1
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
2
|
Pogledic I, Mankad K, Severino M, Lerman-Sagie T, Jakab A, Hadi E, Jansen AC, Bahi-Buisson N, Di Donato N, Oegema R, Mitter C, Capo I, Whitehead MT, Haldipur P, Mancini G, Huisman TAGM, Righini A, Dobyns B, Barkovich JA, Milosevic NJ, Kasprian G, Lequin M. Prenatal assessment of brain malformations on neuroimaging: an expert panel review. Brain 2024; 147:3982-4002. [PMID: 39054600 PMCID: PMC11730443 DOI: 10.1093/brain/awae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Brain malformations represent a heterogeneous group of abnormalities of neural morphogenesis, often associated with aberrations of neuronal connectivity and brain volume. Prenatal detection of brain malformations requires a clear understanding of embryology and developmental morphology through the various stages of gestation. This expert panel review is written with the central aim of providing an easy-to-understand road map to improve prenatal detection and characterization of structural malformations based on the current understanding of normal and aberrant brain development. For every developmental stage, the utility of each available neuroimaging modality, including prenatal multiplanar neuro sonography, anatomical MRI and advanced MRI techniques, as well as further insights from post-mortem imaging, has been highlighted.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N3JH, UK
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | | - Tally Lerman-Sagie
- Multidisciplinary foetal Neurology Center, Obstetrics & Gynecology Ultrasound Unit, Obstetrics and Gynecology Department, Wolfson Medical Center, Holon 5822012, Israel
- Faculty of Medicine, Tel Aviv University, 5822012 Tel Aviv, Israel
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Efrat Hadi
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, 6436624 Tel Aviv, Israel
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Antwerpen, 2650 EdegemAntwerp, Belgium
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades, University Hospital Imagine Institute, 75015 Paris, France
| | - Natalya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ivan Capo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Matthew T Whitehead
- Division of Neuroradiology, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine of Philadelphia, Philadelphia, PA 19105, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Grazia Mancini
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Righini
- Pediatric Radiology and Neuroradiology Department, Children’s Hospital V. Buzzi, 20154 Milan, Italy
| | - Bill Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Natasa Jovanov Milosevic
- Croatian Institute for Brain Research and Department of Biology, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Maarten Lequin
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Austin, TX 78717USA
| |
Collapse
|
3
|
Abadia-Cuchi N, Felici F, Frassanito P, Arulkumaran S, Familiari A, Thilaganathan B. Postnatal outcome of fetal cortical malformations: systematic review. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:581-588. [PMID: 39323411 DOI: 10.1002/uog.29105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Parental counseling for fetal malformations of cortical development (MCD) is based on data from studies in children and adults undergoing imaging investigation for abnormal neurodevelopment. However, such postnatal findings may not be applicable to prenatally diagnosed cases. The aim of this study was to review the existing data on postnatal neurodevelopmental outcome for fetuses diagnosed with MCD. METHODS A literature search was conducted in PubMed, Web of Science and EMBASE for articles published between 2013 and 2023, using standardized keywords to describe fetal cortical malformations. Full-text articles were accessed for the retrieved citations and data on participant characteristics, imaging findings, and pregnancy and neonatal outcomes were extracted. Fetal MCD was defined as either complex or isolated, according to the presence or absence, respectively, of additional brain or extracranial defects. RESULTS Overall, 30 articles including 371 cases of fetal MCD were reviewed. The cases were classified as complex (n = 324), isolated (n = 21) or unknown (n = 26). There were 144 terminations and four stillbirths, with pregnancy outcome unreported in 149 cases. A total of 108 cases had postnatal magnetic resonance imaging or postmortem examination data available. In nine of these cases, a diagnosis of complex fetal MCD was changed to isolated MCD after birth, and one case was found not to have MCD. There were 74 live births, for which postnatal neurodevelopment data were available in only 30 cases. Normal neurodevelopmental outcome was reported in seven (23.3% (95% CI, 9.9-42.2%)) infants, with the remaining 23 exhibiting various levels of neurodevelopmental delay (three mild, seven moderate and 13 severe) from 6 months to 7 years of age. CONCLUSIONS Most reviewed cases of fetal MCD were complex in nature and underwent termination of pregnancy. There is a paucity of data on postnatal neurological development in fetuses diagnosed with MCD. The available data suggest antenatal overdiagnosis of case severity in about 5% of cases with known outcome, and either normal neurodevelopment or mild neurodevelopmental delay in approximately one-third of liveborn cases with neurological follow-up. © 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N Abadia-Cuchi
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Facultad de Medicina de la Universidad de Zaragoza, Zaragoza, Spain
| | - F Felici
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Department Of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - P Frassanito
- Department Of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - S Arulkumaran
- Department of Neuroradiology, Atkinson Morley Regional Neurosciences Centre, St George's University Hospitals NHS Foundation Trust, London, UK
| | - A Familiari
- Department Of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - B Thilaganathan
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
4
|
Rice SM, Varotsis DF, Wodoslawsky S, Critchlow E, Liu R, McLaren RA, Makhamreh MM, Firman B, Berger SI, Al-Kouatly HB. Prenatal Phenotype of Alkuraya-Kučinskas Syndrome: A Novel Case and Systematic Literature Review. Prenat Diagn 2024; 44:1381-1397. [PMID: 39228063 DOI: 10.1002/pd.6637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024]
Abstract
Alkuraya-Kučinskas syndrome (AKS) is an autosomal recessive multisystem disorder resulting from mutations in the BLTP1 gene, formerly known as KIAA1109. Primary manifestations include brain malformations, arthrogryposis, and clubfeet. Cardiac, renal, and ophthalmologic abnormalities may also be observed, while nonimmune hydrops is rare. We present a case of two novel BLTP1 canonical splice-site variants in a fetus with multiple congenital anomalies, including hydrops, a kinked brainstem, and joint contractures. A systematic literature review was conducted to describe the prenatal phenotype of AKS, which was inspired by our case. Our systematic literature review of the prenatal phenotype in 19 cases, including our additional case, demonstrated joint contractures in 90% (18/20), ventriculomegaly in 60% (12/20), brainstem dysgenesis in 50% (10/20), cerebellar hypoplasia in 50% (10/20), parenchymal thinning with lissencephalic aspect in 60% (12/20), and facial dysmorphism in 70% (14/20) of reported AKS cases. In addition to our case, hydrops was reported in two other families. AKS should be considered in fetal presentations with characteristic features, especially brainstem kinking and joint contractures. Exome sequencing, including coverage of canonical intronic splice-site variants, can clarify the diagnosis. TRIAL REGISTRATION: ClinicalTrials.gov registration: NCT03911531.
Collapse
Affiliation(s)
- Stephanie M Rice
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dante F Varotsis
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ruby Liu
- Revvity Omics, Inc., Waltham, Massachusetts, USA
| | - Rodney A McLaren
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Brandy Firman
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research at Children's National Hospital, Washington, DC, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Bonati MT, Baldoli C, Taurino J, Marchetti D, Larizza L, Finelli P, Iascone M. A Novel KIDINS220 Pathogenic Variant Associated with the Syndromic Spastic Paraplegia SINO: An Expansion of the Brain Malformation Spectrum and a Literature Review. Genes (Basel) 2024; 15:1190. [PMID: 39336781 PMCID: PMC11431642 DOI: 10.3390/genes15091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Identifying novel variants in very rare disease genes can be challenging when patients exhibit a complex phenotype that expands the one described, and we provide such an example here. A few terminal truncating variants in KIDINS220 cause spastic paraplegia (SP), intellectual disability (ID), nystagmus, and obesity (SINO, MIM #617296). Prompted by the result of next-generation sequencing on a patient referred for SP associated with complex brain dysmorphisms, we reviewed the phenotype of SINO patients focusing on their brain malformations, mainly described in prenatal age and first years of life, and tried to understand if the predicted effect of the mutant kidins220 may have caused them. METHODS We performed whole exome sequencing (WES) and a literature and mutation databases review. RESULTS We report a young adult with SP, severe ID, strabismus, and macrocephaly exhibiting brain malformations at follow-up, partially overlapping with those described in TUBB3 tubulinopathy. WES analysis of the proband and parents identified the heterozygous de novo variant (NM_020738.4: c. 4144G > T) p. Glu 1382* in KIDINS220 that was predicted to be causative of SINO. CONCLUSIONS The progression of myelination and the development of brain structures turned out to be crucial for identifying, at follow-up, the whole KIDINS220-related brain malformations. The truncated proteins associated with SINO lack a portion fundamental for the interaction of kidins220 with tubulins and microtubule-associated proteins. The complexity of the brain malformations displayed by our patient, and possibly by other reported SINO patients, could result from an impaired dynamic modulation of the microtubule cytoskeleton during embryogenesis. Brain malformations must be considered as part of the SINO spectrum phenotype.
Collapse
Affiliation(s)
- Maria Teresa Bonati
- Institute for Maternal and Child Health “Burlo Garofolo”, 34137 Trieste, TS, Italy
| | - Cristina Baldoli
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, MI, Italy;
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 San Donato Milanese, MI, Italy;
| | - Daniela Marchetti
- Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, BG, Italy; (D.M.); (M.I.)
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, MI, Italy;
| | - Palma Finelli
- SC Patologia Clinica, SS Laboratorio Genetica Medica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, MI, Italy;
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, MI, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, BG, Italy; (D.M.); (M.I.)
| |
Collapse
|
6
|
Rijckmans E, Stouffs K, Jansen AC. Diagnostic work-up in malformations of cortical development. Dev Med Child Neurol 2024; 66:974-989. [PMID: 38394064 DOI: 10.1111/dmcn.15882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Malformations of cortical development (MCDs) represent a heterogeneous spectrum of disorders characterized by atypical development of the cerebral cortex. MCDs are most often diagnosed on the basis of imaging, although subtle lesions, such as focal cortical dysplasia, may only be revealed on neuropathology. Different subtypes have been defined, including lissencephaly, heterotopia, cobblestone malformation, polymicrogyria, and dysgyria. Many MCDs are of genetic origin, although acquired factors, such as congenital cytomegalovirus infections and twinning sequence, can lead to similar phenotypes. In this narrative review, we provide an overview of the diagnostic approach to MCDs, which is illustrated with clinical vignettes, on diagnostic pitfalls such as somatic mosaicism and consanguinity, and recognizable phenotypes on imaging, such as tubulinopathies, the lissencephaly spectrum, tuberous sclerosis complex, and FLNA-related periventricular nodular heterotopia.
Collapse
Affiliation(s)
- Ellen Rijckmans
- Pediatric Neurology Unit, Department of Pediatrics, KidZ Health Castle, UZ Brussel, Brussels, Belgium
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Pediatric Neurology Unit, Department of Pediatrics, Antwerp University Hospital, Antwerp, Belgium
- Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Sun H, Li K, Wang L, Zhao L, Yan C, Kong X, Liu N. Fetal agenesis of the corpus callosum: Clinical and genetic analysis in a series of 40 patients. Eur J Obstet Gynecol Reprod Biol 2024; 298:146-152. [PMID: 38756055 DOI: 10.1016/j.ejogrb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES This study aimed to explore the genetic causes of agenesis of the corpus callosum (ACC) and assess the utility of karyotype analysis, copy number variation sequencing (CNV-seq), and whole-exome sequencing (WES) to genetically diagnose fetal ACC. METHODS We retrospectively examined 40 fetuses diagnosed with ACC who underwent prenatal ultrasonography or magnetic resonance imaging between January 2019 and October 2023. Genetic tests were conducted on the fetuses using karyotype analysis or CNV-seq as the first-line diagnosis. WES was performed if aneuploid and pathogenic CNVs were excluded. RESULTS Among the 40 fetuses, 29 (72 %) had non-isolated ACC and 11 (28 %) had isolated ACC. Cerebellar dysplasia and hydrocephalus were the most common abnormal developments in the central nervous system. Twenty-eight patients underwent karyotype analysis, with a detection rate of 14 % (4/28). Twenty-six patients underwent CNV-seq; three patients were found to have pathogenic CNVs, with a detection rate of 12 % (3/26). Thirty-three fetuses with no findings of karyotype analysis or CNV-seq were subsequently tested using WES, with a detection rate of 36 % (12/33). Overall, the total diagnostic yield was 48 % (19/40), and monogenic etiology accounted for 30 % (12/40). The genetic detection rate of fetal non-isolated ACC (62 %, 18/29) was higher than that of isolated ACC (9 %, 1/11). CONCLUSION Prenatal genetic analysis of fetuses with ACC is clinically significant, with monogenic disorders being the main cause. WES may enhance the detection rate of fetuses with ACC with negative karyotype analysis or CNV-seq results.
Collapse
Affiliation(s)
- Hengqing Sun
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ke Li
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lu Wang
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lijuan Zhao
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chenyu Yan
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiangdong Kong
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ning Liu
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
8
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Järvelä I, Paetau R, Rajendran Y, Acharya A, Bharadwaj T, Leal SM, Lehesjoki AE, Palomäki M, Schrauwen I. Heterogeneous genetic patterns in bilateral perisylvian polymicrogyria: insights from a Finnish family cohort. Brain Commun 2024; 6:fcae142. [PMID: 38712318 PMCID: PMC11073749 DOI: 10.1093/braincomms/fcae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Bilateral perisylvian polymicrogyria is the most common form of regional polymicrogyria within malformations of cortical development, constituting 20% of all malformations of cortical development. Bilateral perisylvian polymicrogyria is characterized by an excessive folding of the cerebral cortex and abnormal cortical layering. Notable clinical features include upper motoneuron dysfunction, dysarthria and asymmetric quadriparesis. Cognitive impairment and epilepsy are frequently observed. To identify genetic variants underlying bilateral perisylvian polymicrogyria in Finland, we examined 21 families using standard exome sequencing, complemented by optical genome mapping and/or deep exome sequencing. Pathogenic or likely pathogenic variants were identified in 5/21 (24%) of families, of which all were confirmed as de novo. These variants were identified in five genes, i.e. DDX23, NUS1, SCN3A, TUBA1A and TUBB2B, with NUS1 and DDX23 being associated with bilateral perisylvian polymicrogyria for the first time. In conclusion, our results confirm the previously reported genetic heterogeneity of bilateral perisylvian polymicrogyria and underscore the necessity of more advanced methods to elucidate the genetic background of bilateral perisylvian polymicrogyria.
Collapse
Affiliation(s)
- Irma Järvelä
- Department of Medical Genetics, University of Helsinki, 00251 Helsinki, Finland
| | - Ritva Paetau
- Department of Child Neurology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Yasmin Rajendran
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
- Taub Institute, Columbia University Medical Center, 10032 New York, NY, USA
| | - Anna-Elina Lehesjoki
- Department of Medical Genetics, University of Helsinki, 00251 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Maarit Palomäki
- Medical Imaging Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| |
Collapse
|
10
|
Abbaali I, Truong D, Day SD, Mushayeed F, Ganesh B, Haro-Ramirez N, Isles J, Nag H, Pham C, Shah P, Tomar I, Manel-Romero C, Morrissette NS. The tubulin database: Linking mutations, modifications, ligands and local interactions. PLoS One 2023; 18:e0295279. [PMID: 38064432 PMCID: PMC10707541 DOI: 10.1371/journal.pone.0295279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Microtubules are polymeric filaments, constructed of α-β tubulin heterodimers that underlie critical subcellular structures in eukaryotic organisms. Four homologous proteins (γ-, δ-, ε- and ζ-tubulin) additionally contribute to specialized microtubule functions. Although there is an immense volume of publicly available data pertaining to tubulins, it is difficult to assimilate all potentially relevant information across diverse organisms, isotypes, and categories of data. We previously assembled an extensive web-based catalogue of published missense mutations to tubulins with >1,500 entries that each document a specific substitution to a discrete tubulin, the species where the mutation was described and the associated phenotype with hyperlinks to the amino acid sequence and citation(s) for research. This report describes a significant update and expansion of our online resource (TubulinDB.bio.uci.edu) to nearly 18,000 entries. It now encompasses a cross-referenced catalog of post-translational modifications (PTMs) to tubulin drawn from public datasets, primary literature, and predictive algorithms. In addition, tubulin protein structures were used to define local interactions with bound ligands (GTP, GDP and diverse microtubule-targeting agents) and amino acids at the intradimer interface, within the microtubule lattice and with associated proteins. To effectively cross-reference these datasets, we established a universal tubulin numbering system to map entries into a common framework that accommodates specific insertions and deletions to tubulins. Indexing and cross-referencing permitted us to discern previously unappreciated patterns. We describe previously unlinked observations of loss of PTM sites in the context of cancer cells and tubulinopathies. Similarly, we expanded the set of clinical substitutions that may compromise MAP or microtubule-motor interactions by collecting tubulin missense mutations that alter amino acids at the interface with dynein and doublecortin. By expanding the database as a curated resource, we hope to relate model organism data to clinical findings of pathogenic tubulin variants. Ultimately, we aim to aid researchers in hypothesis generation and design of studies to dissect tubulin function.
Collapse
Affiliation(s)
- Izra Abbaali
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Danny Truong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Shania Deon Day
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Faliha Mushayeed
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Bhargavi Ganesh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Nancy Haro-Ramirez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Juliet Isles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Hindol Nag
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Catherine Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Priya Shah
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Ishaan Tomar
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Carolina Manel-Romero
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| |
Collapse
|
11
|
Costa FV, Zabegalov KN, Kolesnikova TO, de Abreu MS, Kotova MM, Petersen EV, Kalueff AV. Experimental models of human cortical malformations: from mammals to 'acortical' zebrafish. Neurosci Biobehav Rev 2023; 155:105429. [PMID: 37863278 DOI: 10.1016/j.neubiorev.2023.105429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.
Collapse
Affiliation(s)
- Fabiano V Costa
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Tatiana O Kolesnikova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Maria M Kotova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Allan V Kalueff
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Yekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
| |
Collapse
|
12
|
Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Structural insights into the mechanism of GTP initiation of microtubule assembly. Nat Commun 2023; 14:5980. [PMID: 37749104 PMCID: PMC10519996 DOI: 10.1038/s41467-023-41615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In eukaryotes, the dynamic assembly of microtubules (MT) plays an important role in numerous cellular processes. The underlying mechanism of GTP triggering MT assembly is still unknown. Here, we present cryo-EM structures of tubulin heterodimer at their GTP- and GDP-bound states, intermediate assembly states of GTP-tubulin, and final assembly stages of MT. Both GTP- and GDP-tubulin heterodimers adopt similar curved conformations with subtle flexibility differences. In head-to-tail oligomers of tubulin heterodimers, the inter-dimer interface of GDP-tubulin exhibits greater flexibility, particularly in tangential bending. Cryo-EM of the intermediate assembly states reveals two types of tubulin lateral contacts, "Tube-bond" and "MT-bond". Further, molecular dynamics (MD) simulations show that GTP triggers lateral contact formation in MT assembly in multiple sequential steps, gradually straightening the curved tubulin heterodimers. Therefore, we propose a flexible model of GTP-initiated MT assembly, including the formation of longitudinal and lateral contacts, to explain the nucleation and assembly of MT.
Collapse
Affiliation(s)
- Ju Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
- University of California Berkeley, Berkeley, CA, USA
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Pavone P, Striano P, Cacciaguerra G, Marino SD, Parano E, Pappalardo XG, Falsaperla R, Ruggieri M. Case report: Structural brain abnormalities in TUBA1A-tubulinopathies: a narrative review. Front Pediatr 2023; 11:1210272. [PMID: 37744437 PMCID: PMC10515619 DOI: 10.3389/fped.2023.1210272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Tubulin genes have been related to severe neurological complications and the term "tubulinopathy" now refers to a heterogeneous group of disorders involving an extensive family of tubulin genes with TUBA1A being the most common. A review was carried out on the complex and severe brain abnormalities associated with this genetic anomaly. Methods A literature review of the cases of TUBA1A-tubulopathy was performed to investigate the molecular findings linked with cerebral anomalies and to describe the clinical and neuroradiological features related to this genetic disorder. Results Clinical manifestations of TUBA1A-tubulinopathy patients are heterogeneous and severe ranging from craniofacial dysmorphism, notable developmental delay, and intellectual delay to early-onset seizures, neuroradiologically associated with complex abnormalities. TUBA1A-tubulinopathy may display various and complex cortical and subcortical malformations. Discussion A range of clinical manifestations related to different cerebral structures involved may be observed in patients with TUBA1A-tubulinopathy. Genotype-phenotype correlations are discussed here. Individuals with cortical and subcortical anomalies should be screened also for pathogenic variants in TUBA1A.
Collapse
Affiliation(s)
- Piero Pavone
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “G. Gaslini”, Genova, Italy
| | - Giovanni Cacciaguerra
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Pediatrics and Pediatric Emergency Department, University Hospital, A.U.O “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Enrico Parano
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Pediatrics and Pediatric Emergency Department, University Hospital, A.U.O “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci 2023; 17:1226181. [PMID: 37600020 PMCID: PMC10436312 DOI: 10.3389/fnins.2023.1226181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neuronal migration and axon growth and guidance require precise control of microtubule dynamics and microtubule-based cargo transport. TUBB3 encodes the neuronal-specific β-tubulin isotype III, TUBB3, a component of neuronal microtubules expressed throughout the life of central and peripheral neurons. Human pathogenic TUBB3 missense variants result in altered TUBB3 function and cause errors either in the growth and guidance of cranial and, to a lesser extent, central axons, or in cortical neuronal migration and organization, and rarely in both. Moreover, human pathogenic missense variants in KIF21A, which encodes an anterograde kinesin motor protein that interacts directly with microtubules, alter KIF21A function and cause errors in cranial axon growth and guidance that can phenocopy TUBB3 variants. Here, we review reported TUBB3 and KIF21A variants, resulting phenotypes, and corresponding functional studies of both wildtype and mutant proteins. We summarize the evidence that, in vitro and in mouse models, loss-of-function and missense variants can alter microtubule dynamics and microtubule-kinesin interactions. Lastly, we highlight additional studies that might contribute to our understanding of the relationship between specific tubulin isotypes and specific kinesin motor proteins in health and disease.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Hagege R, Krajden Haratz K, Malinger G, Ben-Sira L, Leibovitz Z, Heron D, Burglen L, Birnbaum R, Valence S, Keren B, Blumkin L, Jouannic JM, Lerman-Sagie T, Garel C. Spectrum of brain malformations in fetuses with mild tubulinopathy. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:740-748. [PMID: 36484554 DOI: 10.1002/uog.26140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To report on a large cohort of fetuses with mild forms of tubulinopathy and to define prenatal ultrasound and magnetic resonance imaging (MRI) features that can facilitate prenatal diagnosis. METHODS This was a retrospective multicenter study of fetuses diagnosed between January 2007 and February 2022 with a mild tubulinopathy (without lissencephaly or microlissencephaly). We collected and reviewed brain imaging and genetic data, and defined major criteria as findings observed in ≥ 70% of the patients and minor criteria as those observed in ≥ 50% but < 70% of the patients. RESULTS Our cohort included 34 fetuses. The mean gestational age at ultrasound screening, when suspicion of a central nervous system anomaly was first raised, was 24.2 (range, 17-33) weeks. Callosal anomalies (n = 19 (56%)) and abnormal ventricles (n = 18 (53%)) were the main reasons for referral. The mean gestational age at neurosonography was 28.3 (range, 23-34) weeks and that at MRI was 30.2 (range, 24-35) weeks. Major ultrasound criteria were midline distortion, ventricular asymmetry, dysmorphic and/or dilated frontal horn(s) and abnormal sulcation. Minor ultrasound criteria were distortion of the cavum septi pellucidi, abnormal corpus callosum, absent or asymmetric olfactory sulci, ventriculomegaly and basal ganglia dysmorphism. Major MRI criteria were midline distortion, distortion of the cavum septi pellucidi, ventricular asymmetry, dilatation (generally unilateral) and/or distortion, dysmorphic and/or dilated frontal horn(s) and abnormal sulcation (mainly dysgyria). Minor MRI criteria were absent or asymmetric olfactory sulci, abnormal bulge of the pons, anteroposterior diameter of the pons ≤ 5th centile and brainstem asymmetry. A mutation was found in TUBB3 (44.1% of cases), TUBB (23.5%), TUBB2B (14.7%) or TUBA1A (17.6%). The mutation was inherited from a parent in 18/34 cases. The pregnancy was terminated in 23/34 cases. CONCLUSIONS Prenatal diagnosis of mild forms of tubulinopathy is possible but challenging. We have defined, in this large series of fetuses, major and minor criteria that can help identify this entity in utero. Most findings can be visualized on ultrasound. This evaluation is also important for prenatal counseling. Once a prenatal diagnosis of mild tubulinopathy is suspected, the family members should be referred for exome sequencing and MRI. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Hagege
- Department of Radiology, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
- Department of Obstetrics and Gynecology, Samson Assuta Ashdod Hospital, Ashdod, Israel
- Faculty of Medicine, Ben Gurion University, Beer Sheva, Israel
| | - K Krajden Haratz
- Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Malinger
- Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Ben-Sira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Radiology, Division of Pediatric Radiology, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Z Leibovitz
- Obstetrics-Gynecology Ultrasound Unit, Bnai-Zion Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
- Fetal Neurology Clinic, Obstetrics-Gynecology Ultrasound Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
| | - D Heron
- Department of Genetics, Division of Medical Genetics, Reference Center for Rare Diseases and Intellectual Deficiencies of Rare Causes, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - L Burglen
- Department of Genetics, Reference Center for Cerebellar Malformations and Congenital Diseases, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - R Birnbaum
- Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S Valence
- Department of Pediatric Neurology, Reference Center for Rare Diseases and Intellectual Deficiencies of Rare Causes, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - B Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - L Blumkin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Pediatric Neurology Unit, Magen Center for Rare Diseases, Wolfson Medical Center, Holon, Israel
| | - J-M Jouannic
- Fetal Medicine Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - T Lerman-Sagie
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Pediatric Neurology Unit, Magen Center for Rare Diseases, Wolfson Medical Center, Holon, Israel
| | - C Garel
- Department of Radiology, Reference Center for Cerebellar Malformations and Congenital Diseases, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| |
Collapse
|
17
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
18
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
19
|
Cushion TD, Leca I, Keays DA. MAPping tubulin mutations. Front Cell Dev Biol 2023; 11:1136699. [PMID: 36875768 PMCID: PMC9975266 DOI: 10.3389/fcell.2023.1136699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Microtubules are filamentous structures that play a critical role in a diverse array of cellular functions including, mitosis, nuclear translocation, trafficking of organelles and cell shape. They are composed of α/β-tubulin heterodimers which are encoded by a large multigene family that has been implicated in an umbrella of disease states collectively known as the tubulinopathies. De novo mutations in different tubulin genes are known to cause lissencephaly, microcephaly, polymicrogyria, motor neuron disease, and female infertility. The diverse clinical features associated with these maladies have been attributed to the expression pattern of individual tubulin genes, as well as their distinct Functional repertoire. Recent studies, however, have highlighted the impact of tubulin mutations on microtubule-associated proteins (MAPs). MAPs can be classified according to their effect on microtubules and include polymer stabilizers (e.g., tau, MAP2, doublecortin), destabilizers (e.g., spastin, katanin), plus-end binding proteins (e.g., EB1-3, XMAP215, CLASPs) and motor proteins (e.g., dyneins, kinesins). In this review we analyse mutation-specific disease mechanisms that influence MAP binding and their phenotypic consequences, and discuss methods by which we can exploit genetic variation to identify novel MAPs.
Collapse
Affiliation(s)
- Thomas D Cushion
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - David A Keays
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
20
|
Sahani SK, Pathak A, Nepali B, Rai N. Lissencephaly with Congenital Hypothyroidism: A Case Report. JNMA J Nepal Med Assoc 2022; 60:978-981. [PMID: 36705174 PMCID: PMC9795095 DOI: 10.31729/jnma.7893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Lissencephaly is a malformation of cortical development associated with deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. The lissencephaly spectrum consists of agyria, pachygyria, and subcortical band heterotopia. At least 19 genes have been identified in the causation of lissencephaly and related syndrome. Lissencephaly is associated with many other congenital disorders but the association of lissencephaly with congenital hypothyroidism is rarely reported. We report a case of a 10-year-old girl having lissencephaly with congenital hypothyroidism. Early diagnosis of lissencephaly and genetic counselling can be made in suspected cases and further possible interventions can be taken. Also, regular follow-up, monitoring, and better conservative management lead to a better prognosis. Keywords congenital abnormalities; hypothyroidism; lissencephaly; neuronal migration disorders.
Collapse
Affiliation(s)
| | - Anil Pathak
- KIST Medical College and Teaching Hospital, Imadol, Lalitpur, Nepal,Correspondence: Mr Anil Pathak, KIST Medical College and Teaching Hospital, Imadol, Lalitpur, Nepal. , Phone: +977-9867225086
| | - Bishal Nepali
- KIST Medical College and Teaching Hospital, Imadol, Lalitpur, Nepal
| | - Nilshan Rai
- KIST Medical College and Teaching Hospital, Imadol, Lalitpur, Nepal
| |
Collapse
|
21
|
Attard TJ, Welburn JPI, Marsh JA. Understanding molecular mechanisms and predicting phenotypic effects of pathogenic tubulin mutations. PLoS Comput Biol 2022; 18:e1010611. [PMID: 36206299 PMCID: PMC9581425 DOI: 10.1371/journal.pcbi.1010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cells rely heavily on microtubules for several processes, including cell division and molecular trafficking. Mutations in the different tubulin-α and -β proteins that comprise microtubules have been associated with various diseases and are often dominant, sporadic and congenital. While the earliest reported tubulin mutations affect neurodevelopment, mutations are also associated with other disorders such as bleeding disorders and infertility. We performed a systematic survey of tubulin mutations across all isotypes in order to improve our understanding of how they cause disease, and increase our ability to predict their phenotypic effects. Both protein structural analyses and computational variant effect predictors were very limited in their utility for differentiating between pathogenic and benign mutations. This was even worse for those genes associated with non-neurodevelopmental disorders. We selected tubulin-α and -β disease mutations that were most poorly predicted for experimental characterisation. These mutants co-localise to the mitotic spindle in HeLa cells, suggesting they may exert dominant-negative effects by altering microtubule properties. Our results show that tubulin mutations represent a blind spot for current computational approaches, being much more poorly predicted than mutations in most human disease genes. We suggest that this is likely due to their strong association with dominant-negative and gain-of-function mechanisms.
Collapse
Affiliation(s)
- Thomas J. Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Julie P. I. Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Mankad K, Chatur C, Balani A. The 'Absent/Dysgenetic ALIC Sign' in Tubulinopathies. Neurol India 2022; 70:2328-2329. [PMID: 36352701 DOI: 10.4103/0028-3886.359182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kshitij Mankad
- Department of Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Chinky Chatur
- Department of Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Ankit Balani
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, UCLH Foundation Trust, London, UK
| |
Collapse
|
23
|
Maillard C, Roux CJ, Charbit-Henrion F, Steffann J, Laquerriere A, Quazza F, Buisson NB. Tubulin mutations in human neurodevelopmental disorders. Semin Cell Dev Biol 2022; 137:87-95. [PMID: 35915025 DOI: 10.1016/j.semcdb.2022.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Mutations causing dysfunction of tubulins and microtubule-associated proteins, also known as tubulinopathies, are a group of recently described entities that lead to complex brain malformations. Anatomical and functional consequences of the disruption of tubulins include microcephaly, combined with abnormal corticogenesis due to impaired migration or lamination and abnormal growth cone dynamics of projecting and callosal axons. Key imaging features of tubulinopathies are characterized by three major patterns of malformations of cortical development (MCD): lissencephaly, microlissencephaly, and dysgyria. Additional distinctive MRI features include dysmorphism of the basal ganglia, midline commissural structure hypoplasia or agenesis, and cerebellar and brainstem hypoplasia. Tubulinopathies can be diagnosed as early as 21-24 gestational weeks using imaging and neuropathology, with possible extreme microlissencephaly with an extremely thin cortex, lissencephaly with either thick or thin/intermediate cortex, and dysgyria combined with cerebellar hypoplasia, pons hypoplasia and corpus callosum dysgenesis. More than 100 MCD-associated mutations have been reported in TUBA1A, TUBB2B, or TUBB3 genes, whereas fewer than ten are known in other genes such TUBB2A, TUBB or TUBG1. Although these mutations are scattered along the α- and β-tubulin sequences, recurrent mutations are consistently associated with almost identical cortical dysgenesis. Much of the evidence supports that these mutations alter the dynamic properties and functions of microtubules in several fashions. These include diminishing the abundance of functional tubulin heterodimers, altering GTP binding, altering longitudinal and lateral protofilament interactions, and impairing microtubule interactions with kinesin and/or dynein motors or with MAPs. In this review we discuss the recent advances in our understanding of the effects of mutations of tubulins and microtubule-associated proteins on human brain development and the pathogenesis of malformations of cortical development.
Collapse
Affiliation(s)
- Camille Maillard
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Charles Joris Roux
- Pediatric Radiology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Fabienne Charbit-Henrion
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Julie Steffann
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Annie Laquerriere
- Pathology Laboratory, Rouen University Hospital, Rouen, France; NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Floriane Quazza
- Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Nadia Bahi Buisson
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France; Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France.
| |
Collapse
|
24
|
Chun Fang G, Kaiwei D, Lingkong Z, Xuwei T. Diaphragmatic paralysis in a neonate with circumferential skin creases Kunze type. Mol Genet Genomic Med 2022; 10:e2003. [PMID: 35747986 PMCID: PMC9482402 DOI: 10.1002/mgg3.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022] Open
Abstract
Background A range of clinical features have been confirmed with heterozygous mutations in Beta Tubulin (TUBB), including skin creases, facial deformities, abnormal cerebral structures, and intellectual disability, and were defined as Circumferential Skin Creases Kunze type (CSC‐KT). Methods Clinical information was obtained retrospectively on a neonate hospitalized in the Neonatal Intensive Care Unit, Wuhan Children’s Hospital. Genomic DNA was extracted from circulating leukocytes of the proband according to standard procedures. Results The neonate presented dyspnea resulting from diaphragmatic paralysis, accompanied by other typical features of CSC‐KT. Additionally, exome sequencing confirmed a new variant (NM_178,014. 4: c. 1114 A > G) in TUBB. We also summarized features described in previous cases, thus representing phenotype extension of CSC‐KT. Conclusion Our report is the youngest confirmed case, which could extend the current phenotype of CSC‐KT as well as the clinical diagnostic approach.
Collapse
Affiliation(s)
- Gao Chun Fang
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ding Kaiwei
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zeng Lingkong
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tao Xuwei
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
25
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
26
|
Hoff KJ, Aiken JE, Gutierrez MA, Franco SJ, Moore JK. Tubulinopathy mutations in TUBA1A that disrupt neuronal morphogenesis and migration override XMAP215/Stu2 regulation of microtubule dynamics. eLife 2022; 11:76189. [PMID: 35511030 PMCID: PMC9236607 DOI: 10.7554/elife.76189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels. Proteins are molecules made up of long chains of building blocks called amino acids. When a mutation changes one of these amino acids, it can lead to the protein malfunctioning, which can have many effects at the cell and tissue level. Given that human proteins are made up of 20 different amino acids, each building block in a protein could mutate to any of the other 19 amino acids, and each mutations could have different effects. Tubulins are proteins that form microtubules, thin tubes that help give cells their shape and allow them to migrate. These proteins are added or removed to microtubules depending on the cell’s needs, meaning that microtubules can grow or shrink depending on the situation. Mutations in the tubulin proteins have been linked to malformations of varying severities involving the formation of ridges and folds on the surface of the brain, including lissencephaly, pachygyria or polymicrogyria. Hoff et al. wanted to establish links between tubulin mutations and the effects observed at both cell and tissue level in the brain. They focused on two mutations in the tubulin protein TUBA1A that affect the amino acid in position 409 in the protein, which is normally a valine. One of the mutations turns this valine into an amino acid called isoleucine. This mutation is associated with pachygyria, which leads to the brain developing few ridges that are broad and flat. The second mutation turns the valine into an alanine, and is linked to lissencephaly, a more severe condition in which the brain develops no ridges, appearing smooth. Hoff et al. found that both mutations interfere with the development of the brain by stopping neurons from migrating properly, which prevents them from forming the folds in the brain correctly. At the cellular level, the mutations lead to tubulins becoming harder to remove from microtubules, making microtubules more stable than usual. This results in longer microtubules that are harder for the cell to shorten or destroy as needed. Additionally, Hoff et al. showed that the mutant versions of TUBA1A have weaker interactions with a protein called XMAP215, which controls the addition of tubulin to microtubules. This causes the microtubules to grow uncontrollably. Hoff et al. also established that the magnitude of the effects of each mutation on microtubule growth scale with the severity of the disorder they cause. Specifically, cells in which TUBA1A is not mutated have microtubules that grow at a normal rate, and lead to typical brain development. Meanwhile, cells carrying the mutation that turns a valine into an alanine, which is linked to the more severe condition lissencephaly, have microtubules that grow very fast. Finally, cells in which the valine is mutated to an isoleucine – the mutation associated with the less severe malformation pachygyria – have microtubules that grow at an intermediate rate. These findings provide a link between mutations in tubulin proteins and larger effects on cell movement that lead to brain malformations. Additionally, they also link the severity of the malformation to the severity of the microtubule defect caused by each mutation. Further work could examine whether microtubule stabilization is also seen in other similar diseases, which, in the long term, could reveal ways to detect and treat these illnesses.
Collapse
Affiliation(s)
- Katelyn J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jayne E Aiken
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Mark A Gutierrez
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Santos J Franco
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jeffrey K Moore
- University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
27
|
Complementing the phenotypical spectrum of TUBA1A tubulinopathy and its role in early-onset epilepsies. Eur J Hum Genet 2022; 30:298-306. [PMID: 35017693 PMCID: PMC8904761 DOI: 10.1038/s41431-021-01027-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
TUBA1A tubulinopathy is a rare neurodevelopmental disorder associated with brain malformations as well as early-onset and intractable epilepsy. As pathomechanisms and genotype-phenotype correlations are not completely understood, we aimed to provide further insights into the phenotypic and genetic spectrum. We here present a multicenter case series of ten unrelated individuals from four European countries using systematic MRI re-evaluation, protein structure analysis, and prediction score modeling. In two cases, pregnancy was terminated due to brain malformations. Amongst the eight living individuals, the phenotypic range showed various severity. Global developmental delay and severe motor impairment with tetraparesis was present in 63% and 50% of the subjects, respectively. Epilepsy was observed in 75% of the cases, which showed infantile onset in 83% and a refractory course in 50%. One individual presented a novel TUBA1A-associated electroclinical phenotype with evolvement from early myoclonic encephalopathy to continuous spike-and-wave during sleep. Neuroradiological features comprised a heterogeneous spectrum of cortical and extracortical malformations including rare findings such as cobblestone lissencephaly and subcortical band heterotopia. Two individuals developed hydrocephalus with subsequent posterior infarction. We report four novel and five previously published TUBA1A missense variants whose resulting amino acid substitutions likely affect longitudinal, lateral, and motor protein interactions as well as GTP binding. Assessment of pathogenic and benign variant distributions in synopsis with prediction scores revealed sections of variant enrichment and intolerance to missense variation. We here extend the clinical, neuroradiological, and genetic spectrum of TUBA1A tubulinopathy and provide insights into residue-specific pathomechanisms and genotype-phenotype correlations.
Collapse
|
28
|
Fertuzinhos S, Legué E, Li D, Liem KF. A dominant tubulin mutation causes cerebellar neurodegeneration in a genetic model of tubulinopathy. SCIENCE ADVANCES 2022; 8:eabf7262. [PMID: 35171680 PMCID: PMC8849301 DOI: 10.1126/sciadv.abf7262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Mutations in tubulins cause distinct neurodevelopmental and degenerative diseases termed "tubulinopathies"; however, little is known about the functional requirements of tubulins or how mutations cause cell-specific pathologies. Here, we identify a mutation in the gene Tubb4a that causes degeneration of cerebellar granule neurons and myelination defects. We show that the neural phenotypes result from a cell type-specific enrichment of a dominant mutant form of Tubb4a relative to the expression other β-tubulin isotypes. Loss of Tubb4a function does not underlie cellular pathology but is compensated by the transcriptional up-regulation of related tubulin genes in a cell type-specific manner. This work establishes that the expression of a primary tubulin mutation in mature neurons is sufficient to promote cell-autonomous cell death, consistent with a causative association of microtubule dysfunction with neurodegenerative diseases. These studies provide evidence that mutations in tubulins cause specific phenotypes based on expression ratios of tubulin isotype genes.
Collapse
Affiliation(s)
- Sofia Fertuzinhos
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Davis Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karel F. Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Çitli Ş, Serdaroglu E. Maternal Germline Mosaicism of a de Novo TUBB2B Mutation Leads to Complex Cortical Dysplasia in Two Siblings. Fetal Pediatr Pathol 2022; 41:155-165. [PMID: 32281916 DOI: 10.1080/15513815.2020.1753270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Complex cortical dysplasia with other brain malformations-7 (a.k.a. polymicrogyria) caused by mutations in TUBB2B gene is a clinically heterogeneous condition. Case report: We report two siblings with polymicrogyria. Brain MRI showed polymicrogyria, small brainstem, thin corpus callosum and fused basal ganglia. Karyotypes and chromosomal microarray analysis were normal. By whole exome sequencing, there were a de novo variant of c.728C > T (p.P243L) in both siblings and a common single nucleotide polymorphism (SNP) (c.718C > T) in both siblings and the mother. Seminal DNA analysis obtained from father was normal. Conclusion: Maternal germline mosaicism was considered because the sequencing result of the father's sperm was normal, two siblings had the same disease, and both patients and mother had the same SNP.
Collapse
Affiliation(s)
- Şenol Çitli
- Medical Genetics, Gaziosmanpasa University Medical Faculty, Tokat, Turkey
| | | |
Collapse
|
30
|
Fallet-Bianco C. Brain Malformations. KEELING'S FETAL AND NEONATAL PATHOLOGY 2022:717-745. [DOI: 10.1007/978-3-030-84168-3_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Whitman MC, Barry BJ, Robson CD, Facio FM, Van Ryzin C, Chan WM, Lehky TJ, Thurm A, Zalewski C, King KA, Brewer C, Almpani K, Lee JS, Delaney A, FitzGibbon EJ, Lee PR, Toro C, Paul SM, Abdul-Rahman OA, Webb BD, Jabs EW, Moller HU, Larsen DA, Antony JH, Troedson C, Ma A, Ragnhild G, Wirgenes KV, Tham E, Kvarnung M, Maarup TJ, MacKinnon S, Hunter DG, Collins FS, Manoli I, Engle EC. TUBB3 Arg262His causes a recognizable syndrome including CFEOM3, facial palsy, joint contractures, and early-onset peripheral neuropathy. Hum Genet 2021; 140:1709-1731. [PMID: 34652576 PMCID: PMC8656246 DOI: 10.1007/s00439-021-02379-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Flavia M Facio
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Carol Van Ryzin
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tanya J Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892-1404, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Christopher Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Carmen Brewer
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Konstantinia Almpani
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Janice S Lee
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Angela Delaney
- Pediatric Endocrinology and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
- St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edmond J FitzGibbon
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Paul R Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Scott M Paul
- Rehabilitation Medicine Department, NIH Clinical Center, Bethesda, MD, 20892, USA
- Departments of Biomedical Engineering and Physical Medicine and Rehabilitation, JHU School of Medicine, Baltimore, MD, 21205, USA
| | - Omar A Abdul-Rahman
- Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Munroe-Meyer Institute, Omaha, NE, 68106, USA
- Nebraska Medical Center, Omaha, NE, 68198-5450, USA
| | - Bryn D Webb
- Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin - Madison, Madison, WI, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | | | | - Alan Ma
- Children's Hospital Westmead, Westmead, NSW, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, Australia
| | - Glad Ragnhild
- Department of Medical Genetics, University Hospital North Norway, Tromsø, Norway
| | - Katrine V Wirgenes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Emma Tham
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Office of the Director, NIH, Bethesda, MD, 20892, USA
| | - Irini Manoli
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Kirby Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Dekker J, Diderich KEM, Schot R, Husen SC, Dremmen MHG, Go ATJI, Weerts MJA, van Slegtenhorst MA, Mancini GMS. A novel family illustrating the mild phenotypic spectrum of TUBB2B variants. Eur J Paediatr Neurol 2021; 35:35-39. [PMID: 34592644 DOI: 10.1016/j.ejpn.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
TUBB2B codes for one of the isotypes of β-tubulin and dominant negative variants in this gene result in distinctive malformations of cortical development (MCD), including dysgyria, dysmorphic basal ganglia and cerebellar anomalies. We present a novel family with a heterozygous missense variant in TUBB2B and an unusually mild phenotype. First, at 21 37 weeks of gestation ultrasonography revealed a fetus with a relatively small head, enlarged lateral ventricles, borderline hypoplastic cerebellum and a thin corpus callosum. The couple opted for pregnancy termination. Exome sequencing on fetal material afterwards identified a heterozygous maternally inherited variant in TUBB2B (NM_178012.4 (TUBB2B):c.530A > T, p.(Asp177Val)), not present in GnomAD and predicted as damaging. The healthy mother had only a language delay in childhood. This inherited TUBB2B variant prompted re-evaluation of the older son of the couple, who presented with a mild delay in motor skills and speech. His MRI revealed mildly enlarged lateral ventricles, a thin corpus callosum, mild cortical dysgyria, and dysmorphic vermis and basal ganglia, a pattern typical of tubulinopathies. This son finally showed the same TUBB2B variant, supporting pathogenicity of the TUBB2B variant. These observations illustrate the wide phenotypic heterogeneity of tubulinopathies, including reduced penetrance and mild expressivity, that require careful evaluation in pre- and postnatal counseling.
Collapse
Affiliation(s)
- Jordy Dekker
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Sofie C Husen
- Department of Obstetrics and Prenatal Medicine, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Marjolein H G Dremmen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Attie T J I Go
- Department of Obstetrics and Prenatal Medicine, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Marjolein J A Weerts
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands.
| |
Collapse
|
33
|
Koenig M, Dobyns WB, Di Donato N. Lissencephaly: Update on diagnostics and clinical management. Eur J Paediatr Neurol 2021; 35:147-152. [PMID: 34731701 DOI: 10.1016/j.ejpn.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
Lissencephaly represents a spectrum of rare malformations of cortical development including agyria, pachygyria and subcortical band heterotopia. The progress in molecular genetics has led to identification of 31 lissencephaly-associated genes with the overall diagnostic yield over 80%. In this review, we focus on clinical and molecular diagnosis of lissencephaly and summarize the current knowledge on histopathological changes and their correlation with the MRI imaging. Additionally we provide the overview of clinical follow-up recommendations and available data on epilepsy management in patients with lissencephaly.
Collapse
Affiliation(s)
- Matti Koenig
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, Minneapolis, MN, USA
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany.
| |
Collapse
|
34
|
Lerman-Sagie T, Pogledic I, Leibovitz Z, Malinger G. A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol 2021; 34:50-61. [PMID: 34390998 DOI: 10.1016/j.ejpn.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/27/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Malformations of cortical development (MCD) can frequently be diagnosed at multi-disciplinary Fetal Neurology clinics with the aid of multiplanar neurosonography and MRI. The patients are usually referred following prenatal sonographic screening that raises the suspicion of a possible underlying MCD. These indirect findings include, but are not limited to, ventriculomegaly (lateral ventricles larger than 10 mm), asymmetric ventricles, commissural anomalies, absent cavum septum pellucidum, cerebellar vermian and/or hemispheric anomalies, abnormal head circumference (microcephaly or macrocephaly), multiple CNS malformations, and associated systemic defects. The aim of this paper is to suggest a practical approach to prenatal diagnosis of malformations of cortical development utilizing dedicated neurosonography and MRI, based on the current literature and our own experience. We suggest that an MCD should be suspected in utero when the following intracranial imaging signs are present: abnormal development of the Sylvian fissure; delayed achievement of cortical milestones, premature appearance of sulcation; irregular ventricular borders, abnormal cortical thickness (thick, thin); abnormal shape and orientation of the sulci and gyri; irregular, abnormal, asymmetric, and enlarged hemisphere; simplified cortex; non continuous cortex or cleft; and intraparenchymal echogenic nodules. Following the putative diagnosis of fetal MCD by neurosonography and MRI, when appropriate and possible (depending on gestational age), the imaging diagnosis is supplemented by genetic studies (CMA and trio whole exome sequencing). In some instances, no further studies are required during pregnancy due to the clear dire prognosis and then the genetic evaluation can be deferred after delivery or termination of pregnancy (in countries where allowed).
Collapse
Affiliation(s)
- Tally Lerman-Sagie
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Center for Rare Diseases-Magen, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Ivana Pogledic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Zvi Leibovitz
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel; Ultrasound in Obstetrics and Gynecology Unit, Bnai-Zion Medical Center, Haifa, Israel; Technion Faculty of Medicine, Haifa, Israel
| | - Gustavo Malinger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Fetal Neurology Multidisciplinary Clinic, Division of Ultrasound in Obstetrics & Gynecology, Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
35
|
Scarabello M, Righini A, Severino M, Pinelli L, Parazzini C, Scola E, Palumbo G, Di Maurizio M, D'Errico I, Rossi A, Triulzi F, Griffiths PD. Ganglionic Eminence Anomalies and Coexisting Cerebral Developmental Anomalies on Fetal MR Imaging: Multicenter-Based Review of 60 Cases. AJNR Am J Neuroradiol 2021; 42:1151-1156. [PMID: 33707279 DOI: 10.3174/ajnr.a7062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The ganglionic eminences are transient fetal brain structures that produce a range of neuron types. Ganglionic eminence anomalies have been recognized on fetal MR imaging and anecdotally found in association with a number of neurodevelopmental anomalies. The aim of this exploratory study was to describe and analyze the associations between ganglionic eminence anomalies and coexisting neurodevelopmental anomalies. MATERIALS AND METHODS This retrospective study includes cases of ganglionic eminence anomalies diagnosed on fetal MR imaging during a 20-year period from 7 centers in Italy and England. Inclusion criteria were cavitation or increased volume of ganglionic eminences on fetal MR imaging. The studies were analyzed for associated cerebral developmental anomalies: abnormal head size and ventriculomegaly, reduced opercularization or gyration, and abnormal transient layering of the developing brain mantle. The results were analyzed using χ2 and Fisher exact tests. RESULTS Sixty fetuses met the inclusion criteria (21 females, 24 males, 15 sex unknown). Thirty-four had ganglionic eminence cavitations (29 bilateral and 5 unilateral), and 26 had increased volume of the ganglionic eminences (19 bilateral, 7 unilateral). Bilateral ganglionic eminence cavitations were associated with microcephaly (P = .01), reduced opercularization, (P < .001), reduced gyration (P < .001), and cerebellar anomalies (P = .01). Unilateral ganglionic eminence cavitations were not significantly associated with any particular feature. Bilateral increased volume of the ganglionic eminences showed an association with macrocephaly (P = .03). Unilateral increased volume was associated with macrocephaly (P = .002), abnormal transient layering (P = .001), unilateral polymicrogyria (P = .001), and hemimegalencephaly (P < .001). CONCLUSIONS Ganglionic eminence anomalies are associated with specific neurodevelopmental anomalies with ganglionic eminence cavitations and increased ganglionic eminence volume apparently having different associated abnormalities.
Collapse
Affiliation(s)
- M Scarabello
- From the Pediatric Radiology and Neuroradiology Department (M. Scarabello, A.R., C.P.), Children's Hospital V. Buzzi, Milan, Italy
| | - A Righini
- From the Pediatric Radiology and Neuroradiology Department (M. Scarabello, A.R., C.P.), Children's Hospital V. Buzzi, Milan, Italy
| | - M Severino
- Neuroradiology Department (M. Severino), Istituto Di Ricovero e Cura a Carattere Scientifico-Gaslini Children's Research Hospital, Genoa, Italy
| | - L Pinelli
- Neuroradiology Department (L.P.), Azienda Ospedaliera Spedali Civili Di Brescia, Brescia, Italy
| | - C Parazzini
- From the Pediatric Radiology and Neuroradiology Department (M. Scarabello, A.R., C.P.), Children's Hospital V. Buzzi, Milan, Italy
| | - E Scola
- Neuroradiology Department (E.S., F.T.), Istituto Di Ricovero e Cura a Carattere Scientifico-Fondazione Policlinico di Milano, Milan, Italy
| | - G Palumbo
- Radiology Department (G.P.), Azienda Ospedaliera Spedali Civili Di Brescia, Brescia, Italy
| | - M Di Maurizio
- Radiology Department (M.D.M.), Children's Hospital Meyer, Florence, Italy
| | - I D'Errico
- Neuroradiology Department (I.D.), University Hospital, Padua, Italy
| | - A Rossi
- Neuroradiology Department (M. Severino), Istituto Di Ricovero e Cura a Carattere Scientifico-Gaslini Children's Research Hospital, Genoa, Italy
| | - F Triulzi
- Neuroradiology Department (E.S., F.T.), Istituto Di Ricovero e Cura a Carattere Scientifico-Fondazione Policlinico di Milano, Milan, Italy
| | - P D Griffiths
- Academic Unit of Radiology (P.D.G.), University of Sheffield, Sheffield, UK
| |
Collapse
|
36
|
Cabet S, Karl K, Garel C, Delius M, Hartung J, Lesca G, Chaoui R, Guibaud L. Two different prenatal imaging cerebral patterns of tubulinopathy. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:493-497. [PMID: 32149430 DOI: 10.1002/uog.22010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
To illustrate the prenatal cerebral imaging features associated with tubulinopathy, we report on five affected fetuses from unrelated families, with a de-novo heterozygous variant in a tubulin gene (TUBA1A, TUBB2B or TUBB3). We identified two distinct prenatal imaging patterns related to tubulinopathy: a severe form, characterized by enlarged germinal matrices, microlissencephaly and a kinked brainstem; and a mild form which has not been reported previously in the prenatal literature. The latter form is associated with non-specific features, including an asymmetric brainstem, corpus callosal dysgenesis, a lack of Sylvian fissure operculization and distortion of the anterior part of the interhemispheric fissure with subsequent impacted medial borders of the frontal lobes, the combination of which, in the absence of additional extracerebral anomalies, is highly suggestive of tubulinopathy. Copyright © 2020 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- S Cabet
- Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Université Claude Bernard Lyon 1, Lyon-Bron, France
- Service de Génétique, Groupement Hospitalier Est, Université Claude Bernard Lyon 1, Lyon-Bron, France
| | - K Karl
- Center for Prenatal Diagnosis Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - C Garel
- Department of Pediatric Imaging, Hôpital d'Enfants Armand-Trousseau APHP, Paris, France
| | - M Delius
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - J Hartung
- Office of Prenatal Diagnosis, Berlin, Germany
| | - G Lesca
- Service de Génétique, Groupement Hospitalier Est, Université Claude Bernard Lyon 1, Lyon-Bron, France
| | - R Chaoui
- Center for Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - L Guibaud
- Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Université Claude Bernard Lyon 1, Lyon-Bron, France
| |
Collapse
|
37
|
Brock S, Cools F, Jansen AC. Neuropathology of genetically defined malformations of cortical development-A systematic literature review. Neuropathol Appl Neurobiol 2021; 47:585-602. [PMID: 33480109 PMCID: PMC8359484 DOI: 10.1111/nan.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
AIMS Malformations of cortical development (MCD) include a heterogeneous spectrum of clinical, imaging, molecular and histopathological entities. While the understanding of genetic causes of MCD has improved with the availability of next-generation sequencing modalities, genotype-histopathological correlations remain limited. This is the first systematic review of molecular and neuropathological findings in patients with MCD to provide a comprehensive overview of the literature. METHODS A systematic review was performed between November 2019 and February 2020. A MEDLINE search was conducted for 132 genes previously linked to MCD in order to identify studies reporting macroscopic and/or microscopic findings in patients with a confirmed genetic cause. RESULTS Eighty-one studies were included in this review reporting neuropathological features associated with pathogenic variants in 46 genes (46/132 genes, 34.8%). Four groups emerged, consisting of (1) 13 genes with well-defined histological-genotype correlations, (2) 27 genes for which neuropathological reports were limited, (3) 5 genes with conflicting neuropathological features, and (4) 87 genes for which no histological data were available. Lissencephaly and polymicrogyria were reported most frequently. Associated brain malformations were variably present, with abnormalities of the corpus callosum as most common associated feature. CONCLUSIONS Neuropathological data in patients with MCD with a defined genetic cause are available only for a small number of genes. As each genetic cause might lead to unique histopathological features of MCD, standardised thorough neuropathological assessment and reporting should be encouraged. Histological features can help improve the understanding of the pathogenesis of MCD and generate hypotheses with impact on further research directions.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Filip Cools
- Department of Neonatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
38
|
Imaging phenotype correlation with molecular and molecular pathway defects in malformations of cortical development. Pediatr Radiol 2020; 50:1974-1987. [PMID: 33252763 DOI: 10.1007/s00247-020-04674-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/23/2020] [Accepted: 03/31/2020] [Indexed: 10/22/2022]
Abstract
The increase in understanding of molecular biology and recent advances in genetic testing have caused rapid growth in knowledge of genetic causes of malformations of cortical development. Imaging diagnosis of malformations of cortical development can be made prenatally in a large subset of fetuses based on the presence of specific deviations from the normal pattern of development, characteristic imaging features, and associated non-central-nervous-system (CNS) abnormalities. In this review the authors discuss the role of four key cell molecules/molecular pathways in corticogenesis that are frequently implicated in complex prenatally diagnosed malformations of cortical development. The authors also list the currently described genes causing defects in these molecules/molecular pathways when mutated, and the constellation of imaging findings resultant of such defects.
Collapse
|
39
|
Xie L, Huang J, Dai L, Luo J, Zhang J, Peng Q, Sun J, Zhang W. Loss-of-Function Plays a Major Role in Early Neurogenesis of Tubulin α-1 A (TUBA1A) Mutation-Related Brain Malformations. Mol Neurobiol 2020; 58:1291-1302. [PMID: 33165829 DOI: 10.1007/s12035-020-02193-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Tubulin α-1 A (TUBA1A) mutations cause a wide spectrum of brain abnormalities. Although many mutations have been identified and functionally verified, there are clearly many more, and the relationship between TUBA1A mutations and brain malformations remains unclear. The aim of this study was to identify a TUBA1A mutation in a fetus with severe brain abnormalities, verify it functionally, and determine the mechanism of the mutation-related pathogenesis. A de novo missense mutation of the TUBA1A gene, c.167C>G p.T56R/P.THR56Arg, was identified by exon sequencing. Computer simulations showed that the mutation results in a disruption of lateral interactions between the microtubules. Transfection of 293T cells with TUBA1A p.T56R showed that the mutated protein is only partially incorporated into the microtubule network, resulting in a decrease in the rate of microtubule re-integration in comparison with the wild-type protein. The mechanism of pathological changes induced by the mutant gene was determined by knockdown and overexpression. It was found that knockdown of TUBA1A reduced the generation of neural progenitor cells, while overexpression of wild-type or mutant TUBA1A promoted neurogenesis. Our identification and functional verification of the novel TUBA1A mutation extends the TUBA1A gene-phenotype database. Loss-of-function of TUBA1A was shown to play an important role in early neurogenesis of TUBA1A mutation-related brain malformations.
Collapse
Affiliation(s)
- Liangqun Xie
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Lei Dai
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jiefeng Luo
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jiejie Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Qiaozhen Peng
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jingchi Sun
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
40
|
Fourel G, Boscheron C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 2020; 594:3409-3438. [PMID: 33064843 DOI: 10.1002/1873-3468.13958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question. Here, we examined 85 MCD-associated tubulin mutations occurring in TUBA1A, TUBB2, and TUBB3 and their location in a three-dimensional (3D) microtubule cylinder. Mutations hitting residues exposed on the outer microtubule surface are likely to alter microtubule association with partners, while alteration of intradimer contacts may impair dimer stability and straightness. Other types of mutations are predicted to alter interdimer and lateral contacts, which are responsible for microtubule cohesion, rigidity, and dynamics. MCD-associated tubulin mutations surprisingly fall into all categories, thus providing unexpected insights into how a single mutation may impair microtubule function and elicit dominant effects in neurons.
Collapse
|
41
|
Aksel Kiliçarslan Ö, Ataman E, Gürsoy S, Gürbüz G, Ünalp A, Gençpinar P, Olgaç Dündar N, Edizer S, Ülgenalp A, Giray Bozkaya Ö. Investigation of the most common clinical and imaging findings and the role of tubulin genes in the etiology of malformations of cortical development. Turk J Med Sci 2020; 50:1573-1579. [PMID: 32718119 PMCID: PMC7605093 DOI: 10.3906/sag-1901-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/21/2020] [Indexed: 11/03/2022] Open
Abstract
Background and aim The number of reports on the role of tubulin gene mutations (TUBA1A, TUBB2B, and TUBB3) in etiology of malformations of cortical development has peaked in recent years. We aimed to determine tubulin gene defects on a patient population with simple and complex malformations of cortical development, and investigate the relationship between tubulin gene mutations and disease phenotype. Materials and methods We evaluated 47 patients with simple or complex malformations of cortical development, as determined by radiological examination, for demographic features, clinical findings and mutations on TUBA1A, TUBB2B, and TUBB3 genes. Results According to the magnetic resonance imaging findings, 19 patients (40.5%) had simple malformations of cortical development and 28 (59.5%) patients had complex malformations of cortical development. Focal cortical dysplasia was the most common simple malformation, lissencephaly was the most common coexisting cortical malformation, and corpus callosum anomalies were the most common coexisting extracortical neurodevelopmental abnormalities. None of the patients had genetic alterations on TUBA1A, TUBB2B, and TUBB3 genes causing protein dysfunction. On the other hand, the frequencies of some polymorphisms were higher when compared to the literature. Conclusion It is crucial to identify the etiology in patients with malformations of cortical development in order to provide appropriate genetic counseling and prenatal diagnosis. We consider that multicenter studies with higher patient numbers and also including other malformations of cortical development-related genes are required to determine underlying etiological factors of malformations of cortical development patients.
Collapse
Affiliation(s)
- Özge Aksel Kiliçarslan
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Esra Ataman
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Semra Gürsoy
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gürkan Gürbüz
- Department of Pediatric Neurology, Dr. Behcet Uz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Aycan Ünalp
- Department of Pediatric Neurology, Dr. Behcet Uz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Pinar Gençpinar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, İzmir,Turkey
| | - Nihal Olgaç Dündar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, İzmir,Turkey
| | - Selvinaz Edizer
- Department of Pediatric Neurology, Dr. Behcet Uz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Ayfer Ülgenalp
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey,Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Özlem Giray Bozkaya
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey,Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
42
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
43
|
Dentici ML, Maglione V, Agolini E, Catena G, Capolino R, Lanari V, Novelli A, Sinibaldi L, Vecchio D, Gonfiantini MV, Macchiaiolo M, Digilio MC, Dallapiccola B, Bartuli A. TUBB3 E410K syndrome: Case report and review of the clinical spectrum of TUBB3 mutations. Am J Med Genet A 2020; 182:1977-1984. [PMID: 32573066 DOI: 10.1002/ajmg.a.61719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
The tubulinopathies refer to a wide range of brain malformations caused by mutations in one of the seven genes encoding different tubulin's isotypes. The β-tubulin isotype III (TUBB3) gene has a primary function in nervous system development and axon generation and maintenance, due to its neuron-specific expression pattern. A recurrent heterozygous mutation, c.1228G > A; p.E410K, in TUBB3 gene is responsible of a rare disorder clinically characterized by congenital fibrosis of the extraocular muscle type 3 (CFEOM3), intellectual disability and a wide range of neurological and endocrine abnormalities. Other mutations have been described spanning the entire gene and genotype-phenotype correlations have been proposed. We report on a 3-year-old boy in whom clinical exome sequencing allowed to identify a de novo TUBB3 E410K mutation as the molecular cause underlying a complex phenotype characterized by a severe bilateral palpebral ptosis refractory to eye surgery, psychomotor delay, absent speech, hypogonadism, celiac disease, and cyclic vomiting. Brain MRI revealed thinning of the corpus callosum with no evidence of malformation cortical dysplasia. We reviewed available records of patients with TUBB3 E410K mutation and compared their phenotype with the clinical outcome of patients with other mutations in TUBB3 gene. The present study confirms that TUBB3 E410K results in a clinically recognizable phenotype, unassociated to the distinct cortical dysplasia caused by other mutations in the same gene. Early molecular characterization of TUBB3 E410K syndrome is critical for targeted genetic counseling and prompt prospective care in term of neurological, ophthalmological, endocrine, and gastrointestinal follow-up.
Collapse
Affiliation(s)
- Maria L Dentici
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Vittorio Maglione
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Gino Catena
- Department of Ophthalmology, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Rossella Capolino
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Valentina Lanari
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Lorenzo Sinibaldi
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Davide Vecchio
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Michaela V Gonfiantini
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Maria C Digilio
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Rome, Italy
| |
Collapse
|
44
|
Brock S, Vanderhasselt T, Vermaning S, Keymolen K, Régal L, Romaniello R, Wieczorek D, Storm TM, Schaeferhoff K, Hehr U, Kuechler A, Krägeloh-Mann I, Haack TB, Kasteleijn E, Schot R, Mancini GMS, Webster R, Mohammad S, Leventer RJ, Mirzaa G, Dobyns WB, Bahi-Buisson N, Meuwissen M, Jansen AC, Stouffs K. Defining the phenotypical spectrum associated with variants in TUBB2A. J Med Genet 2020; 58:33-40. [PMID: 32571897 PMCID: PMC7803914 DOI: 10.1136/jmedgenet-2019-106740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels, Belgium .,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tim Vanderhasselt
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sietske Vermaning
- Belgium Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Belgium Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Luc Régal
- Pediatric Neurology Unit, Department of Pediatrics, Universitair Ziekenhuis, Brussels, Belgium
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Dagmar Wieczorek
- Institut fuer Humangenetik, Universitaetsklininikum Essen, Essen, Germany.,Institute of Human Genetics, Heinrich Heine University Düsseldorf, Dusseldorf, Nordrhein-Westfalen, Germany
| | - Tim Matthias Storm
- Institut für Humangenetik, Technische Universität München, Munchen, Bayern, Germany
| | - Karin Schaeferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ute Hehr
- Zentrum für Humangenetik Regensburg, Universitätsklinikum Regensburg, Regensburg, Bayern, Germany
| | - Alma Kuechler
- Institut fuer Humangenetik, Universitaetsklininikum Essen, Essen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls-Universitat Tubingen Medizinische Fakultat, Tübingen, Baden-Württemberg, Germany
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Grazia Maria Simonetta Mancini
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Richard Webster
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Shekeeb Mohammad
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Richard J Leventer
- Department of Neurology, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Ghayda Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nadia Bahi-Buisson
- Embryology and Genetics of Congenital Malformations, INSERM, Paris, Île-de-France, France
| | - Marije Meuwissen
- Center of Human Genetics, Universiteit Antwerpen, Antwerpen, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium, Brussels, Belgium
| |
Collapse
|
45
|
Gavrilovici C, Jiang Y, Kiroski I, Teskey GC, Rho JM, Nguyen MD. Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cereb Cortex Commun 2020; 1:tgaa024. [PMID: 32864616 PMCID: PMC7446231 DOI: 10.1093/texcom/tgaa024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - G Campbell Teskey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| |
Collapse
|
46
|
Kalmár T, Szakszon K, Maróti Z, Zimmermann A, Máté A, Zombor M, Bereczki C, Sztriha L. A Novel Homozygous Frameshift WDR81 Mutation associated with Microlissencephaly, Corpus Callosum Agenesis, and Pontocerebellar Hypoplasia. J Pediatr Genet 2020; 10:159-163. [PMID: 33996189 DOI: 10.1055/s-0040-1712916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Microlissencephaly is a brain malformation characterized by microcephaly and extremely simplified gyral pattern. It may be associated with corpus callosum agenesis and pontocerebellar hypoplasia. In this case report, we described two siblings, a boy and a girl, with this complex brain malformation and lack of any development. In the girl, exome sequencing of a gene set representing 4,813 genes revealed a homozygous AG deletion in exon 7 of the WDR81 gene, leading to a frameshift (c.4668_4669delAG, p.Gly1557AspfsTer16). The parents were heterozygous for this mutation. The boy died without proper genetic testing. Our findings expand the phenotypic and genotypic spectrum of WDR81 gene mutations.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Adrienn Máté
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Melinda Zombor
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| |
Collapse
|
47
|
Autosomal dominant TUBB3-related syndrome: Fetal, radiologic, clinical and morphological features. Eur J Paediatr Neurol 2020; 26:46-60. [PMID: 32169460 DOI: 10.1016/j.ejpn.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To describe fetal, clinical, radiological, morphological features of TUBB3 related syndrome. METHODS We report two families each of two generations harboring a novel and a previously described heterozygous TUBB3 pathogenic variants. We compared these patients with other published TUBB3-related cases. We describe the pathological features of dysgyria in the two aborted fetuses. RESULTS The mother and son from family 1 had a history of mild developmental delay in motor and language skills and demonstrated mild cerebellar signs and mirror movements. Neuroimaging findings included: hypoplastic corpus callosum (CC), asymmetric ventriculomegaly and cerebellar vermis hypoplasia in all patients and frontal dysgyria in three. Autopsy of the fetal brain showed an unusual shape and orientation of the frontal sulci and gyri with normal cortical layering and no abnormal cell types. The mother of family 2 had congenital strabismus, mild muscle weakness on the right and a past history of developmental delay. Fetal brain MRI showed abnormal cerebral sulcation, hemispheric asymmetry, asymmetric ventriculomegaly, dysmorphic short CC and frontal cortical interdigitation. Autopsy demonstrated fronto-parietal predominant dysgyria, bilateral ventriculomegaly, hippocampal and CC hypoplasia, abnormal Sylvian fissure. Lamination and neuron morphology in the areas of dysgyria were normal. CONCLUSIONS TUBB3 related cortical malformations can be mild, consistent with dysgyria rather than typical pachygyria or polymicrogyria. The autopsy findings in fetal TUBB3 related dysgyria are abnormal orientation of sulci and gyri, but normal neuron morphology and layering. We suggest that TUBB3 - associated brain malformations can be suspected in-utero which in turn can aid in prognostic counselling and interpretation of genetic testing.
Collapse
|
48
|
Clinical and genomic characteristics of LAMA2 related congenital muscular dystrophy in a patients' cohort from Qatar. A population specific founder variant. Neuromuscul Disord 2020; 30:457-471. [PMID: 32444167 DOI: 10.1016/j.nmd.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Congenital LAMA2 related muscular dystrophy (LAMA2-RD), the most commonly recognized type of congenital muscular dystrophies, has been described in patients' cohorts from Europe and the UK but not from Middle-Eastern. This study aimed to reveal the prevalence, clinical and genomic characteristics of congenital LAMA2-RD in a patient's cohort of 17 families (21 patients) from the Gulf and Middle East. Affected subjects exhibited the classic phenotype of generalized hypotonia, developmental delay, and progressive muscular weakness. Despite the homogeneous background of most of our patients, clinical variability was evident; however, none of our patients was able to achieve independent ambulation. The associated features of nephrocalcinosis, infantile-onset osteopenia, and cardiac arrest were first described in this study. LAMA2 mutations constituted 48% of the genetic causes underlying congenital muscular dystrophies (CMDs) in our patients. We estimated a point prevalence of 0.8 in 100.000 for LAMA2-RD in Qatar, relatively higher compared to that described in Europe's studies. The founder mutation and high rate of consanguinity are potential contributors. This study identified five LAMA2 truncating variants, two novel and three recurrent, of which the c.6488delA-frameshift that was found in 12 unrelated Qatari families, highlighting a founder mutation in Qatari patients. The two novel variants involved an acceptor splice site and N-terminus deletion that removes the LAMA2 promoter, exon1, and part of intron1. The "residual" expression of LAMA2 transcript and protein associated with this large N-terminus deletion suggested an alternative promoter that, while seems to be activated, acts less efficiently.
Collapse
|
49
|
Aiken J, Buscaglia G, Aiken AS, Moore JK, Bates EA. Tubulin mutations in brain development disorders: Why haploinsufficiency does not explain TUBA1A tubulinopathies. Cytoskeleton (Hoboken) 2020; 77:40-54. [PMID: 31574570 DOI: 10.1002/cm.21567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
The neuronal cytoskeleton performs incredible feats during nervous system development. Extension of neuronal processes, migration, and synapse formation rely on the proper regulation of microtubules. Mutations that disrupt the primary α-tubulin expressed during brain development, TUBA1A, are associated with a spectrum of human brain malformations. One model posits that TUBA1A mutations lead to a reduction in tubulin subunits available for microtubule polymerization, which represents a haploinsufficiency mechanism. We propose an alternative model for the majority of tubulinopathy mutations, in which the mutant tubulin polymerizes into the microtubule lattice to dominantly "poison" microtubule function. Nine distinct α-tubulin and ten β-tubulin genes have been identified in the human genome. These genes encode similar tubulin proteins, called isotypes. Multiple tubulin isotypes may partially compensate for heterozygous deletion of a tubulin gene, but may not overcome the disruption caused by missense mutations that dominantly alter microtubule function. Here, we describe disorders attributed to haploinsufficiency versus dominant negative mechanisms to demonstrate the hallmark features of each disorder. We summarize literature on mouse models that represent both knockout and point mutants in tubulin genes, with an emphasis on how these mutations might provide insight into the nature of tubulinopathy patient mutations. Finally, we present data from a panel of TUBA1A tubulinopathy mutations generated in yeast α-tubulin that demonstrate that α-tubulin mutants can incorporate into the microtubule network and support viability of yeast growth. This perspective on tubulinopathy mutations draws on previous studies and additional data to provide a fresh perspective on how TUBA1A mutations disrupt neurodevelopment.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - A Sophie Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Emily A Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
50
|
Sferra A, Petrini S, Bellacchio E, Nicita F, Scibelli F, Dentici ML, Alfieri P, Cestra G, Bertini ES, Zanni G. TUBB Variants Underlying Different Phenotypes Result in Altered Vesicle Trafficking and Microtubule Dynamics. Int J Mol Sci 2020; 21:ijms21041385. [PMID: 32085672 PMCID: PMC7073044 DOI: 10.3390/ijms21041385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022] Open
Abstract
Tubulinopathies are rare neurological disorders caused by alterations in tubulin structure and function, giving rise to a wide range of brain abnormalities involving neuronal proliferation, migration, differentiation and axon guidance. TUBB is one of the ten β-tubulin encoding genes present in the human genome and is broadly expressed in the developing central nervous system and the skin. Mutations in TUBB are responsible for two distinct pathological conditions: the first is characterized by microcephaly and complex structural brain malformations and the second, also known as “circumferential skin creases Kunze type” (CSC-KT), is associated to neurological features, excess skin folding and growth retardation. We used a combination of immunocytochemical and cellular approaches to explore, on patients’ derived fibroblasts, the functional consequences of two TUBB variants: the novel mutation (p.N52S), associated with basal ganglia and cerebellar dysgenesis, and the previously reported variant (p.M73T), linked to microcephaly, corpus callosum agenesis and CSC-KT skin phenotype. Our results demonstrate that these variants impair microtubule (MT) function and dynamics. Most importantly, our studies show an altered epidermal growth factor (EGF) and transferrin (Tf) intracellular vesicle trafficking in both patients’ fibroblasts, suggesting a specific role of TUBB in MT-dependent vesicular transport.
Collapse
Affiliation(s)
- Antonella Sferra
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
- Correspondence: (A.S.); (G.Z.)
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Emanuele Bellacchio
- Department of Research Laboratories, Bambino Gesù Children’s Hospital, 00146 Rome, Italy;
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
| | - Francesco Scibelli
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (F.S.); (P.A.)
| | - Maria Lisa Dentici
- Unit of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Paolo Alfieri
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (F.S.); (P.A.)
| | - Gianluca Cestra
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) and University of Rome “Sapienza”, Department of Biology and Biotechnology, 00185 Rome, Italy;
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
- Correspondence: (A.S.); (G.Z.)
| |
Collapse
|