1
|
Rutkowski K, Gola M, Godlewski J, Starzyńska A, Marvaso G, Mastroleo F, Giulia Vincini M, Porazzi A, Zaffaroni M, Jereczek-Fossa BA. Understanding the role of nerves in head and neck cancers - a review. Oncol Rev 2025; 18:1514004. [PMID: 39906323 PMCID: PMC11791411 DOI: 10.3389/or.2024.1514004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Worldwide, head and neck cancers (HNCs) account for approximately 900,000 cases and 500,000 deaths annually, with their incidence continuing to rise. Carcinogenesis is a complex, multidimensional molecular process leading to cancer development, and in recent years, the role of nerves in the pathogenesis of various malignancies has been increasingly recognized. Thanks to the abundant innervation of the head and neck region, peripheral nervous system has gained considerable interest for its possible role in the development and progression of HNCs. Intratumoral parasympathetic, sympathetic, and sensory nerve fibers are emerging as key players and potential targets for novel anti-cancer and pain-relieving medications in different tumors, including HNCs. This review explores nerve-cancer interactions, including perineural invasion (PNI), cancer-related axonogenesis, neurogenesis, and nerve reprogramming, with an emphasis on their molecular mechanisms, mediators and clinical implications. PNI, an adverse histopathologic feature, has been widely investigated in HNCs. However, its prognostic value remains debated due to inconsistent results when classified dichotomously (present/absent). Emerging evidence suggests that quantitative and qualitative descriptions of PNI may better reflect its clinical usefulness. The review also examines therapies targeting nerve-cancer crosstalk and highlights the influence of HPV status on tumor innervation. By synthesizing current knowledge, challenges, and future perspectives, this review offers insights into the molecular basis of nerve involvement in HNCs and the potential for novel therapeutic approaches.
Collapse
Affiliation(s)
- Krzysztof Rutkowski
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Surgical Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, Gdańsk, Poland
- Department of Otolaryngology, Phoniatrics and Audiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alice Porazzi
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
3
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
4
|
Sawicki CM, Janal MN, Gonzalez SH, Wu AK, Schmidt BL, Albertson DG. Measurement of the Association of Pain with Clinical Characteristics in Oral Cancer Patients at Diagnosis and Prior to Cancer Treatment. J Pain Res 2024; 17:501-508. [PMID: 38328017 PMCID: PMC10848821 DOI: 10.2147/jpr.s423318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 02/09/2024] Open
Abstract
Aim Oral cancer patients suffer pain at the site of the cancer, which degrades quality of life (QoL). The University of California San Francisco Oral Cancer Pain Questionnaire (UCSFOCPQ), the only validated instrument specifically designed for measuring oral cancer pain, measures the intensity and nature of pain and the level of functional restriction due to pain. Purpose The aim of this study was to compare pain reported by untreated oral cancer patients on the UCSFOCPQ with pain they reported on the Brief Pain Inventory (BPI), an instrument widely used to evaluate cancer and non-cancer pain. Patients and Methods The correlation between pain measured by the two instruments and clinical characteristics were analyzed. Thirty newly diagnosed oral cancer patients completed the UCSFOCPQ and the BPI. Results Pain severity measurements made by the UCSFOCPQ and BPI were concordant; however, the widely used BPI average pain over 24 hours score appeared less sensitive to detect association of oral cancer pain with clinical characteristics of patients prior to treatment (nodal status, depth of invasion, DOI). A BPI average score that includes responses to questions that measure both pain severity and interference with function performs similarly to the UCSFOCPQ in detection of associations with nodal status, pathologic T stage (pT stage), stage and depth of invasion (DOI). Conclusion Pain assessment instruments that measure sensory and interference dimensions of oral cancer pain correlate with biologic features and clinical behavior.
Collapse
Affiliation(s)
- Caroline M Sawicki
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY, USA
| | - Malvin N Janal
- Department of Epidemiology & Health Promotion New York University College of Dentistry, New York, NY, USA
| | - Sung Hye Gonzalez
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Angie K Wu
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Brian L Schmidt
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY, USA
| | - Donna G Albertson
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
5
|
Luo HM, Ye JR, Pu FQ, Luo HL, Zhang WJ. Role and therapeutic target of P2X2/3 receptors in visceral pain. Neuropeptides 2023; 101:102355. [PMID: 37390743 DOI: 10.1016/j.npep.2023.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.
Collapse
Affiliation(s)
- Hong-Mei Luo
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Jia-Rong Ye
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Fan-Qin Pu
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Hong-Liang Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China.
| |
Collapse
|
6
|
Son GY, Tu NH, Santi MD, Lopez SL, Souza Bomfim GH, Vinu M, Zhou F, Chaloemtoem A, Alhariri R, Idaghdour Y, Khanna R, Ye Y, Lacruz RS. The Ca 2+ channel ORAI1 is a regulator of oral cancer growth and nociceptive pain. Sci Signal 2023; 16:eadf9535. [PMID: 37669398 PMCID: PMC10747475 DOI: 10.1126/scisignal.adf9535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Oral cancer causes pain associated with cancer progression. We report here that the function of the Ca2+ channel ORAI1 is an important regulator of oral cancer pain. ORAI1 was highly expressed in tumor samples from patients with oral cancer, and ORAI1 activation caused sustained Ca2+ influx in human oral cancer cells. RNA-seq analysis showed that ORAI1 regulated many genes encoding oral cancer markers such as metalloproteases (MMPs) and pain modulators. Compared with control cells, oral cancer cells lacking ORAI1 formed smaller tumors that elicited decreased allodynia when inoculated into mouse paws. Exposure of trigeminal ganglia neurons to MMP1 evoked an increase in action potentials. These data demonstrate an important role of ORAI1 in oral cancer progression and pain, potentially by controlling MMP1 abundance.
Collapse
Affiliation(s)
- Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| | - Nguyen Huu Tu
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Maria Daniela Santi
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Santiago Loya Lopez
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | | | - Manikandan Vinu
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Fang Zhou
- Department of Pathology, New York University Langone Health, New York, NY 10010
| | - Ariya Chaloemtoem
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rama Alhariri
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Yi Ye
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| |
Collapse
|
7
|
Ye Y, Cardoso DDM, Kayahara GM, Bernabé DG. A pilot study to improve pain phenotyping in head and neck cancer patients. FRONTIERS IN PAIN RESEARCH 2023; 4:1146667. [PMID: 37251594 PMCID: PMC10211332 DOI: 10.3389/fpain.2023.1146667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Pain associated with head and neck cancer (HNC) is difficult to manage and reduces quality of life. It has been increasingly recognized that HNC patients exhibit a wide range of pain symptoms. Here we developed an orofacial pain assessment questionnaire and conducted a pilot study to improve pain phenotyping in HNC patients at the diagnosis. The questionnaire captures the following pain characteristics: pain intensity, location, quality, duration, and frequency; the impact of pain on daily activities; changes in smell and food sensitivities. Twenty-five HNC patients completed the questionnaire. 88% patients reported pain at the site of tumor; 36% reported multiple pain sites. All patients with pain reported at least one neuropathic pain (NP) descriptor, 54.5% reported at least two NP descriptors. The most common descriptors were "burning" and "pins and needles". Most patients reported increased pain to sour or hot/spicy food/drinks, and to food with coarse/hard textures. Patients exhibited impaired oral function, especially chewing, talking, mouth/jaw opening, and eating. Tumor progression has a significant impact on pain. Nodal metastasis is linked to pain at multiple body sites. Patients with advanced tumor staging experience greater pain at the primary tumor site, when exposed to hot or spicy food/drinks or food with hard/coarse texture, or when eating or chewing. We conclude that HNC patients experience a wide range of pain symptoms with altered mechanical, chemical, and temperature sensation. Improved phenotyping and stratification of pain in HNC patients will help address the underlying etiology, which may enable personalized therapeutic approaches in the future.
Collapse
Affiliation(s)
- Yi Ye
- Translational Research Center, New York University College of Dentistry, New York, NY, United States
- Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Diovana de Melo Cardoso
- Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Giseli Mitsuy Kayahara
- Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| |
Collapse
|
8
|
Changes in Acupuncture-Induced Specific Acupoint Neurotransmitters are Possibly Related to Their Physiological Functions in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4849528. [PMID: 36865739 PMCID: PMC9974273 DOI: 10.1155/2023/4849528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
This study investigated changes in neurotransmitters induced by the application of electroacupuncture (EA) at Zusanli (ST36) and Neiguan (PC6). A total of 30 rats were divided into five groups: sham, ST (EA at bilateral ST36 and ST37), ScT (ST plus previous neurectomy of the bilateral sciatic nerves), ScS (sham plus previous neurectomy of the bilateral sciatic nerve), and PC (EA at bilateral PC6 and PC7). The P2X2 receptor expression was stronger in the sham group than in the ST and PC groups (both p < 0.05) but similar between the sham and ScT groups (p > 0.05). Dopamine levels in the extracellular fluid surrounding the acupoints were higher in the PC group than in the sham and ST groups during the postacupuncture period (both p < 0.05). Glutamate levels in the extracellular fluid surrounding the acupoints were higher in the ST group than in the sham group during the acupuncture period (p < 0.05) and higher in the ST group than in the sham and PC groups during the postacupuncture period (both p < 0.05). Serum adrenaline and noradrenaline levels were higher in the PC group than in the sham, ST, and ScT groups (all p < 0.05). Glutamate levels in the CSF were higher in the ST group than in the sham, ScS, and PC groups (all p < 0.05). GABA levels in the CSF were higher in the ST group than in the sham, ScT, and PC groups (all p < 0.05). EA at ST36 and ST37 and PC6 and PC7 exerted an analgesic effect, EA at PC6 and PC7 can enhance heart function, and EA at ST36 and ST37 modulates the cerebral cortex. However, the study needs an evaluation of direct pain behavior, heart function, and brain function in the future.
Collapse
|
9
|
Sawicki CM, Janal MN, Nicholson SJ, Wu AK, Schmidt BL, Albertson DG. Oral cancer patients experience mechanical and chemical sensitivity at the site of the cancer. BMC Cancer 2022; 22:1165. [PMID: 36368973 PMCID: PMC9650819 DOI: 10.1186/s12885-022-10282-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Oral cancer patients suffer severe chronic and mechanically-induced pain at the site of the cancer. Our clinical experience is that oral cancer patients report new sensitivity to spicy foods. We hypothesized that in cancer patients, mechanical and chemical sensitivity would be greater when measured at the cancer site compared to a contralateral matched normal site. METHODS We determined mechanical pain thresholds (MPT) on the right and left sides of the tongue of 11 healthy subjects, and at the cancer and contralateral matched normal site in 11 oral cancer patients in response to von Frey filaments in the range of 0.008 to 300 g (normally not reported as painful). We evaluated chemical sensitivity in 13 healthy subjects and seven cancer patients, who rated spiciness/pain on a visual analog scale in response to exposure to six paper strips impregnated with capsaicin (0-10 mM). RESULTS Mechanical detection thresholds (MDT) were recorded for healthy subjects, but not MPTs. By contrast, MPTs were measured at the site of the cancer in oral cancer patients (7/11 patients). No MPTs were measured at the cancer patients' contralateral matched normal sites. Measured MPTs were correlated with patients' responses to the University of California Oral Cancer Pain Questionnaire. Capsaicin sensitivity at the site of the cancer was evident in cancer patients by a leftward shift of the cancer site capsaicin dose-response curve compared to that of the patient's contralateral matched normal site. We detected no difference in capsaicin sensitivity on the right and left sides of tongues of healthy subjects. CONCLUSIONS Mechanical and chemical sensitivity testing was well tolerated by the majority of oral cancer patients. Sensitivity is greater at the site of the cancer than at a contralateral matched normal site.
Collapse
Affiliation(s)
- Caroline M. Sawicki
- grid.137628.90000 0004 1936 8753Department of Pediatric Dentistry, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Malvin N. Janal
- grid.137628.90000 0004 1936 8753Department of Epidemiology & Health Promotion, New York University College of Dentistry, Room 301, 433 First Avenue, New York, NY 10010 USA
| | - Samuel J. Nicholson
- grid.137628.90000 0004 1936 8753Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Angie K. Wu
- grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Brian L. Schmidt
- grid.137628.90000 0004 1936 8753Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753NYU Oral Cancer Center, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Donna G. Albertson
- grid.137628.90000 0004 1936 8753Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753NYU Oral Cancer Center, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| |
Collapse
|
10
|
Dubeykovskaya ZA, Tu NH, Garcia PDR, Schmidt BL, Albertson DG. Oral Cancer Cells Release Vesicles that Cause Pain. Adv Biol (Weinh) 2022; 6:e2200073. [PMID: 35802912 PMCID: PMC9474716 DOI: 10.1002/adbi.202200073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/02/2022] [Indexed: 01/28/2023]
Abstract
Oral cancer pain is attributed to the release from cancers of mediators that sensitize and activate sensory neurons. Intraplantar injection of conditioned media (CM) from human tongue cancer cell line HSC-3 or OSC-20 evokes nociceptive behavior. By contrast, CM from noncancer cell lines, DOK, and HaCaT are non-nociceptive. Pain mediators are carried by extracellular vesicles (EVs) released from cancer cells. Depletion of EVs from cancer cell line CM reverses mechanical allodynia and thermal hyperalgesia. CM from non-nociceptive cell lines become nociceptive when reconstituted with HSC-3 EVs. Two miRNAs (hsa-miR-21-5p and hsa-miR-221-3p) are identified that are present in increased abundance in EVs from HSC-3 and OSC-20 CM compared to HaCaT CM. The miRNA target genes suggest potential involvement in oral cancer pain of the toll like receptor 7 (TLR7) and 8 (TLR8) pathways, as well as signaling through interleukin 6 cytokine family signal transducer receptor (gp130, encoded by IL6ST) and colony stimulating factor receptor (G-CSFR, encoded by CSF3R), Janus kinase and signal transducer and activator of transcription 3 (JAK/STAT3). These studies confirm the recent discovery of the role of cancer EVs in pain and add to the repertoire of algesic and analgesic cancer pain mediators and pathways that contribute to oral cancer pain.
Collapse
Affiliation(s)
- Zinaida A Dubeykovskaya
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Nguyen Huu Tu
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Paulina D Ramírez Garcia
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Donna G Albertson
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| |
Collapse
|
11
|
Dong CR, Zhang WJ, Luo HL. Association between P2X3 receptors and neuropathic pain: As a potential therapeutic target for therapy. Biomed Pharmacother 2022; 150:113029. [PMID: 35489283 DOI: 10.1016/j.biopha.2022.113029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Neuropathic pain is a common clinical symptom of various diseases, and it seriously affects the physical and mental health of patients. Owing to the complex pathological mechanism of neuropathic pain, clinical treatment of pain is challenging. Therefore, there is growing interest among researchers to explore potential therapeutic strategies for neuropathic pain. A large number of studies have shown that development of neuropathic pain is related to nerve conduction and related signaling molecules. P2X3 receptors (P2X3R) are ATP-dependent ion channels that participate in the transmission of neural information and related signaling pathways, sensitize the central nervous system, and play a key role in the development of neuropathic pain. In this paper, we summarized the structure and biological characteristics of the P2X3R gene and discussed the role of P2X3R in the nervous system. Moreover, we outlined the related pathological mechanisms of pain and described the relationship between P2X3R and chronic pain to provide valuable information for development of novel treatment strategies for pain.
Collapse
Affiliation(s)
- Cai-Rong Dong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| | - Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| |
Collapse
|
12
|
Fadu head and neck squamous cell carcinoma induces hyperexcitability of primary sensory neurons in an in vitro coculture model. Pain Rep 2022; 7:e1012. [PMID: 35620249 PMCID: PMC9113206 DOI: 10.1097/pr9.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Squamouscell carcinoma cells promoted an inflammatory microenvironment and induced sensitization of both human and rat dorsal root ganglion neurons in patch clamp electrophysiology recordings. Introduction: Methods: Results: Conclusions:
Collapse
|
13
|
Ye Y, Jensen DD, Viet CT, Pan HL, Campana WM, Amit M, Boada MD. Advances in Head and Neck Cancer Pain. J Dent Res 2022; 101:1025-1033. [PMID: 35416080 PMCID: PMC9305840 DOI: 10.1177/00220345221088527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) affects over 890,000 people annually worldwide and has a mortality rate of 50%. Aside from poor survival, HNC pain impairs eating, drinking, and talking in patients, severely reducing quality of life. Different pain phenotype in patients (allodynia, hyperalgesia, and spontaneous pain) results from a combination of anatomical, histopathological, and molecular differences between cancers. Poor pathologic features (e.g., perineural invasion, lymph node metastasis) are associated with increased pain. The use of syngeneic/immunocompetent animal models, as well as a new mouse model of perineural invasion, provides novel insights into the pathobiology of HNC pain. Glial and immune modulation of the tumor microenvironment affect not only cancer progression but also pain signaling. For example, Schwann cells promote cancer cell proliferation, migration, and secretion of nociceptive mediators, whereas neutrophils are implicated in sex differences in pain in animal models of HNC. Emerging evidence supports the existence of a functional loop of cross-activation between the tumor microenvironment and peripheral nerves, mediated by a molecular exchange of bioactive contents (pronociceptive and protumorigenic) via paracrine and autocrine signaling. Brain-derived neurotrophic factor, tumor necrosis factor α, legumain, cathepsin S, and A disintegrin and metalloprotease 17 expressed in the HNC microenvironment have recently been shown to promote HNC pain, further highlighting the importance of proinflammatory cytokines, neurotrophic factors, and proteases in mediating HNC-associated pain. Pronociceptive mediators, together with nerve injury, cause nociceptor hypersensitivity. Oncogenic, pronociceptive mediators packaged in cancer cell-derived exosomes also induce nociception in mice. In addition to increased production of pronociceptive mediators, HNC is accompanied by a dampened endogenous antinociception system (e.g., downregulation of resolvins and µ-opioid receptor expression). Resolvin treatment or gene delivery of µ-opioid receptors provides pain relief in preclinical HNC models. Collectively, recent studies suggest that pain and HNC progression share converging mechanisms that can be targeted for cancer treatment and pain management.
Collapse
Affiliation(s)
- Y Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - D D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - C T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - H L Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W M Campana
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, USA.,San Diego Veterans Health System, San Diego, CA, USA
| | - M Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Scheff NN, Wall IM, Nicholson S, Williams H, Chen E, Tu NH, Dolan JC, Liu CZ, Janal MN, Bunnett NW, Schmidt BL. Oral cancer induced TRPV1 sensitization is mediated by PAR 2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci Rep 2022; 12:4121. [PMID: 35260737 PMCID: PMC8904826 DOI: 10.1038/s41598-022-08005-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Oral cancer patients report sensitivity to spicy foods and liquids. The mechanism responsible for chemosensitivity induced by oral cancer is not known. We simulate oral cancer-induced chemosensitivity in a xenograft oral cancer mouse model using two-bottle choice drinking and conditioned place aversion assays. An anatomic basis of chemosensitivity is shown in increased expression of TRPV1 in anatomically relevant trigeminal ganglion (TG) neurons in both the xenograft and a carcinogen (4-nitroquinoline 1-oxide)-induced oral cancer mouse models. The percent of retrograde labeled TG neurons that respond to TRPV1 agonist, capsaicin, is increased along with the magnitude of response as measured by calcium influx, in neurons from the cancer models. To address the possible mechanism of TRPV1 sensitivity in tongue afferents, we study the role of PAR2, which can sensitize the TRPV1 channel. We show co-expression of TRPV1 and PAR2 on tongue afferents and using a conditioned place aversion assay, demonstrate that PAR2 mediates oral cancer-induced, TRPV1-evoked sensitivity in an oral cancer mouse model. The findings provide insight into oral cancer-mediated chemosensitivity.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA
| | - Ian M Wall
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Sam Nicholson
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Hannah Williams
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Elyssa Chen
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Nguyen H Tu
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - John C Dolan
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Cheng Z Liu
- Pathology Department, NYU Langone Health, New York, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health Neuroscience Institute, NYU Langone Health, New York, USA
| | - Brian L Schmidt
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA.
| |
Collapse
|
15
|
Grayson M, Arris D, Wu P, Merlo J, Ibrahim T, Mei C, Valenzuela V, Ganatra S, Ruparel S. Oral squamous cell carcinoma-released brain-derived neurotrophic factor contributes to oral cancer pain by peripheral tropomyosin receptor kinase B activation. Pain 2022; 163:496-507. [PMID: 34321412 PMCID: PMC8678394 DOI: 10.1097/j.pain.0000000000002382] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Oral cancer pain is debilitating and understanding mechanisms for it is critical to develop novel treatment strategies treatment strategies. Brain-derived neurotrophic factor (BDNF) signaling is elevated in oral tumor biopsies and is involved with tumor progression. Whether BDNF signaling in oral tumors contributes to cancer-induced pain is not known. The current study evaluates a novel peripheral role of BDNF-tropomyosin receptor kinase B (TrkB) signaling in oral cancer pain. Using human oral squamous cell carcinoma (OSCC) cells and an orthotopic mouse tongue cancer pain model, we found that BDNF levels were upregulated in superfusates and lysates of tumor tongues and that BDNF was expressed by OSCC cells themselves. Moreover, neutralization of BDNF or inhibition of TrkB activity by ANA12, within the tumor-bearing tongue reversed tumor-induced pain-like behaviors in a sex-dependent manner. Oral squamous cell carcinoma conditioned media also produced pain-like behaviors in naïve male mice that was reversed by local injection of ANA12. On a physiological level, using single-fiber tongue-nerve electrophysiology, we found that acutely blocking TrkB receptors reversed tumor-induced mechanical sensitivity of A-slow high threshold mechanoreceptors. Furthermore, single-cell reverse transcription polymerase chain reaction data of retrogradely labeled lingual neurons demonstrated expression of full-form TrkB and truncated TrkB in distinct neuronal subtypes. Last but not the least, intra-TG siRNA for TrkB also reversed tumor-induced orofacial pain behaviors. Our data suggest that TrkB activities on lingual sensory afferents are partly controlled by local release of OSCC-derived BDNF, thereby contributing to oral cancer pain. This is a novel finding and the first demonstration of a peripheral role for BDNF signaling in oral cancer pain.
Collapse
Affiliation(s)
- Max Grayson
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Dominic Arris
- Department of Pharmacology and Physiology, University of Texas Health San Antonio, Texas, USA
| | - Ping Wu
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Jaclyn Merlo
- Department of Microbiology and Immunology, University of Texas Health San Antonio, Texas, USA
| | - Tarek Ibrahim
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Chang Mei
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Vanessa Valenzuela
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shilpa Ganatra
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shivani Ruparel
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| |
Collapse
|
16
|
Glia and Orofacial Pain: Progress and Future Directions. Int J Mol Sci 2021; 22:ijms22105345. [PMID: 34069553 PMCID: PMC8160907 DOI: 10.3390/ijms22105345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Orofacial pain is a universal predicament, afflicting millions of individuals worldwide. Research on the molecular mechanisms of orofacial pain has predominately focused on the role of neurons underlying nociception. However, aside from neural mechanisms, non-neuronal cells, such as Schwann cells and satellite ganglion cells in the peripheral nervous system, and microglia and astrocytes in the central nervous system, are important players in both peripheral and central processing of pain in the orofacial region. This review highlights recent molecular and cellular findings of the glia involvement and glia–neuron interactions in four common orofacial pain conditions such as headache, dental pulp injury, temporomandibular joint dysfunction/inflammation, and head and neck cancer. We will discuss the remaining questions and future directions on glial involvement in these four orofacial pain conditions.
Collapse
|
17
|
Peripheral nerve injury and sensitization underlie pain associated with oral cancer perineural invasion. Pain 2021; 161:2592-2602. [PMID: 32658150 DOI: 10.1097/j.pain.0000000000001986] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer invading into nerves, termed perineural invasion (PNI), is associated with pain. Here, we show that oral cancer patients with PNI report greater spontaneous pain and mechanical allodynia compared with patients without PNI, suggesting that unique mechanisms drive PNI-induced pain. We studied the impact of PNI on peripheral nerve physiology and anatomy using a murine sciatic nerve PNI model. Mice with PNI exhibited spontaneous nociception and mechanical allodynia. Perineural invasion induced afterdischarge in A high-threshold mechanoreceptors (HTMRs), mechanical sensitization (ie, decreased mechanical thresholds) in both A and C HTMRs, and mechanical desensitization in low-threshold mechanoreceptors. Perineural invasion resulted in nerve damage, including axon loss, myelin damage, and axon degeneration. Electrophysiological evidence of nerve injury included decreased conduction velocity, and increased percentage of both mechanically insensitive and electrically unexcitable neurons. We conclude that PNI-induced pain is driven by nerve injury and peripheral sensitization in HTMRs.
Collapse
|
18
|
TNFα promotes oral cancer growth, pain, and Schwann cell activation. Sci Rep 2021; 11:1840. [PMID: 33469141 PMCID: PMC7815837 DOI: 10.1038/s41598-021-81500-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Oral cancer is very painful and impairs a patient's ability to eat, talk, and drink. Mediators secreted from oral cancer can excite and sensitize sensory neurons inducing pain. Cancer mediators can also activate Schwann cells, the peripheral glia that regulates neuronal function and repair. The contribution of Schwann cells to oral cancer pain is unclear. We hypothesize that the oral cancer mediator TNFα activates Schwann cells, which further promotes cancer progression and pain. We demonstrate that TNFα is overexpressed in human oral cancer tissues and correlates with increased self-reported pain in patients. Antagonizing TNFα reduces oral cancer proliferation, cytokine production, and nociception in mice with oral cancer. Oral cancer or TNFα alone increases Schwann cell activation (measured by Schwann cell proliferation, migration, and activation markers), which can be inhibited by neutralizing TNFα. Cancer- or TNFα-activated Schwann cells release pro-nociceptive mediators such as TNFα and nerve growth factor (NGF). Activated Schwann cells induce nociceptive behaviors in mice, which is alleviated by blocking TNFα. Our study suggests that TNFα promotes cancer proliferation, progression, and nociception at least partially by activating Schwann cells. Inhibiting TNFα or Schwann cell activation might serve as therapeutic approaches for the treatment of oral cancer and associated pain.
Collapse
|
19
|
Trapero C, Martín-Satué M. Purinergic Signaling in Endometriosis-Associated Pain. Int J Mol Sci 2020; 21:E8512. [PMID: 33198179 PMCID: PMC7697899 DOI: 10.3390/ijms21228512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease, with an associated chronic inflammatory component, characterized by the presence of endometrial tissue outside the uterine cavity. Its predominant symptom is pain, a condition notably altering the quality of life of women with the disease. This review is intended to exhaustively gather current knowledge on purinergic signaling in endometriosis-associated pain. Altered extracellular ATP hydrolysis, due to changes in ectonucleotidase activity, has been reported in endometriosis; the resulting accumulation of ATP in the endometriotic microenvironment points to sustained activation of nucleotide receptors (P2 receptors) capable of generating a persistent pain message. P2X3 receptor, expressed in sensory neurons, mediates nociceptive, neuropathic, and inflammatory pain, and is enrolled in endometriosis-related pain. Pharmacological inhibition of P2X3 receptor is under evaluation as a pain relief treatment for women with endometriosis. The role of other ATP receptors is also discussed here, e.g., P2X4 and P2X7 receptors, which are involved in inflammatory cell-nerve and microglia-nerve crosstalk, and therefore in inflammatory and neuropathic pain. Adenosine receptors (P1 receptors), by contrast, mainly play antinociceptive and anti-inflammatory roles. Purinome-targeted drugs, including nucleotide receptors and metabolizing enzymes, are potential non-hormonal therapeutic tools for the pharmacological management of endometriosis-related pain.
Collapse
Affiliation(s)
- Carla Trapero
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| | - Mireia Martín-Satué
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| |
Collapse
|
20
|
Legumain Induces Oral Cancer Pain by Biased Agonism of Protease-Activated Receptor-2. J Neurosci 2020; 41:193-210. [PMID: 33172978 DOI: 10.1523/jneurosci.1211-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not β-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not β-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.
Collapse
|
21
|
Zhang WJ, Luo C, Pu FQ, Zhu JF, Zhu Z. The role and pharmacological characteristics of ATP-gated ionotropic receptor P2X in cancer pain. Pharmacol Res 2020; 161:105106. [DOI: 10.1016/j.phrs.2020.105106] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
|
22
|
A disintegrin and metalloproteinase domain 17-epidermal growth factor receptor signaling contributes to oral cancer pain. Pain 2020; 161:2330-2343. [PMID: 32453136 PMCID: PMC9244849 DOI: 10.1097/j.pain.0000000000001926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells secrete pronociceptive mediators that sensitize adjacent sensory neurons and cause pain. Identification and characterization of these mediators could pinpoint novel targets for cancer pain treatment. In this study, we identified candidate genes in cancer cell lines that encode for secreted or cell surface proteins that may drive nociception. To undertake this work, we used an acute cancer pain mouse model, transcriptomic analysis of publicly available human tumor-derived cell line data, and a literature review. Cancer cell line supernatants were assigned a phenotype based on evoked nociceptive behavior in an acute cancer pain mouse model. We compared gene expression data from nociceptive and nonnociceptive cell lines. Our analyses revealed differentially expressed genes and pathways; many of the identified genes were not previously associated with cancer pain signaling. Epidermal growth factor receptor (EGFR) and disintegrin metalloprotease domain 17 (ADAM17) were identified as potential targets among the differentially expressed genes. We found that the nociceptive cell lines contained significantly more ADAM17 protein in the cell culture supernatant compared to nonnociceptive cell lines. Cytoplasmic EGFR was present in almost all (>90%) tongue primary afferent neurons in mice. Monoclonal antibody against EGFR, cetuximab, inhibited cell line supernatant-induced nociceptive behavior in an acute oral cancer pain mouse model. We infer from these data that ADAM17-EGFR signaling is involved in cancer mediator-induced nociception. The differentially expressed genes and their secreted protein products may serve as candidate therapeutic targets for oral cancer pain and warrant further evaluation.
Collapse
|
23
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
24
|
Grayson M, Furr A, Ruparel S. Depiction of Oral Tumor-Induced Trigeminal Afferent Responses Using Single-Fiber Electrophysiology. Sci Rep 2019; 9:4574. [PMID: 30872649 PMCID: PMC6418205 DOI: 10.1038/s41598-019-39824-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Considerable gap in knowledge exists about the mechanisms by which oral tumors regulate peripheral sensory fibers to produce pain and altered sensations. To address this gap, we used a murine model of oral squamous cell carcinoma (OSCC) of the tongue to investigate changes in response properties of trigeminal afferent neurons. Using this model, we developed an ex vivo method for single neuron recordings of the lingual nerve from isolated tongue tissue. Our data demonstrated that the tongue tumor produced increased spontaneous firing of lingual fibers compared to control as well as produced mechanical hypersensitivity and reduced von Frey thresholds of C- and A-slow-high-threshold mechanoreceptors (HTMR) fibers but had no effect on C-LTMR, A-slow-LTMR and A-fast lingual fibers. Mechanically-insensitive fibers were also detected in lingual afferents of the control group, that were significantly decreased in tumor-bearing preparations. Collectively, using single fiber electrophysiology of lingual sensory fibers, we show that human OSCC tumors sensitize peripheral trigeminal nerve terminals, providing a unique opportunity to study mechanisms of oral cancer pain.
Collapse
Affiliation(s)
- Max Grayson
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Ashley Furr
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Shivani Ruparel
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
25
|
Salvo E, Saraithong P, Curtin JG, Janal MN, Ye Y. Reciprocal interactions between cancer and Schwann cells contribute to oral cancer progression and pain. Heliyon 2019; 5:e01223. [PMID: 30815600 PMCID: PMC6378335 DOI: 10.1016/j.heliyon.2019.e01223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/06/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Pain associated with oral squamous cell carcinoma (oral SCC) decreases quality of life and survival. The interaction between cancer and the peripheral nerves is known to initiate and amplify pain and contribute to carcinogenesis. Schwann cells envelop peripheral nerves and are activated in response to neuronal damage. The contributions of Schwann cells to oral SCC progression and pain are unknown. Using a non-contact co-culture model, we demonstrate that Schwann cells (RSC-96) and oral SCC cells (HSC-3) reciprocally interact to promote proliferation, migration, and invasion. Schwann cell-oral SCC interaction leads to increased production of adenosine, which stimulates cell proliferation and migration of both cell types. The adenosine receptor A2B (ADORA2B) is expressed on RSC-96 cells. We show that supernatant from the RSC-96 cells co-cultured with HSC-3 cells induces increased mechanical hypersensitivity in mice compared to supernatant from control RSC-96 cells. Treatment with the ADORA2B antagonist PSB603 significantly inhibits co-culture interactions - proliferation and migration, and co-culture supernatant induced mechanical hypersensitivity. RSC-96 cells co-cultured with HSC-3 cells secrete increased amounts of the pronociceptive mediator, interleukin-6 (IL-6), which can be reduced by adding PSB603 into the co-culture. Our data support a reciprocal interaction between oral SCC and Schwann cells mediated by adenosine with potential to promote oral SCC progression and pain via increased secretion of IL-6.
Collapse
Affiliation(s)
- Elizabeth Salvo
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Prakaimuk Saraithong
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jared G. Curtin
- DDS Program, New York University College of Dentistry, New York, NY, 10010, USA
| | - Malvin N. Janal
- Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yi Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| |
Collapse
|
26
|
Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation. Pain 2018; 158:2396-2409. [PMID: 28885456 DOI: 10.1097/j.pain.0000000000001044] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Patients with oral cancer report severe pain during function. Inflammation plays a role in the oral cancer microenvironment; however, the role of immune cells and associated secretion of inflammatory mediators in oral cancer pain has not been well defined. In this study, we used 2 oral cancer mouse models: a cell line supernatant injection model and the 4-nitroquinoline-1-oxide (4NQO) chemical carcinogenesis model. We used the 2 models to study changes in immune cell infiltrate and orofacial nociception associated with oral squamous cell carcinoma (oSCC). Oral cancer cell line supernatant inoculation and 4NQO-induced oSCC resulted in functional allodynia and neuronal sensitization of trigeminal tongue afferent neurons. Although the infiltration of immune cells is a prominent component of both oral cancer models, our use of immune-deficient mice demonstrated that oral cancer-induced nociception was not dependent on the inflammatory component. Furthermore, the inflammatory cytokine, tumor necrosis factor alpha (TNFα), was identified in high concentration in oral cancer cell line supernatant and in the tongue tissue of 4NQO-treated mice with oSCC. Inhibition of TNFα signaling abolished oral cancer cell line supernatant-evoked functional allodynia and disrupted T-cell infiltration. With these data, we identified TNFα as a prominent mediator in oral cancer-induced nociception and inflammation, highlighting the need for further investigation in neural-immune communication in cancer pain.
Collapse
|
27
|
Ye Y, Scheff NN, Bernabé D, Salvo E, Ono K, Liu C, Veeramachaneni R, Viet CT, Viet DT, Dolan JC, Schmidt BL. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology 2018; 139:182-193. [PMID: 30009833 DOI: 10.1016/j.neuropharm.2018.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/23/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022]
Abstract
Oral cancer is often painful and lethal. Oral cancer progression and pain may result from shared pathways that involve unresolved inflammation and elevated levels of pro-inflammatory cytokines. Resolvin D-series (RvDs) are endogenous lipid mediators derived from omega-3 fatty acids that exhibit pro-resolution and anti-inflammatory actions. These mediators have recently emerged as a novel class of therapeutics for diseases that involve inflammation; the specific roles of RvDs in oral cancer and associated pain are not defined. The present study investigated the potential of RvDs (RvD1 and RvD2) to treat oral cancer and alleviate oral cancer pain. We found down-regulated mRNA levels of GPR18 and GPR32 (which code for receptors RvD1 and RvD2) in oral cancer cells. Both RvD1 and RvD2 inhibited oral cancer proliferation in vitro. Using two validated mouse oral squamous cell carcinoma xenograft models, we found that RvD2, the more potent anti-inflammatory lipid mediator, significantly reduced tumor size. The mechanism of this action might involve suppression of IL-6, C-X-C motif chemokine 10 (CXCL10), and reduction of tumor necrosis. RvD2 generated short-lasting analgesia in xenograft cancer models, which coincided with decreased neutrophil infiltration and myeloperoxidase activity. Using a cancer supernatant model, we demonstrated that RvD2 reduced cancer-derived cytokines/chemokines (TNF-α, IL-6, CXCL10, and MCP-1), cancer mediator-induced CD11b+Ly6G- myeloid cells, and nociception. We infer from our results that manipulation of the endogenous pro-resolution pathway might provide a novel approach to improve oral cancer and cancer pain treatment.
Collapse
Affiliation(s)
- Yi Ye
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA.
| | - Nicole N Scheff
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Daniel Bernabé
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Elizabeth Salvo
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Kentaro Ono
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Cheng Liu
- Head and Neck Pathology, Langone Medical Center, USA
| | | | - Chi T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| | - Dan T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - John C Dolan
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Orthodontics, New York University, New York, NY, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| |
Collapse
|
28
|
Palani CD, Ramanathapuram L, Lam-ubol A, Kurago ZB. Toll-like receptor 2 induces adenosine receptor A2a and promotes human squamous carcinoma cell growth via extracellular signal regulated kinases ½. Oncotarget 2018; 9:6814-6829. [PMID: 29467931 PMCID: PMC5805517 DOI: 10.18632/oncotarget.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/27/2017] [Indexed: 01/26/2023] Open
Abstract
Patient treatment for oral squamous cell carcinoma (OSCC) not associated with Human papillomavirus remains problematic. OSCC microenvironment is typically inflamed and colonized by microorganisms, providing ligands for toll-like receptors (TLR). In immune cells TLR2 and TLR4 activate NF-kB and extracellular signal regulated kinase (ERK)1/2 pathways, leading to upregulation of inhibitory adenosine receptors A2a and A2b, and reduction in stimulatory A1 and A3. How TLR and adenosine receptors function in SCC cells is not understood. To address this gap, we evaluated TLR and adenosine receptor expression and function in human OSCC cells and keratinocytes. TLR2 and A2a were co-expressed in pre-cancer and SCC cells of 17 oral specimens. In vitro, 5/6 OSCC lines expressed more TLR2 than TLR1, 4 or 6 mRNA. TLR2 ligands stimulated A2a expression in TLR2-high cell lines, but no A1 or A3 was detected with or without stimuli. In TLR2-high OSCC, TLR2/1, 2/6 and adenosine receptor agonists activated ERK1/2. TLR2-mediated ERK1/2 phosphorylation resulted in accumulation of c-FOS, ERK-dependent cell proliferation and reduced caspase-3 activity. Similar ERK1/2-dependent proliferation and decreased caspase-3 activity were caused by combined TLR2 and adenosine receptor stimuli. We conclude that TLR2 and adenosine receptor agonists, known to be present in the tumor microenvironment, may contribute to OSCC progression in part via direct effects on the ERK1/2 pathway in squamous carcinoma cells.
Collapse
Affiliation(s)
| | | | - Aroonwan Lam-ubol
- Faculty of Dentistry Srinakharinwirot University, Wattana, Bangkok, Thailand
| | - Zoya B. Kurago
- Dental College of Georgia, Augusta University, Augusta, GA, USA
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
29
|
Blockade of endothelin receptors reduces tumor-induced ongoing pain and evoked hypersensitivity in a rat model of facial carcinoma induced pain. Eur J Pharmacol 2018; 818:132-140. [DOI: 10.1016/j.ejphar.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
30
|
Ono K, Viet CT, Ye Y, Dang D, Hitomi S, Toyono T, Inenaga K, Dolan JC, Schmidt BL. Cutaneous pigmentation modulates skin sensitivity via tyrosinase-dependent dopaminergic signalling. Sci Rep 2017; 7:9181. [PMID: 28835637 PMCID: PMC5569050 DOI: 10.1038/s41598-017-09682-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
We propose a new mechanism of sensory modulation through cutaneous dopaminergic signalling. We hypothesize that dopaminergic signalling contributes to differential cutaneous sensitivity in darker versus lighter pigmented humans and mouse strains. We show that thermal and mechanical cutaneous sensitivity is pigmentation dependent. Meta-analyses in humans and mice, along with our own mouse behavioural studies, reveal higher thermal sensitivity in pigmented skin relative to less-pigmented or albino skin. We show that dopamine from melanocytes activates the D1-like dopamine receptor on primary sensory neurons. Dopaminergic activation increases expression of the heat-sensitive TRPV1 ion channel and reduces expression of the mechanically-sensitive Piezo2 channel; thermal threshold is lower and mechanical threshold is higher in pigmented skin.
Collapse
Affiliation(s)
- Kentaro Ono
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chi T Viet
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA.,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yi Ye
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Dongmin Dang
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Takashi Toyono
- Division of Oral Anatomy, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kiyotoshi Inenaga
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - John C Dolan
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA.,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Brian L Schmidt
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
31
|
Romero-Reyes M, Salvemini D. Cancer and orofacial pain. Med Oral Patol Oral Cir Bucal 2016; 21:e665-e671. [PMID: 27694791 PMCID: PMC5116107 DOI: 10.4317/medoral.21515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cancer pain is a devastating condition. Pain in the orofacial region, may be present as the single symptom of cancer or as a symptom of cancer in its later stages. This manuscript revises in a comprehensive manner the content of the conference entitled "Orofacial Pain and Cancer" (Dolor Orofacial y Cancer) given at the VI Simposio International "Advances in Oral Cancer" on the 22 July, 2016 in San Sebastioan-Donostia, Spain. MATERIAL AND METHODS We have reviewed (pubmed-medline) from the most relevant literature including reviews, systematic reviews and clinical cases, the significant and evidence-based mechanisms and mediators of cancer-associated facial pain, the diverse types of cancers that can be present in the craniofacial region locally or from distant sites that can refer to the orofacial region, cancer therapy that may induce pain in the orofacial region as well as discussed some of the new advancements in cancer pain therapy. RESULTS There is still a lack of understanding of cancer pain pathophysiology since depends of the intrinsic heterogeneity, type and anatomic location that the cancer may present, making more challenging the creation of better therapeutic options. Orofacial pain can arise from regional or distant tumor effects or as a consequence of cancer therapy. CONCLUSIONS The clinician needs to be aware that the pain may present the characteristics of any other orofacial pain disorder so a careful differential diagnosis needs to be given. Cancer pain diagnosis is made by exclusion and only can be reached after a thorough medical history, and all the common etiologies have been carefully investigated and ruled out. The current management tools are not optimal but there is hope for new, safer and effective therapies coming in the next years.
Collapse
Affiliation(s)
- M Romero-Reyes
- Department of Oral & Maxillofacial, Pathology, Radiology & Medicine, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010,
| | | |
Collapse
|
32
|
Abstract
Most cancer patients experience severe pain during their disease course, and the management of cancer pain is a major challenge for patients and the healthcare team. Many diverse translational models of cancer pain in recent years have improved our understanding of cancer-related pain. Cancer and associated cells in the cancer microenvironment may release various peripheral mediators, including ATP, formaldehyde, protons, proteases, endothelin, bradykinin, TNF and NGF, that result in the activation and/or sensitization of peripheral and central neurons, that contribute to the clinical manifestations of cancer-related pain. Identification of these mediators and the peripheral and central mechanisms by which they contribute to cancer-related pain may provide novel therapeutic targets to alleviate cancer patient suffering.
Collapse
Affiliation(s)
- David K Lam
- Oral & Maxillofacial Surgery, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
- Dental Oncology, Maxillofacial & Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Wasser Pain Management Centre, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
33
|
Chodroff L, Bendele M, Valenzuela V, Henry M, Ruparel S. EXPRESS: BDNF Signaling Contributes to Oral Cancer Pain in a Preclinical Orthotopic Rodent Model. Mol Pain 2016; 12:12/0/1744806916666841. [PMID: 27590070 PMCID: PMC5015823 DOI: 10.1177/1744806916666841] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The majority of patients with oral cancer report intense pain that is only partially managed by current analgesics. Thus, there is a strong need to study mechanisms as well as develop novel analgesics for oral cancer pain. Current study employed an orthotopic tongue cancer model with molecular and non-reflexive behavioral assays to determine possible mechanisms of oral cancer pain. Human oral squamous cell carcinoma cells line, HSC2, was injected into the tongue of male athymic mice and tumor growth was observed by day 6. Immunohistological analyses revealed a well-differentiated tumor with a localized immune response and pronounced sensory and sympathetic innervation and vascularization. The tumor expressed TMPRSS2, a protein previously reported with oral squamous cell carcinoma. ATF3 expression in trigeminal ganglia was not altered by tumor growth. Molecular characterization of the model demonstrated altered expression of several pain-related genes, out of which up-regulation of BDNF was most striking. Moreover, BDNF protein expression in trigeminal ganglia neurons was increased and inhibition of BDNF signaling with a tyrosine kinase B antagonist, ANA-12, reversed pain-like behaviors induced by the oral tumor. Oral squamous cell carcinoma tumor growth was also associated with a reduction in feeding, mechanical hypersensitivity in the face, as well as spontaneous pain behaviors as measured by the conditioned place preference test, all of which were reversed by analgesics. Interestingly, injection of HSC2 into the hindpaw did not reproduce this spectrum of pain behaviors; nor did injection of a colonic cancer cell line into the tongue. Taken together, this orthotopic oral cancer pain model reproduces the spectrum of pain reported by oral cancer patients, including higher order cognitive changes, and demonstrates that BDNF signaling constitutes a novel mechanism by which oral squamous cell carcinoma induces pain. Identification of the key role of tyrosine kinase B signaling in oral cancer pain may serve as a novel target for drug development.
Collapse
Affiliation(s)
- Leah Chodroff
- University of Texas Health Science Center at San Antonio
| | - Michele Bendele
- University of Texas Health Science Center at San Antonio Cancer Therapy and Research Center
| | | | - Michael Henry
- University of Texas Health Science Center At San Antonio
| | - Shivani Ruparel
- University of Texas Health Science Center at San AntonioUniversity of Texas Health Science Center at San Antonio Cancer Therapy and Research CenterUniversity of Texas Health Science Center at San AntonioUniversity of Texas Health Science Center At San Antonio
| |
Collapse
|
34
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
35
|
Guedon JMG, Longo G, Majuta LA, Thomspon ML, Fealk MN, Mantyh PW. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain. Pain 2016; 157:1239-1247. [PMID: 27186713 PMCID: PMC5142607 DOI: 10.1097/j.pain.0000000000000514] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question, we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy were then measured on days 21, 28, and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hind paw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors, whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that although bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive end points for clinical trials.
Collapse
Affiliation(s)
| | - Geraldine Longo
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Lisa A. Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | | | - Patrick W. Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
36
|
Shcherbatko A, Foletti D, Poulsen K, Strop P, Zhu G, Hasa-Moreno A, Melton Witt J, Loo C, Krimm S, Pios A, Yu J, Brown C, Lee JK, Stroud R, Rajpal A, Shelton D. Modulation of P2X3 and P2X2/3 Receptors by Monoclonal Antibodies. J Biol Chem 2016; 291:12254-70. [PMID: 27129281 DOI: 10.1074/jbc.m116.722330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 01/06/2023] Open
Abstract
Purinergic homomeric P2X3 and heteromeric P2X2/3 receptors are ligand-gated cation channels activated by ATP. Both receptors are predominantly expressed in nociceptive sensory neurons, and an increase in extracellular ATP concentration under pathological conditions, such as tissue damage or visceral distension, induces channel opening, membrane depolarization, and initiation of pain signaling. Hence, these receptors are considered important therapeutic targets for pain management, and development of selective antagonists is currently progressing. To advance the search for novel analgesics, we have generated a panel of monoclonal antibodies directed against human P2X3 (hP2X3). We have found that these antibodies produce distinct functional effects, depending on the homomeric or heteromeric composition of the target, its kinetic state, and the duration of antibody exposure. The most potent antibody, 12D4, showed an estimated IC50 of 16 nm on hP2X3 after short term exposure (up to 18 min), binding to the inactivated state of the channel to inhibit activity. By contrast, with the same short term application, 12D4 potentiated the slow inactivating current mediated by the heteromeric hP2X2/3 channel. Extending the duration of exposure to ∼20 h resulted in a profound inhibition of both homomeric hP2X3 and heteromeric hP2X2/3 receptors, an effect mediated by efficient antibody-induced internalization of the channel from the plasma membrane. The therapeutic potential of mAb12D4 was assessed in the formalin, complete Freund's adjuvant, and visceral pain models. The efficacy of 12D4 in the visceral hypersensitivity model indicates that antibodies against P2X3 may have therapeutic potential in visceral pain indications.
Collapse
Affiliation(s)
- Anatoly Shcherbatko
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080,
| | - Davide Foletti
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Kris Poulsen
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Pavel Strop
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Guoyun Zhu
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Adela Hasa-Moreno
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Jody Melton Witt
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Carole Loo
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Stellanie Krimm
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Ariel Pios
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Jessica Yu
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Colleen Brown
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - John K Lee
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Robert Stroud
- the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Arvind Rajpal
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - David Shelton
- From the Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| |
Collapse
|
37
|
Wu JX, Yuan XM, Wang Q, Wei W, Xu MY. Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3 receptor-mediated bone cancer pain in rats. Mol Pain 2016; 12:12/0/1744806916644929. [PMID: 27094551 PMCID: PMC4956381 DOI: 10.1177/1744806916644929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/20/2016] [Indexed: 12/27/2022] Open
Abstract
Background Lysophosphatidic acid receptor 1 and Rho/ROCK signaling is implicated in bone cancer pain development. However, it remains unknown whether the two signaling pathways function together in P2X3 receptor-mediated bone cancer pain. Results In this study, using a rat model of bone cancer, we examined the expression of P2X3 and lysophosphatidic acid receptor 1 in rat dorsal root ganglion neurons and further dissected whether lysophosphatidic acid receptor 1 and Rho/ROCK-mediated pathways interacted in modulating rat pain behavior. Bone cancer was established by inoculating Walker 256 cells into the left tibia of female Wistar rats. We observed a gradual and yet significant decline in mean paw withdrawal threshold in rats with bone cancer, but not in control rats. Our immunohistochemical staining revealed that the number of P2X3- and lysophosphatidic acid receptor 1-positive dorsal root ganglion neurons was significantly greater in rats with bone cancer than control rats. Lysophosphatidic acid receptor 1 blockade with VPC32183 significantly attenuated decline in mean paw withdrawal threshold. Flinching behavior test further showed that lysophosphatidic acid receptor 1 inhibition with VPC32183 transiently but significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Rho inhibition by intrathecal BoTXC3 caused a rapid reversal in decline in mean paw withdrawal threshold of rats with bone cancer. Flinching behavior test showed that BoTXC3 transiently and significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Similar findings were observed with ROCK inhibition by intrathecal Y27632. Furthermore, VPC32183 and BoTXC3 effectively aborted the appearance of lysophosphatidic acid-induced calcium influx peak. Conclusions Lysophosphatidic acid and its receptor LPAR1, acting through the Rho-ROCK pathway, regulate P2X3 receptor in the development of both mechanical and spontaneous pain in bone cancer.
Collapse
Affiliation(s)
- Jing-Xiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiao-Min Yuan
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiong Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wang Wei
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mei-Ying Xu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
38
|
Abstract
Orofacial pain may be a symptom of diverse types of cancers as a result of local or distant tumor effects. The pain can be presented with the same characteristics as any other orofacial pain disorder, and this should be recognized by the clinician. Orofacial pain also can arise as a consequence of cancer therapy. In the present article, we review the mechanisms of cancer-associated facial pain, its clinical presentation, and cancer therapy associated with orofacial pain.
Collapse
Affiliation(s)
- Marcela Romero-Reyes
- Orofacial and Head Pain Service, Department of Oral and Maxillofacial Pathology Radiology and Medicine, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010, USA,
| | | | | |
Collapse
|
39
|
De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 Receptor as a Therapeutic Target. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:39-79. [PMID: 27038372 DOI: 10.1016/bs.apcsb.2015.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
40
|
Abstract
Cancer pain sends a message. It is frightening to the patient. It heralds progression or recurrence to the oncologist. It is a biological readout of the cancer-nerve interaction for the scientist. Nerves have been considered bystanders within the cancer microenvironment. However, emerging information suggests that nerves are recruited and participate in the carcinogenic process. These newly formed fibers respond to mediators secreted by constituents of the cancer microenvironment. In this manner, these nerves serve as bellwethers and sensors embedded within the cancer. When we rigorously assess patients' cancer pain, we gain insight into the action of cancer. An enhanced understanding of cancer pain offers biological questions that if answered might not only provide relief from cancer pain but might also improve survival.
Collapse
|
41
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
42
|
Ono K, Ye Y, Viet CT, Dang D, Schmidt BL. TRPV1 expression level in isolectin B₄-positive neurons contributes to mouse strain difference in cutaneous thermal nociceptive sensitivity. J Neurophysiol 2015; 113:3345-55. [PMID: 25787958 DOI: 10.1152/jn.00973.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Differential thermal nociception across inbred mouse strains has genetic determinants. Thermal nociception is largely attributed to the heat/capsaicin receptor transient receptor potential vanilloid 1 (TRPV1); however, the contribution of this channel to the genetics of thermal nociception has not been revealed. In this study we compared TRPV1 expression levels and electrophysiological properties in primary sensory neurons and thermal nociceptive behaviors between two (C57BL/6 and BALB/c) inbred mouse strains. Using immunofluorescence and patch-clamp physiology methods, we demonstrated that TRPV1 expression was significantly higher in isolectin B4 (IB4)-positive trigeminal sensory neurons of C57BL/6 relative to BALB/c; the expression in IB4-negative neurons was similar between the strains. Furthermore, using electrophysiological cell classification (current signature method), we showed differences between the two strains in capsaicin sensitivity in IB4-positive neuronal cell types 2 and 13, which were previously reported as skin nociceptors. Otherwise electrophysiological membrane properties of the classified cell types were similar in the two mouse strains. In publicly available nocifensive behavior data and our own behavior data from the using the two mouse strains, C57BL/6 exhibited higher sensitivity to heat stimulation than BALB/c, independent of sex and anatomical location of thermal testing (the tail, hind paw, and whisker pad). The TRPV1-selective antagonist JNJ-17203212 inhibited thermal nociception in both strains; however, removing IB4-positive trigeminal sensory neurons with IB4-conjugated saporin inhibited thermal nociception on the whisker pad in C57BL/6 but not in BALB/c. These results suggest that TRPV1 expression levels in IB4-positive type 2 and 13 neurons contributed to differential thermal nociception in skin of C57BL/6 compared with BALB/c.
Collapse
Affiliation(s)
- Kentaro Ono
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York; and
| | - Yi Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York; and
| | - Chi T Viet
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York; and Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Dongmin Dang
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York; and
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York; and Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|