival. Current international guidelines advocate for the enrollment of patients at high risk for HCC, like those with cirrhosis, in surveillance programs that perform ultrasound every 6 months. In recent years, many studies have further characterized the utility of established screening strategies and have introduced new promising tools for HCC surveillance. In this review, we provide an overview of the most promising new imaging modalities and biomarkers for the detection of HCC. We discuss the role of imaging tools like ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) in the early detection of HCC, and describe recent innovations which can potentially enhance their applicability, including contrast enhanced ultrasound, low‐dose CT scans, and abbreviated MRI. Next, we outline the data supporting the use of three circulating biomarkers (i.e., alpha‐fetoprotein [AFP], AFP lens culinaris agglutinin‐reactive fraction, and des‐gamma‐carboxy prothrombin) in HCC surveillance, and expand on multiple emerging liquid biopsy biomarkers, including methylated cell‐free DNA (cfDNA), cfDNA mutations, extracellular vesicles, and circulating tumor cells. These promising new imaging modalities and biomarkers have the potential to improve early detection, and thus improve survival, in patients with HCC.
Collapse
Affiliation(s)
- Nia Adeniji
- Stanford School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
9
|
Liu Q, Liu G, Martin DT, Xing YT, Weiss RM, Qi J, Kang J. Genome-wide association analysis reveals regulation of at-risk loci by DNA methylation in prostate cancer. Asian J Androl 2021; 23:472-478. [PMID: 33762478 PMCID: PMC8451484 DOI: 10.4103/aja.aja_20_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Epigenetic changes are potentially important for the ontogeny and progression of tumors but are not usually studied because of the complexity of analyzing transcript regulation resulting from epigenetic alterations. Prostate cancer (PCa) is characterized by variable clinical manifestations and frequently unpredictable outcomes. We performed an expression quantitative trait loci (eQTL) analysis to identify the genomic regions that regulate gene expression in PCa and identified a relationship between DNA methylation and clinical information. Using multi-level information published in The Cancer Genome Atlas, we performed eQTL-based analyses on DNA methylation and gene expression. To better interpret these data, we correlated loci and clinical indexes to identify the important loci for both PCa development and progression. Our data demonstrated that although only a small proportion of genes are regulated via DNA methylation in PCa, these genes are enriched in important cancer-related groups. In addition, single nucleotide polymorphism analysis identified the locations of CpG sites and genes within at-risk loci, including the 19q13.2–q13.43 and 16q22.2–q23.1 loci. Further, an epigenetic association study of clinical indexes detected risk loci and pyrosequencing for site validation. Although DNA methylation-regulated genes across PCa samples are a small proportion, the associated genes play important roles in PCa carcinogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Urology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gang Liu
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Darryl T Martin
- Department of Urology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yu-Tong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Robert M Weiss
- Department of Urology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jun Qi
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian Kang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
10
|
Chen Y, Yang W, Chen Q, Liu Q, Liu J, Zhang Y, Li B, Li D, Nan J, Li X, Wu H, Xiang X, Peng Y, Wang J, Su S, Wang Z. Prediction of hepatocellular carcinoma risk in patients with chronic liver disease from dynamic modular networks. J Transl Med 2021; 19:122. [PMID: 33757544 PMCID: PMC7989040 DOI: 10.1186/s12967-021-02791-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Background Discovering potential predictive risks in the super precarcinomatous phase of hepatocellular carcinoma (HCC) without any clinical manifestations is impossible under normal paradigm but critical to control this complex disease. Methods In this study, we utilized a proposed sequential allosteric modules (AMs)-based approach and quantitatively calculated the topological structural variations of these AMs. Results We found the total of 13 oncogenic allosteric modules (OAMs) among chronic hepatitis B (CHB), cirrhosis and HCC network used SimiNEF. We obtained the 11 highly correlated gene pairs involving 15 genes (r > 0.8, P < 0.001) from the 12 OAMs (the out-of-bag (OOB) classification error rate < 0.5) partial consistent with those in independent clinical microarray data, then a three-gene set (cyp1a2-cyp2c19-il6) was optimized to distinguish HCC from non-tumor liver tissues using random forests with an average area under the curve (AUC) of 0.973. Furthermore, we found significant inhibitory effect on the tumor growth of Bel-7402, Hep 3B and Huh7 cell lines in zebrafish treated with the compounds affected those three genes. Conclusions These findings indicated that the sequential AMs-based approach could detect HCC risk in the patients with chronic liver disease and might be applied to any time-dependent risk of cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02791-9.
Collapse
Affiliation(s)
- Yinying Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian Ge, Xicheng District, Beijing, 100053, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China.,Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Qilong Chen
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong, Shanghai, 201203, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Yingying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Dongfeng Li
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Jingyi Nan
- Shandong Danhong Pharmaceutical Co. Ltd., Heze, China
| | - Xiaodong Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huikun Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xinghua Xiang
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, China
| | - Yehui Peng
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| | - Shibing Su
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong, Shanghai, 201203, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China.
| |
Collapse
|
11
|
Huang B, Zhang B, Liang B, Fang L, Ye X. Ultra-low level detection of hepatocellular carcinoma global methylation using a AuNP modified carbon fiber microelectrode. RSC Adv 2020; 10:16277-16283. [PMID: 35498837 PMCID: PMC9052887 DOI: 10.1039/d0ra00905a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancerous diseases, with a low 5 year survival rate. Global hypomethylation drives genomic instability, which is regarded as one biomarker for early diagnosis. Long interspersed nucleotide element-1 (LINE-1) makes up around 17% of the genome, and could be regarded as a surrogate marker for global DNA methylation. In this work, a gold nanoparticle (AuNP) modified carbon fiber microelectrode (CFME) with a diameter of 7 μm was applied for the first time to detect the methylation level of LINE-1, by distinguishing adsorption affinities between different DNA bases and AuNPs. Several parameters, including AuNP electrodeposition time, sample adsorption time, and DNA concentration have been analyzed and optimized. The detection limit of our assay was 0.1 nM with only 2 μL sample solution. And the CFME had an excellent sensitivity of 10% methylation change and had the capacity to distinguish only one methylated CpG site. The global DNA methylation level of real samples including cell lines and clinical tissues was tested. Higher signals of HCC cell lines and cancer tissues were observed respectively, compared with normal hepatic cell lines and normal tissues. This work provides a promising approach for HCC early diagnosis and prognosis. Using a AuNP modified carbon fiber microelectrode to detect hepatocellular carcinoma global methylation with an ultra-low concentration of DNA samples.![]()
Collapse
Affiliation(s)
- Bobo Huang
- Biosensor National Special Laboratory
- Key Laboratory of Biomedical Engineering of Ministry of Education
- College of Biomedical Engineering and Instrument Science
- Innovation Center for Minimally Invasive Technique and Device
- Zhejiang University
| | - Bin Zhang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province
- Department of General Surgery
- Sir Run-Run Shaw Hospital
- School of Medicine
- Zhejiang University
| | - Bo Liang
- Biosensor National Special Laboratory
- Key Laboratory of Biomedical Engineering of Ministry of Education
- College of Biomedical Engineering and Instrument Science
- Innovation Center for Minimally Invasive Technique and Device
- Zhejiang University
| | - Lu Fang
- College of Automation
- Hangzhou Dianzi University
- Hangzhou 310018
- PR China
| | - Xuesong Ye
- Biosensor National Special Laboratory
- Key Laboratory of Biomedical Engineering of Ministry of Education
- College of Biomedical Engineering and Instrument Science
- Innovation Center for Minimally Invasive Technique and Device
- Zhejiang University
| |
Collapse
|
12
|
Jee BA, Choi JH, Rhee H, Yoon S, Kwon SM, Nahm JH, Yoo JE, Jeon Y, Choi GH, Woo HG, Park YN. Dynamics of Genomic, Epigenomic, and Transcriptomic Aberrations during Stepwise Hepatocarcinogenesis. Cancer Res 2019; 79:5500-5512. [PMID: 31506333 DOI: 10.1158/0008-5472.can-19-0991] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) undergoes a stepwise progression from liver cirrhosis to low-grade dysplastic nodule (LGDN), high-grade dysplastic nodule (HGDN), early HCC (eHCC), and progressed HCC (pHCC). Here, we profiled multilayered genomic, epigenomic, and transcriptomic aberrations in the stepwise hepatocarcinogenesis. Initial DNA methylation was observed in eHCC (e.g., DKK3, SALL3, and SOX1) while more extensive methylation was observed in pHCC. In addition, eHCCs showed an initial loss of DNA copy numbers of tumor suppressor genes in the 4q and 13q regions, thereby conferring survival benefits to cancer cells. Transcriptome analysis revealed that HGDNs expressed endoplasmic reticulum (ER) stress-related genes, while eHCC started to express oncogenes. Furthermore, integrative analysis indicated that expression of the serine peptidase inhibitor, Kazal type 1 (SPINK1), played a pivotal role in eHCC development. Significant demethylation of SPINK1 was observed in eHCC compared to HGDN. The study also demonstrated that ER stress may induce SPINK1 demethylation and expression in liver cancer cells. In conclusion, these results reveal the dynamics of multiomic aberrations during malignant conversion of liver cancer, thus providing novel pathobiological insights into hepatocarcinogenesis. SIGNIFICANCE: Multiomics profiling and integrative analyses of stepwise hepatocarcinogenesis reveal novel mechanistic and clinical insights into hepatocarcinogenesis.
Collapse
Affiliation(s)
- Byul A Jee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sarah Yoon
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - So Mee Kwon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngsic Jeon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gi Hong Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea. .,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
CDH1 gene as a prognostic biomarker in HCV (genotype 4) induced hepatocellular carcinoma in the Egyptian patients. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhao NH, Qian Y, Wu CS, Wang JW, Fang Y, Fan XP, Gao S, Fan YC, Wang K. Diagnostic value of NKG2D promoter methylation in hepatitis B virus-associated hepatocellular carcinoma. Biomark Med 2019; 13:1093-1105. [PMID: 31411040 DOI: 10.2217/bmm-2019-0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Aim: Natural killer cell receptor group 2D (NKG2D) plays an important role in the immune regulation of tumors. We speculate that DNA methylation are involved in the regulation of NKG2D gene. Methods: We investigated the methylation status of the NKG2D promoter in peripheral blood mononuclear cells of hepatocellular carcinoma (HCC) patients, chronic hepatitis B patients and healthy controls by methylation-specific PCR and the mRNA expression level was examined by real-time quantitative PCR. Results: The methylation frequency of NKG2D promoter in HCC patients was higher than that of chronic hepatitis B patients and healthy controls. NKG2D promoter methylation has a good predictive value for HCC diagnosis. Conclusion: NKG2D promoter methylation can be used as a noninvasive marker for detecting HCC.
Collapse
Affiliation(s)
- Ning-Hui Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yu Qian
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Chen-Si Wu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yu Fang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Xiao-Peng Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
- Institute of Hepatology, Shandong University, Jinan 250012, PR China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
- Institute of Hepatology, Shandong University, Jinan 250012, PR China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
- Institute of Hepatology, Shandong University, Jinan 250012, PR China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, PR China
| |
Collapse
|
15
|
Huang B, Ji L, Liang B, Cao Q, Tu T, Ye X. A simple and low-cost screen printed electrode for hepatocellular carcinoma methylation detection. Analyst 2019; 144:3282-3288. [PMID: 30942220 DOI: 10.1039/c9an00191c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a great demand for robust diagnostic and prognostic approaches for Hepatocellular Carcinoma (HCC). DNA methylation, a common epigenetic modification, has been found in many promoter regions of tumor suppressor genes. Hypermethylation of these gene promoters will repress the gene transcription and lead to the occurrence of cancers. The abnormal methyation level of the p16 gene promoter could be a promising marker for the detection of HCC. The adsorption affinities between different DNA bases and AuNPs are not the same. After bisulfite treatment and asymmetric PCR, methylation and unmethylation sequences can be changed into guanine-enriched and adenine-enriched sequences, respectively. A home-made gold nanoparticle modified screen printed carbon electrode (AuNP-SPCE) was employed to distinguish the adsorption affinities between guanine-enriched and adenine-enriched sequences, which could be used to analyze the level of DNA methylation. Several key experimental factors were investigated and optimized. The results had shown that the optimal AuNP electrodeposition time was 100 s and 15 min of adsorption could distinguish guanine-enriched and adenine-enriched sequences with a concentration of 100 nM at 25 °C. The detection limit of our AuNP-SPCE was 1.1 ng, and the assay had a good sensitivity of 10% methylation change and was able to distinguish only one methylated CpG site. What's more, the RSD over three assays with a disposable AuNP-SPCE was ≤7.2%. The assay was applied to real samples including cell lines and clinical tissues. Compared with normal hepatic cell lines and normal tissues, lower signals of HCC cell lines and cancer tissues were observed, respectively. It had shown a good discrimination of the abnormal methylation level of the p16 gene promoter.
Collapse
Affiliation(s)
- Bobo Huang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
16
|
Shi Z, Luo Y, Zhu M, Zhou Y, Zheng B, Wu D, Wang S, Xie X, Lin H, Yu X. Expression Analysis of Long Non-Coding RNA HAR1A and HAR1B in HBV-Induced Hepatocullular Carcinoma in Chinese Patients. Lab Med 2019; 50:150-157. [PMID: 30304523 DOI: 10.1093/labmed/lmy055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To determine the clinical relevance of long noncoding RNA (lncRNA) HAR1A and HAR1B expression in hepatocellular carcinoma (HCC). METHODS In this study, we enrolled 50 cases of chronic hepatitis B (CHB) without cirrhosis, 50 cases of CHB and liver cirrhosis (LC), and 100 cases of HBV and HCC. The expression profiles of lncRNA HAR1A and HAR1B were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS The expression levels of HAR1A and HAR1B were significantly lower in the HCC group, compared with the CHB and LC groups (P <.01). HAR1A and HAR1B were negatively associated with histologic grade and TNM (tumor/nodes/metastasis) stage (all P <.05). Univariable multivariable analysis showed that decreased HAR1A (HR = 0.753, P = .02) and HAR1B (HR = 0.551, P = .01) levels were independent predictors for shorter overall survival (OS) in HCC. CONCLUSION Decreased HAR1A and HAR1B expression in HCC indicates poor prognosis.
Collapse
Affiliation(s)
- Zhenjing Shi
- Department of Intervention, Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Ya Luo
- Department of Intervention, Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Minghui Zhu
- Department of Hepatobiliary Surgery, Wenzhou People's Hospital, China
| | - Yu Zhou
- Department of Infectious Diseases, Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Bingru Zheng
- Department of Intervention, Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Daoyi Wu
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Shuting Wang
- Department of Imaging and Intervention, Zhejiang Chinese Medicine Hospital, Hangzhou, China
| | - Xiangbang Xie
- Department of Intervention, Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Heping Lin
- Department of Respiratory Diseases, Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Xixiang Yu
- Department of Vasointerventional Surgery, Wenzhou People's Hospital, China
| |
Collapse
|
17
|
LINE-1 hypomethylation in human hepatocellular carcinomas correlates with shorter overall survival and CIMP phenotype. PLoS One 2019; 14:e0216374. [PMID: 31059558 PMCID: PMC6502450 DOI: 10.1371/journal.pone.0216374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
Reactivation of interspersed repetitive sequences due to loss of methylation is associated with genomic instability, one of the hallmarks of cancer cells. LINE-1 hypomethylation is a surrogate marker for global methylation loss and is potentially a new diagnostic and prognostic biomarker in tumors. However, the correlation of LINE-1 hypomethylation with clinicopathological parameters and the CpG island methylator phenotype (CIMP) in patients with liver tumors is not yet well defined, particularly in Caucasians who show quite low rates of HCV/HBV infection and a higher incidence of liver steatosis. Therefore, quantitative DNA methylation analysis of LINE-1, RASSF1A, and CCND2 using pyrosequencing was performed in human hepatocellular carcinomas (HCC, n = 40), hepatocellular adenoma (HCA, n = 10), focal nodular hyperplasia (FNH, n = 5), and corresponding peritumoral liver tissues as well as healthy liver tissues (n = 5) from Caucasian patients. Methylation results were correlated with histopathological findings and clinical data. We found loss of LINE-1 DNA methylation only in HCC. It correlated significantly with poor survival (log rank test, p = 0.007). An inverse correlation was found for LINE-1 and RASSF1A DNA methylation levels (r2 = -0.47, p = 0.002). LINE-1 hypomethylation correlated with concurrent RASSF1/CCND2 hypermethylation (Fisher’s exact test, p = 0.02). Both LINE-1 hypomethylation and RASSF1A/CCND2 hypermethylation were not found in benign hepatocellular tumors (HCA and FNH). Our results show that LINE-1 hypomethylation and RASSF1A/CCND2 hypermethylation are epigenetic aberrations specific for the process of malignant liver transformation. In addition, LINE-1 hypomethylation might serve as a future predictive biomarker to identify HCC patients with unfavorable overall survival.
Collapse
|
18
|
Li Z, Li Z, Wang L, Long C, Zheng Z, Zhuang X. ZCCHC13-mediated induction of human liver cancer is associated with the modulation of DNA methylation and the AKT/ERK signaling pathway. J Transl Med 2019; 17:108. [PMID: 30940166 PMCID: PMC6444591 DOI: 10.1186/s12967-019-1852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies have shown that zinc-finger CCHC-type containing 13 (ZCCHC13) is located in an imprinted gene cluster in the X-inactivation centre, but few published studies have provided evidence of its expression in cancers. The CCHC-type zinc finger motif has numerous biological activities (such as DNA binding and RNA binding) and mediates protein-protein interactions. In an effort to examine the clinical utility of ZCCHC13 in oncology, we investigated the expression of the ZCCHC13 mRNA and protein in hepatocellular carcinoma (HCC). METHODS The expression of the ZCCHC13 mRNA and protein was evaluated using real-time reverse transcriptase-PCR, Western blotting and immunochemistry. DNA methylation was measured by methylation-specific PCR and bisulfite sequencing. The role of ZCCHC13 methylation was further evaluated using the demethylating agent, 5-aza-2'-deoxycytidine. The presence of anti-ZCCHC13 antibodies was determined by an ELISA. RESULTS ZCCHC13 expression was frequently upregulated in human liver cancer cells and tissues. Compared with heathy individuals, sera from patients with HCC displayed a significant response to the recombinant ZCCHC13 protein. The overexpression of ZCCHC13 in HCC was attributed to DNA hypomethylation in the promoter region. Moreover, overexpression of ZCCHC13 in liver cancer cells promoted cell cycle progression by facilitating the G1-S transition, which was related to aberrant activation of the ATK/ERK/c-MYC/CDK pathway. CONCLUSIONS Based on our findings, ZCCHC13 functions an oncogene for HCC, and DNA hypomethylation is a driving factor in carcinogenesis.
Collapse
Affiliation(s)
- Zhiming Li
- Institute of Reproductive Health/Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
| | - Zhi Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Linjun Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Chen Long
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Zaozao Zheng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| |
Collapse
|
19
|
Pasha HF, Mohamed RH, Radwan MI. RASSF1A and SOCS1 genes methylation status as a noninvasive marker for hepatocellular carcinoma. Cancer Biomark 2019; 24:241-247. [DOI: 10.3233/cbm-181638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Heba F. Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Randa H. Mohamed
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed I. Radwan
- Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Zhou Y, Qiu XP, Li ZH, Zhang S, Rong Y, Yang GH, Fang-Zheng. Clinical significance of aberrant cyclin-dependent kinase-like 2 methylation in hepatocellular carcinoma. Gene 2019; 683:35-40. [DOI: 10.1016/j.gene.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
|
21
|
Zhou Y, Wang XB, Qiu XP, Shuai Zhang, Wang C, Zheng F. CDKN2A promoter methylation and hepatocellular carcinoma risk: A meta-analysis. Clin Res Hepatol Gastroenterol 2018; 42:529-541. [PMID: 30143452 DOI: 10.1016/j.clinre.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023]
Abstract
AIM Lots of studies have explored cyclin-dependent kinase inhibitor 2A (CDKN2A) promoter methylation in hepatocellular carcinoma (HCC), but the established results were controversial. Hence, we conducted the meta-analysis to comprehensively investigate the association between CDKN2A promoter methylation and HCC risk. METHODS A comprehensive search was implemented through searching PubMed, Web of Science and Embase. Associations of CDKN2A promoter methylation with HCC risk, clinicopathological features, and CDKN2A expression were assessed by the pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Subgroup analyses and meta-regression were served for exploring the potential sources of heterogeneity. RESULTS A total of 59 articles including 3067 cases and 2951 controls were incorporated in this meta-analysis. Overall, we observed a high CDKN2A promoter methylation rate (58.18%) in HCC and a significant association between the methylation and HCC risk (OR, 7.07; 95% CI, 5.67-8.80). Furthermore, CDKN2A promoter methylation was robustly associated with decreased mRNA (OR, 13.89; 95% CI, 5.44-35.45) and protein (OR, 48.19; 95% CI, 5.56-417.29). In addition, we found the methylation was related with HBV infection (OR, 3.31; 95% CI, 1.47-7.47), HCV infection (OR, 2.76; 95% CI, 1.80-4.23), cirrhosis status (OR, 1.57; 95% CI, 1.01-2.44) and older age (OR, 1.83; 95% CI, 1.14-2.94). CONCLUSIONS Our results indicated that CDKN2A promoter methylation was associated with an enhancive HCC risk and played a crucial role in the process of HCC with a potential value to being a triage marker for HCC.
Collapse
Affiliation(s)
- Ye Zhou
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Xue-Bin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Xue-Ping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Shuai Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China.
| |
Collapse
|
22
|
Lubecka K, Flower K, Beetch M, Qiu J, Kurzava L, Buvala H, Ruhayel A, Gawrieh S, Liangpunsakul S, Gonzalez T, McCabe G, Chalasani N, Flanagan JM, Stefanska B. Loci-specific differences in blood DNA methylation in HBV-negative populations at risk for hepatocellular carcinoma development. Epigenetics 2018; 13:605-626. [PMID: 29927686 PMCID: PMC6140905 DOI: 10.1080/15592294.2018.1481706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Late onset of clinical symptoms in hepatocellular carcinoma (HCC) results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable tools that would distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed. We used the Illumina HumanMethylation450 BeadChip microarray to test whether white blood cell DNA, an easily accessible source of DNA, exhibits site-specific changes in DNA methylation in blood of diagnosed HCC patients (post-diagnostic, 24 cases, 24 controls) and in prospectively collected blood specimens of HCC patients who were cancer-free at blood collection (pre-diagnostic, 21 cases, 21 controls). Out of 22 differentially methylated loci selected for validation by pyrosequencing, 19 loci with neighbouring CpG sites (probes) were confirmed in the pre-diagnostic study group and subjected to verification in a prospective cirrhotic cohort (13 cases, 23 controls). We established for the first time 9 probes that could distinguish HBV-negative cirrhotic patients who subsequently developed HCC from those who stayed cancer-free. These probes were identified within regulatory regions of BARD1, MAGEB3, BRUNOL5, FXYD6, TET1, TSPAN5, DPPA5, KIAA1210, and LSP1. Methylation levels within DPPA5, KIAA1210, and LSP1 were higher in prospective samples from HCC cases vs. cirrhotic controls. The remaining probes were hypomethylated in cases compared with controls. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established probes have potential to be developed into a routine clinical test after validation in larger cohorts.
Collapse
Affiliation(s)
- Katarzyna Lubecka
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Kirsty Flower
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Megan Beetch
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jay Qiu
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Lucinda Kurzava
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Hannah Buvala
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Adam Ruhayel
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy Gonzalez
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - George McCabe
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James M Flanagan
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Barbara Stefanska
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
23
|
Li Y, Li Y, Zheng G, Zhu L, Wang J, Mu S, Ren Q, Feng F. Cytochrome P450 1A1 and 1B1 promoter CpG island methylation regulates rat liver injury induced by isoniazid. Mol Med Rep 2017; 17:753-762. [PMID: 29115507 PMCID: PMC5780152 DOI: 10.3892/mmr.2017.7929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an important component of epigenetics that is involved in the occurrence and development of a variety of diseases. The present study aimed to clarify the relationship between cytochrome P450 (CYP)1A1 and CYP1B1 promoter CpG island methylation and isoniazid-induced liver injury in rats, and to explore the possible mechanism, rats were given an intragastric dose of isoniazid (55 mg·kg−1·d−1). High performance liquid chromatography was used to analyze the DNA methylation level of the whole genome in liver tissue. Methylation-specific polymerase chain reaction (PCR) was used to detect the methylation level of CpG islands in the promoter region of CYP1A1 and CYP1B1. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of CYP1A1, CYP1B1, toll-like receptor 4 (TLR4), extracellular signal-regulated kinase (ERK) 2, peroxisome proliferator-activated receptor (PPAR) -γ, interleukin (IL)-6 and tumor necrosis factor (TNF)-α. The expression levels of CYP1A1 and CYP1B1 proteins were measured by ELISA, and malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were analyzed by colorimetric method. Liver tissue pathology, an indicator of liver function, indicated rat liver injury at 10 days following isoniazid treatment. Whole-genome methylation levels were gradually reduced, and methylation at day 7 post-treatment was significantly lower than the control group. CYP1A1 and CYP1B1 promoter CpG island methylation level was significantly increased at 3 days post-treatment. CYP1A1 and CYP1B1 mRNA expression levels were significantly reduced from day 7 and 10, respectively. These results suggested that CpG island hypermethylation of the CYP1A1 and CYP1B1 promoters regulate the low expression of genes involved in the occurrence of isoniazid-induced liver injury. With the alterations of CYP1A1 and CYP1B1 expression, the mRNA expression levels of TLR4, ERK, MDA, IL-6 and TNF-α were upregulated, and the expression of SOD and PPAR-γ were downregulated. These data demonstrated that alterations in methylation patterns may involve changes in the TLR4-ERK signaling pathway and PPAR-γ, which may alter the expression of MDA, SOD, IL-6 and TNF-α, leading to liver injury.
Collapse
Affiliation(s)
- Yanhui Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Yuhong Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Guoying Zheng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Lingyan Zhu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Jishun Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Shasha Mu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Qi Ren
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| | - Fumin Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063200, P.R. China
| |
Collapse
|
24
|
Wu HC, Yang HI, Wang Q, Chen CJ, Santella RM. Plasma DNA methylation marker and hepatocellular carcinoma risk prediction model for the general population. Carcinogenesis 2017; 38:1021-1028. [PMID: 28981677 PMCID: PMC5862336 DOI: 10.1093/carcin/bgx078] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 01/10/2023] Open
Abstract
Metastases in the later stages of hepatocellular carcinoma (HCC) cause the majority of deaths associated with the disease, making early detection crucial to patient survival. Risk models assessing HCC risk in the general population can be used for risk stratification for further HCC surveillance, however, none have been validated externally. Methylation of circulating DNA shows potential for non-invasive diagnosis of HCC. We conducted a prospective case-control study nested within a community-based cohort. We measured methylation levels in six genes (CDKN2A, RASSF1A, STEAP4, TBX2, VIM and ZNF154) which were identified in our previous work, using pre-diagnostic plasma DNA from 237 HCC cases and 257 matched controls. We found TBX2 hypermethylation was associated with increased HCC risk, with ORs (95% CI) of 3.2 (1.8-6.0). The associations were mainly among high-risk subjects; among subjects infected with HBV/HCV, the OR (95% CI) of TBX2 methylation was 5.3 (2.2-12.7). Among subjects with high risk scores, the ORs (95% CIs) were 7.8 (1.5-38.6) for Wen-HCC model ≥16, 5.8 (2.2-15.5) for Hung-HCC ≥15 and 7.5 (2.2-26.0) for Michikawa-HCC ≥8. Adding TBX2 methylation improved the accuracy of risk models for a high-risk population, with the area under the curve (AUC) of 76% for Wen-HCC score with TBX2 methylation compared with 69% with Wen-HCC alone. The AUCs were 63% for Hung-HCC score plus TBX2 methylation, and 53% for Hung-HCC alone, 65% for Michikawa-HCC score plus TBX2 methylation and 58% for Michikawa-HCC alone. Our findings suggest the potential increase in risk assessment discrimination and accuracy from incorporation of DNA methylation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Qiao Wang
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 112, Taiwan and
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032,USA
| |
Collapse
|
25
|
Juárez-Hernández E, Motola-Kuba D, Chávez-Tapia NC, Uribe M, Barbero Becerra V. Biomarkers in hepatocellular carcinoma: an overview. Expert Rev Gastroenterol Hepatol 2017; 11:549-558. [PMID: 28347162 DOI: 10.1080/17474124.2017.1311785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current methods for HCC diagnosis have not an optimal diagnostic accuracy. The detection of more than one biomarker seems to improve their individual performance and provide an accurate HCC diagnosis approach. Individual gene expression seems to influence whether or not the treatment is successful, since several molecules have interfere with cancer associated pathways and have been related to poor prognosis which condition the lack of effective treatment options. Areas covered: Novel biomarkers have been proposed as a useful tool in each patient prognosis. This article aims to review the recent evidence based on HCC biomarkers which seems to have a regulative role according to tumor cell development leading to a specific biological response. Epigenetic regulation, miRNAs, and genome sequencing analysis propose molecular expression signatures as novel biomarkers which allowed achieve the major goal for the use of biomarkers in clinical practice. Moreover, a deeper analysis for determine the diagnostic accuracy of biomarkers has been made. Expert commentary: To improve of methodological designs and sample sizes are needed in order to support the role of biomarkers in HCC. Furthermore, is necessary to consider HCC etiologies and all clinic disease context to carried out clinical phase studies to thrust biomarkers application.
Collapse
Affiliation(s)
- Eva Juárez-Hernández
- a Translational Research Unit , Medica Sur Clinic & Foundation , Mexico City , Mexico
| | - Daniel Motola-Kuba
- b Oncology Center , Medica Sur Clinic & Foundation , Mexico City , Mexico
| | | | - Misael Uribe
- a Translational Research Unit , Medica Sur Clinic & Foundation , Mexico City , Mexico
| | | |
Collapse
|
26
|
Wahid B, Ali A, Rafique S, Idrees M. New Insights into the Epigenetics of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1609575. [PMID: 28401148 PMCID: PMC5376429 DOI: 10.1155/2017/1609575] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most predominant malignancies with high fatality rate. This deadly cancer is rising at an alarming rate because it is quite resistant to radio- and chemotherapy. Different epigenetic mechanisms such as histone modifications, DNA methylation, chromatin remodeling, and expression of noncoding RNAs drive the cell proliferation, invasion, metastasis, initiation, progression, and development of HCC. These epigenetic alterations because of potential reversibility open way towards the development of biomarkers and therapeutics. The contribution of these epigenetic changes to HCC development has not been thoroughly explored yet. Further research on HCC epigenetics is necessary to better understand novel molecular-targeted HCC treatment and prevention. This review highlights latest research progress and current updates regarding epigenetics of HCC, biomarker discovery, and future preventive and therapeutic strategies to combat the increasing risk of HCC.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
- Hazara University, Mansehra, Pakistan
| |
Collapse
|
27
|
Allen JC, Nault JC, Zhu G, Khor AYK, Liu J, Lim TKH, Zucman-Rossi J, Chow PK. The transcriptomic G1-G6 signature of hepatocellular carcinoma in an Asian population: Association of G3 with microvascular invasion. Medicine (Baltimore) 2016; 95:e5263. [PMID: 27893662 PMCID: PMC5134855 DOI: 10.1097/md.0000000000005263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, a transcriptomic group classification based on a European population is tested on a Singapore cohort. The results highlight the genotype/phenotype correlation in a Southeast Asian population. The G1-G6 transcriptomic classification derived from hepatocellular carcinoma (HCC) resected from European patients, robustly reflected group-specific clinical/pathological features. We investigated the application of this molecular classification in Southeast Asian HCC patients.Gene expression analysis was carried out on HCC surgically resected in Singapore patients who were grouped into G1-G6 transcriptomic categories according to expression of 16 predictor genes (illustrated in Supplementary Table 1, http://links.lww.com/MD/B413 and Supplementary Fig. 1, http://links.lww.com/MD/B413) using quantitative reverse transcription polymerase chain reaction (RT-PCR). Univariate and multivariate polytomous logistic regression was used to investigate association between clinical variables and pooled transcriptomic classes G12, G3, and G456.HCC from Singapore (n = 82) were distributed (%) into G1 (13.4), G2 (24.4), G3 (15.9), G4 (24.4), G5 (14.6), and G6 (7.3) subgroups. Compared to the European data, the Singapore samples were relatively enriched in G1-G3 versus G4-G6 tumors (53.7% vs 46.3%) reflecting the higher proportion of hepatitis B virus (HBV) patients in Singapore versus Europe samples (43% vs 30%). Pooled classes were defined as G12, G3, and G456. G12 was associated with higher alpha-fetoprotein (AFP) concentrations (OR = 1.69, 95% CI: 1.30-2.20; P < 0.0001) and G3 with microvascular invasion (OR = 4.91, 95% CI: 1.06-24.8; P = 0.047).The European and Singapore cohorts were generally similar relative to associations between transcriptomic groups and clinical features. This lends credence to the G1-G6 transcriptomic classifications being applicable regardless of the ethnic origin of HCC patients. The G3 group was associated with microvascular invasion and holds potential for investigation into the underlying mechanisms and selection for therapeutic clinical trials.
Collapse
Affiliation(s)
- John Carson Allen
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jean-Charles Nault
- INSERM, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, IUH
- Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Guili Zhu
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Andrew Yu Keat Khor
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jin Liu
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Jessica Zucman-Rossi
- INSERM, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, IUH
- Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Pierce K.H. Chow
- Department of Surgical Oncology, National Cancer Centre
- Office of Clinical Sciences, Duke-NUS Medical School, Singapore
- Department of HPB and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
28
|
Zhou S, Treloar AE, Lupien M. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discov 2016; 6:1215-1229. [PMID: 27807102 DOI: 10.1158/2159-8290.cd-16-0745] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. SIGNIFICANCE The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR.
Collapse
Affiliation(s)
- Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Aislinn E Treloar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Niu ZS, Niu XJ, Wang WH, Zhao J. Latest developments in precancerous lesions of hepatocellular carcinoma. World J Gastroenterol 2016; 22:3305-3314. [PMID: 27022212 PMCID: PMC4806188 DOI: 10.3748/wjg.v22.i12.3305] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinogenesis in human chronic liver diseases is a multi-step process in which hepatic precancerous lesions progress into early hepatocellular carcinoma (HCC) and progressed HCC, and the close surveillance and treatment of these lesions will help improve the survival rates of patients with HCC. The rapid development and extensive application of imaging technology have facilitated the discovery of nodular lesions of ambiguous significance, such as dysplastic nodules. Further investigations showed that these nodules may be hepatic precancerous lesions, and they often appear in patients with liver cirrhosis. Although the morphology of these nodules is not sufficient to support a diagnosis of malignant tumor, these nodules are closely correlated with the occurrence of HCC, as indicated by long-term follow-up studies. In recent years, the rapid development and wide application of pathology, molecular genetics and imaging technology have elucidated the characteristics of precancerous lesions. Based on our extensive review of the relevant literature, this article focuses on evidence indicating that high-grade dysplastic nodules are more likely to transform into HCC than low-grade dysplastic nodules based on clinical, pathological, molecular genetic and radiological assessments. In addition, evidence supporting the precancerous nature of large cell change in hepatitis B virus-related HCC is discussed.
Collapse
|
30
|
Zhu Z, Di J, Lu Z, Gao K, Zheng J. Rap2B GTPase: structure, functions, and regulation. Tumour Biol 2016; 37:7085-93. [PMID: 27012552 DOI: 10.1007/s13277-016-5033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.
Collapse
Affiliation(s)
- Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
31
|
Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct 2016; 34:289-98. [PMID: 27003927 DOI: 10.1002/cbf.3183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X-chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amr Rafat Elhamamsy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Sun FK, Sun Q, Fan YC, Gao S, Zhao J, Li F, Jia YB, Liu C, Wang LY, Li XY, Ji XF, Wang K. Methylation of tissue factor pathway inhibitor 2 as a prognostic biomarker for hepatocellular carcinoma after hepatectomy. J Gastroenterol Hepatol 2016; 31:484-492. [PMID: 26313014 DOI: 10.1111/jgh.13154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/06/2015] [Accepted: 08/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Methylation of tissue factor pathway inhibitor 2 (TFPI2) gene has been detected in hepatocellular carcinoma (HCC). However, the clinicopathologcial significance and prognostic value of TFPI2 methylation in HCC remains largely unknown. This study aimed to investigate the prognostic value of TFPI2 methylation in HCC after hepatectomy. METHODS Methylation status of TFPI2 gene was examined in 178 surgical specimens of HCC and 20 normal liver samples using methylation-specific polymerase chain reaction. RESULTS Methylation of TFPI2 gene was detected in 44.9% (80 of 178) of primary HCC samples, 10.7% (19 of 178) of the corresponding non-tumorous liver samples, and 5.0% (1/20) of the normal liver samples. The mRNA concentrations of TFPI2 in primary HCC tissues were significantly lower than those in corresponding non-tumorous liver tissues and those in normal liver tissues. TFPI2 methylation was significantly associated with higher TNM stage. Patients with TFPI2 methylation demonstrated a significantly poorer prognosis than those without TFPI2 methylation for both overall survival and disease-free survival (P < 0.001, respectively). Multivariate analyses confirmed that TFPI2 methylation was an independent prognostic factor for both overall survival (P = 0.002) and disease-free survival (P = 0.000) in HCC after hepatectomy. Moreover, TFPI2 methylation was found to be the only independent predictor for early tumor recurrence of HCC after resection based on multivariate analysis (P = 0.002). CONCLUSIONS Methylation of TFPI2 predicts high risk of advanced tumor stage, early tumor recurrence, and poor prognosis, and it could be a potential prognostic biomarker in patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Feng-Kai Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Qi Sun
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Bin Jia
- Department of Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Chuan Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Yuan Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xin-You Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|
33
|
Jia Q, Dong Q, Qin L. CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 2016; 7:1203-1214. [PMID: 26497214 PMCID: PMC4811454 DOI: 10.18632/oncotarget.6209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) results from an underlying chronic liver inflammatory disease, such as chronic hepatitis B or C virus infections, and the general prognosis of patients with HCC still remains extremely dismal because of the high frequency of HCC metastases. Throughout the process of tumor metastasis, tumor cells constantly communicate with the surrounding microenvironment and improve their malignant phenotype. Therefore, there is a strong rationale for targeting the tumor microenvironment as primary treatment of HCC therapies. Recently, CCN family proteins have emerged as localized multitasking signal integrators in the inflammatory microenvironment. In this review, we summarize the current knowledge of CCN family proteins in inflammation and the tumor. We also propose that the CCN family proteins may play a central role in signaling the tumor microenvironment and regulating the metastasis of HCC.
Collapse
Affiliation(s)
- Qingan Jia
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Cillo U, Giuliani T, Polacco M, Herrero Manley LM, Crivellari G, Vitale A. Prediction of hepatocellular carcinoma biological behavior in patient selection for liver transplantation. World J Gastroenterol 2016; 22:232-252. [PMID: 26755873 PMCID: PMC4698488 DOI: 10.3748/wjg.v22.i1.232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Morphological criteria have always been considered the benchmark for selecting hepatocellular carcinoma (HCC) patients for liver transplantation (LT). These criteria, which are often inappropriate to express the tumor’s biological behavior and aggressiveness, offer only a static view of the disease burden and are frequently unable to correctly stratify the tumor recurrence risk after LT. Alpha-fetoprotein (AFP) and its progression as well as AFP-mRNA, AFP-L3%, des-γ-carboxyprothrombin, inflammatory markers and other serological tests appear to be correlated with post-transplant outcomes. Several other markers for patient selection including functional imaging studies such as 18F-FDG-PET imaging, histological evaluation of tumor grade, tissue-specific biomarkers, and molecular signatures have been outlined in the literature. HCC growth rate and response to pre-transplant therapies can further contribute to the transplant evaluation process of HCC patients. While AFP, its progression, and HCC response to pre-transplant therapy have already been used as a part of an integrated prognostic model for selecting patients, the utility of other markers in the transplant setting is still under investigation. This article intends to review the data in the literature concerning predictors that could be included in an integrated LT selection model and to evaluate the importance of biological aggressiveness in the evaluation process of these patients.
Collapse
|
35
|
Qiu X, Hu B, Huang Y, Deng Y, Wang X, Zheng F. Hypermethylation of ACP1, BMP4, and TSPYL5 in Hepatocellular Carcinoma and Their Potential Clinical Significance. Dig Dis Sci 2016; 61:149-57. [PMID: 26386860 DOI: 10.1007/s10620-015-3878-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Aberrant methylation of specific genes is frequent event in hepatocellular carcinoma (HCC). Our present study aims to explore the methylation levels of acid phosphatase locus 1 (ACP1), bone morphogenetic protein 4 (BMP4), and testis-specific protein, Y-encoded-like 5 (TSPYL5) and their potential clinical applications in HCC. METHODS The methylation levels of ACP1, BMP4 and TSPYL5 were analyzed in 188 HCC tissues, 163 matched adjacent non-tumor tissues, and 29 normal liver tissues using a method of methylation-sensitive restriction enzyme-based quantitative PCR, and their associations with clinicopathological features and prognosis were evaluated. RESULTS Compared with adjacent non-tumor tissues and normal liver tissues, the methylation levels of ACP1, BMP4, and TSPYL5 were significantly increased in HCC tissues (All p < 0.0001). The methylation of each individual gene could distinguish HCC tissues well from adjacent non-tumor tissues with the area under the receiver operating characteristic curves (AUC) of 0.753, 0.785 and 0.917, respectively. Furthermore, a higher methylation of BMP4 was statistically associated with worse disease-free survival (p = 0.006) and might be an independent unfavorable factor for disease-free survival by univariate and multivariate analysis (p = 0.011, HR 3.431, 95 % CI 1.333-8.833). CONCLUSIONS Our findings suggest that hypermethylation of ACP1, BMP4, and TSPYL5 are common events in HCC and could be used as potentially detectable biomarkers in HCC tissues. Moreover, BMP4 could be potentially served as a methylated biomarker to predict recurrence and metastasis after hepatectomy for HCC patients. However, their potential clinical application value need to be further clarified.
Collapse
Affiliation(s)
- Xueping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| | - Bo Hu
- The Third Affiliated Hospital of Sun Yat-sen University, Guanzhou, Guandong, China.
| | - Yifang Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| | - Yunte Deng
- Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei, China.
| | - Xuebin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
36
|
Mileo AM, Mattarocci S, Matarrese P, Anticoli S, Abbruzzese C, Catone S, Sacco R, Paggi MG, Ruggieri A. Hepatitis C virus core protein modulates pRb2/p130 expression in human hepatocellular carcinoma cell lines through promoter methylation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:140. [PMID: 26576645 PMCID: PMC4650920 DOI: 10.1186/s13046-015-0255-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Background Hepatitis C Virus (HCV) infection is associated with chronically evolving disease and development of hepatocellular carcinoma (HCC), albeit the mechanism of HCC induction by HCV is still controversial. The nucleocapsid (core) protein of HCV has been shown to be directly implicated in cellular transformation and immortalization, enhancing the effect of oncogenes and decreasing the one of tumor suppressor genes, as RB1 and its protein product pRB. With the aim of identifying novel molecular mechanisms of hepatocyte transformation by HCV, we examined the effect of HCV core protein on the expression of the whole Retinoblastoma (RB) family of tumor and growth suppressor factors, i.e. pRb, p107 and pRb2/p130. Methods We used a model system consisting of the HuH-7, HCV-free, human hepatocellular carcinoma cell line and of the HuH-7-CORE cells derived from the former and constitutively expressing the HCV core protein. We determined pRb, p107 and pRb2/p130 protein and mRNA amount of the respective genes RB1, RBL1 and RBL2, RBL2 promoter activity and methylation as well as DNA methyltransferase 1 (DNMT1) and 3b (DNMT3b) expression level. The effect of pRb2/p130 over-expression on the HCV core-expressing HuH-7-CORE cells was also evaluated. Results We found that the HCV core protein expression down-regulated pRb2/p130 protein and mRNA levels in HuH-7-CORE cells by inducing promoter hyper-methylation with the concomitant up-regulation of DNMT1 and DNMT3b expression. When pRb2/p130 expression was artificially re-established in HuH-7-CORE cells, cell cycle analysis outlined an accumulation in the G0/G1 phase, as expected. Conclusions HCV core appears indeed able to significantly down-regulate the expression and the function of two out of three RB family tumor and growth suppressor factors, i.e. pRb and pRb2/p130. The functional consequences at the level of cell cycle regulation, and possibly of more complex cell homeostatic processes, may represent a plausible molecular mechanism involved in liver transformation by HCV.
Collapse
Affiliation(s)
- Anna Maria Mileo
- Experimental Oncology, "Regina Elena" National Cancer Institute, IRCCS, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Stefano Mattarocci
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Paola Matarrese
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Simona Anticoli
- National AIDS Center, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Claudia Abbruzzese
- Experimental Oncology, "Regina Elena" National Cancer Institute, IRCCS, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Stefania Catone
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Rodolfo Sacco
- Gastroenterology and Metabolic Diseases, Department of Gastroenterology, 56124 Pisa University Hospital, Pisa, Italy
| | - Marco G Paggi
- Experimental Oncology, "Regina Elena" National Cancer Institute, IRCCS, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Anna Ruggieri
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
37
|
Zhang S, Zhou M, Jiang G, Gong C, Cui D, Luo L, Wu D, Huang H, Zhang Q, Yang L. Expression and DNA methylation status of the Rap2B gene in human bronchial epithelial cells treated by cigarette smoke condensate. Inhal Toxicol 2015; 27:502-9. [PMID: 26308105 DOI: 10.3109/08958378.2015.1076546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The relationship between lung cancer and smoking has been demonstrated. The Rap2B gene is usually overexpressed in lung cancers. This study was aimed to investigate the Rap2B gene expression and its promoter methylation in human bronchial epithelial cells (16HBE) treated by cigarette smoke condensate (CSC). METHODS 16HBE cells were treated with CSC (1/8 IC50). Soft ager assay, tumorigenicity test, chromosome aberrations analysis were used to identify the transformed cells. The expression level of mRNA and protein of Rap2B was detected using real time PCR and Western blotting, respectively. The genome DNA methylation level was detected using combined bisulfite restriction analysis (COBRA) and the methylation status of the target fragment in Rap2B gene promoter was determined by bisulfite sequencing PCR (BSP). RESULTS The 16HBE cells were successfully malignant transformed after the chronic exposure to CSC. The expression of Rap2B gradually increased in the process of malignant transformation. Meanwhile, global DNA was hypomethylated. However, no obvious change was observed in the methylation level of Rap2B gene promoter in transformed 16HBE cells. CONCLUSIONS Rap2B gene may play an important role in the process of lung cancer and global DNA hypomethylation might be an early event in tumorigenesis.
Collapse
Affiliation(s)
- Shuangling Zhang
- a School of Public Health, Medical College, Wuhan University of Science and Technology , Wuhan , China
| | - Ming Zhou
- b Public Health College of Zhengzhou University , Zhengzhou , China
- c Changsha Center of Supervision & Inspection on Food Quality Safety , Changsha , China
| | - Gaofeng Jiang
- a School of Public Health, Medical College, Wuhan University of Science and Technology , Wuhan , China
| | - Chunmei Gong
- d Shenzhen Center for Chronic Disease Control and Prevention , Shenzhen , China , and
| | - Dong Cui
- e Shenzhen Center for Disease Control and Prevention , Shenzhen , China
| | - Lingfeng Luo
- e Shenzhen Center for Disease Control and Prevention , Shenzhen , China
| | - Desheng Wu
- e Shenzhen Center for Disease Control and Prevention , Shenzhen , China
| | - Haiyan Huang
- e Shenzhen Center for Disease Control and Prevention , Shenzhen , China
| | - Qiao Zhang
- b Public Health College of Zhengzhou University , Zhengzhou , China
| | - Linqing Yang
- e Shenzhen Center for Disease Control and Prevention , Shenzhen , China
| |
Collapse
|
38
|
Ferrín G, Aguilar-Melero P, Rodríguez-Perálvarez M, Montero-Álvarez JL, de la Mata M. Biomarkers for hepatocellular carcinoma: diagnostic and therapeutic utility. Hepat Med 2015; 7:1-10. [PMID: 25926760 PMCID: PMC4403743 DOI: 10.2147/hmer.s50161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because of the high prevalence and associated-mortality of hepatocellular carcinoma (HCC), early diagnosis of the disease is vital for patient survival. In this regard, tumor size is one of the two main prognostic factors for surgical resection, which constitutes the only curative treatment for HCC along with liver transplantation. However, techniques for HCC surveillance and diagnosis that are currently used in clinical practice have certain limitations that may be inherent to the tumor development. Thus, it is important to continue efforts in the search for biomarkers that increase diagnostic accuracy for HCC. In this review, we focus on different biological sources of candidate biomarkers for HCC diagnosis. Although those biomarkers identified from biological samples obtained by noninvasive methods have greater diagnostic value, we have also considered those obtained from liver tissue because of their potential therapeutic value. To date, sorafenib is the only US Food and Drug Administration-approved antineoplastic for HCC. However, this therapeutic agent shows very low tumor response rates and frequently causes acquired resistance in HCC patients. We discuss the use of HCC biomarkers as therapeutic targets themselves, or as targets to increase sensitivity to sorafenib treatment.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Liver Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain ; Centro de Investigación Biomédica en Red (CIBER), Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Aguilar-Melero
- Liver Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Liver Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain ; Centro de Investigación Biomédica en Red (CIBER), Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Montero-Álvarez
- Liver Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain ; Centro de Investigación Biomédica en Red (CIBER), Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel de la Mata
- Liver Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain ; Centro de Investigación Biomédica en Red (CIBER), Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Involvement of cytochrome P450 1A1 and glutathione S-transferase P1 polymorphisms and promoter hypermethylation in the progression of anti-tuberculosis drug-induced liver injury: a case-control study. PLoS One 2015; 10:e0119481. [PMID: 25798582 PMCID: PMC4370371 DOI: 10.1371/journal.pone.0119481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/14/2015] [Indexed: 12/25/2022] Open
Abstract
Background Anti-tuberculosis (anti-TB) drug-induced liver injury (ADLI) is one of the most common adverse effects associated with TB treatment. Cytochrome P450 (CYP) 1A1 and glutathione S-transferase (GST) P1 are important phase I/II metabolizing enzymes involved in drug metabolism and detoxification. Genetic polymorphism and CpG island methylation have been reported as factors influencing the expression of CYP1A1 and GSTP1. Objective This study aimed to determine the potential relationships of CYP1A1 and GSTP1 polymorphisms and CpG island methylation with ADLI risk. Design This was a population-based one-to-one matched case–control study. Setting The subjects were patients with TB receiving treatment in China from December 2010 to June 2013. Patients In total, 127 patients with TB and ADLI (case group) and 127 patients with TB but without liver injury (control group) were included in this study. Subjects were matched in terms of sex, age, and therapeutic regimen. Methods The general condition of each patient was assessed using questionnaires. The CYP1A1 MspI and GSTP1 Ile105Val polymorphisms as well as methylation status were detected by polymerase chain reaction (PCR)–restriction fragment length polymorphism and the methylation-specific PCR method. Results We found no significant difference in GSTP1 and CYP1A1 genotypes between the two groups, probably because the sample size was not large enough; however, patients with ADLI had significantly higher GSTP1 and CYP1A1 promoter methylation rates than control subjects [odds ratio (OR) = 2.467 and 2.000, respectively]. After adjusting for drinking, which significantly differed between the groups as per univariate analysis, we found that hypermethylation of GSTP1 and CYP1A1 promoters was associated with ADLI (OR = 2.645 and 2.090, respectively). Conclusion Hypermethylation of CpG islands of GSTP1 and CYP1A1 promoters may thus play important roles in the development of ADLI and provide evidence of being used as novel markers for ADLI risk prediction.
Collapse
|
40
|
Abstract
All of life is regulated by complex and organized chemical reactions that help dictate when to grow, to move, to reproduce, and to die. When these processes go awry, or are interrupted by pathological agents, diseases such as cancer, autoimmunity, or infections can result. Cytokines, chemokines, growth factors, adipokines, and other chemical moieties make up a vast subset of these chemical reactions that are altered in disease states, and monitoring changes in these molecules could provide for the identification of disease biomarkers. From the first identification of carcinoembryonic antigen, to the discovery of prostate-specific antigen, to numerous others described within, biomarkers of disease are detectable in a plethora of sample types. The growing number of biomarkers for infection, autoimmunity, and cancer allow for increasingly early detection, to identification of novel drug targets, to prognostic indicators of disease outcome. However, more and more studies are finding that a single cytokine or growth factor is insufficient as a true disease biomarker and that a more global perspective is needed to understand true disease biology. Such a broad view requires a multiplexed platform for chemical detection, and antibody arrays meet and exceed this need by performing this detection in a high-throughput fashion. Herein, we will discuss how antibody arrays have evolved, and how they have helped direct new drug target design, helped identify therapeutic disease markers, and helped in earlier disease detection. From asthma to renal disease, and neurological dysfunction to immunologic disorders, antibody arrays afford a bright future for new biomarkers discovery.
Collapse
|
41
|
Sun J, Bie B, Zhang S, Yang J, Li Z. Long non-coding RNAs: critical players in hepatocellular carcinoma. Int J Mol Sci 2014; 15:20434-48. [PMID: 25387074 PMCID: PMC4264176 DOI: 10.3390/ijms151120434] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex disease with multiple underlying pathogenic mechanisms caused by a variety of etiologic factors. Emerging evidence showed that long non-coding RNAs (lncRNAs), with size larger than 200 nucleotides (nt), play important roles in various types of cancer development and progression. In recent years, some dysregulated lncRNAs in HCC have been revealed and roles for several of them in HCC have been characterized. All these findings point to the potential of lncRNAs as prospective novel therapeutic targets in HCC. In this review, we summarize known dysregulated lncRNAs in HCC, and review potential biological roles and underlying molecular mechanisms of lncRNAs in HCC. Additionally, we discussed prospects of lncRNAs as potential biomarker and therapeutic target for HCC. In conclusion, this paper will help us gain better understanding of molecular mechanisms by which lncRNAs perform their function in HCC and also provide general strategies and directions for future research.
Collapse
Affiliation(s)
- Jin Sun
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Beibei Bie
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Shu Zhang
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Jun Yang
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
42
|
Mah WC, Thurnherr T, Chow PKH, Chung AYF, Ooi LLPJ, Toh HC, Teh BT, Saunthararajah Y, Lee CGL. Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis. PLoS One 2014; 9:e104158. [PMID: 25093504 PMCID: PMC4122406 DOI: 10.1371/journal.pone.0104158] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/05/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. However, the role of epigenetic changes such as aberrant DNA methylation in hepatocarcinogenesis remains largely unclear. In this study, we examined the methylation profiles of 59 HCC patients. Using consensus hierarchical clustering with feature selection, we identified three tumor subgroups based on their methylation profiles and correlated these subgroups with clinicopathological parameters. Interestingly, one tumor subgroup is different from the other 2 subgroups and the methylation profile of this subgroup is the most distinctly different from the non-tumorous liver tissues. Significantly, this subgroup of patients was found to be associated with poor overall as well as disease-free survival. To further understand the pathways modulated by the deregulation of methylation in HCC patients, we integrated data from both the methylation as well as the gene expression profiles of these 59 HCC patients. In these patients, while 4416 CpG sites were differentially methylated between the tumors compared to the adjacent non-tumorous tissues, only 536 of these CpG sites were associated with differences in the expression of their associated genes. Pathway analysis revealed that forty-four percent of the most significant upstream regulators of these 536 genes were involved in inflammation-related NFκB pathway. These data suggest that inflammation via the NFκB pathway play an important role in modulating gene expression of HCC patients through methylation. Overall, our analysis provides an understanding on aberrant methylation profile in HCC patients.
Collapse
Affiliation(s)
- Way-Champ Mah
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Thomas Thurnherr
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Pierce K. H. Chow
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Surgery, Singapore General Hospital, Singapore, Singapore
| | | | - London L. P. J. Ooi
- Department of Surgery, Singapore General Hospital, Singapore, Singapore
- Department of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Bin Tean Teh
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yogen Saunthararajah
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Caroline G. L. Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Gao S, Wang K. DNA methylation in liver diseases. World J Clin Infect Dis 2014; 4:41. [DOI: 10.5495/wjcid.v4.i4.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
|