1
|
Yamakawa T, Tanaka A, Miron C, Nakamura K, Kajiyama H, Toyokuni S, Mizuno M, Hori M, Tanaka H. Effects of autophagy on the selective death of human breast cancer cells exposed to plasma-activated Ringer's lactate solution. Free Radic Res 2024; 58:758-769. [PMID: 39625787 DOI: 10.1080/10715762.2024.2433965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024]
Abstract
Plasma-activated Ringer's lactate (PAL) solution prepared by irradiating an intravenous solution with a non-equilibrium atmospheric pressure plasma is a potential new cancer therapy having no side effects. However, the induction of autophagy to avoid cell death has been confirmed to occur following exposure to PAL solution. It is thought that the antitumor effect of PAL solution could be weakened by this process, which is meant to maintain homeostasis in cells and assists tumorigenesis. Thus, it would be helpful to devise PAL-based cancer therapies that inhibit autophagy. Unfortunately, it is not yet clear which substances in PAL solution promote autophagy. The present work examined the mechanism by which PAL solution induces autophagy when treating MCF-7 human breast cancer cells. Autophagy was found to be temporarily induced upon exposure to PAL solution, suggesting that this effect contributes to cell proliferation. Although autophagy is associated with reactive oxygen and nitrogen species and/or acidic environments, in this study, significant autophagy was observed using a PAL solution diluted 1/256x without these stressors. Acetate, glyoxylate and 2,3-dimethyltartrate in the PAL solution were determined to promote autophagy. Interestingly, 2,3-dimethyltartrate was found to either induce cell death or autophagy depending on the concentration.
Collapse
Affiliation(s)
- Taishi Yamakawa
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ayako Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Camelia Miron
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hiromasa Tanaka
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Tabassum S, Khan MN, Faiz N, Almas, Yaseen B, Ahmad I. Cold atmospheric plasma-activated medium for potential ovarian cancer therapy. Mol Biol Rep 2024; 51:834. [PMID: 39042272 DOI: 10.1007/s11033-024-09795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Cold atmospheric plasma (CAP) has emerged as an innovative tool with broad medical applications, including ovarian cancer (OC) treatment. By bringing CAP in close proximity to liquids such as water or cell culture media, solutions containing reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated, called plasma-activated media (PAM). In this systematic review, we conduct an in-depth analysis of studies focusing on PAM interactions with biological substrates. We elucidate the diverse mechanisms involved in the activation of different media and the complex network of chemical reactions underlying the generation and consumption of the prominent reactive species. Furthermore, we highlight the promises of PAM in advancing biomedical applications, such as its stability for extended periods under appropriate storage conditions. We also examine the application of PAM as an anti-cancer and anti-metastatic treatment for OC, with a particular emphasis on its ability to induce apoptosis via distinct signaling pathways, inhibit cell growth, suppress cell motility, and enhance the therapeutic effects of chemotherapy. Finally, the future outlook of PAM therapy in biomedical applications is speculated, with emphasis on the safety issues relevant to clinical translation.
Collapse
Affiliation(s)
- Shazia Tabassum
- Department of Obstetrics and Gynaecology, Hayatabad Medical Complex, Peshawar, Pakistan
| | | | | | - Almas
- Abdul Wali Khan University, Mardan, Pakistan
| | - Bushra Yaseen
- Department of Gynaecology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
3
|
Chen C, Zhou S, Yang X, Ren M, Qi Y, Mao Y, Yang C. In vitro study of cold atmospheric plasma-activated liquids inhibits malignant melanoma by affecting macrophage polarization through the ROS/JAK2/STAT1 pathway. Biomed Pharmacother 2024; 175:116657. [PMID: 38688171 DOI: 10.1016/j.biopha.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Melanoma is a prevalent malignant skin tumor known for its high invasive ability and a high rate of metastasis, making clinical treatment exceptionally challenging. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and play a crucial role in tumor survival and development. Cold atmospheric plasma (CAP) is an emerging tool for tumor treatment that has garnered attention from scholars due to its interaction with non-tumor cells in the tumor microenvironment. Here, we used the macrophage lines THP-1 and RAW264.7, as well as the melanoma cell lines A375 and MV3, as research subjects to investigate the effect of plasma-activated liquid (PAL) on macrophage differentiation and its inhibitory effect on melanoma cell proliferation. We confirmed that the killing effect of PAL on melanoma cells was selective. Using flow cytometry and PCR, we discovered that PAL can influence macrophage differentiation. Through in vitro cell coculture, we demonstrated that PAL-treated macrophages can significantly impede tumor cell development and progression, and the effect is more potent than that of PAL directly targeting tumor cells. Furthermore, we have proposed the hypothesis that PAL promotes the differentiation of macrophages into the M1 type through the ROS/JAK2/STAT1 pathway. To test the hypothesis, we employed catalase and fludarabine to block different sites of the pathway. The results were then validated through Western Blot, qPCR and ELISA. This study illustrates that PAL therapy is an effective tumor immunotherapy and expands the scope of tumor immunotherapy. Furthermore, these findings establish a theoretical foundation for potential clinical applications of PAL.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Shiyun Zhou
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Xingyu Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Miaomiao Ren
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Yongshuang Qi
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Yiwen Mao
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Chunjun Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China.
| |
Collapse
|
4
|
Rezaei M, Ghasemitarei M, Razzokov J, Yusupov M, Ghorbanalilu M, Ejtehadi MR. In silico study of the impact of oxidation on pyruvate transmission across the hVDAC1 protein channel. Arch Biochem Biophys 2024; 751:109835. [PMID: 38000492 DOI: 10.1016/j.abb.2023.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for Pyr translocation through the native and oxidized channel was approximately 4.3 ± 0.7 kJ mol-1 and 10.8 ± 1.8 kJ mol-1, respectively. An increase in barrier results in a decrease in rate of Pyr permeation through the oxidized channel. Thus, our results indicate that low levels of CAP oxidation reduce Pyr translocation, resulting in decreased cancer cell proliferation. Therefore, low levels of oxidation are likely sufficient to treat cancer cells given the inhibition of Pyr uptake.
Collapse
Affiliation(s)
- Mahsa Rezaei
- Department of Physics, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, 14588-89694, Tehran, Iran; Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Belgium.
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan; Laboratory of Experimental Biophysics, Centre for Advanced Technologies, 100174, Tashkent, Uzbekistan; Department of Chemistry, Termez State University, 190111, Termez, Uzbekistan
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, 100000, Tashkent, Uzbekistan; Department of Information Technologies, Tashkent International University of Education, 100207, Tashkent, Uzbekistan; Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 100125, Tashkent, Uzbekistan; Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, 100000, Tashkent, Uzbekistan
| | | | | |
Collapse
|
5
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
6
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
7
|
van de Berg NJ, Nieuwenhuyzen-de Boer GM, Gao XS, Rijstenberg LL, van Beekhuizen HJ. Plasma Device Functions and Tissue Effects in the Female Pelvis-A Systematic Review. Cancers (Basel) 2023; 15:cancers15082386. [PMID: 37190314 DOI: 10.3390/cancers15082386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Medical use of (non-)thermal plasmas is an emerging field in gynaecology. However, data on plasma energy dispersion remain limited. This systematic review presents an overview of plasma devices, fields of effective application, and impact of use factors and device settings on tissues in the female pelvis, including the uterus, ovaries, cervix, vagina, vulva, colon, omentum, mesenterium, and peritoneum. A search of the literature was performed on 4 January 2023 in the Medline Ovid, Embase, Cochrane, Web of Science, and Google Scholar databases. Devices were classified as plasma-assisted electrosurgery (ES) using electrothermal energy, neutral argon plasma (NAP) using kinetic particle energy, or cold atmospheric plasma (CAP) using non-thermal biochemical reactions. In total, 8958 articles were identified, of which 310 were scanned, and 14 were included due to containing quantitative data on depths or volumes of tissues reached. Plasma-assisted ES devices produce a thermal effects depth of <2.4 mm. In turn, NAP effects remained superficial, <1.0 mm. So far, the depth and uniformity of CAP effects are insufficiently understood. These data are crucial to achieve complete treatment, reduce recurrence, and limit damage to healthy tissues (e.g., prevent perforations or preserve parenchyma). Upcoming and potentially high-gain applications are discussed, and deficits in current evidence are identified.
Collapse
Affiliation(s)
- Nick J van de Berg
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Gatske M Nieuwenhuyzen-de Boer
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Albert Schweitzer Hospital, 3318 AT Dordrecht, The Netherlands
| | - Xu Shan Gao
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - L Lucia Rijstenberg
- Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Heleen J van Beekhuizen
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Zhao W, Jing X, Wang T, Zhang F. Glutamine Deprivation Synergizes the Anticancer Effects of Cold Atmospheric Plasma on Esophageal Cancer Cells. Molecules 2023; 28:molecules28031461. [PMID: 36771124 PMCID: PMC9919221 DOI: 10.3390/molecules28031461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer is a highly aggressive malignancy with a low response to standard anti-cancer therapies. There is an unmet need to develop new therapeutic strategies to improve the clinical outcomes of current treatments. Cold atmospheric plasma (CAP) is a promising approach for cancer treatment, and has displayed anticancer efficacy in multiple preclinical models. Recent studies have shown that the efficacy of CAP is positively correlated with intracellular reactive oxygen species (ROS) levels. This suggests that aggressively increasing intracellular ROS levels has the potential to further improve CAP-mediated anticancer efficacy. Glutamine plays an important role in cellular ROS scavenging after being converted to glutathione (GSH, a well-described antioxidant) under physiological conditions, so reducing intracellular glutamine levels seems to be a promising strategy. To test this hypothesis, we treated esophageal cancer cells with CAP while controlling the supply of glutamine. The results showed that glutamine did affect the anticancer effect of CAP, and the combination of CAP stimulation and glutamine deprivation significantly inhibited the proliferation of esophageal cancer cells compared to the control group (p < 0.05). Furthermore, flow cytometric analysis documented a significant increase in more than 10% in apoptosis and necrosis of esophageal cancer cells after this synergistic treatment compared to the control group (p < 0.05). Thus, these results provide the first direct evidence that the biological function of CAP can be modulated by glutamine levels and that combined CAP stimulation and glutamine deprivation represent a promising strategy for the future treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Wang
- College of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China
- Telethon Kids Institute, Perth, WA 6872, Australia
- School of Medicine, University of Western Australia, Perth, WA 6872, Australia
- Correspondence: (T.W.); (F.Z.)
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.W.); (F.Z.)
| |
Collapse
|
9
|
Liu Y, Nakatsu Y, Tanaka H, Koga K, Ishikawa K, Shiratani M, Hori M. Effects of plasma-activated Ringer's lactate solution on cancer cells: evaluation of genotoxicity. Genes Environ 2023; 45:3. [PMID: 36639786 PMCID: PMC9837981 DOI: 10.1186/s41021-023-00260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Non-thermal atmospheric pressure plasma technologies form the core of many scientific advances, including in the electronic, industrial, and biotechnological fields. The use of plasma as a cancer therapy has recently attracted significant attention due to its cancer cell killing activity. Plasma-activated Ringer's lactate solution (PAL) exhibits such activity. In addition to ROS, PAL contains active compounds or species that cause cancer cell death, but the potential mutagenic risks of PAL have not been studied. RESULTS PAL has a low pH value and a high concentration of H2O2. H2O2 was removed from PAL using catalase and catalase-treated PAL with a pH of 5.9 retained a killing effect on HeLa cells whereas this effect was not observed if the PAL was adjusted to pH 7.2. Catalase-treated PAL at pH 5.9 had no significant effect on mutation frequency, the expression of γH2AX, or G2 arrest in HeLa cells. CONCLUSION PAL contains one or more active compounds or species in addition to H2O2 that have a killing effect on HeLa cells. The compound(s) is active at lower pH conditions and apparently exhibits no genotoxicity. This study suggested that identification of the active compound(s) in PAL could lead to the development of novel anticancer drugs for future cancer therapy.
Collapse
Affiliation(s)
- Yang Liu
- grid.27476.300000 0001 0943 978XGraduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Japan
| | - Yoshimichi Nakatsu
- grid.177174.30000 0001 2242 4849Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ,grid.415613.4Present address: Cancer Genetics Laboratory, Clinical Research Institute, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Hiromasa Tanaka
- grid.27476.300000 0001 0943 978XCenter for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Kazunori Koga
- grid.27476.300000 0001 0943 978XCenter for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan ,grid.177174.30000 0001 2242 4849Graduate School of Information Science and Electrical Engineering, Kyushu University Fukuoka, Fukuoka, Japan
| | - Kenji Ishikawa
- grid.27476.300000 0001 0943 978XCenter for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Masaharu Shiratani
- grid.27476.300000 0001 0943 978XCenter for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan ,grid.177174.30000 0001 2242 4849Graduate School of Information Science and Electrical Engineering, Kyushu University Fukuoka, Fukuoka, Japan
| | - Masaru Hori
- grid.27476.300000 0001 0943 978XCenter for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Gunes S, He Z, Tsoukou E, Ng SW, Boehm D, Pinheiro Lopes B, Bourke P, Malone R, Cullen PJ, Wang W, Curtin J. Cell death induced in glioblastoma cells by Plasma-Activated-Liquids (PAL) is primarily mediated by membrane lipid peroxidation and not ROS influx. PLoS One 2022; 17:e0274524. [PMID: 36137100 PMCID: PMC9498962 DOI: 10.1371/journal.pone.0274524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since first identified in 1879, plasma, the fourth state of matter, has been developed and utilised in many fields. Nonthermal atmospheric plasma, also known as cold plasma, can be applied to liquids, where plasma reactive species such as reactive Oxygen and Nitrogen species and their effects can be retained and mediated through plasma-activated liquids (PAL). In the medical field, PAL is considered promising for wound treatment, sterilisation and cancer therapy due to its rich and relatively long-lived reactive species components. This study sought to identify any potential antagonistic effect between antioxidative intracellularly accumulated platinum nanoparticles (PtNPs) and PAL. We found that PAL can significantly reduce the viability of glioblastoma U-251MG cells. This did not involve measurable ROS influx but instead lead to lipid damage on the plasma membrane of cells exposed to PAL. Although the intracellular antioxidative PtNPs showed no protective effect against PAL, this study contributes to further understanding of principle cell killing routes of PAL and discovery of potential PAL-related therapy and methods to inhibit side effects.
Collapse
Affiliation(s)
- Sebnem Gunes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- * E-mail: (JC); (SG)
| | - Zhonglei He
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Evanthia Tsoukou
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
| | - Sing Wei Ng
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Daniela Boehm
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
| | - Beatriz Pinheiro Lopes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
| | - Paula Bourke
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Renee Malone
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Patrick J. Cullen
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - James Curtin
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- Faculty of Engineering and Built Environment, Technological University Dublin, Dublin, Ireland
- * E-mail: (JC); (SG)
| |
Collapse
|
11
|
Lee YJ, Kim SW, Jung MH, Kim YS, Kim KS, Suh DS, Kim KH, Choi EH, Kim J, Kwon BS. Plasma-activated medium inhibits cancer stem cell-like properties and exhibits a synergistic effect in combination with cisplatin in ovarian cancer. Free Radic Biol Med 2022; 182:276-288. [PMID: 35276382 DOI: 10.1016/j.freeradbiomed.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Ovarian cancer stem-like cells (CSCs) have been implicated in tumor recurrence, metastasis, and drug resistance. Accumulating evidence has demonstrated the antitumor effect of plasma-activated medium (PAM) in various carcinomas, including ovarian cancer. Thus, PAM represents a novel onco-therapeutic strategy. However, its impact on ovarian CSCs is unclear. Here, we show that ovarian CSCs resistant to high-dose conventional chemotherapeutic agents used for ovarian cancer treatment exhibited dose-dependent sensitivity to PAM. In addition, PAM treatment reduced the expression of stem cell markers and sphere formation, along with the aldehyde dehydrogenase- or CD133-positive cell population. We further investigated the effect of PAM in combination with other chemotherapeutics on ovarian CSCs in vitro. PAM exhibited synergistic cytotoxicity with cisplatin (CDDP) but not with paclitaxel and doxorubicin. In a peritoneal metastasis xenograft model established via intraperitoneal spheroid injection, PAM intraperitoneal therapy significantly suppressed peritoneal carcinomatosis (tumor size and number), with a more significant decrease observed due to the combined effects of PAM and CDDP with no side effects. Taken together, our results indicate that PAM inhibits ovarian CSC traits and exhibits synergetic cytotoxicity with CDDP, demonstrating PAM as a promising intraparietal chemotherapy for enhancing antitumor efficacy and reducing side effects.
Collapse
Affiliation(s)
- Young Joo Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Sung Wook Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Min Hyung Jung
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Young Sun Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Dong Soo Suh
- Departments of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea
| | - Ki Hyung Kim
- Departments of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 139-701, South Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul, 04310, South Korea; Research Institute for Women's Health, Sookmyung Women's University, Seoul, 04310, South Korea.
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
12
|
Zahedian S, Hekmat A, Tackallou SH, Ghoranneviss M. The Impacts of Prepared Plasma-Activated Medium (PAM) Combined with Doxorubicin on the Viability of MCF-7 Breast Cancer Cells: A New Cancer Treatment Strategy. Rep Biochem Mol Biol 2022; 10:640-652. [PMID: 35291609 PMCID: PMC8903366 DOI: 10.52547/rbmb.10.4.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND For many years, the chemotherapeutic agent doxorubicin (DOX) has been used to treat various cancers; however, DOX initiates several critical adverse effects. Many studies have reported that non-thermal atmospheric pressure plasma can provide novel, but challenging, treatment strategies for cancer patients. To date, tissues and cells have been treated with plasma-activated medium (PAM) as a practical therapy. Consequently, due to the harmful adverse effects of DOX, we were motivated to elucidate the impact of PAM in the presence of DOX on MCF-7 cell proliferation. METHODS MTT assay, N-acetyl-L-cysteine (NAC) assay, and flow cytometry analysis were utilized in this research. RESULTS The results demonstrated that 0.45 µM DOX combined with 3-min PAM significantly induced apoptosis (p< 0.01) through intracellular ROS generation in MCF-7 when compared with 0.45 µM DOX alone or 3-min PAM alone. In contrast, after treatment with 0.45 µM DOX plus 4-min PAM, cell necrosis was increased. Hence, DOX combined with 4-min PAM has cytotoxic effects with different mechanisms than 4-min PAM alone, in which the number of apoptotic cells increases. CONCLUSION Although further investigations are crucial, low doses of DOX plus 3-min PAM could be a promising strategy for cancer therapy. The findings from this research may offer advantageous and innovative clinical strategies for cancer therapy using PAM.
Collapse
Affiliation(s)
- Setareh Zahedian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Corresponding author: Azadeh Hekmat; Tel: +98 21 44865309; E-mail:
| | | | - Mahmood Ghoranneviss
- Department of Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Kim S, Kim CH. Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines 2021; 9:biomedicines9111700. [PMID: 34829929 PMCID: PMC8615748 DOI: 10.3390/biomedicines9111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Much progress has been made since plasma was discovered in the early 1900s. The first form of plasma was thermal type, which was limited for medical use due to potential thermal damage on living cells. In the late 1900s, with the development of a nonthermal atmospheric plasma called cold plasma, profound clinical research began and ‘plasma medicine’ became a new area in the academic field. Plasma began to be used mainly for environmental problems, such as water purification and wastewater treatment, and subsequent research on plasma and liquid interaction led to the birth of ‘plasma-activated liquid’ (PAL). PAL is currently used in the fields of environment, food, agriculture, nanoparticle synthesis, analytical chemistry, and sterilization. In the medical field, PAL usage can be expanded for accessing places where direct application of plasma is difficult. In this review, recent studies with PAL will be introduced to inform researchers of the application plan and possibility of PAL in the medical field.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence:
| |
Collapse
|
14
|
Ma M, Cheng H, Sun F, Lu X, He G, Laroussi M. Differences in Cytotoxicity Induced by Cold Atmospheric Plasma and Exogenous RONS Solutions on Human Keratinocytes and Melanoma Cells. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3043540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Okazaki Y, Tanaka H, Matsumoto KI, Hori M, Toyokuni S. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys 2021; 705:108901. [PMID: 33964248 DOI: 10.1016/j.abb.2021.108901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Recent developments in electronics have enabled the medical applications of non-thermal plasma (NTP), which elicits reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydroxyl radical (●OH), hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide (O2●-), ozone, and nitric oxide at near-physiological temperatures. In preclinical studies or human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral and biofilm-related infections, wound healing, and cancer cell death. To elucidate the solution-phase biological effects of NTP in the presence of biocompatible reducing agents, we employed electron paramagnetic resonance (EPR) spectroscopy to quantify ●OH using a spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO); 1O2 using a fluorescent probe; and O2●- and H2O2 using luminescent probes in the presence of thiols or tempol. NTP-induced ●OH was significantly scavenged by dithiothreitol (DTT), reduced glutathione (GSH), and oxidized glutathione (GSSG) in 2 or 5 mM DMPO. NTP-induced O2●- was significantly scavenged by 10 μM DTT and GSH, while 1O2 was not efficiently scavenged by these compounds. GSSG degraded H2O2 more effectively than GSH and DTT, suggesting that the disulfide bonds reacted with H2O2. In the presence of 1-50 mM DMPO, NTP-induced H2O2 quantities were unchanged. The inhibitory effect of tempol concentration (50 and 100 μM) on H2O2 production was observed in 1 and 10 mM DMPO, whereas it became ineffective in 50 mM DMPO. Furthermore, DMPO-OH did not interact with tempol. These results suggest that DMPO and tempol react competitively with O2●-. Further studies are warranted to elucidate the interaction between NTP-induced ROS and biomolecules.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
16
|
Open-Air Cold Plasma Device Leads to Selective Tumor Cell Cytotoxicity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The need for effective and safe therapies for cancer is growing as aging is modifying its epidemiology. Cold atmospheric plasma (CAP) has gained attention as a potential anti-tumor therapy. CAP is a gas with enough energy to ionize a significant fraction of its constituent particles, forming equal numbers of positive ions and electrons. Timely-resolved output voltage measurement, emission spectroscopy, and quantification of reactive species (RS) in plasma-activated media (PAM) were performed to characterize the physical and chemical properties of plasma. To assess the cytotoxicity of cold atmospheric plasma in human tumors, different cell lines were cultured, plated, and exposed to CAP, followed by MTT and SRB colorimetric assays 24 h later. Human fibroblasts, phenotypically normal cells, were processed similarly. Plasma cytotoxicity was higher in cells of breast cancer, urinary bladder cancer, osteosarcoma, lung cancer, melanoma, and endometrial cancer. Cytotoxicity was time-dependent and possibly related to the increased production of hydrogen peroxide in the exposed medium. Sixty seconds of CAP exposure renders selective effects, preserving the viability of fibroblast cells. These results point to the importance of conducting further studies of the therapy with plasma.
Collapse
|
17
|
Plasma-Treated Solutions (PTS) in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071737. [PMID: 33917469 PMCID: PMC8038720 DOI: 10.3390/cancers13071737] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. Abstract Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indicated that the PTS has immuno-stimulatory properties. Two different routes of application are currently envisaged in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising results have been achieved so far, several obstacles, such as the standardized generation of large volumes of sterile PTS, remain to be addressed.
Collapse
|
18
|
Tomić S, Petrović A, Puač N, Škoro N, Bekić M, Petrović ZL, Čolić M. Plasma-Activated Medium Potentiates the Immunogenicity of Tumor Cell Lysates for Dendritic Cell-Based Cancer Vaccines. Cancers (Basel) 2021; 13:1626. [PMID: 33915703 PMCID: PMC8037863 DOI: 10.3390/cancers13071626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
Autologous dendritic cells (DCs)-based vaccines are considered quite promising for cancer immunotherapy due to their exquisite potential to induce tumor antigen-specific cytotoxic T cells. However, a lack of efficient protocols for inducing immunogenic tumor antigens limits the efficacy of DC-based cancer vaccines. Here, we found that a plasma-activated medium (PAM) induces immunogenic cell death (ICD) in tumor cells but not in an immortalized L929 cell line or human peripheral blood mononuclear cells. PAM induced an accumulation of reactive oxygen species (ROS), autophagy, apoptosis, and necrosis in a concentration-dependent manner. The tumor lysates prepared after PAM treatment displayed increased immunogenicity in a model of human monocyte-derived DCs, compared to the lysates prepared by a standard freezing/thawing method. Mature DCs loaded with PAM lysates showed an increased maturation potential, as estimated by their increased expression of CD83, CD86, CD40, IL-12/IL-10 production, and attenuated PDL1 and ILT-4 expression, compared to the DCs treated with control tumor lysates. Moreover, in co-culture with allogeneic T cells, DCs loaded with PAM-lysates increased the proportion of cytotoxic IFN-γ+ granzyme A+ CD8+ T cells and IL-17A-producing T cells and preserved the Th1 response. In contrast, control tumor lysates-treated DCs increased the frequency of Th2 (CD4+IL-4+), CD4, and CD8 regulatory T cell subtypes, none of which was observed with DCs loaded with PAM-lysates. Cumulatively, these results suggest that the novel method for preparing immunogenic tumor lysates with PAM could be suitable for improved DC-based immunotherapy of cancer patients.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Anđelija Petrović
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nevena Puač
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Zoran Lj. Petrović
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- School of Engineering, Ulster University, Jordanstown, Co. Antrim BT37 0QB, UK
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- Medical Faculty Foca, University of East Sarajevo, 73 300 Foča, Bosnia and Herzegovina
| |
Collapse
|
19
|
Sklias K, Santos Sousa J, Girard PM. Role of Short- and Long-Lived Reactive Species on the Selectivity and Anti-Cancer Action of Plasma Treatment In Vitro. Cancers (Basel) 2021; 13:cancers13040615. [PMID: 33557129 PMCID: PMC7913865 DOI: 10.3390/cancers13040615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary One fundamental feature that has emerged from in vitro application of cold plasmas in cancer treatment is the key role of the liquid phase covering the cells. In the present work, we investigated the effect of direct and indirect plasma treatments on two cancer and three normal cell lines to assess the benefits of one treatment over the other in terms of death of tumor versus healthy cells. Our results demonstrate that indirect plasma treatment is as efficient at killing tumor cells as an appropriate combination of H2O2, NO2− and acidic pH in ad hoc solutions, while sparing normal cells. However, direct plasma treatment is far more efficient at killing normal than tumor cells, and we provide evidence that short- and long-lived reactive species contribute synergistically to kill normal cells, while having an additive effect regarding tumor cell death. Collectively, our results call the use of plasma-activated liquid in cancer treatment into question. Abstract (1) Plasma-activated liquids (PAL) have been extensively studied for their anti-cancer properties. Two treatment modalities can be applied to the cells, direct and indirect plasma treatments, which differ by the environment to which the cells are exposed. For direct plasma treatment, the cells covered by a liquid are present during the plasma treatment time (phase I, plasma ON) and the incubation time (phase II, plasma OFF), while for indirect plasma treatment, phase I is cell-free and cells are only exposed to PAL during phase II. The scope of this work was to study these two treatment modalities to bring new insights into the potential use of PAL for cancer treatment. (2) We used two models of head and neck cancer cells, CAL27 and FaDu, and three models of normal cells (1Br3, NHK, and RPE-hTERT). PBS was used as the liquid of interest, and the concentration of plasma-induced H2O2, NO2− and NO3−, as well as pH change, were measured. Cells were exposed to direct plasma treatment, indirect plasma treatment or reconstituted buffer (PBS adjusted with plasma-induced concentrations of H2O2, NO2−, NO3− and pH). Metabolic cell activity, cell viability, lipid peroxidation, intracellular ROS production and caspase 3/7 induction were quantified. (3) If we showed that direct plasma treatment is slightly more efficient than indirect plasma treatment and reconstituted buffer at inducing lipid peroxidation, intracellular increase of ROS and cancer cell death in tumor cells, our data also revealed that reconstituted buffer is equivalent to indirect plasma treatment. In contrast, normal cells are quite insensitive to these two last treatment modalities. However, they are extremely sensitive to direct plasma treatment. Indeed, we found that phase I and phase II act in synergy to trigger cell death in normal cells and are additive concerning tumor cell death. Our data also highlight the presence in plasma-treated PBS of yet unidentified short-lived reactive species that contribute to cell death. (4) In this study, we provide strong evidence that, in vitro, the concentration of RONS (H2O2, NO2− and NO3−) in combination with the acidic pH are the main drivers of plasma-induced PBS toxicity in tumor cells but not in normal cells, which makes ad hoc reconstituted solutions powerful anti-tumor treatments. In marked contrast, direct plasma treatment is deleterious for normal cells in vitro and should be avoided. Based on our results, we discuss the limitations to the use of PAL for cancer treatments.
Collapse
Affiliation(s)
- Kyriakos Sklias
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
| | - João Santos Sousa
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| |
Collapse
|
20
|
Okazaki Y, Ishidzu Y, Ito F, Tanaka H, Hori M, Toyokuni S. L-Dehydroascorbate efficiently degrades non-thermal plasma-induced hydrogen peroxide. Arch Biochem Biophys 2021; 700:108762. [PMID: 33482147 DOI: 10.1016/j.abb.2021.108762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Non-thermal plasma (NTP) devices generate reactive oxygen species (ROS) and reactive nitrogen species, such as singlet oxygen (1O2), superoxide (O2-), hydroxyl radical (●OH), hydrogen peroxide (H2O2), ozone, and nitric oxide at near-physiological temperature. In preclinical studies, NTP promotes blood coagulation, wound healing with disinfection, and selective killing of cancer cells. Although these biological effects of NTP have been widely explored, the stoichiometric quantitation of ROS in the liquid phase has not been performed in the presence of biocompatible reducing agents, which may modify the final biological effects of NTP. Here, we utilized electron paramagnetic resonance spectroscopy to quantitate ●OH, using a spin-trapping probe 5,5-dimethyl-1-pyrroline-N-oxide; 1O2, using a fluorescent probe; and O2- and H2O2, using luminescent probes, after NTP exposure in the presence of antioxidants. l-ascorbate (Asc) at 50 μM concentration (physiological concentration in serum) significantly scavenged ●OH, whereas (-)-epigallocatechin gallate (EGCG) and α-tocopherol were also effective at performing scavenging activities at 250 μM concentrations. Asc significantly scavenged O2- and H2O2 at 100 μM. l-Dehydroascorbate (DHA), an oxidized form of Asc, degraded H2O2, whereas it did not quench ●OH or O2-, which are sources of H2O2. Furthermore, EGCG efficiently scavenged NTP-induced 1O2, O2-, and H2O2 in Chelex-treated water. These results indicate that the redox cycling of Asc/DHA and metabolites of DHA are important to be considered when applying NTP to cells and tissues. Additionally, ROS-reducing compounds, such as EGCG, affect the outcome. Further studies are warranted to elucidate the interaction between ROS and biomolecules to promote the medical applications of NTP.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Yuuri Ishidzu
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
21
|
Adachi T, Matsuda Y, Ishii R, Kamiya T, Hara H. Ability of plasma-activated acetated Ringer's solution to induce A549 cell injury is enhanced by a pre-treatment with histone deacetylase inhibitors. J Clin Biochem Nutr 2020; 67:232-239. [PMID: 33293763 PMCID: PMC7705077 DOI: 10.3164/jcbn.19-104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023] Open
Abstract
Non-thermal plasma (NTP) is applicable to living cells and has emerged as a novel technology for cancer therapy. NTP affect cells not only by direct irradiation, but also by an indirect treatment with previously prepared plasma-activated liquid. Histone deacetylase (HDAC) inhibitors have the potential to enhance susceptibility to anticancer drugs and radiation because these reagents decondense the compact chromatin structure by neutralizing the positive charge of the histone tail. The aim of the present study was to demonstrate the advantage of the combined application of plasma-activated acetated Ringer’s solution (PAA) and HDAC inhibitors on A549 cancer cells. PAA maintained its ability for at least 1 week stored at any temperature tested. Cell death was enhanced more by combined regimens of PAA and HDAC inhibitors, such as trichostatin A (TSA) and valproic acid (VPA), than by a single PAA treatment and was accompanied by ROS production, DNA breaks, and mitochondria dysfunction through a caspase-independent pathway. These phenomena induced the depletion of ATP and elevations in intracellular calcium concentrations. The sensitivities of HaCaT cells as normal cells to PAA were less than that of A549 cells. These results suggest that HDAC inhibitors synergistically induce the sensitivity of cancer cells to PAA.
Collapse
Affiliation(s)
- Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yumiko Matsuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Rika Ishii
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
22
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
23
|
On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways. Cells 2020; 9:cells9102330. [PMID: 33096638 PMCID: PMC7589812 DOI: 10.3390/cells9102330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/24/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.
Collapse
|
24
|
Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12102782. [PMID: 32998311 PMCID: PMC7601057 DOI: 10.3390/cancers12102782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review aims to highlight the potential of cold plasma, the fourth state of matter, as anti-cancer treatment for pancreatic cancer, and the importance of pancreatic stellate cells in the response to this treatment. Currently, a significant lack of basic research on cold plasma considering both pancreatic cancer and stellate cells exists. However, co-cultures of these populations can be advantageous, as they resemble the cell-to-cell interactions occurring in a tumor in response to therapy. Even more, these studies should be performed prior to clinical trials of cold plasma to avoid unforeseen responses to treatment. This review article provides a framework for future research of cold plasma therapies for pancreatic cancer, considering the critical role of pancreatic stellate cells in the disease and treatment outcome. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Collapse
Affiliation(s)
- Ruben Verloy
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
| |
Collapse
|
25
|
Ishii R, Kamiya T, Hara H, Adachi T. Hyperthermia synergistically enhances cancer cell death by plasma-activated acetated Ringer's solution. Arch Biochem Biophys 2020; 693:108565. [PMID: 32871135 DOI: 10.1016/j.abb.2020.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Applications of non-thermal plasma (NTP) discharges in medicine, particularly cancer therapy, have increased in recent years. The aim of the present study was to investigate the advantages of the combined application of NTP-irradiated acetated Ringer's solution (PAA) and hyperthermia, a heat treatment at 42 °C, on A549 cancer cell death and elucidate the underlying mechanisms. Cell death was enhanced more by the above combined treatment and was accompanied by increases in intracellular calcium ([Ca2+]i). The activation of transient receptor potential melastatin 2 (TRPM2) may enhance cell death because the addition of TRPM2 inhibitors and knockdown of TRPM2 significantly abrogated the above phenomena. TRPM2 is a temperature-sensitive, Ca2+-permeable, non-elective cation channel and hydrogen peroxide (H2O2) and ADP ribose are its main agonists. PAA functioned as a donor of reactive oxygen species, mainly H2O2, and a treatment with PAA under hyperthermia induced both mitochondrial and nuclear damage with DNA breaks. The activation of poly(ADP-ribose) polymerase-1 as the DNA repair mechanism induced TRPM2 activation because this enzyme accumulates ADP ribose. The sensitivity of fibroblasts as normal cells to PAA was less than that of A549 cells. These results suggest that hyperthermia synergistically induces the sensitivity of cancer cells to PAA.
Collapse
Affiliation(s)
- Rika Ishii
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
26
|
Kurita H, Haruta N, Uchihashi Y, Seto T, Takashima K. Strand breaks and chemical modification of intracellular DNA induced by cold atmospheric pressure plasma irradiation. PLoS One 2020; 15:e0232724. [PMID: 32374749 PMCID: PMC7202611 DOI: 10.1371/journal.pone.0232724] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
DNA damage in the A549 human lung cancer cell line treated with cold plasma irradiation was investigated. We confirmed that cold atmospheric plasma generated reactive oxygen and nitrogen species (RONS) in a liquid, and the intracellular RONS level was increased in plasma-irradiated cells. However, a notable decrease in cell viability was not observed 24 hours after plasma irradiation. Because RONS induce oxidative damage in cells, strand breaks and chemical modification of DNA in the cancer cells were investigated. We found that 8-oxoguanine (8-oxoG) formation as well as DNA strand breaks, which have been thoroughly investigated, were induced by plasma irradiation. In addition, up-regulation of 8-oxoG repair enzyme was observed after plasma irradiation.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Natsuki Haruta
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Yoshito Uchihashi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Takahito Seto
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| |
Collapse
|
27
|
Cancer-Selective Treatment of Cancerous and Non-Cancerous Human Cervical Cell Models by a Non-Thermally Operated Electrosurgical Argon Plasma Device. Cancers (Basel) 2020; 12:cancers12041037. [PMID: 32340164 PMCID: PMC7226384 DOI: 10.3390/cancers12041037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasma (CAP) treatment is developing as a promising option for local anti-neoplastic treatment of dysplastic lesions and early intraepithelial cancer. Currently, high-frequency electrosurgical argon plasma sources are available and well established for clinical use. In this study, we investigated the effects of treatment with a non-thermally operated electrosurgical argon plasma source, a Martin Argon Plasma Beamer System (MABS), on cell proliferation and metabolism of a tissue panel of human cervical cancer cell lines as well as on non-cancerous primary cells of the cervix uteri. Similar to conventional CAP sources, we were able to show that MABS was capable of causing antiproliferative and cytotoxic effects on cervical squamous cell and adenocarcinoma as well as on non-neoplastic cervical tissue cells due to the generation of reactive species. Notably, neoplastic cells were more sensitive to the MABS treatment, suggesting a promising new and non-invasive application for in vivo treatment of precancerous and cancerous cervical lesions with non-thermally operated electrosurgical argon plasma sources.
Collapse
|
28
|
Medical Gas Plasma Treatment in Head and Neck Cancer—Challenges and Opportunities. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite progress in oncotherapy, cancer is still among the deadliest diseases in the Western world, emphasizing the demand for novel treatment avenues. Cold physical plasma has shown antitumor activity in experimental models of, e.g., glioblastoma, colorectal cancer, breast carcinoma, osteosarcoma, bladder cancer, and melanoma in vitro and in vivo. In addition, clinical case reports have demonstrated that physical plasma reduces the microbial contamination of severely infected tumor wounds and ulcerations, as is often seen with head and neck cancer patients. These antimicrobial and antitumor killing properties make physical plasma a promising tool for the treatment of head and neck cancer. Moreover, this type of cancer is easily accessible from the outside, facilitating the possibility of several rounds of topical gas plasma treatment of the same patient. Gas plasma treatment of head and neck cancer induces diverse effects via the deposition of a plethora of reactive oxygen and nitrogen species that mediate redox-biochemical processes, and ultimately, selective cancer cell death. The main advantage of medical gas plasma treatment in oncology is the lack of adverse events and significant side effects compared to other treatment modalities, such as surgical approaches, chemotherapeutics, and radiotherapy, making plasma treatment an attractive strategy for the adjuvant and palliative treatment of head and neck cancer. This review outlines the state of the art and progress in investigating physical plasma as a novel treatment modality in the therapy of head and neck squamous cell carcinoma.
Collapse
|
29
|
Bisag A, Bucci C, Coluccelli S, Girolimetti G, Laurita R, De Iaco P, Perrone AM, Gherardi M, Marchio L, Porcelli AM, Colombo V, Gasparre G. Plasma-activated Ringer's Lactate Solution Displays a Selective Cytotoxic Effect on Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12020476. [PMID: 32085609 PMCID: PMC7072540 DOI: 10.3390/cancers12020476] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Epithelial Ovarian Cancer (EOC) is one of the leading causes of cancer-related deaths among women and is characterized by the diffusion of nodules or plaques from the ovary to the peritoneal surfaces. Conventional therapeutic options cannot eradicate the disease and show low efficacy against resistant tumor subclones. The treatment of liquids via cold atmospheric pressure plasma enables the production of plasma-activated liquids (PALs) containing reactive oxygen and nitrogen species (RONS) with selective anticancer activity. Thus, the delivery of RONS to cancer tissues by intraperitoneal washing with PALs might be an innovative strategy for the treatment of EOC. In this work, plasma-activated Ringer’s Lactate solution (PA-RL) was produced by exposing a liquid substrate to a multiwire plasma source. Subsequently, PA-RL dilutions are used for the treatment of EOC, non-cancer and fibroblast cell lines, revealing a selectivity of PA-RL, which induces a significantly higher cytotoxic effect in EOC with respect to non-cancer cells.
Collapse
Affiliation(s)
- Alina Bisag
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy; (A.B.); (C.B.); (S.C.); (M.G.); (V.C.)
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
| | - Cristiana Bucci
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy; (A.B.); (C.B.); (S.C.); (M.G.); (V.C.)
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Sara Coluccelli
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy; (A.B.); (C.B.); (S.C.); (M.G.); (V.C.)
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Unit of Gynecologic Oncology, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Giulia Girolimetti
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Correspondence: (G.G.); (R.L.)
| | - Romolo Laurita
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy; (A.B.); (C.B.); (S.C.); (M.G.); (V.C.)
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Interdepartmental Center for Industrial Research Advanced Mechanical Engineering Applications and Materials Technology, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy
- Correspondence: (G.G.); (R.L.)
| | - Pierandrea De Iaco
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Unit of Gynecologic Oncology, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Anna Myriam Perrone
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Unit of Gynecologic Oncology, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Matteo Gherardi
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy; (A.B.); (C.B.); (S.C.); (M.G.); (V.C.)
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Interdepartmental Center for Industrial Research Advanced Mechanical Engineering Applications and Materials Technology, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy
| | - Lorena Marchio
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Industrial Research Life Sciences and Technologies for Health, Alma Mater Studiorum-University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Vittorio Colombo
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy; (A.B.); (C.B.); (S.C.); (M.G.); (V.C.)
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Interdepartmental Center for Industrial Research Advanced Mechanical Engineering Applications and Materials Technology, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy
- Interdepartmental Center for Industrial Research Agrifood, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Gasparre
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy; (P.D.I.); (A.M.P.); (L.M.); (A.M.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
30
|
Yoshikawa N, Liu W, Nakamura K, Yoshida K, Ikeda Y, Tanaka H, Mizuno M, Toyokuni S, Hori M, Kikkawa F, Kajiyama H. Plasma-activated medium promotes autophagic cell death along with alteration of the mTOR pathway. Sci Rep 2020; 10:1614. [PMID: 32005941 PMCID: PMC6994502 DOI: 10.1038/s41598-020-58667-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/28/2019] [Indexed: 01/06/2023] Open
Abstract
The biological function of non-thermal atmospheric pressure plasma has been widely accepted in several types of cancer. We previously developed plasma-activated medium (PAM) for clinical use, and demonstrated that PAM exhibits a metastasis-inhibitory effect on ovarian cancer through reduced MMP-9 secretion. However, the anti-tumor effects of PAM on endometrial cancer remain unknown. In this study, we investigated the inhibitory effect of PAM on endometrial cancer cell viability in vitro. Our results demonstrated that AMEC and HEC50 cell viabilities were reduced by PAM at a certain PAM ratio, and PAM treatment effectively increased autophagic cell death in a concentration dependent manner. In addition, we evaluated the molecular mechanism of PAM activity and found that the mTOR pathway was inactivated by PAM. Moreover, our results demonstrated that the autophagy inhibitor MHY1485 partially inhibited the autophagic cell death induced by PAM treatment. These findings indicate that PAM decreases the viability of endometrial cancer cells along with alteration of the mTOR pathway, which is critical for cancer cell viability. Collectively, our data suggest that PAM inhibits cell viability while inducing autophagic cell death in endometrial cancer cells, representing a potential novel treatment for endometrial cancer.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Wenting Liu
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
31
|
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel) 2019; 11:cancers11121920. [PMID: 31810265 PMCID: PMC6966454 DOI: 10.3390/cancers11121920] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Collapse
|
32
|
Śmiłowicz D, Kogelheide F, Stapelmann K, Awakowicz P, Metzler-Nolte N. Study on Chemical Modifications of Glutathione by Cold Atmospheric Pressure Plasma (Cap) Operated in Air in the Presence of Fe(II) and Fe(III) Complexes. Sci Rep 2019; 9:18024. [PMID: 31792236 PMCID: PMC6888970 DOI: 10.1038/s41598-019-53538-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
Cold atmospheric pressure plasma is an attractive new research area in clinical trials to treat skin diseases. However, the principles of plasma modification of biomolecules in aqueous solutions remain elusive. It is intriguing how reactive oxygen and nitrogen species (RONS) produced by plasma interact on a molecular level in a biological environment. Previously, we identified the chemical effects of dielectric barrier discharges (DBD) on the glutathione (GSH) and glutathione disulphide (GSSG) molecules as the most important redox pair in organisms responsible for detoxification of intracellular reactive species. However, in the human body there are also present redox-active metals such as iron, which is the most abundant transition metal in healthy humans. In the present study, the time-dependent chemical modifications on GSH and GSSG in the presence of iron(II) and iron(III) complexes caused by a dielectric barrier discharge (DBD) under ambient conditions were investigated by IR spectroscopy, mass spectrometry and High Performance Liquid Chromatography (HPLC). HPLC chromatograms revealed one clean peak after treatment of both GSH and GSSH with the dielectric barrier discharge (DBD) plasma, which corresponded to glutathione sulfonic acid GSO3H. The ESI-MS measurements confirmed the presence of glutathione sulfonic acid. In our experiments, involving either iron(II) or iron(III) complexes, glutathione sulfonic acid GSO3H appeared as the main oxidation product. This is in sharp contrast to GSH/GSSG treatment with DBD plasma in the absence of metal ions, which gave a wild mixture of products. Also interesting, no nitrosylation of GSH/GSSG was oberved in the presence of iron complexes, which seems to indicate a preferential oxygen activation chemistry by this transition metal ion.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Friederike Kogelheide
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Peter Awakowicz
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
33
|
Bauer G, Sersenová D, Graves DB, Machala Z. Dynamics of Singlet Oxygen-Triggered, RONS-Based Apoptosis Induction after Treatment of Tumor Cells with Cold Atmospheric Plasma or Plasma-Activated Medium. Sci Rep 2019; 9:13931. [PMID: 31558835 PMCID: PMC6763425 DOI: 10.1038/s41598-019-50329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment of tumor cells with cold atmospheric plasma (CAP) or with plasma-activated medium (PAM) leads to a biochemical imprint on these cells. This imprint is mediated by primary singlet oxygen, which is mainly generated through the interaction between CAP-derived H2O2 and NO2-. This imprint is induced with a low efficiency as local inactivation of a few membrane-associated catalase molecules. As sustained generation of secondary singlet oxygen by the tumor cells is activated at the site of the imprint, a rapid bystander effect-like spreading of secondary singlet oxygen generation and catalase inactivation within the cell population is thus induced. This highly dynamic process is essentially driven by NOX1 and NOS of the tumor cells, and finally leads to intercellular RONS-driven apoptosis induction. This dynamic process can be studied by kinetic analysis, combined with the use of specific inhibitors at defined time intervals. Alternatively, it can be demonstrated and quantified by transfer experiments, where pretreated cells are mixed with untreated cells and bystander signaling is determined. These studies allow to conclude that the specific response of tumor cells to generate secondary singlet oxygen is the essential motor for their self-destruction, after a singlet oxygen-mediated triggering process by CAP or PAM.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
34
|
Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Sci Rep 2019; 9:13657. [PMID: 31541175 PMCID: PMC6754505 DOI: 10.1038/s41598-019-50136-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Non-thermal atmospheric pressure plasma has been widely used for preclinical studies in areas such as wound healing, blood coagulation, and cancer therapy. We previously developed plasma-activated medium (PAM) and plasma-activated Ringer's lactate solutions (PAL) for cancer treatments. Many in vitro and in vivo experiments demonstrated that both PAM and PAL exhibit anti-tumor effects in several types of cancer cells such as ovarian, gastric, and pancreatic cancer cells as well as glioblastoma cells. However, interestingly, PAM induces more intracellular reactive oxygen species in glioblastoma cells than PAL. To investigate the differences in intracellular molecular mechanisms of the effects of PAM and PAL in glioblastoma cells, we measured gene expression levels of antioxidant genes such as CAT, SOD2, and GPX1. Microarray and quantitative real-time PCR analyses revealed that PAM elevated stress-inducible genes that induce apoptosis such as GADD45α signaling molecules. PAL suppressed genes downstream of the survival and proliferation signaling network such as YAP/TEAD signaling molecules. These data reveal that PAM and PAL induce apoptosis in glioblastoma cells by different intracellular molecular mechanisms.
Collapse
|
35
|
Weiss M, Stope MB. Physical plasma: a new treatment option in gynecological oncology. Arch Gynecol Obstet 2019; 298:853-855. [PMID: 30206734 DOI: 10.1007/s00404-018-4889-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-thermal application of physical plasma is rapidly gaining importance for the future therapy and prevention of chronic inflammatory diseases and tumors. Here, we outline the importance of this innovative and less invasive therapy option, particulary for the treatment and prevention of gynecological cancers.
Collapse
Affiliation(s)
- Martin Weiss
- Department of Women's Health Tübingen, Calwerstraße 7, 72076, Tübingen, Germany. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| | - Matthias B Stope
- Department of Urology, Tumor Biology Laboratory, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
36
|
Shaw P, Kumar N, Hammerschmid D, Privat-Maldonado A, Dewilde S, Bogaerts A. Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11081109. [PMID: 31382579 PMCID: PMC6721819 DOI: 10.3390/cancers11081109] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Melittin (MEL), a small peptide component of bee venom, has been reported to exhibit anti-cancer effects in vitro and in vivo. However, its clinical applicability is disputed because of its non-specific cytotoxicity and haemolytic activity in high treatment doses. Plasma-treated phosphate buffered saline solution (PT-PBS), a solution rich in reactive oxygen and nitrogen species (RONS) can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. Thus, PT-PBS could be used in combination with MEL to facilitate its access into cancer cells and to reduce the required therapeutic dose. The aim of our study is to determine the reduction of the effective dose of MEL required to eliminate cancer cells by its combination with PT-PBS. For this purpose, we have optimised the MEL threshold concentration and tested the combined treatment of MEL and PT-PBS on A375 melanoma and MCF7 breast cancer cells, using in vitro, in ovo and in silico approaches. We investigated the cytotoxic effect of MEL and PT-PBS alone and in combination to reveal their synergistic cytological effects. To support the in vitro and in ovo experiments, we showed by computer simulations that plasma-induced oxidation of the phospholipid bilayer leads to a decrease of the free energy barrier for translocation of MEL in comparison with the non-oxidized bilayer, which also suggests a synergistic effect of MEL with plasma induced oxidation. Overall, our findings suggest that MEL in combination with PT-PBS can be a promising combinational therapy to circumvent the non-specific toxicity of MEL, which may help for clinical applicability in the future.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Naresh Kumar
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium.
| | - Dietmar Hammerschmid
- Laboratory of Protein Science, Proteomics & Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Angela Privat-Maldonado
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Sylvia Dewilde
- Laboratory of Protein Science, Proteomics & Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium.
| |
Collapse
|
37
|
Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2930504. [PMID: 31316715 PMCID: PMC6604302 DOI: 10.1155/2019/2930504] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022]
Abstract
Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H2O2 and OH) and hydrophobic (NO2 and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H2O2 and NO2, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys191) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H2O2 and NO2 permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.
Collapse
|
38
|
Elucidation of in vitro cellular steps induced by antitumor treatment with plasma-activated medium. Sci Rep 2019; 9:4866. [PMID: 30890760 PMCID: PMC6425039 DOI: 10.1038/s41598-019-41408-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have reported cold atmospheric plasma cytotoxic activities in various cancer cell lines, either by direct exposure to non-thermal plasma or indirectly by activating a medium (plasma-activated medium, PAM) prior to cell treatment. We suggested the use of in vitro 3D tumor model spheroids to determine the potential of PAM for cancer therapy at the tissue scale, especially in human tumor tissue. This work aimed to better understand the effect of PAM on human colorectal tumor spheroids by describing the in vitro-induced-cell death kinetics and associated mechanisms to further improve its therapeutic potential. Tumor spheroid growth was delayed depending on contact time with PAM. Medium osmolarity was increased by activation with low temperature Helium plasma jet but it did not fully explain the observed growth delay. PAM impaired tumor cell viability through intracellular ATP depletion, leading within hours to both cell apoptosis and necrosis as well as mitochondrial oxidative stress. When successive treatments were spaced over time, cumulative effects on the growth delay of spheroids were observed. Taken together, these results demonstrated that plasma-activated liquids may represent a novel and efficient therapeutic method for the treatment of tumors, especially when successive treatments are applied.
Collapse
|
39
|
Azzariti A, Iacobazzi RM, Di Fonte R, Porcelli L, Gristina R, Favia P, Fracassi F, Trizio I, Silvestris N, Guida G, Tommasi S, Sardella E. Plasma-activated medium triggers cell death and the presentation of immune activating danger signals in melanoma and pancreatic cancer cells. Sci Rep 2019; 9:4099. [PMID: 30858524 PMCID: PMC6411873 DOI: 10.1038/s41598-019-40637-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/18/2019] [Indexed: 01/09/2023] Open
Abstract
Over the past decade, cold atmospheric plasmas have shown promising application in cancer therapy. The therapeutic use of plasma-activated media is a topic addressed in an emerging field known as plasma pharmacy. In oncology, plasma-activated media are used to harness the therapeutic effects of oxidant species when they come in contact with cancer cells. Among several factors that contribute to the anticancer effect of plasma-activated liquid media (PALM), H2O2 and NO derivatives likely play a key role in the apoptotic pathway. Despite the significant amount of literature produced in recent years, a full understanding of the mechanisms by which PALM exert their activity against cancer cells is limited. In this paper, a sealed dielectric-barrier discharge was used to disentangle the effect of reactive nitrogen species (RNS) from that of reactive oxygen species (ROS) on cancer cells. Two cancers characterized by poor prognosis have been investigated: metastatic melanoma and pancreatic cancer. Both tumour models exposed to PALM rich in H2O2 showed a reduction in proliferation and an increase in calreticulin exposure and ATP release, suggesting the potential use of activated media as an inducer of immunogenic cell death via activation of the innate immune system.
Collapse
Affiliation(s)
- Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy.
| | - Rosa Maria Iacobazzi
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Roberta Di Fonte
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Roberto Gristina
- Institute of Nanotechnology, National Research Council of Italy (CNR-NANOTEC), c/o Department of Chemistry, University of Bari "Aldo Moro" via Orabona 4, Bari, 70126, Italy
| | - Pietro Favia
- Institute of Nanotechnology, National Research Council of Italy (CNR-NANOTEC), c/o Department of Chemistry, University of Bari "Aldo Moro" via Orabona 4, Bari, 70126, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro via Orabona 4, Bari, 70126, Italy
| | - Francesco Fracassi
- Institute of Nanotechnology, National Research Council of Italy (CNR-NANOTEC), c/o Department of Chemistry, University of Bari "Aldo Moro" via Orabona 4, Bari, 70126, Italy.,Department of Chemistry, University of Bari Aldo Moro Via Orabona 4, Bari, 70126, Italy
| | - Ilaria Trizio
- Department of Chemistry, University of Bari Aldo Moro Via Orabona 4, Bari, 70126, Italy
| | - Nicola Silvestris
- Scientific Direction, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs -University of Bari Aldo Moro via Orabona 4, Bari, 70126, Italy
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Eloisa Sardella
- Institute of Nanotechnology, National Research Council of Italy (CNR-NANOTEC), c/o Department of Chemistry, University of Bari "Aldo Moro" via Orabona 4, Bari, 70126, Italy.
| |
Collapse
|
40
|
Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Arch Biochem Biophys 2019; 662:83-92. [DOI: 10.1016/j.abb.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022]
|
41
|
Wang L, Yang X, Yang C, Gao J, Zhao Y, Cheng C, Zhao G, Liu S. The inhibition effect of cold atmospheric plasma-activated media in cutaneous squamous carcinoma cells. Future Oncol 2019; 15:495-505. [PMID: 30648877 DOI: 10.2217/fon-2018-0419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This study investigated the effect and mechanism of cold atmospheric plasma (CAP)-activated media on A431 and HaCaT cells. MATERIALS & METHODS Phosphate-buffered saline (PBS) and Dulbecco's Modified Eagle's Medium (DMEM) were treated by CAP to get CAP-activated media. A431 and HaCaT were incubated by CAP-activated media for 2 h. MTT, Annexin-V and propidium iodide (PI), Western blot and reactive oxygen species (ROS) detection assay were utilized to demonstrate the effect. RESULTS The CAP-activated media decreased the proliferation of A431 cells in a dose/time-dependent manner. And the CAP-activated media could induce apoptosis in A431 cells. CAP-activated phosphate-buffered saline could increase intracellular ROS level but not CAP-activated DMEM. CONCLUSION CAP-activated media could induce apoptosis in A431 cells by production of ROS.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Xingyu Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Ye Zhao
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, PR China
| | - Cheng Cheng
- The Institute of Plasma Physics, Chinese Academy of Science, Hefei, Anhui, PR China
| | - Guoping Zhao
- Anhui Province Key Laboratory of Environmental Toxicology & Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
42
|
Matsuzaki T, Kano A, Kamiya T, Hara H, Adachi T. Enhanced ability of plasma-activated lactated Ringer's solution to induce A549 cell injury. Arch Biochem Biophys 2018; 656:19-30. [DOI: 10.1016/j.abb.2018.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/11/2018] [Accepted: 08/25/2018] [Indexed: 01/03/2023]
|
43
|
Plasma Treatment of Ovarian Cancer Cells Mitigates Their Immuno-Modulatory Products Active on THP-1 Monocytes. PLASMA 2018. [DOI: 10.3390/plasma1010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancers modulate their microenvironment to favor their growth. In particular, monocytes and macrophages are targeted by immuno-modulatory molecules installed by adjacent tumor cells such as ovarian carcinomas. Cold physical plasma has recently gained attention as innovative tumor therapy. We confirmed this for the OVCAR-3 and SKOV-3 ovarian cancer cell lines in a caspase 3/7 independent and dependent manner, respectively. To elaborate whether plasma exposure interferes with their immunomodulatory properties, supernatants of control and plasma-treated tumor cells were added to human THP-1 monocyte cultures. In the latter, modest effects on intracellular oxidation or short-term metabolic activity were observed. By contrast, supernatants of plasma-treated cancer cells abrogated significant changes in morphological and phenotypic features of THP-1 cells compared to those cultured with supernatants of non-treated tumor cell counterparts. This included cell motility and morphology, and modulated expression patterns of nine cell surface markers known to be involved in monocyte activation. This was particularly pronounced in SKOV-3 cells. Further analysis of tumor cell supernatants indicated roles of small particles and interleukin 8 and 18, with MCP1 presumably driving activation in monocytes. Altogether, our results suggest plasma treatment to alleviate immunomodulatory secretory products of ovarian cancer cells is important for driving a distinct myeloid cell phenotype.
Collapse
|
44
|
Dubuc A, Monsarrat P, Virard F, Merbahi N, Sarrette JP, Laurencin-Dalicieux S, Cousty S. Use of cold-atmospheric plasma in oncology: a concise systematic review. Ther Adv Med Oncol 2018; 10:1758835918786475. [PMID: 30046358 PMCID: PMC6055243 DOI: 10.1177/1758835918786475] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Cold-atmospheric plasma (CAP) is an ionized gas produced at an atmospheric
pressure. The aim of this systematic review is to map the use of CAP in
oncology and the implemented methodologies (cell targets, physical
parameters, direct or indirect therapies). Methods: PubMed, the International Clinical Trials Registry Platform and Google
Scholar were explored until 31 December 2017 for studies regarding the use
of plasma treatment in oncology (in vitro, in vivo,
clinical trials). Results: 190 original articles were included. Plasma jets are the most-used production
systems (72.1%). Helium alone was the most-used gas (35.8%), followed by air
(26.3%) and argon (22.1%). Studies were mostly in vitro
(94.7%) and concerned direct plasma treatments (84.2%). The most targeted
cancer cell lines are human cell lines (87.4%), in particular, in brain
cancer (16.3%). Conclusions: This study highlights the multiplicity of means of production and clinical
applications of the CAP in oncology. While some devices may be used directly
at the bedside, others open the way for the development of new
pharmaceutical products that could be generated at an industrial scale.
However, its clinical use strongly needs the development of standardized
reliable protocols, to determine the more efficient type of plasma for each
type of cancer, and its combination with conventional treatments.
Collapse
Affiliation(s)
| | - Paul Monsarrat
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France UMR STROMALab, Université Paul Sabatier, Toulouse,
France
| | - François Virard
- Centre de Recherche en Cancérologie de Lyon,
Université Lyon, Lyon, France
| | - Nofel Merbahi
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier
of Toulouse, France
| | | | - Sara Laurencin-Dalicieux
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France INSERM U1043, Université Toulouse, Toulouse, France
| | - Sarah Cousty
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France Lapace F-31062, Université de Toulouse, Toulouse,
France
| |
Collapse
|
45
|
The Emerging Role of Gas Plasma in Oncotherapy. Trends Biotechnol 2018; 36:1183-1198. [PMID: 30033340 DOI: 10.1016/j.tibtech.2018.06.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022]
Abstract
Atmospheric pressure gas plasmas are emerging as a promising treatment in cancer that can supplement the existing set of treatment modalities and, when combined with other therapies, enhance their selectivity and efficacy against resistant cancers. With further optimisation in production and administration of plasma treatment, plasma-enabled therapy has a strong potential to mature as a tool for selectively curing highly resistant solid tumours. Although intense preclinical studies have been conducted to exploit the unique traits of plasma as an oncotherapy, few clinical studies are underway. This review identifies types of cancers and patient groups that most likely benefit from plasma oncotherapy, to introduce clinical practitioners to plasma therapy and accelerate the speed of translating plasma for cancer control in clinics.
Collapse
|
46
|
Tanaka H, Mizuno M, Ishikawa K, Takeda K, Hashizume H, Nakamura K, Utsumi F, Kajiyama H, Okazaki Y, Toyokuni S, Akiyama S, Maruyama S, Kikkawa F, Hori M. Glioblastoma Cell Lines Display Different Sensitivities to Plasma-Activated Medium. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2017.2721973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Sato Y, Yamada S, Takeda S, Hattori N, Nakamura K, Tanaka H, Mizuno M, Hori M, Kodera Y. Effect of Plasma-Activated Lactated Ringer's Solution on Pancreatic Cancer Cells In Vitro and In Vivo. Ann Surg Oncol 2017; 25:299-307. [PMID: 29139022 DOI: 10.1245/s10434-017-6239-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The medical applications of nonequilibrium atmospheric pressure plasma in cancer therapy have attracted attention. We previously reported on the antitumor effect of plasma-activated medium. However, this approach requires plasma-activated liquids that are administrable to the human body. In this study, we produced plasma-activated lactated Ringer's solution (PAL) and evaluated its antitumor effect and mechanism. Furthermore, we evaluated the effect of the intraperitoneal administration of PAL using a peritoneal dissemination mouse tumor model. METHODS The antitumor effect of PAL on pancreatic cancer cell lines was evaluated using proliferation and apoptosis assays. In addition, cellular reactive oxygen species (ROS) generation was examined. The role of ROS was assessed using a proliferation assay with N-acetyl cysteine (NAC). An adhesion assay was performed to evaluate the effect of PAL on cell adhesion. Finally, pancreatic cancer cells stably expressing luciferase (AsPC-1/CMV-Luc) were injected intraperitoneally into mice, followed by intraperitoneal injection of PAL. Peritoneal dissemination was monitored using in vivo bioluminescent imaging. RESULTS The antitumor effect of PAL was shown in all cell lines in vitro. The TUNEL assay showed that PAL induced apoptosis. ROS uptake was observed in PAL-treated cells, and the antitumor effect was inhibited by NAC. Cell adhesion also was suppressed by PAL. The intraperitoneal administration of PAL suppressed the formation of peritoneal nodules in vivo. CONCLUSIONS Our study demonstrated the antitumor effects of PAL in vitro and in vivo. Intraperitoneal administration of PAL may be a novel therapeutic option for peritoneal metastases.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Shigeomi Takeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
48
|
Canal C, Fontelo R, Hamouda I, Guillem-Marti J, Cvelbar U, Ginebra MP. Plasma-induced selectivity in bone cancer cells death. Free Radic Biol Med 2017; 110:72-80. [PMID: 28571751 DOI: 10.1016/j.freeradbiomed.2017.05.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Current therapies for bone cancers - either primary or metastatic - are difficult to implement and unfortunately not completely effective. An alternative therapy could be found in cold plasmas generated at atmospheric pressure which have already demonstrated selective anti-tumor action in a number of carcinomas and in more relatively rare brain tumors. However, its effects on bone cancer are still unknown. METHODS Herein, we employed an atmospheric pressure plasma jet (APPJ) to validate its selectivity towards osteosarcoma cell line vs. osteoblasts & human mesenchymal stem cells. RESULTS Cytotoxicity following direct interaction of APPJ with cells is comparable to indirect interaction when only liquid medium is treated and subsequently added to the cells, especially on the long-term (72h of cell culture). Moreover, following contact of the APPJ treated medium with cells, delayed effects are observed which lead to 100% bone cancer cell death through apoptosis (decreased cell viability with incubation time in contact with APPJ treated medium from 24h to 72h), while healthy cells remain fully viable and unaffected by the treatment. CONCLUSIONS The high efficiency of the indirect treatment indicates that an important role is played by the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the gaseous plasma stage and then transmitted to the liquid phase, which overall lead to lethal and selective action towards osteosarcoma cells. These findings open new pathways for treatment of metastatic bone disease with a minimally invasive approach.
Collapse
Affiliation(s)
- Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - Raul Fontelo
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ines Hamouda
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Uros Cvelbar
- Department of Surface Engineering and Optoelectronics (F-4), Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Institute for Bioengineering of Catalonia, c/ Baldiri i Reixach 10-12, 08028 Barcelona, Spain
| |
Collapse
|
49
|
Shi L, Yu L, Zou F, Hu H, Liu K, Lin Z. Gene expression profiling and functional analysis reveals that p53 pathway-related gene expression is highly activated in cancer cells treated by cold atmospheric plasma-activated medium. PeerJ 2017; 5:e3751. [PMID: 28852598 PMCID: PMC5572956 DOI: 10.7717/peerj.3751] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cold atmospheric-pressure plasma (CAP) has been considered a promising strategy for anti-cancer treatment. Traditionally, CAP was employed to kill cancer cells or tumor tissues by direct irradiation. However, CAP has some disadvantages such as infiltration capacity and storage convenience. Recently, plasma-activated medium (PAM) was used as an alternative strategy to treat cancer cells or tumors. The novel PAM approach has potential as an anti-cancer therapy. OBJECTIVE To reveal the global activation of signaling pathways in oral cancer cells induced by PAM. METHODS Oral squamous cell line SCC15 were treated by PAM and gene expression profiles were evaluated by using RNA-seq. Functional analyses were employed to reveal the global responses of SCC15 cells with PAM stimulation. QRT-PCR and Western blot were carried out to validate the expression levels of selected genes. RESULTS More than 6G clean data per sample were obtained in PAM-treated SCC15 cells. A total of 934 differentially expressed genes (DEGs) were identified and GO analysis implicated the deep involvement of biological process. KEGG mapping further clustered 40 pathways, revealing that "p53 pathway" was significantly enriched. SCC15 cells were commonly used as a p53-null cell line. Therefore, the enriched p53 pathway-related genes in our analysis might be activated by other stimulators, in a p53-independent manner. Gene set enrichment analysis (GSEA) was also performed to evaluate changes at the gene-sets level. The results demonstrated not only the high engagement of "p53 pathway" but also the involvement of novel pathways such as hypoxia pathway. CONCLUSIONS The present study elucidates the transcriptomic changes of PAM treated SCC15 cells, containing highly enriched DEGs involved in "p53 pathway". Our analysis in this work not only provides genomic resources for future studies but also gives novel insights to uncover the molecular mechanism of PAM stimulation.
Collapse
Affiliation(s)
- Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, PR China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, PR China
| | - Fagui Zou
- School of Life Sciences, Chongqing University, Chongqing, PR China
| | - Huimin Hu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, PR China
| | - Kun Liu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, PR China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing, PR China
| |
Collapse
|
50
|
Lipid droplets exhaustion with caspases activation in HeLa cells cultured in plasma-activated medium observed by multiplex coherent anti-Stokes Raman scattering microscopy. Biointerphases 2017; 12:031006. [DOI: 10.1116/1.4997170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|