1
|
Vidal E, Eraña H, Charco JM, Lorenzo NL, Giler S, Ordóñez M, Fernández-Muñoz E, San-Juan-Ansoleaga M, Telling GC, Sánchez-Martín MA, Geijo M, Requena JR, Castilla J. Conservation of strain properties of bank vole-adapted chronic wasting disease in the absence of glycosylation and membrane anchoring. Neurobiol Dis 2025; 210:106894. [PMID: 40220915 DOI: 10.1016/j.nbd.2025.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Prion disease phenotypes (prion strains) are primarily determined by the specific misfolded conformation of the cellular prion protein (PrPC). However, post-translational modifications, including glycosyl phosphatidyl inositol (GPI) membrane anchoring and glycosylation, may influence strain characteristics. We investigated whether these modifications are essential for maintaining the unique properties of bank vole-adapted Chronic Wasting Disease (CWD-vole), the fastest known prion strain. Using a novel transgenic mouse model expressing I109 bank vole PrPC lacking the GPI anchor and largely devoid of glycans, we performed serial passages of CWD-vole prions. Despite elongated initial incubation periods, the strain maintained 100 % attack rate through three passages. Although the pathological phenotype showed characteristic GPI-less features, including abundant extracellular plaque formation, three subsequent serial passages in fully glycosylated and GPI-anchored bank vole I109 PrPC expressing transgenic mice TgVole (1×) demonstrated that the strain's distinctive rapid propagation properties were preserved. These findings suggest that neither GPI anchoring nor glycosylation are essential for maintaining CWD-vole strain properties, supporting the concept that strain characteristics are primarily encoded in the protein's misfolded structure.
Collapse
Affiliation(s)
- Enric Vidal
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain.
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain; ATLAS Molecular Pharma S. L., Derio, Spain.
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain; ATLAS Molecular Pharma S. L., Derio, Spain.
| | - Nuria L Lorenzo
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain; Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain.
| | - Samanta Giler
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain.
| | - Montserrat Ordóñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain.
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Glenn C Telling
- Prion Research Center, Colorado State University, Fort Collins, USA.
| | - Manuel A Sánchez-Martín
- Transgenic Facility, Department of Medicine, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| | - Mariví Geijo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain; Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain.
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Erdenebat T, Komatsu Y, Uwamori N, Tanaka M, Hoshika T, Yamasaki T, Shimakura A, Suzuki A, Sato T, Horiuchi M. Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice. Front Mol Neurosci 2024; 17:1498142. [PMID: 39726739 PMCID: PMC11669680 DOI: 10.3389/fnmol.2024.1498142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The accumulation of a disease-specific isoform of prion protein (PrPSc) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrPSc and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection. However, the underlying mechanism is largely unknown. In this study, we provided evidence that the prion 22L strain propagates more efficiently in excitatory neurons than inhibitory neurons and that excitatory neurons in the thalamus are vulnerable to prion infection. PrPSc accumulation was less intense in the striatum, where GABAergic inhibitory neurons predominate, compared to the cerebral cortex and thalamus, where glutamatergic excitatory neurons are predominant, in mice intracerebrally or intraperitoneally inoculated with the 22L strain. PrPSc stains were observed along the needle track after stereotaxic injection into the striatum, whereas they were also observed away from the needle track in the thalamus. Consistent with inefficient prion propagation in the striatum, the 22L prion propagated more efficiently in glutamatergic neurons than GABAergic neurons in primary neuronal cultures. RNAscope in situ hybridization revealed a decrease in Vglut1- and Vglut2-expressing neurons in the ventral posterolateral nuclei of the thalamus in 22L strain-infected mice, whereas no decrease in Vgat-expressing neurons was observed in the adjacent reticular nucleus, mainly composed of Vgat-expressing interneurons. The excitatory neuron-prone prion propagation and excitatory neuronal loss in 22L strain-infected mice shed light on the neuropathological mechanism of prion diseases.
Collapse
Affiliation(s)
- Temuulen Erdenebat
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Yusuke Komatsu
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Nozomi Uwamori
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Misaki Tanaka
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takashi Hoshika
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Ayano Shimakura
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Alam P, Hoyt F, Artikis E, Soukup J, Hughson AG, Schwartz CL, Barbian K, Miller MW, Race B, Caughey B. Cryo-EM structure of a natural prion: chronic wasting disease fibrils from deer. Acta Neuropathol 2024; 148:56. [PMID: 39448454 PMCID: PMC11502585 DOI: 10.1007/s00401-024-02813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Chronic wasting disease (CWD) is a widely distributed prion disease of cervids with implications for wildlife conservation and also for human and livestock health. The structures of infectious prions that cause CWD and other natural prion diseases of mammalian hosts have been poorly understood. Here we report a 2.8 Å resolution cryogenic electron microscopy-based structure of CWD prion fibrils from the brain of a naturally infected white-tailed deer expressing the most common wild-type PrP sequence. Like recently solved rodent-adapted scrapie prion fibrils, our atomic model of CWD fibrils contains single stacks of PrP molecules forming parallel in-register intermolecular β-sheets and intervening loops comprising major N- and C-terminal lobes within the fibril cross-section. However, CWD fibrils from a natural cervid host differ markedly from the rodent structures in many other features, including a ~ 180° twist in the relative orientation of the lobes. This CWD structure suggests mechanisms underlying the apparent CWD transmission barrier to humans and should facilitate more rational approaches to the development of CWD vaccines and therapeutics.
Collapse
Affiliation(s)
- Parvez Alam
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Forrest Hoyt
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Efrosini Artikis
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Jakub Soukup
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Andrew G Hughson
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kent Barbian
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | | | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
4
|
Shoup D, Priola SA. Cell biology of prion strains in vivo and in vitro. Cell Tissue Res 2023; 392:269-283. [PMID: 35107622 PMCID: PMC11249200 DOI: 10.1007/s00441-021-03572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
The properties of infectious prions and the pathology of the diseases they cause are dependent upon the unique conformation of each prion strain. How the pathology of prion disease correlates with different strains and genetic backgrounds has been investigated via in vivo assays, but how interactions between specific prion strains and cell types contribute to the pathology of prion disease has been dissected more effectively using in vitro cell lines. Observations made through in vivo and in vitro assays have informed each other with regard to not only how genetic variation influences prion properties, but also how infectious prions are taken up by cells, modified by cellular processes and propagated, and the cellular components they rely on for persistent infection. These studies suggest that persistent cellular infection results from a balance between prion propagation and degradation. This balance may be shifted depending upon how different cell lines process infectious prions, potentially altering prion stability, and how fast they can be transported to the lysosome. Thus, in vitro studies have given us a deeper understanding of the interactions between different prions and cell types and how they may influence prion disease phenotypes in vivo.
Collapse
Affiliation(s)
- Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA.
| |
Collapse
|
5
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Byron Caughey
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - Heidi G. Standke
- Department of Pathology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Efrosini Artikis
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - Forrest Hoyt
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Allison Kraus
- Department of Pathology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
7
|
Hirata T, Kobayashi A, Furuse T, Yamada I, Tamura M, Tomita H, Tokoro Y, Ninomiya A, Fujihara Y, Ikawa M, Maeda Y, Murakami Y, Kizuka Y, Kinoshita T. Loss of the N-acetylgalactosamine side chain of the GPI-anchor impairs bone formation and brain functions and accelerates the prion disease pathology. J Biol Chem 2022; 298:101720. [PMID: 35151686 PMCID: PMC8913354 DOI: 10.1016/j.jbc.2022.101720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) is a posttranslational glycolipid modification of proteins that anchors proteins in lipid rafts on the cell surface. Although some GPI-anchored proteins (GPI-APs), including the prion protein PrPC, have a glycan side chain composed of N-acetylgalactosamine (GalNAc)−galactose−sialic acid on the core structure of GPI glycolipid, in vivo functions of this GPI-GalNAc side chain are largely unresolved. Here, we investigated the physiological and pathological roles of the GPI-GalNAc side chain in vivo by knocking out its initiation enzyme, PGAP4, in mice. We show that Pgap4 mRNA is highly expressed in the brain, particularly in neurons, and mass spectrometry analysis confirmed the loss of the GalNAc side chain in PrPC GPI in PGAP4-KO mouse brains. Furthermore, PGAP4-KO mice exhibited various phenotypes, including an elevated blood alkaline phosphatase level, impaired bone formation, decreased locomotor activity, and impaired memory, despite normal expression levels and lipid raft association of various GPI-APs. Thus, we conclude that the GPI-GalNAc side chain is required for in vivo functions of GPI-APs in mammals, especially in bone and the brain. Moreover, PGAP4-KO mice were more vulnerable to prion diseases and died earlier after intracerebral inoculation of the pathogenic prion strains than wildtype mice, highlighting the protective roles of the GalNAc side chain against prion diseases.
Collapse
Affiliation(s)
- Tetsuya Hirata
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Ikuko Yamada
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Akinori Ninomiya
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yoshitaka Fujihara
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yusuke Maeda
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
8
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part I. a literature review. Expert Rev Neurother 2021; 21:969-982. [PMID: 34470561 DOI: 10.1080/14737175.2021.1965881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The cellular prion protein (PrPC) is well known for its pathogenic roles in prion diseases, several other neurodegenerative diseases (such as Alzheimer's disease), and multiple types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less attention. AREAS COVERED Here the authors will systematically review the literatures on the negative as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles. EXPERT OPINION PrP and its N-terminal fragments have strong neuroprotective activities that should be explored for therapeutics and prophylactics development against prion disease, Alzheimer's disease and a few other neurodegenerative diseases. The strategies to develop PrP-based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a companion article (Part II).
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
9
|
Cheng Y, Ma X, Belfield KD, Haorah J. Biphasic Effects of Ethanol Exposure on Waste Metabolites Clearance in the CNS. Mol Neurobiol 2021; 58:3953-3967. [PMID: 33895940 DOI: 10.1007/s12035-021-02379-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
We have shown that the effects of low-dose ethanol promote the clearance of waste metabolites, such as amyloid-beta (Aβ) proteins, from the brain through the perivascular space (PVS). We demonstrated that dilative reactivity of arterial smooth muscle and endothelial cells regulate this clearance. These findings indicate the importance of blood-brain barrier (BBB) transvascular clearance of large size metabolites from the central nervous system (CNS), where the lymphatic clearance system is absent. We next examined the contrasting effects of acute low-dose and chronic moderate ethanol exposure on BBB-associated perivascular clearance. We injected a high molecular weight fluorescent dye into the interstitial space or directly into the cerebrospinal fluid (CSF). Bio-distribution of this tracer was then examined in different brain regions by multiphoton imaging and whole brain tissue section scanning. Ethanol-induced molecular/cellular mechanisms that drive the increase or decrease in movement of the fluorescent tracer were correlated to BBB integrity and arterial vessel reactivity. We found that activation of endothelial nitric oxide synthase (eNOS) under low-dose ethanol conditions with a shift to activation of inducible NOS (iNOS) under chronic high ethanol exposure conditions, which appeared to regulate these contrasting effects. We validated these observations by qualitative and quantitative investigation of eNOS, iNOS, BBB integrity, and perivascular clearance of waste metabolites. We concluded that the effects of low-dose ethanol increased the diffusive movement of waste metabolites via eNOS-derived NO, which increased the arterial endothelial-smooth muscle cell dilative reactivity without affecting BBB integrity, whereas a prolonged induction of iNOS under chronic ethanol exposure conditions caused oxidative damage of the arterial endothelial-smooth muscle layers resulting in cerebral amyloid-like angiopathy. This led to dysfunction of the BBB, dilative reactivity, and impaired waste metabolites movement from the interstitial space or subarachnoid space (SAS) through perivascular clearance.
Collapse
Affiliation(s)
- Yiming Cheng
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaotang Ma
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, NJ, 07102, USA
| | - James Haorah
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
10
|
Kobayashi A, Hirata T, Nishikaze T, Ninomiya A, Maki Y, Takada Y, Kitamoto T, Kinoshita T. α2,3 linkage of sialic acid to a GPI anchor and an unpredicted GPI attachment site in human prion protein. J Biol Chem 2020; 295:7789-7798. [PMID: 32321762 DOI: 10.1074/jbc.ra120.013444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are transmissible, lethal neurodegenerative disorders caused by accumulation of the aggregated scrapie form of the prion protein (PrPSc) after conversion of the cellular prion protein (PrPC). The glycosylphosphatidylinositol (GPI) anchor of PrPC is involved in prion disease pathogenesis, and especially sialic acid in a GPI side chain reportedly affects PrPC conversion. Thus, it is important to define the location and structure of the GPI anchor in human PrPC Moreover, the sialic acid linkage type in the GPI side chain has not been determined for any GPI-anchored protein. Here we report GPI glycan structures of human PrPC isolated from human brains and from brains of a knock-in mouse model in which the mouse prion protein (Prnp) gene was replaced with the human PRNP gene. LC-electrospray ionization-MS analysis of human PrPC from both biological sources indicated that Gly229 is the ω site in PrPC to which GPI is attached. Gly229 in human PrPC does not correspond to Ser231, the previously reported ω site of Syrian hamster PrPC We found that ∼41% and 28% of GPI anchors in human PrPCs from human and knock-in mouse brains, respectively, have N-acetylneuraminic acid in the side chain. Using a sialic acid linkage-specific alkylamidation method to discriminate α2,3 linkage from α2,6 linkage, we found that N-acetylneuraminic acid in PrPC's GPI side chain is linked to galactose through an α2,3 linkage. In summary, we report the GPI glycan structure of human PrPC, including the ω-site amino acid for GPI attachment and the sialic acid linkage type.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tetsuya Hirata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Akinori Ninomiya
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoko Takada
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Cheng Y, Haorah J. How does the brain remove its waste metabolites from within? INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:238-249. [PMID: 31993098 PMCID: PMC6971497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The brain is the command center of the body that regulates the vital functions of circulation, respiration, motor function, metabolic activities, or autonomic nervous system outcomes. The brain coordinates these continuous activities at the expense of huge energy utilization. This energy demand is achieved by active transport of nutrients across the endothelial blood-brain barrier (BBB). This review discusses the barrier interfaces in the CNS that include the BBB, blood-spinal cord barrier, the epithelial choroid plexus, and the epithelial arachnoid. While transporting of nutrients across the BBB is a normal physiological function, the trafficking of xenobiotics and inflammatory cells/agents across these interfaces is harmful to brain cells. This leads to production of waste metabolites in the brain. Clearance of these waste metabolites maintains the normal brain homeostasis, while aggregation is detrimental to neurological complications. Since the CNS lacks lymphatic system, the CSF serves as the clearance path for water-soluble peptides/solutes, but not large size waste metabolites like Aβ protein. In particular, this review will focus on the mechanisms of waste metabolites clearance paths in the CNS. This will include the recently discovered waste metabolites movement from interstitial space (IS) directly into perivascular clearance (PVC), or via IS-CSF-PVC, and its exchange from PVC to circulation. Concluding remarks will discuss the therapeutic approach to improve the clearance mechanisms for ameliorating neurological diseases.
Collapse
Affiliation(s)
- Yiming Cheng
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology Newark, NJ 07102, United States
| | - James Haorah
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology Newark, NJ 07102, United States
| |
Collapse
|
12
|
Cheng Y, Liu X, Ma X, Garcia R, Belfield K, Haorah J. Alcohol promotes waste clearance in the CNS via brain vascular reactivity. Free Radic Biol Med 2019; 143:115-126. [PMID: 31362045 DOI: 10.1016/j.freeradbiomed.2019.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
The efficient clearance of the interstitial waste metabolites is essential for the normal maintenance of brain homeostasis. The brain lacks the lymphatic clearance system. Thus, the drainage of waste metabolites in the brain is dependent on a slow flow of cerebrospinal fluid (CSF) system. Glymphatic system claims the direct bulk flow transport of small size water-soluble waste metabolites into to the perivenous space by aquaporin-4 water channels of the astrocyte end-feet, but it did not address the diffusive clearance of large size waste metabolites. Here, we addressed the clearance mechanisms of large size waste metabolites from interstitial fluid to perivascular space as well as from CSF subarachnoid into perivascular space via the paravascular drainage. A low dose ethanol acting as a potent vasodilator promotes the dynamic clearance of waste metabolites through this perivascular-perivenous drainage path. We observed that ethanol-induced increased in vascular endothelial and smooth muscle cell reactivity regulated the enhanced clearance of metabolites. Here, activation of endothelial specific nitric oxide synthase (eNOS) by ethanol and generation of vasodilator nitric oxide mediates the interactive reactivity of endothelial-smooth muscle cells and subsequent diffusion of the CNS waste metabolites towards perivascular space. Detection of tracer dye (waste metabolite) in the perivenous space and in the blood samples further confirmed the improved clearance of waste metabolites through this unraveled interstitial-perivascular-perivenous clearance path. Our results suggest that alcohol intake at low-dose levels may promote clearance of neurological disease associated entangled proteins.
Collapse
Affiliation(s)
- Yiming Cheng
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States
| | - Xinglei Liu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, NJ, 07102, United States
| | - Xiaotang Ma
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States
| | - Ricardo Garcia
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States
| | - Kevin Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, NJ, 07102, United States
| | - James Haorah
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States.
| |
Collapse
|
13
|
Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci 2018; 21:1341-1349. [PMID: 30258241 PMCID: PMC6375686 DOI: 10.1038/s41593-018-0238-6] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are characterized by the progressive appearance of abnormal proteinaceous assemblies in the nervous system. Studies in experimental systems indicate that the assemblies originate from the prion-like seeded aggregation of specific misfolded proteins that proliferate and amass to form the intracellular and/or extracellular lesions typical of each disorder. The host in which the proteopathic seeds arise provides the biochemical and physiological environment that either supports or restricts their emergence, proliferation, self-assembly, and spread. Multiple mechanisms influence the spatiotemporal spread of seeds and the nature of the resulting lesions, one of which is the cellular uptake, release, and transport of seeds along neural pathways and networks. The characteristics of cells and regions in the affected network govern their vulnerability and thereby influence the neuropathological and clinical attributes of the disease. The propagation of pathogenic protein assemblies within the nervous system is thus determined by the interaction of the proteopathic agent and the host milieu.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Davis AA, Leyns CEG, Holtzman DM. Intercellular Spread of Protein Aggregates in Neurodegenerative Disease. Annu Rev Cell Dev Biol 2018; 34:545-568. [PMID: 30044648 DOI: 10.1146/annurev-cellbio-100617-062636] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most neurodegenerative diseases are characterized by the accumulation of protein aggregates, some of which are toxic to cells. Mounting evidence demonstrates that in several diseases, protein aggregates can pass from neuron to neuron along connected networks, although the role of this spreading phenomenon in disease pathogenesis is not completely understood. Here we briefly review the molecular and histopathological features of protein aggregation in neurodegenerative disease, we summarize the evidence for release of proteins from donor cells into the extracellular space, and we highlight some other mechanisms by which protein aggregates might be transmitted to recipient cells. We also discuss the evidence that supports a role for spreading of protein aggregates in neurodegenerative disease pathogenesis and some limitations of this model. Finally, we consider potential therapeutic strategies to target spreading of protein aggregates in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Cheryl E G Leyns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
15
|
Microglia Are Critical in Host Defense against Prion Disease. J Virol 2018; 92:JVI.00549-18. [PMID: 29769333 DOI: 10.1128/jvi.00549-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Microglial cells in the central nervous system play important roles in neurodevelopment and resistance to infection, yet microglia can become neurotoxic under some conditions. An early event during prion infection is the activation of microglia and astrocytes in the brain prior to damage or death of neurons. Previous prion disease studies using two different strategies to manipulate signaling through the microglial receptor CSF-1R reported contrary effects on survival from prion disease. However, in these studies, reductions of microglial numbers and function were variable, thus confounding interpretation of the results. In the present work, we used oral treatment with a potent inhibitor of CSF-1R, PLX5622, to eliminate 78 to 90% of microglia from cortex early during the course of prion infection. Oral drug treatment early after infection with the RML scrapie strain significantly accelerated vacuolation, astrogliosis, and deposition of disease-associated prion protein. Furthermore, drug-treated mice had advanced clinical disease requiring euthanasia 31 days earlier than untreated control mice. Similarly, PLX5622 treatment during the preclinical phase at 80 days postinfection with RML scrapie also accelerated disease and resulted in euthanasia of mice 33 days earlier than infected controls. PLX5622 also accelerated clinical disease after infection with scrapie strains ME7 and 22L. Thus, microglia are critical in host defense during prion disease. The early accumulation of PrPSc in the absence of microglia suggested that microglia may function by clearing PrPSc, resulting in longer survival.IMPORTANCE Microglia contribute to many aspects of health and disease. When activated, microglia can be beneficial by repairing damage in the central nervous system (CNS) or they can turn harmful by becoming neurotoxic. In prion and prionlike diseases, the involvement of microglia in disease is unclear. Previous studies suggest that microglia can either speed up or slow down disease. In this study, we infected mice with prions and depleted microglia from the brains of mice using PLX5622, an effective CSF-1R tyrosine kinase inhibitor. Microglia were markedly reduced in brains, and prion disease was accelerated, so that mice needed to be euthanized 20 to 33 days earlier than infected control mice due to advanced clinical disease. Similar results occurred when mice were treated with PLX5622 at 80 days after infection, which was just prior to the start of clinical signs. Thus, microglia are important for removing prions, and the disease is faster when microglia are depleted.
Collapse
|
16
|
Linsenmeier L, Mohammadi B, Wetzel S, Puig B, Jackson WS, Hartmann A, Uchiyama K, Sakaguchi S, Endres K, Tatzelt J, Saftig P, Glatzel M, Altmeppen HC. Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Mol Neurodegener 2018; 13:18. [PMID: 29625583 PMCID: PMC5889536 DOI: 10.1186/s13024-018-0248-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Proteolytic processing of the prion protein (PrPC) by endogenous proteases generates bioactive membrane-bound and soluble fragments which may help to explain the pleiotropic roles of this protein in the nervous system and in brain diseases. Shedding of almost full-length PrPC into the extracellular space by the metalloprotease ADAM10 is of peculiar relevance since soluble PrP stimulates axonal outgrowth and is protective in neurodegenerative conditions such as Alzheimer’s and prion disease. However, molecular determinates and mechanisms regulating the shedding of PrP are entirely unknown. Methods We produced an antibody recognizing the neo-epitope of shed PrP generated by ADAM10 in biological samples and used it to study structural and mechanistic aspects affecting the shedding. For this, we investigated genetically modified cellular and murine models by biochemical and morphological approaches. Results We show that the novel antibody specifically detects shed PrP in cell culture supernatants and murine brain. We demonstrate that ADAM10 is the exclusive sheddase of PrPC in the nervous system and reveal that the glycosylation state and type of membrane-anchorage of PrPC severely affect its shedding. Furthermore, we provide evidence that PrP shedding can be modulated by pharmacological inhibition and stimulation and present data suggesting that shedding is a relevant part of a compensatory network ensuring PrPC homeostasis of the cell. Conclusions With the new antibody, our study introduces a new tool to reliably investigate PrP-shedding. In addition, this study provides novel and important insight into the regulation of this cleavage event, which is likely to be relevant for diagnostic and therapeutic approaches even beyond neurodegeneration.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Alexander Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Keiji Uchiyama
- Division of Molecular Neurobiology, Institute of Enzyme Research, Tokushima University, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute of Enzyme Research, Tokushima University, Tokushima, Japan
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jörg Tatzelt
- Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
17
|
Race B, Williams K, Hughson AG, Jansen C, Parchi P, Rozemuller AJM, Chesebro B. Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein. Acta Neuropathol Commun 2018; 6:13. [PMID: 29458424 PMCID: PMC5819089 DOI: 10.1186/s40478-018-0516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/11/2018] [Indexed: 11/21/2022] Open
Abstract
Human familial prion diseases are associated with mutations at 34 different prion protein (PrP) amino acid residues. However, it is unclear whether infectious prions are found in all cases. Mutant PrP itself may be neurotoxic, or alternatively, PrP mutation might predispose to spontaneous formation of infectious PrP isoforms. Previous reports demonstrated transmission to animal models by human brain tissue expressing 7 different PrP mutations, but 3 other mutations were not transmissible. In the present work, we tested transmission using brain homogenates from patients expressing 3 untested PrP mutants: G131V, Y226X, and Q227X. Human brain homogenates were injected intracerebrally into tg66 transgenic mice overexpressing human PrP. Mice were followed for nearly 800 days. From 593 to 762 dpi, 4 of 8 mice injected with Y226X brain had PrPSc detectable in brain by immunostaining, immunoblot, and PrP amyloid seeding activity assayed by RT-QuIC. From 531 to 784 dpi, 11 of 11 G131V-injected mice had PrPSc deposition in brain, but none were positive by immunoblot or RT-QuIC assay. In contrast, from 529 to 798 dpi, no tg66 mice injected with Q227X brain had PrPSc or PrP amyloid seeding activity detectable by these methods. Y226X is the only one of 4 known PrP truncations associated with familial disease which has been shown to be transmissible. This transmission of prion infectivity from a patient expressing truncated human PrP may have implications for the spread and possible transmission of other aggregated truncated proteins in prion-like diseases such as Alzheimer’s disease, Parkinson’s disease and tauopathies.
Collapse
|
18
|
Kovač V, Čurin Šerbec V. Prion Proteins Without the Glycophosphatidylinositol Anchor: Potential Biomarkers in Neurodegenerative Diseases. Biomark Insights 2018; 13:1177271918756648. [PMID: 29449775 PMCID: PMC5808966 DOI: 10.1177/1177271918756648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023] Open
Abstract
Prion protein (PrP) is a biomolecule that is involved in neuronal signaling, myelinization, and the development of neurodegenerative diseases. In the cell, PrP is shed by the ADAM10 protease. This process generates PrP molecules that lack glycophosphatidylinositol anchor, and these molecules incorporate into toxic aggregates and neutralize toxic oligomers. Due to this dual role, these molecules are important biomarkers for neurodegenerative diseases. In this review, we present shed PrP as a potential biomarker, with a focus on PrP226*, which may be the main biomarker for predicting neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Valerija Kovač
- Department for the Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department for the Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
19
|
Abstract
Senile plaques and neurofibrillary tangles are the principal histopathologic hallmarks of Alzheimer disease. The essential constituents of these lesions are structurally abnormal variants of normally generated proteins: Aβ protein in plaques and tau protein in tangles. At the molecular level, both proteins in a pathogenic state share key properties with classic prions, i.e., they consist of alternatively folded, β-sheet-rich forms of the proteins that autopropagate by the seeded corruption and self-assembly of like proteins. Other similarities with prions include the ability to manifest as polymorphic and polyfunctional strains, resistance to chemical and enzymatic destruction, and the ability to spread within the brain and from the periphery to the brain. In Alzheimer disease, current evidence indicates that the pathogenic cascade follows from the endogenous, sequential corruption of Aβ and then tau. Therapeutic options include reducing the production or multimerization of the proteins, uncoupling the Aβ-tauopathy connection, or promoting the inactivation or removal of anomalous assemblies from the brain. Although aberrant Aβ appears to be the prime mover of Alzheimer disease pathogenesis, once set in motion by Aβ, the prion-like propagation of tauopathy may proceed independently of Aβ; if so, Aβ might be solely targeted as an early preventive measure, but optimal treatment of Alzheimer disease at later stages of the cascade could require intervention in both pathways.
Collapse
Affiliation(s)
- Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| |
Collapse
|
20
|
Linsenmeier L, Altmeppen HC, Wetzel S, Mohammadi B, Saftig P, Glatzel M. Diverse functions of the prion protein - Does proteolytic processing hold the key? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2128-2137. [PMID: 28693923 DOI: 10.1016/j.bbamcr.2017.06.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Proteolytic processing of the cellular and disease-associated form of the prion protein leads to generation of bioactive soluble prion protein fragments and modifies the structure and function of its cell-bound form. The nature of proteases responsible for shedding, α-, β-, and γ-cleavage of the prion protein are only partially identified and their regulation is largely unknown. Here, we provide an overview of the increasingly multifaceted picture of prion protein proteolysis and shed light on physiological and pathological roles associated with these cleavages. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
21
|
Kovač V, Zupančič B, Ilc G, Plavec J, Čurin Šerbec V. Truncated prion protein PrP226* - A structural view on its role in amyloid disease. Biochem Biophys Res Commun 2017; 484:45-50. [PMID: 28109886 DOI: 10.1016/j.bbrc.2017.01.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
In the brain of patients with transmissible spongiform encephalopathies, besides PrPSc aggregates, deposition of truncated PrP molecules was described. Jansen et al. reported two clinical cases with deposition of C-terminally truncated PrP, one of them ending with Tyr226. We have previously described the discovery of monoclonal antibody V5B2 that selectively recognizes this version of the prion protein, which we called PrP226*. Using monoclonal antibody V5B2 we showed that accumulation of PrP226* is characteristic for most types of human and animal TSEs. Its distribution correlates to the distribution of PrPSc aggregates. To gain insight into the structural basis of its presence and distribution in PrP aggregates, we have determined the NMR structure of recombinant PrP226*. The structure of the protein consists of a disordered N-terminal part (residues 90-125) and a structured C-terminal part (residues 126-226). The C-terminal segment consists of four α-helices and a short antiparallel β-sheet. Our model predicts a break in the C-terminal helix and reorganized hydrophobic interactions between helix α3 and β2-α2 loop due to the shorter C-terminus. The structural model gives information on the possible role of the protein in the development of amyloid disease and can serve as a foundation to develop tools for prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Valerija Kovač
- Department for the Production of Diagnostic Reagents and Research & R&D Service, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia.
| | - Blaž Zupančič
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Dunajska 156, SI-1001 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Dunajska 156, SI-1001 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department for the Production of Diagnostic Reagents and Research & R&D Service, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Kovač V, Hafner-Bratkovič I, Čurin Šerbec V. Anchorless forms of prion protein - Impact of truncation on structure destabilization and prion protein conversion. Biochem Biophys Res Commun 2016; 481:1-6. [PMID: 27836542 DOI: 10.1016/j.bbrc.2016.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
Prion diseases are a group of fatal neurodegenerative diseases caused by scrapie form of prion protein, PrPSc. Prion protein (PrP) is bound to the cell via glycophosphatidylinositol (GPI) anchor. The role of GPI anchor in PrPSc replication and propagation remains unclear. It has been shown that anchorless and truncated PrP accelerate the formation and propagation of prions in vivo and further increases the risk for transmission of prion diseases among species. To explain the role of anchorless forms of PrP in the development of prion diseases, we have prepared five C-terminal PrP truncated variants, determined their thermodynamic properties and analyzed the kinetics of conversion into amyloid fibrils. According to our results thermodynamic and kinetic properties are affected both by pH and truncation. We have shown that the shortest variant was the most destabilized and converted faster than other variants in acidic pH. Other variants converted with longer lag time of fibrillization than WT despite comparable or even decreased stability in acidic pH. Our results indicate that even the change in length for 1 amino acid residue can have a profound effect on in vitro conversion.
Collapse
Affiliation(s)
- Valerija Kovač
- Department for the Production of Diagnostic Reagents and Research & R&D Service, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department for the Production of Diagnostic Reagents and Research & R&D Service, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Walker LC, Schelle J, Jucker M. The Prion-Like Properties of Amyloid-β Assemblies: Implications for Alzheimer's Disease. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a024398. [PMID: 27270558 DOI: 10.1101/cshperspect.a024398] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since the discovery that prion diseases can be transmitted to experimental animals by inoculation with afflicted brain matter, researchers have speculated that the brains of patients suffering from other neurodegenerative diseases might also harbor causative agents with transmissible properties. Foremost among these disorders is Alzheimer's disease (AD), the most common cause of dementia in the elderly. A growing body of research supports the concept that the pathogenesis of AD is initiated and sustained by the endogenous, seeded misfolding and aggregation of the protein fragment amyloid-β (Aβ). At the molecular level, this mechanism of nucleated protein self-assembly is virtually identical to that of prions consisting of the prion protein (PrP). The formation, propagation, and spread of Aβ seeds within the brain can thus be considered a fundamental feature of AD pathogenesis.
Collapse
Affiliation(s)
- Lary C Walker
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia 30322
| | - Juliane Schelle
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| |
Collapse
|
24
|
Koch Y, Helferich AM, Steinacker P, Oeckl P, Walther P, Weishaupt JH, Danzer KM, Otto M. Aggregated α-Synuclein Increases SOD1 Oligomerization in a Mouse Model of Amyotrophic Lateral Sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2152-2161. [PMID: 27322773 DOI: 10.1016/j.ajpath.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/18/2016] [Accepted: 04/09/2016] [Indexed: 01/02/2023]
Abstract
Aggregation of misfolded disease-related proteins is a hallmark of neurodegenerative diseases. Aggregate propagation accompanying disease progression has been demonstrated for different proteins (eg, for α-synuclein). Additional evidence supports aggregate cross-seeding activity for α-synuclein. For mutated superoxide dismutase 1 (SOD1), which causes familial amyotrophic lateral sclerosis (ALS), self-propagation of aggregation and cell-to-cell transmission have been demonstrated in vitro. However, there is a prominent lack of in vivo data concerning aggregation and cross-aggregation processes of SOD1. We analyzed the effect of α-synuclein and SOD1 seeds in cell culture using protein fragment complementation assay and intracerebral injection of α-synuclein and SOD1 seeds into SOD1(G93A) transgenic ALS mice. Survival of injected mice was determined, and SOD1 aggregates in the facial nuclei were quantified during disease course. We found that α-synuclein preformed fibrils increased the oligomerization rate of SOD1 in vivo and in vitro, whereas aggregated SOD1 did not exert any effect in both experimental setups. Notably, survival of ALS mice was not changed after inoculation of preformed fibrils. We conclude that misfolded α-synuclein can increase SOD1 aggregation and suppose that α-synuclein seeds are transported from the temporal cortex to the facial nuclei. However, unlike other proteins, the further enhancement of a self-aggregation process by additional SOD1 could not be confirmed in our models.
Collapse
Affiliation(s)
- Yvonne Koch
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Karin M Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
25
|
Glatzel M, Linsenmeier L, Dohler F, Krasemann S, Puig B, Altmeppen HC. Shedding light on prion disease. Prion 2016; 9:244-56. [PMID: 26186508 DOI: 10.1080/19336896.2015.1065371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proteolytic processing regulates key processes in health and disease. The cellular prion protein (PrP(C)) is subject to at least 3 cleavage events, α-cleavage, β-cleavage and shedding. In contrast to α- and β-cleavage where there is an ongoing controversy on the identity of relevant proteases, the metalloprotease ADAM10 represents the only relevant PrP sheddase. Here we focus on the roles that ADAM10-mediated shedding of PrP(C) and its pathogenic isoform (PrP(Sc)) might play in regulating their physiological and pathogenic functions, respectively. As revealed by our recent study using conditional ADAM10 knockout mice (Altmeppen et al., 2015), shedding of PrP seems to be involved in key processes of prion diseases. These aspects and several open questions arising from them are discussed. Increased knowledge on this topic can shed new light on prion diseases and other neurodegenerative conditions as well.
Collapse
Affiliation(s)
- Markus Glatzel
- a Institute of Neuropathology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | | | | | | | | |
Collapse
|
26
|
Carroll JA, Striebel JF, Rangel A, Woods T, Phillips K, Peterson KE, Race B, Chesebro B. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains. PLoS Pathog 2016; 12:e1005551. [PMID: 27046083 PMCID: PMC4821575 DOI: 10.1371/journal.ppat.1005551] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. Accumulation of aggregates of misfolded protein in brain is a common feature of the damage seen in several neurodegenerative diseases including prion disease, Alzheimer’s disease and Parkinson’s disease. In the present work three strains of prion disease differed in accumulation of the disease-associated prion protein (PrPSc) on neurons and astroglial cells. These patterns were first detectable in the thalamus at 40–60 days after inoculation. This coincided with initial detection of gliosis and PrPSc deposition, but was far in advance of clinical signs or spongiform pathology. In spite of the different patterns of cellular PrPSc deposition, these three strains had similar patterns of expression of a large number of genes known to be active during neuroinflammatory responses and gliosis. However, the gene upregulation in scrapie differed markedly from that seen in two neurovirulent viral diseases, which also had abundant glial responses similar to those observed with prion infection.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Alejandra Rangel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tyson Woods
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Striebel JF, Race B, Carroll JA, Phillips K, Chesebro B. Knockout of fractalkine receptor Cx3cr1 does not alter disease or microglial activation in prion-infected mice. J Gen Virol 2016; 97:1481-1487. [PMID: 26935332 DOI: 10.1099/jgv.0.000442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microglial activation is a hallmark of the neuroimmunological response to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion disease. The CX3C chemokine axis consists of fractalkine (CX3CL1) and its receptor (CX3CR1); these are expressed by neurons and microglia respectively, and are known to modulate microglial activation. In prion-infected mice, both Cx3cr1 and Cx3cl1 are altered, suggesting a role in disease. To investigate the influence of CX3C axis signalling on prion disease, we infected Cx3cr1 knockout (Cx3cr1-KO) and control mice with scrapie strains 22L and RML. Deletion of Cx3cr1 had no effect on development of clinical signs or disease incubation period. In addition, comparison of brain tissue from Cx3cr1-KO and control mice revealed no significant differences in cytokine levels, spongiosis, deposition of disease-associated prion protein or microglial activation. Thus, microglial activation during prion infection did not require CX3C axis signalling.
Collapse
Affiliation(s)
- James F Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James A Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
28
|
Abstract
Aggregation of misfolded host proteins in the central nervous system is believed to be important in the pathogenic process in several neurodegenerative diseases of humans, including prion diseases, Alzheimer’s disease, and Parkinson’s disease. In these diseases, protein misfolding and aggregation appear to expand through a process of seeded polymerization. Prion diseases occur in both humans and animals and are experimentally transmissible orally or by injection, thus providing a controllable model of other neurodegenerative protein misfolding diseases. In rodents and ruminants, prion disease has a slow course, lasting months to years. Although prion infectivity has been detected in brain tissue at 3 to 4 weeks postinfection (p.i.), the details of early prion replication in the brain are not well understood. Here we studied the localization and quantitation of PrPSc generation in vivo starting at 30 min postmicroinjection of scrapie into the brain. In C57BL mice at 3 days p.i., generation of new PrPSc was detected by immunohistochemistry and immunoblot assays, and at 7 days p.i., new generation was confirmed by real-time quaking-induced conversion assay. The main site of new PrPSc generation was near the outer basement membrane of small and medium blood vessels. The finding and localization of replication at this site so early after injection have not been reported previously. This predominantly perivascular location suggested that structural components of the blood vessel basement membrane or perivascular astrocytes might act as cofactors in the initial generation of PrPSc. The location of PrPSc replication at the basement membrane also implies a role for the brain interstitial fluid drainage in the early infection process. Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and prion diseases, of humans are characterized by misfolding and aggregation of certain proteins, resulting in the destruction of brain tissue. In these diseases, the damage process spreads progressively within the central nervous system, but only prion diseases are known to be transmissible between individuals. Here we used microinjection of infectious prion protein (PrPSc) into the mouse brain to model early events of iatrogenic prion transmission via surgical instruments or tissue grafts. At 3 and 7 days postinjection, we detected the generation of new PrPSc, mostly on the outer walls of blood vessels near the injection site. This location and very early replication were surprising and unique. Perivascular prion replication suggested the transport of injected PrPSc via brain interstitial fluid to the basement membranes of blood vessels, where interactions with possible cofactors made by astrocytes or endothelia might facilitate the earliest cycles of prion infection.
Collapse
|
29
|
Race B, Phillips K, Meade-White K, Striebel J, Chesebro B. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein. J Virol 2015; 89:6022-32. [PMID: 25810548 PMCID: PMC4442444 DOI: 10.1128/jvi.00362-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. IMPORTANCE Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
30
|
Prion infection of mouse brain reveals multiple new upregulated genes involved in neuroinflammation or signal transduction. J Virol 2014; 89:2388-404. [PMID: 25505076 DOI: 10.1128/jvi.02952-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre- and postclinical stages, we identified 15 previously unreported differentially expressed genes related to inflammation or activation of the STAT signal transduction pathway. Levels for the majority of differentially expressed genes increased with time postinfection. In quantitative immunoblotting experiments of STAT proteins, STAT1α, phosphorylated-STAT1α (pSTAT1α), and pSTAT3 were increased between 94 and 131 days postinfection (p.i.) in brains of mice infected with strain 22L. Furthermore, a select group of STAT-associated genes was increased preclinically during scrapie infection, suggesting early activation of the STAT signal transduction pathway. Comparison of inflammatory markers between mice infected with scrapie strains 22L and RML indicated that the inflammatory responses and gene expression profiles in the brains were strikingly similar, even though these scrapie strains infect different brain regions. The endogenous interleukin-1 receptor antagonist (IL-1Ra), an inflammatory marker, was newly identified as increasing preclinically in our model and therefore might influence scrapie pathogenesis in vivo. However, in IL-1Ra-deficient or overexpressor transgenic mice inoculated with scrapie, neither loss nor overexpression of IL-1Ra demonstrated any observable effect on gliosis, protease-resistant prion protein (PrPres) formation, disease tempo, pathology, or expression of the inflammatory genes analyzed. IMPORTANCE Prion infection leads to PrPres deposition, gliosis, and neuroinflammation in the central nervous system before signs of clinical illness. Using a scrapie mouse model of prion disease to assess various time points postinoculation, we identified 15 unreported genes that were increased in the brains of scrapie-infected mice and were associated with inflammation and/or JAK-STAT activation. Comparison of mice infected with two scrapie strains (22L and RML), which have dissimilar neuropathologies, indicated that the inflammatory responses and gene expression profiles in the brains were similar. Genes that increased prior to clinical signs might be involved in controlling scrapie infection or in facilitating damage to host tissues. We tested the possible role of the endogenous IL-1Ra, which was increased at 70 days p.i. In scrapie-infected mice deficient in or overexpressing IL-1Ra, there was no observable effect on gliosis, PrPres formation, disease tempo, pathology, or expression of inflammatory genes analyzed.
Collapse
|
31
|
Moore RA, Sturdevant DE, Chesebro B, Priola SA. Proteomics analysis of amyloid and nonamyloid prion disease phenotypes reveals both common and divergent mechanisms of neuropathogenesis. J Proteome Res 2014; 13:4620-34. [PMID: 25140793 PMCID: PMC4227561 DOI: 10.1021/pr500329w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Prion
diseases are a heterogeneous group of neurodegenerative disorders
affecting various mammals including humans. Prion diseases are characterized
by a misfolding of the host-encoded prion protein (PrPC) into a pathological isoform termed PrPSc. In wild-type
mice, PrPC is attached to the plasma membrane by a glycosylphosphatidylinositol
(GPI) anchor and PrPSc typically accumulates in diffuse
nonamyloid deposits with gray matter spongiosis. By contrast, when
mice lacking the GPI anchor are infected with the same prion inoculum,
PrPSc accumulates in dense perivascular amyloid plaques
with little or no gray matter spongiosis. In order to evaluate whether
different host biochemical pathways were implicated in these two phenotypically
distinct prion disease models, we utilized a proteomics approach.
In both models, infected mice displayed evidence of a neuroinflammatory
response and complement activation. Proteins involved in cell death
and calcium homeostasis were also identified in both phenotypes. However,
mitochondrial pathways of apoptosis were implicated only in the nonamyloid
form, whereas metal binding and synaptic vesicle transport were more
disrupted in the amyloid phenotype. Thus, following infection with
a single prion strain, PrPC anchoring to the plasma membrane
correlated not only with the type of PrPSc deposition but
also with unique biochemical pathways associated with pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases and ‡Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases , Hamilton, Montana 59840, United States
| | | | | | | |
Collapse
|