1
|
Li D, Huang Z, Ma T, Su Y, Li Z, Sun L, Li M, Li Z, Li Y, Wang Q, Lu Y. Utilizing bioinformatics to identify biomarkers and analyze their expression in relation to immune cell ratios in femoral head necrosis. Front Physiol 2025; 16:1373721. [PMID: 40308566 PMCID: PMC12040900 DOI: 10.3389/fphys.2025.1373721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Background Necrosis of the Femoral Head (NFH) represents a challenging orthopedic condition, characterized by elusive early detection and rapid progression, predominantly in the middle-aged demographic. Current research on the pathophysiological and immunoregulatory mechanisms underpinning immune cell infiltration in NFH is sparse. This study employs bioinformatics analysis of publicly available RNA sequencing databases to elucidate the pivotal molecules and pathways implicated in NFH progression. Methods The NFH-related dataset GSE123568 was obtained from the Gene Expression Omnibus (GEO). Subsequently, CIBERSORT was utilized to assess the proportion and distribution of immune cell types, followed by the identification of critical Hub immune cells using LASSO and RFE algorithms. The dataset GSE123568 was then explored to identify significantly differentially expressed genes (DEGs). These genes were further refined by intersecting with death-associated genes reported in existing literature. GO and KEGG pathway enrichment analyses were conducted to elucidate their underlying molecular mechanism. A protein-protein interaction (PPI) network was constructed using the STRING database and visualized via Cytoscape. Hub genes were identified using the CytoHubba plugin, followed by enrichment analysis, and their expression levels were evaluated using the ROC curve. In addition, we performed expression data visualization and ROC curve analysis on the external dataset GSE74089 to further evaluate the discriminative power of the hub genes. Moreover, the study analyzed the correlation between the identified hub genes and Hub immune cells. Finally, we verified the hub genes utilizing real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. Results Four types of immune cells (Neutrophil, Mast cell resting, Myeloid dendritic cell activated, Macrophage M0) were identified. Fourteen pivotal genes (BCL2L1, BIRC2, NFKBIA, XIAP, CFLAR, AKT1, BIRC3, IKBKB, RIPK1, CASP8, TNFRSF1A, IL1B, CASP1, STAT3) were identified, and the findings were validated using the external dataset GSE74089. Among these, STAT3 exhibited the most pronounced positive correlation with neutrophils (r = 0.6804, p = 3.525e-05). Conversely, XIAP displayed the most significant negative correlation with Myeloid dendritic cell activated (r = -0.3610, p = 0.04003). In experiments, the experimental outcomes for five hub genes (CASP8, TNFRSF1A, AKT1, XIAP and STAT3) were congruent with the results obtained from bioinformatics analysis. Conclusion Our study identified CASP8, TNFRSF1A, AKT1, XIAP, STAT3 and BCL2L1 as potential biomarkers for NFH patients and elucidated the immune cell types with the strongest association to these markers. These insights may be crucial for the early diagnosis, understanding of the pathophysiological mechanisms, and the development of treatment strategies for NFH.
Collapse
Affiliation(s)
- Dongchen Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Yan’an University, Yan’an, China
| | - Zhilong Huang
- Department of Orthopaedic Surgery, The Nuclear Industry 417 Hospital, Xi’an, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yu Su
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Yan’an University, Yan’an, China
| | - Zhao Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Yan’an University, Yan’an, China
| | - Liang Sun
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ming Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qian Wang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Lu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Ye X, Li X, Zhu C, Cui L, Shen Z, Xu K, Shen G, Wu L, Zhang B. Associations between systemic inflammation response index and femur bone mineral density in adults: The NHANES 2005-2010, 2013-2014, and 2017-2018. Medicine (Baltimore) 2025; 104:e41565. [PMID: 39993115 PMCID: PMC11856988 DOI: 10.1097/md.0000000000041565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/13/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
A unique measure of inflammatory evaluation, the systemic inflammation response index (SIRI) may offer useful data for the diagnosis and risk assessment of a number of diseases. The aim of this study was to investigate the relationship between SIRI and femur bone mineral density (BMD) in US adults. The association between SIRI and femur BMD was examined using multivariate logistic regression, sensitivity analysis, and smoothing curve fitting using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2010, 2013-2014, and 2017-2018. Subgroup analysis and interaction tests were employed to examine the population-level stability of this connection. This present study included 18,022 participants older than 20 years from NHANES (2005-2010, 2013-2014, and 2017-2018). The present study showed a negative association between SIRI and femur BMD (including total femur BMD, femoral neck BMD, trochanter BMD, and intertrochanter BMD). In the fully adjusted model, we found a negative association between the SIRI and total femur BMD (Beta = -0.0032, 95% CI: -0.0053 to -0.0012), a negative association between the SIRI and femoral neck BMD (Beta = -0.0025, 95% CI: -0.0045 to -0.0005), a negative association between the SIRI and trochanter BMD (Beta = -0.0032, 95% CI: -0.0050 to -0.0013), a negative association between the SIRI and intertrochanter BMD (Beta = -0.0031, 95% CI: -0.0056 to -0.0007). This negative association was more pronounced in older adults > 65 years of age. In addition, we found a U-shaped association between SIRI and femur BMD by further smoothing curve-fitting methods. SIRI was negatively associated with femur BMD in US adults, and this association was more significant in older adults over 65 years. SIRI may be a useful, convenient, and practical indicator of inflammation. Moreover, older adults with high SIRI levels are likely to have low femur BMD.
Collapse
Affiliation(s)
- Xiaoang Ye
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xinru Li
- Hangzhou Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Chaojin Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Longkang Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Zhe Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Kuangying Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Gaobo Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lianguo Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bingbing Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Suárez A, Tobío-Parada U, Rodríguez-Carrio J, Martínez-Zapico A, Pérez-Álvarez ÁI, Suárez-Díaz S, Caminal-Montero L, López P. Circulating Levels of Low-Density Granulocytes and Cell-Free DNA as Predictors of Cardiovascular Disease and Bone Deterioration in SLE Patients. Thromb Haemost 2024. [PMID: 39542026 DOI: 10.1055/a-2467-6826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
OBJECTIVE The present work evaluates the predictive value of low-density granulocytes (LDGs) for the development of cardiovascular disease (CVD) and/or bone deterioration (BD) in a 6-year prospective study in systemic lupus erythematosus (SLE). Considering the high SLE-LDG capacity to form neutrophil extracellular traps (NETs), circulating levels of total cell-free DNA (cirDNA) and relative amounts of mitochondrial and nuclear DNA (mtDNA and nDNA, respectively) were tested as LDG-associated biomarkers to identify SLE patients at risk of CVD and BD. MATERIAL AND METHODS The frequency of total blood LDGs, as well as the CD16negCD14neg (nLDG) and CD16posCD14low (pLDG) subsets, was quantified by flow cytometry in 33 controls and 144 SLE patients. Total cirDNA and relative amounts of mitochondrial (mtDNA) and nuclear (nDNA) cell-free DNA were measured by fluorometry or qPCR in plasma from a subgroup of 117 patients and 23 controls at enrolment. RESULTS AND CONCLUSION Our findings showed increased blood levels of SLE-nLDGs at enrolment associated with prospective CVD development (pCVD) and the presence of BD, thus revealing LDG expansion as a predictor of both comorbidities in SLE progression. The amounts of the different types of circulating DNA analyzed were increased in patients, especially those presenting with traditional CV risk factors or subclinical atheromatosis. Similar to nLDGs, the nDNA concentration could predict the development of pCVD in SLE, supporting the quantification of cirDNA levels as a surrogate marker of LDGs in clinical practice.
Collapse
Affiliation(s)
- Ana Suárez
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Uxía Tobío-Parada
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Aleida Martínez-Zapico
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ángel I Pérez-Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Silvia Suárez-Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Luis Caminal-Montero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patricia López
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
4
|
Liu Y, Guo F, Han Z, Yin Y, Chen G, Zhang Y, Tang Q, Chen L. Neutrophils inhibit bone formation by directly contacting osteoblasts and suppressing osteogenic differentiation. Bone 2024; 190:117310. [PMID: 39477179 DOI: 10.1016/j.bone.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Neutrophils have been extensively studied for their critical roles in supporting immune defense mechanisms, initiating bone regeneration, and promoting angiogenesis. Nonetheless, the influence of neutrophils on physiological conditions, particularly in the context of bone development, remains incompletely understood. In this study, we examined the effects of non-inflammatory neutrophils on bone physiology by depleting Ly6G+ neutrophils and inducing neutropenia through myelosuppression. Our results demonstrated a notable increase in bone mass and a decrease in the bone marrow cavity upon depletion of the neutrophils. These effects were attributed to the direct interaction between neutrophils and osteoblasts, independent of reduced secretion of typical inflammatory cytokines or diminished osteoclast differentiation. This observation suggests a non-inflammatory function of neutrophils within the endosteal microenvironment, where they regulate osteogenic differentiation to preserve optimal bone mass, shape healthy three-dimensional bone trabecular structures, and create ample space for hematopoietic niche development.
Collapse
Affiliation(s)
- Yijun Liu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Fengyuan Guo
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhenshuo Han
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Ying Yin
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guangjin Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yifan Zhang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Lili Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
5
|
Ohta R, Tanigawa Y, Suzuki Y, Kellis M, Morishita S. A polygenic score method boosted by non-additive models. Nat Commun 2024; 15:4433. [PMID: 38811555 PMCID: PMC11522481 DOI: 10.1038/s41467-024-48654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Dominance heritability in complex traits has received increasing recognition. However, most polygenic score (PGS) approaches do not incorporate non-additive effects. Here, we present GenoBoost, a flexible PGS modeling framework capable of considering both additive and non-additive effects, specifically focusing on genetic dominance. Building on statistical boosting theory, we derive provably optimal GenoBoost scores and provide its efficient implementation for analyzing large-scale cohorts. We benchmark it against seven commonly used PGS methods and demonstrate its competitive predictive performance. GenoBoost is ranked the best for four traits and second-best for three traits among twelve tested disease outcomes in UK Biobank. We reveal that GenoBoost improves prediction for autoimmune diseases by incorporating non-additive effects localized in the MHC locus and, more broadly, works best in less polygenic traits. We further demonstrate that GenoBoost can infer the mode of genetic inheritance without requiring prior knowledge. For example, GenoBoost finds non-zero genetic dominance effects for 602 of 900 selected genetic variants, resulting in 2.5% improvements in predicting psoriasis cases. Lastly, we show that GenoBoost can prioritize genetic loci with genetic dominance not previously reported in the GWAS catalog. Our results highlight the increased accuracy and biological insights from incorporating non-additive effects in PGS models.
Collapse
Affiliation(s)
- Rikifumi Ohta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
6
|
Salimi M, Khanzadeh M, Nabipoorashrafi SA, Seyedi SA, Yaghoobpoor S, Brismée JM, Lucke-Wold B, Ebadi M, Ghaedi A, Kumar VS, Mirghaderi P, Rabie H, Khanzadeh S. Association of neutrophil to lymphocyte ratio with bone mineral density in post-menopausal women: a systematic review and meta-analysis. BMC Womens Health 2024; 24:169. [PMID: 38461235 PMCID: PMC10924380 DOI: 10.1186/s12905-024-03006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to compare the neutrophil lymphocyte ratio (NLR) levels between women with post-menopausal osteopenia or osteoporosis to those with normal bone mineral density (BMD). METHODS We used Web of Science, PubMed, and Scopus to conduct a systematic search for relevant publications published before June 19, 2022, only in English language. We reported standardized mean difference (SMD) with a 95% confidence interval (CI). Because a significant level of heterogeneity was found, we used the random-effects model to calculate pooled effects. We used the Newcastle-Ottawa scale for quality assessment. RESULTS Overall, eight articles were included in the analysis. Post-menopausal women with osteoporosis had elevated levels of NLR compared to those without osteoporosis (SMD = 1.03, 95% CI = 0.18 to 1.88, p = 0.017, I2 = 98%). In addition, there was no difference between post-menopausal women with osteopenia and those without osteopenia in neutrophil lymphocyte ratio (NLR) levels (SMD = 0.58, 95% CI=-0.08 to 1.25, p = 0.085, I2 = 96.8%). However, there was no difference between post-menopausal women with osteoporosis and those with osteopenia in NLR levels (SMD = 0.75, 95% CI=-0.01 to 1.51, p = 0.05, I2 = 97.5%, random-effect model). CONCLUSION The results of this study point to NLR as a potential biomarker that may be easily introduced into clinical settings to help predict and prevent post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Maryam Salimi
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of medical and health sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jean-Michel Brismée
- Center for Rehabilitation Research, Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Mehrnoosh Ebadi
- Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Varun Singh Kumar
- Department of Orthopaedic Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyman Mirghaderi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Rabie
- Department of Orthopedic Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Miron RJ, Bohner M, Zhang Y, Bosshardt DD. Osteoinduction and osteoimmunology: Emerging concepts. Periodontol 2000 2024; 94:9-26. [PMID: 37658591 DOI: 10.1111/prd.12519] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 09/03/2023]
Abstract
The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed "osteoimmunology," which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the "osteogenic" capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteoimmunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteoimmunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | |
Collapse
|
8
|
Wen ZQ, Lin J, Xie WQ, Shan YH, Zhen GH, Li YS. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Mil Med Res 2023; 10:54. [PMID: 37941072 PMCID: PMC10634069 DOI: 10.1186/s40779-023-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system, including osteoarthritis, osteoporosis, intervertebral disc degeneration (IVDD), and sarcopenia. As the global population ages, degenerative musculoskeletal diseases are becoming more prevalent. However, the pathogenesis of degenerative musculoskeletal diseases is not fully understood. Previous studies have revealed that endoplasmic reticulum (ER) stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER, contributing to degenerative musculoskeletal diseases. By affecting cartilage degeneration, synovitis, meniscal lesion, subchondral bone remodeling of osteoarthritis, bone remodeling and angiogenesis of osteoporosis, nucleus pulposus degeneration, annulus fibrosus rupture, cartilaginous endplate degeneration of IVDD, and sarcopenia, ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases. Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases. These pilot studies provide foundations for further evaluation of the feasibility, efficacy, and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials. In this review, we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases. In a future perspective, we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease, potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators, as well as underlying challenges and obstacles in bench-to-beside research.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001, China
| | - Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Han Shan
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ge-Hua Zhen
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
Zhang S, Ni W. High systemic immune-inflammation index is relevant to osteoporosis among middle-aged and older people: A cross-sectional study. Immun Inflamm Dis 2023; 11:e992. [PMID: 37647432 PMCID: PMC10465993 DOI: 10.1002/iid3.992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND As one of novel inflammatory indexes proposed in recent years, systemic immune-inflammation index (SII) can comprehensively reflect the inflammatory and immune state of the body. This study aims to explore the relationship between SII and osteoporosis among middle-aged and older people. MATERIALS AND METHODS Our study includes 20,497 individuals from National Health and Nutrition Examination Survey (NHANES) 2005-2008, and target study population are confined to people aged 45 years and above. SII is calculated as platelet count × neutrophil count/lymphocyte count. Multivariate logistic regression analysis is used to explore the link between SII and osteoporosis, and receiver operating characteristics curve is used to screen optimal cut-off value of SII for indicating the occurrence of osteoporosis. RESULTS A total of 435 people with osteoporosis are screened among 4625 middle-aged and older people, and individuals in osteoporosis group have higher SII than those in nonosteoporosis group (p = .024). Logistic regression analysis indicates that with the enhancement of SII, prevalence of osteoporosis in each tertile category also increases (p < .001). This tendency is also not changed in univariate model (p < .001), as well as the adjustments for different parameters. Moreover, we also identify that SII of 530.09 is the optimal cut-off value for indicating the occurrence of osteoporosis among middle-aged and older people. CONCLUSIONS This present NHANES-based study noticed that higher SII is positively linked to osteoporosis among middle-aged and older people, and SII should not exceed 530.09 for them to obtain a potentially lower risk of osteoporosis.
Collapse
Affiliation(s)
- Suli Zhang
- Department of Operating RoomWujin Hospital Affiliated to Jiangsu University (Wujin People's Hospital)ChangzhouJiangsuChina
- Department of NursingWujin Hospital Affiliated to Jiangsu University (Wujin People's Hospital)ChangzhouJiangsuChina
- Wujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsuChina
| | - Wenyan Ni
- Department of Operating RoomWujin Hospital Affiliated to Jiangsu University (Wujin People's Hospital)ChangzhouJiangsuChina
- Department of NursingWujin Hospital Affiliated to Jiangsu University (Wujin People's Hospital)ChangzhouJiangsuChina
- Wujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsuChina
| |
Collapse
|
10
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
11
|
Quaresma TO, de Almeida SCL, da Silva TA, Louzada-Júnior P, de Oliveira RDR. Comparative study of the synovial levels of RANKL and OPG in rheumatoid arthritis, spondyloarthritis and osteoarthritis. Adv Rheumatol 2023; 63:13. [PMID: 36922894 DOI: 10.1186/s42358-023-00294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION In chronic arthropathies, there are several mechanisms of joint destruction. In recent years, studies have reported the implication of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in the process of activation and differentiation of osteoclasts, a key cell in the development of bone erosion. The RANKL/OPG ratio is increased in the serum of patients with malignant diseases and lytic bone disease, as well as rheumatoid arthritis (RA). The objective of this study was to measure and compare the concentrations of OPG and RANKL in the synovial fluid (SF) of patients with rheumatoid arthritis, spondyloarthritis (SpA) and osteoarthritis (OA). METHODS This was an observational and cross-sectional study with 83 patients, 33 with RA, 32 with SpA and 18 with OA, followed up regularly in the outpatient clinics of the Rheumatology Department of the Clinics Hospital of the Ribeirão Preto Medical School-USP. All patients were assessed for indications for arthrocentesis by the attending physicians at the time of SF collection and were evaluated for demographic variables and medication use. Disease activity was assessed in individuals with RA and SpA. The quantification of SF OPG and RANKL levels was performed by ELISA, and the correlations of the results with clinical, laboratory and radiological parameters were assessed. RESULTS We found no statistically significant difference in the RANKL and OPG levels among the groups. Patients with RA showed a positive correlation between the SF cell count and RANKL level (r = 0.59; p < 0.05) and the RANKL/OPG ratio (r = 0.55; p < 0.05). Patients with OA showed a strong correlation between C-reactive protein (CRP) and the RANKL/OPG ratio (r = 0.82; p < 0.05). There was no correlation between the OPG and RANKL levels and markers of inflammatory activity or the disease activity index in patients with RA or SpA. CONCLUSION Within this patient cohort, the RANKL/OPG ratio was correlated with the SF cell count in patients with RA and with serum CRP in patients with OA, which may suggest a relationship with active inflammation and more destructive joint disease.
Collapse
Affiliation(s)
- Thaíse Oliveira Quaresma
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Campus Universitário Monte Alegre, Ribeirão Prêto, SP, 14048-900, Brazil
| | - Sérgio Couto Luna de Almeida
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Campus Universitário Monte Alegre, Ribeirão Prêto, SP, 14048-900, Brazil
| | - Tarcília Aparecida da Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paulo Louzada-Júnior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Campus Universitário Monte Alegre, Ribeirão Prêto, SP, 14048-900, Brazil
| | - Renê Donizeti Ribeiro de Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Campus Universitário Monte Alegre, Ribeirão Prêto, SP, 14048-900, Brazil.
| |
Collapse
|
12
|
Jiao Y, Wang X, Wang Q, Geng Q, Cao X, Zhang M, Zhao L, Deng T, Xu Y, Xiao C. Mechanisms by which kidney-tonifying Chinese herbs inhibit osteoclastogenesis: Emphasis on immune cells. Front Pharmacol 2023; 14:1077796. [PMID: 36814488 PMCID: PMC9939464 DOI: 10.3389/fphar.2023.1077796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.
Collapse
Affiliation(s)
- Yi Jiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| | - Cheng Xiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China,Department of Emergency, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| |
Collapse
|
13
|
Abid S, Lee M, Rodich B, Hook JS, Moreland JG, Towler D, Maalouf NM, Keller A, Ratti G, Jain R. Evaluation of an association between RANKL and OPG with bone disease in people with cystic fibrosis. J Cyst Fibros 2023; 22:140-145. [PMID: 36041886 DOI: 10.1016/j.jcf.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND As people with Cystic Fibrosis (CF) live longer, extra-pulmonary complications such as CF-related bone disease (CFBD) are becoming increasingly important. The etiology of CFBD is poorly understood but is likely multifactorial. Bones undergo continuous remodeling via pathways including RANK (receptor activator of NF-κB)/sRANKL (soluble ligand)/OPG (osteoprotegerin). We sought to examine the association between sRANKL (stimulant of osteoclastogenesis) and OPG levels (inhibitor of osteoclast formation) and CFBD to investigate their potential utility as biomarkers of bone turnover in people with CF. METHODS We evaluated sRANKL and OPG in plasma from people with CF and healthy controls (HC) and compared levels in those with CF to bone mineral density results. We used univariable and multivariable analysis to account for factors that may impact sRANKL and OPG. RESULTS We found a higher median [IQR] sRANKL 10,896pg/mL [5,781-24,243] CF; 2,406pg.mL [659.50-5,042] HC; p= 0.0009), lower OPG 56.68pg/mL [36.28-124.70] CF; 583.20pg/mL [421.30-675.10] HC; p < 0.0001), and higher RANKL/OPG in people with CF no BD than in HC (p < 0.0001). Furthermore, we found a higher RANKL/OPG ratio 407.50pg/mL [214.40-602.60] CFBD; 177.70pg/mL [131.50-239.70] CF no BD; p = 0.007) in people with CFBD versus CF without bone disease. This difference persisted after adjusting for variables thought to impact bone health. CONCLUSIONS The current screening recommendations of imaging for CFBD may miss important markers of bone turnover such as the RANKL/OPG ratio. These findings support the investigation of therapies that modulate the RANK/RANKL/OPG pathway as potential therapeutic targets for bone disease in CF.
Collapse
Affiliation(s)
- Shadaan Abid
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - MinJae Lee
- Department of Population & Data Sciences, Division of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bailey Rodich
- Department of Anesthesiology, Baylor Scott and White, Temple, TX
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dwight Towler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Naim M Maalouf
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashley Keller
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gregory Ratti
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
14
|
Kim Y, Kim GT. Positive Effects of Biologics on Osteoporosis in Rheumatoid Arthritis. JOURNAL OF RHEUMATIC DISEASES 2023; 30:3-17. [PMID: 37476528 PMCID: PMC10351356 DOI: 10.4078/jrd.22.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 07/22/2023]
Abstract
Osteoporosis is a systemic skeletal disorder that causes vulnerability of bones to fracture owing to reduction in bone density and deterioration of the bone tissue microstructure. The prevalence of osteoporosis is higher in patients with autoimmune inflammatory rheumatic diseases, including rheumatoid arthritis (RA), than in those of the general population. In this autoimmune inflammatory rheumatic disease, in addition to known risk factors for osteoporosis, various factors such as chronic inflammation, autoantibodies, metabolic disorders, drugs, and decreased physical activity contribute to additional risk. In RA, disease-related inflammation plays an important role in local or systemic bone loss, and active treatment for inflammation can help prevent osteoporosis. In addition to conventional synthetic disease-modifying anti-rheumatic drugs that have been traditionally used for treatment of RA, biologic DMARDs and targeted synthetic DMARDs have been widely used. These agents can be employed more selectively and precisely based on disease pathogenesis. It has been reported that these drugs can inhibit bone loss by not only reducing inflammation in RA, but also by inhibiting bone resorption and promoting bone formation. In this review, the pathogenesis and research results of the increase in osteoporosis in RA are reviewed, and the effects of biological agents on osteoporosis are discussed.
Collapse
Affiliation(s)
- Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Geun-Tae Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
15
|
[Research progress of immune cells regulating the occurrence and development of osteonecrosis of the femoral head]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1428-1433. [PMID: 36382463 PMCID: PMC9681590 DOI: 10.7507/1002-1892.202204106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To summarize the characteristics of the occurrence and development of osteonecrosis of the femoral head (ONFH), and to review the important regulatory role of immune cells in the progression of ONFH. METHODS The domestic and foreign literature on the immune regulation of ONFH was reviewed, and the relationship between immune cells and the occurrence and development of ONFH was analyzed. RESULTS The ONFH region has a chronic inflammatory reaction and an imbalance between osteoblast and osteoclast, while innate immune cells such as macrophages, neutrophils, dendritic cells, and immune effector cells such as T cells and B cells are closely related to the maintenance of bone homeostasis. CONCLUSION Immunotherapy targeting the immune cells in the ONFH region and the key factors and proteins in their regulatory pathways may be a feasible method to delay the occurrence, development, and even reverse the pathology of ONFH.
Collapse
|
16
|
Isojima T, Walker EC, Poulton IJ, McGregor NE, Wicks IP, Gooi JH, Martin TJ, Sims NA. G-CSF Receptor Deletion Amplifies Cortical Bone Dysfunction in Mice With STAT3 Hyperactivation in Osteocytes. J Bone Miner Res 2022; 37:1876-1890. [PMID: 35856245 DOI: 10.1002/jbmr.4654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/27/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022]
Abstract
Bone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1Cre :Socs3f/f mice). Dmp1Cre :Socs3f/f :Csf3r-/- mice were generated by crossing Dmp1Cre :Socs3f/f mice with Csf3r-/- mice. Although G-CSFR is not expressed in osteocytes, Csf3r deletion further delayed cortical consolidation in Dmp1Cre :Socs3f/f mice. Micro-CT images revealed extensive, highly porous low-density bone, with little true cortex in the diaphysis, even at 26 weeks of age; including more low-density bone and less high-density bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice than controls. By histology, the area where cortical bone would normally be found contained immature compressed trabecular bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice and greater than normal levels of intracortical osteoclasts, extensive new woven bone formation, and the presence of more intracortical blood vessels than the already high levels observed in Dmp1Cre :Socs3f/f controls. qRT-PCR of cortical bone from Dmp1Cre :Socs3f/f :Csf3r-/- mice also showed more than a doubling of mRNA levels for osteoclasts, osteoblasts, RANKL, and angiogenesis markers. The further delay in cortical bone maturation was associated with significantly more phospho-STAT1 and phospho-STAT3-positive osteocytes, and a threefold increase in STAT1 and STAT3 target gene mRNA levels, suggesting G-CSFR deletion further increases STAT signaling beyond that of Dmp1Cre :Socs3f/f bone. G-CSFR deficiency therefore promotes STAT1/3 signaling in osteocytes, and when SOCS3 negative feedback is absent, elevated local angiogenesis, bone resorption, and bone formation delays cortical bone consolidation. This points to a critical role of G-CSF in replacing condensed trabecular bone with lamellar bone during cortical bone formation. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Ian P Wicks
- Walter and Eliza Hall Institute, Parkville, Australia
| | - Jonathan H Gooi
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| |
Collapse
|
17
|
Chan YH, Ngai MC, Chen Y, Wu MZ, Yu YJ, Zhen Z, Lai K, Chung HY, Lau CS, Tse HF, Yiu KH. Osteogenic Circulating Endothelial Progenitor Cells are Associated with Vascular Aging of the Large Arteries in Rheumatoid Arthritis. Clin Interv Aging 2022; 17:287-294. [PMID: 35321150 PMCID: PMC8937309 DOI: 10.2147/cia.s337118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Aim Rheumatoid arthritis is associated with both abnormal bone metabolism and accelerated vascular aging but a mechanistic link was lacking. This study aims to investigate the role of osteocalcin (OCN)-expressing circulating endothelial progenitor cells (EPCs) in vascular aging, as determined by arterial calcifications in rheumatoid arthritis. Methods We performed flow cytometry studies in 145 consecutive patients with rheumatoid arthritis to determine osteogenic circulating levels of OCN-positive (OCN+) CD34+KDR+ and OCN+CD34+ versus conventional early EPC CD34+CD133+KDR+. Total calcium load of the thoracic aorta (ascending plus descending) and the carotid arteries were assessed by non-contrast computed tomography (CT) and contrast CT angiography. Results Osteogenic EPCs OCN+CD34+KDR+ (P = 0.002) and OCN+CD34+ (P = 0.001), together with clinical parameters of age, history of hypertension, systolic blood pressure, serum levels of triglycerides, HbA1c and creatinine, use of leflunomide and brachial-ankle pulse-wave velocity (all P < 0.05), were associated with the clustered presence of aortic and carotid calcification. Multivariable analyses revealed that circulating OCN+CD34+KDR+ (B = 14.4 [95% CI 4.0 to 24.8], P = 0.007) and OCN+CD34+ (B = 9.6 [95% CI 4.9 to 14.3], P < 0.001) remained independently associated with increased aortic calcium load. OCN+CD34+ EPC (B = 0.8 [95% CI 0.1 to 1.5], P = 0.023), but not OCN+CD34+KDR+ EPC (B = 1.2 [95% CI −0.2 to 2.6], P = 0.09), was further independently associated with carotid calcium load. In comparison, conventional early EPC CD34+CD133+KDR+ had no significant association with aortic or carotid calcium load (P = 0.46 and 0.88, respectively). Conclusion Circulating level of osteogenic EPC is associated with increased vascular aging in terms of calcification of the large arteries in patients with rheumatoid arthritis. The findings may suggest a role of the bone-vascular axis underlying vascular aging in rheumatic diseases. Further research is needed to characterize the mechanistic links and basis of these observations.
Collapse
Affiliation(s)
- Yap-Hang Chan
- Cardiology Division, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Michael Cheong Ngai
- Division of Hematology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Yan Chen
- Cardiology Division, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Mei-Zhen Wu
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Yu-Juan Yu
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Zhe Zhen
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Kevin Lai
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Ho-Yin Chung
- Division of Rheumatology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Chak-Sing Lau
- Division of Rheumatology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Kai-Hang Yiu
- Cardiology Division, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
- Correspondence: Kai-Hang Yiu, Cardiology Division, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, 518053, Guangdong, People’s Republic of China, Tel +852 22553633, Fax +852 28186304, Email
| |
Collapse
|
18
|
Polymorphonuclear Neutrophils in Rheumatoid Arthritis and Systemic Lupus Erythematosus: More Complicated Than Anticipated. IMMUNO 2022. [DOI: 10.3390/immuno2010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant leucocytes in the circulation in humans. They represent a heterogeneous population exerting diverse functions through several activities. Usually described as typical pro-inflammatory cells, immunomodulatory properties of PMNs have been reported. Among others, once activated and depending on the stimulus, PMNs expel neutrophil extracellular traps (NET) in the extracellular space. NETs are complexes made of DNA and granule proteins representing an innate immune mechanism fighting infections. Nevertheless, an excess of NET formation might be involved in the development of inflammatory or autoimmune responses. Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two chronic, inflammatory, autoimmune diseases of unknown etiology and affecting mostly women. Several abnormal or non-classical functions of PMNs or PMN sub-populations have been described in SLE and RA. Particularly, NETs have been suggested to trigger pro-inflammatory responses by exposing pro-inflammatory mediators. Likewise, NETs may be the targets of autoantibodies or even might trigger the development of autoantibodies by exposing autoantigens. In the present review, we will summarize heterogeneous properties of human PMNs and we will discuss recent evidence linking PMNs and NETs to the pathogenesis of both SLE and RA.
Collapse
|
19
|
Osteoprotegerin expression and serum values in obese women with type 2 diabetes mellitus. Mol Biol Rep 2021; 48:7095-7104. [PMID: 34487291 PMCID: PMC8419664 DOI: 10.1007/s11033-021-06699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Obesity and diabetes prevalence are increasing worldwide. We aimed to detect the possible association of osteoprotegerin (OPG) gene expression with visceral adiposity indices and cardiometabolic risk factors among obese women. METHODS AND RESULTS The study enrolled 150 controls and 150 obese cases subdivided into two subgroups non-diabetic (n = 70) and 80 patients with type 2 diabetes mellitus (T2DM). Circulating OPG gene expression levels were figured out by real time PCR (Polymerase Chain Reaction). Serum OPG levels were assessed by Enzyme Linked Immunosorbent Assay. Our results explored that OPG serum levels were lower in the obese women compared to control group (p < 0.001) and obese diabetics had higher serum levels of OPG in comparison to obese non-diabetic patients (p < 0.001). Expression levels of OPG were higher in obese women than controls (p < 0.001). Moreover, the blood expression levels of OPG gene were higher in diabetic obese patients than non-diabetics. We found positive correlations between parameters of metabolic syndrome and obesity indices. After adjustment of the traditional risk factors, stepwise linear regression analysis test revealed that OPG expression levels were independently correlated with glycated hemoglobin, high-density lipoprotein-cholesterol, and waist-to-hip ratio. CONCLUSIONS OPG mRNA levels were associated with surrogate markers of insulin resistance in Egyptian obese women.
Collapse
|
20
|
Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol 2021; 12:687037. [PMID: 34421899 PMCID: PMC8374941 DOI: 10.3389/fimmu.2021.687037] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis or porous bone disorder is the result of an imbalance in an otherwise highly balanced physiological process known as 'bone remodeling'. The immune system is intricately involved in bone physiology as well as pathologies. Inflammatory diseases are often correlated with osteoporosis. Inflammatory mediators such as reactive oxygen species (ROS), and pro-inflammatory cytokines and chemokines directly or indirectly act on the bone cells and play a role in the pathogenesis of osteoporosis. Recently, Srivastava et al. (Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Frontiers in immunology. 2018;9:657) have coined the term "immunoporosis" to emphasize the role of immune cells in the pathology of osteoporosis. Accumulated pieces of evidence suggest both innate and adaptive immune cells contribute to osteoporosis. However, innate cells are the major effectors of inflammation. They sense various triggers to inflammation such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), cellular stress, etc., thus producing pro-inflammatory mediators that play a critical role in the pathogenesis of osteoporosis. In this review, we have discussed the role of the innate immune cells in great detail and divided these cells into different sections in a systemic manner. In the beginning, we talked about cells of the myeloid lineage, including macrophages, monocytes, and dendritic cells. This group of cells explicitly influences the skeletal system by the action of production of pro-inflammatory cytokines and can transdifferentiate into osteoclast. Other cells of the myeloid lineage, such as neutrophils, eosinophils, and mast cells, largely impact osteoporosis via the production of pro-inflammatory cytokines. Further, we talked about the cells of the lymphoid lineage, including natural killer cells and innate lymphoid cells, which share innate-like properties and play a role in osteoporosis. In addition to various innate immune cells, we also discussed the impact of classical pro-inflammatory cytokines on osteoporosis. We also highlighted the studies regarding the impact of physiological and metabolic changes in the body, which results in chronic inflammatory conditions such as ageing, ultimately triggering osteoporosis.
Collapse
Affiliation(s)
- Yogesh Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sanjeev Routh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
21
|
Ping J, Zhou C, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. Modulating immune microenvironment during bone repair using biomaterials: Focusing on the role of macrophages. Mol Immunol 2021; 138:110-120. [PMID: 34392109 DOI: 10.1016/j.molimm.2021.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Bone is a self-regenerative tissue that can repair small defects and fractures. In large defects, bone tissue is unable to provide nutrients and oxygen for repair, and autologous grafting is used as the gold standard. As an alternative method, the bone tissue regeneration approach uses osteoconductive biomaterials to overcome bone graft disadvantages. However, biomaterials are considered as foreign components that can stimulate host immune responses. Although traditional principles have been aimed to minimize immune reactions, the design of biomaterials has steadily shifted toward creating an immunomodulatory microenvironment to harness immune cells and responses to repair damaged tissue. Among immune cells, macrophages secrete various immunomodulatory mediators and crosstalk with bone-forming cells and play key roles in bone tissue engineering. Macrophage polarization toward M1 and M2 subtypes mediate pro-inflammatory and anti-inflammatory responses, respectively, which are crucial for bone repairing at different stages. This review provides an overview of the crosstalk between various immune cells and biomaterials, macrophage polarization, and the effect of physicochemical properties of biomaterials on the immune responses, especially macrophages, in bone tissue engineering.
Collapse
Affiliation(s)
- Jianfeng Ping
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan 316000, Zhejiang Province, PR China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing 312500, Zhejiang Province, PR China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Fangming Xu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China.
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China.
| |
Collapse
|
22
|
Yu R, Zhang J, Zhuo Y, Hong X, Ye J, Tang S, Liu N, Zhang Y. ARG2, MAP4K5 and TSTA3 as Diagnostic Markers of Steroid-Induced Osteonecrosis of the Femoral Head and Their Correlation With Immune Infiltration. Front Genet 2021; 12:691465. [PMID: 34381494 PMCID: PMC8350574 DOI: 10.3389/fgene.2021.691465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background The diagnosis for steroid-induced osteonecrosis of the femoral head (SONFH) is hard to achieve at the early stage, which results in patients receiving ineffective treatment options and a poor prognosis for most cases. The present study aimed to find potential diagnostic markers of SONFH and analyze the effect exerted by infiltration of immune cells in this pathology. Materials and Methods R software was adopted for identifying differentially expressed genes (DEGs) and conducting functional investigation based on the microarray dataset. Then we combined SVM-RFE, WGCNA, LASSO logistic regression, and random forest (RF) algorithms for screening the diagnostic markers of SONFH and further verification by qRT-PCR. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. CIBERSORT was then adopted for assessing the infiltration of immune cells and the relationship of infiltration-related immune cells and diagnostic markers. Results We identified 383 DEGs overall. This study found ARG2, MAP4K5, and TSTA3 (AUC = 0.980) to be diagnostic markers of SONFH. The results of qRT-PCR showed a statistically significant difference in all markers. Analysis of infiltration of immune cells indicated that neutrophils, activated dendritic cells and memory B cells were likely to show the relationship with SONFH occurrence and progress. Additionally, all diagnostic markers had different degrees of correlation with T cell follicular helper, neutrophils, memory B cells, and activated dendritic cells. Conclusion ARG2, MAP4K5, and TSTA3 are potential diagnostic genes for SONFH, and infiltration of immune cells may critically impact SONFH occurrence and progression.
Collapse
Affiliation(s)
- Rongguo Yu
- Department of Orthopaedics, Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China.,Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China
| | - Jiayu Zhang
- School of Clinical Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Youguang Zhuo
- Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China
| | - Xu Hong
- Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China
| | - Jie Ye
- Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China
| | - Susu Tang
- Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China
| | - Nannan Liu
- Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China
| | - Yiyuan Zhang
- Department of Orthopaedics, Fuzhou Second Affiliated Hospital, Xiamen University, Xiamen, China.,Fuzhou Second Hospital Affiliated to Xiamen University, Fujian, China
| |
Collapse
|
23
|
Du YN, Chen YJ, Zhang HY, Wang X, Zhang ZF. Inverse association between systemic immune-inflammation index and bone mineral density in postmenopausal women. Gynecol Endocrinol 2021; 37:650-654. [PMID: 33588682 DOI: 10.1080/09513590.2021.1885642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate whether systemic immune-inflammation index (SII) and neutrophil-to-platelet ratio (NLR) were associated with bone mineral density (BMD) in postmenopausal women. METHODS In this cross-sectional study, we enrolled 413 postmenopausal women who never received menopause hormone therapy. The relationship between SII, NLR, and BMD was investigated by linear regression analysis. RESULTS Significant inverse association was observed between SII and BMD in postmenopausal women. The mean BMD in each quartile of SII level were 0.923, 0.914, 0.900, and 0.876 g/cm2, respectively (p = .011). After adjusting for covariates, SII levels remained significantly associated with BMD (regression coefficients for quartiles 1-3 vs. quartile 4 were 0.035, 0.029, and 0.023, respectively; p for trend <.05). An inverse association was also found between NLR and BMD in postmenopausal women. However, there was no significant association between NLR and BMD after adjusting for covariates. CONCLUSION The quartile of SII was negatively associated with the mean BMD in postmenopausal women, independent of age, body mass index, sex hormone levels, and other factors. Therefore, SII can be used as a new predictor of bone loss in postmenopausal women.
Collapse
Affiliation(s)
- Y N Du
- Department of Obstetrics and Gynecology, Nanjing Medical University, Nanjing, China
| | - Y J Chen
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - H Y Zhang
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| | - X Wang
- Department of Obstetrics and Gynecology, Nanjing Medical University, Nanjing, China
| | - Z F Zhang
- Department of Obstetrics and Gynecology, Nanjing Medical University, Nanjing, China
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| |
Collapse
|
24
|
Breedveld AC, van Gool MMJ, van Delft MAM, van der Laken CJ, de Vries TJ, Jansen IDC, van Egmond M. IgA Immune Complexes Induce Osteoclast-Mediated Bone Resorption. Front Immunol 2021; 12:651049. [PMID: 34276648 PMCID: PMC8281931 DOI: 10.3389/fimmu.2021.651049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Autoantibodies are detected in most patients with rheumatoid arthritis (RA) and can be of the IgM, IgG or IgA subclass. Correlations between IgA autoantibodies and more severe disease activity have been previously reported, but the functional role of IgA autoantibodies in the pathogenesis of RA is ill understood. In this study, we explored the effect of IgA immune complexes on osteoclast mediated bone resorption. Methods Anti-citrullinated peptide antibody (ACPA) and anti-carbamylated protein (anti-CarP) antibody levels of the IgA and IgG isotype and rheumatoid factor (RF) IgA were determined in synovial fluid (SF) of RA patients. Monocytes, neutrophils, and osteoclasts were stimulated with precipitated immune complexes from SF of RA patients or IgA- and IgG-coated beads. Activation was determined by neutrophil extracellular trap (NET) release, cytokine secretion, and bone resorption. Results NET formation by neutrophils was enhanced by SF immune complexes compared to immune complexes from healthy or RA serum. Monocytes stimulated with isolated SF immune complexes released IL-6 and IL-8, which correlated with the levels of ACPA IgA levels in SF. Osteoclasts cultured in the presence of supernatant of IgA-activated monocytes resorbed significantly more bone compared to osteoclasts that were cultured in supernatant of IgG-activated monocytes (p=0.0233). Osteoclasts expressed the Fc receptor for IgA (FcαRI; CD89) and Fc gamma receptors. IgA-activated osteoclasts however produced significantly increased levels of IL-6 (p<0.0001) and IL-8 (p=0.0007) compared to IgG-activated osteoclasts. Both IL-6 (p=0.03) and IL-8 (p=0.0054) significantly enhanced bone resorption by osteoclasts. Conclusion IgA autoantibodies induce release of IL-6 and IL-8 by immune cells as well as osteoclasts, which enhances bone resorption by osteoclasts. We anticipate that this will result in more severe disease activity in RA patients. Targeting IgA-FcαRI interactions therefore represents a promising novel therapeutic strategy for RA patients with IgA autoantibodies.
Collapse
Affiliation(s)
- Annelot C Breedveld
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Melissa M J van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Myrthe A M van Delft
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Conny J van der Laken
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Rheumatology, Amsterdam UMC, Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol 2021; 123:14-21. [PMID: 34024716 DOI: 10.1016/j.semcdb.2021.05.014] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Postmenopausal osteoporosis is a systemic disease characterized by the loss of bone mass and increased bone fracture risk largely resulting from significantly reduced levels of the hormone estrogen after menopause. Besides the direct negative effects of estrogen-deficiency on bone, indirect effects of altered immune status in postmenopausal women might contribute to ongoing bone destruction, as postmenopausal women often display a chronic low-grade inflammatory phenotype with altered cytokine expression and immune cell profile. In this context, it was previously shown that various immune cells interact with osteoblasts and osteoclasts either via direct cell-cell contact, or more likely via paracrine mechanisms. For example, specific subtypes of T lymphocytes express TNFα, which was shown to increase osteoblast apoptosis and to indirectly stimulate osteoclastogenesis via B cell-produced receptor-activator of NF-κB ligand (RANKL), thereby triggering bone loss during postmenopausal osteoporosis. Th17 cells release interleukin-17 (IL-17), which directs mesenchymal stem cell differentiation towards the osteogenic lineage, but also indirectly increases osteoclast differentiation. B lymphocytes are a major regulator of osteoclast formation via granulocyte colony-stimulating factor secretion and the RANKL/osteoprotegerin system under estrogen-deficient conditions. Macrophages might act differently on bone cells dependent on their polarization profile and their secreted paracrine factors, which might have implications for the development of postmenopausal osteoporosis, because macrophage polarization is altered during disease progression. Likewise, neutrophils play an important role during bone homeostasis, but their over-activation under estrogen-deficient conditions contributes to osteoblast apoptosis via the release of reactive oxygen species and increased osteoclastogenesis via RANKL signaling. Furthermore, mast cells might be involved in the development of postmenopausal osteoporosis, because they store high levels of osteoclastic mediators, including IL-6 and RANKL, in their granules and their numbers are greatly increased in osteoporotic bone. Additionally, bone fracture healing is altered under estrogen-deficient conditions with the increased presence of pro-inflammatory cytokines, including IL-6 and Midkine, which might contribute to healing disturbances. Consequently, in addition to the direct negative influence of estrogen-deficiency on bone, immune cell alterations contribute to the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany.
| |
Collapse
|
26
|
Kim AR, Lim YK, Kook JK, Bak EJ, Yoo YJ. Lipopolysaccharides of Fusobacterium nucleatum and Porphyromonas gingivalis increase RANKL-expressing neutrophils in air pouches of mice. Lab Anim Res 2021; 37:5. [PMID: 33407938 PMCID: PMC7789191 DOI: 10.1186/s42826-020-00080-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
Increases of neutrophils and osteoclasts are pathological changes of periodontitis. RANKL is an osteoclast differentiation factor. The effect of periodontopathogen LPS on RANKL-expressing neutrophils has not been clarified yet. We evaluated numerical changes of RANKL-expressing neutrophils in air pouches of mice injected with LPSs of Fusobacterium nucleatum and Porphyromonas gingivalis. Mice with air pouches were assigned into saline (C)-, E. coli LPS- (Ec LPS)-, F. nucleatum LPS (Fn LPS)-, P. gingivalis LPS (Pg LPS)-, and Fn LPS and Pg LPS (Fn + Pg LPS)-injected groups. CD11b+Ly6G+ neutrophils and CD11b+Ly6G+RANKL+ neutrophils in blood and air pouch exudates were determined by flow cytometry. In blood, compared to the C group, the Fn LPS group showed increases of CD11b+Ly6G+ neutrophils and CD11b+Ly6G+RANKL+ neutrophils whereas the Pg LPS group showed no significant differences. These increases in the Fn LPS group were not different to those in the Ec LPS group. In exudates, Fn LPS and Pg LPS groups showed increases of CD11b+Ly6G+ neutrophils and CD11b+Ly6G+RANKL+ neutrophils compared to the C group. Increased levels in the Fn LPS group were not different to those in the Ec LPS group, but Pg LPS group was lower than those in the Ec LPS group. In blood and exudates, the Fn + Pg LPS group showed no difference in levels of these neutrophils compared to the Ec LPS group. LPSs of F. nucleatum and P. gingivalis increased RANKL-expressing neutrophils although the degrees of increases were different. These suggest that periodontopathogen LPS can act as a stimulant to increase RANKL-expressing neutrophils.
Collapse
Affiliation(s)
- Ae Ri Kim
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Eun-Jung Bak
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| | - Yun-Jung Yoo
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Yang N, Liu Y. The Role of the Immune Microenvironment in Bone Regeneration. Int J Med Sci 2021; 18:3697-3707. [PMID: 34790042 PMCID: PMC8579305 DOI: 10.7150/ijms.61080] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bone is an active tissue, being constantly renewed in healthy individuals with participation of the immune system to a large extent. Any imbalance between the processes of bone formation and bone resorption is linked to various inflammatory bone diseases. The immune system plays an important role in tissue formation and bone resorption. Recently, many studies have demonstrated complex interactions between the immune and skeletal systems. Both of immune cells and cytokines contribute to the regulation of bone homeostasis, and bone cells, including osteoblasts, osteoclasts, osteocytes, also influence the cellular functions of immune cells. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Therefore, the immune microenvironment is crucial in determining the speed and outcome of bone healing, repair, and regeneration. In this review, we summarise the role of the immune microenvironment in bone regeneration from the aspects of immune cells and immune cytokines. The elucidation of immune mechanisms involved in the process of bone regeneration would provide new therapeutic targets for improving the curative effects of bone injury treatment.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
28
|
Mechanism by which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4607197. [PMID: 33294443 PMCID: PMC7714562 DOI: 10.1155/2020/4607197] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, is a signal transduction molecule shared by the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) family and the TNFR superfamily. TRAF6 has a unique TRAF domain and RING finger domain that mediate intracellular signaling events. In the immune system, TRAF6-mediated signaling has been shown to be critical for the development, homeostasis, and activation of a variety of immune cells, including B cells, T cells, dendritic cells, and macrophages. Although the pathogenesis and etiology of autoimmune diseases and cancer are not fully understood, it is worth noting that existing studies have shown that TRAF6 is involved in the pathogenesis and development of a variety of these diseases. Herein, we reviewed the role of TRAF6 in certain immune cells, as well as the function and potential effect of TRAF6 in autoimmune diseases and cancer. Our review indicates that TRAF6 may be a novel target for autoimmune diseases and cancer.
Collapse
|
29
|
Uehara IA, Soldi LR, Silva MJB. Current perspectives of osteoclastogenesis through estrogen modulated immune cell cytokines. Life Sci 2020; 256:117921. [DOI: 10.1016/j.lfs.2020.117921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
|
30
|
Chan YH, Ngai MC, Chen Y, Wu MZ, Yu YJ, Zhen Z, Lai K, Cheung T, Ho LM, Chung HY, Lau CS, Tse HF, Yiu KH. Cumulative Rheumatic Inflammation Modulates the Bone-Vascular Axis and Risk of Coronary Calcification. J Am Heart Assoc 2020; 8:e011540. [PMID: 31130038 PMCID: PMC6585350 DOI: 10.1161/jaha.118.011540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Rheumatic diseases are related to both abnormal bone turnover and atherogenesis, but a mechanistic link was missing. Methods and Results We investigated the effect of cumulative rheumatic inflammation (CRI) on risk of coronary calcification in a retrospective cohort of 145 rheumatoid arthritis patients. A time‐adjusted aggregate CRI score was derived by conglomerating all quarterly biomarker encounters of serum C‐reactive protein over 60 months immediately preceding computed tomography coronary angiography. Flow cytometry was performed to measure the osteocalcin‐positive (OCN+) CD34+KDR+ and OCN+CD34+ circulating endothelial progenitor cells (EPCs). Conventional early circulating EPCs CD34+CD133+KDR+ was determined. Coronary calcification was defined as any Agatston score >0. 50% of patients (n=72/145) had coronary calcification. CRI score was associated with presence of coronary calcification (P=0.004) (multivariable‐adjusted: highest versus lowest quartile: odds ratio=5.6 [95% CI 1.1–28.9], P=0.041). Receiver operating characteristics curve revealed divergent behavior of OCN‐expressing circulating EPCs (OCN+CD34+EPCs: area under the curve=0.60, P=0.034; OCN+CD34+KDR+EPCs: area under the curve=0.59, P=0.053, positive predictors) versus conventional early EPCs (CD34+CD133+KDR+: area under the curve=0.60, P=0.034, negative predictor) for coronary calcification, which persisted after multivariable adjustments (OCN+CD34+KDR+ [>75th percentile]: odds ratio=7.2 [95% CI 1.8–27.9], P=0.005; OCN+CD34+EPCs [>75th percentile]: odds ratio=6.0 [95% CI 1.5–23.3], P=0.010; CD34+CD133+KDR+ [>75th percentile: odds ratio=0.3 [95% CI 0.1–1.0], P=0.053). Intriguingly, the CRI score was associated with increased OCN+CD34+EPCs (highest versus lowest quartile: B=+25.6 [95% CI 0.8–50.5] [×103/mL peripheral blood], P=0.043), but reduced CD34+CD133+KDR+EPCs (highest versus lowest quartile: B=−16.2 [95% CI −31.5 to −0.9], P=0.038). Conclusions Preceding 60 months of CRI is associated with increased risk of coronary calcification and altered OCN expression in circulating EPCs.
Collapse
Affiliation(s)
- Yap-Hang Chan
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Michael Cheong Ngai
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Yan Chen
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China.,2 Cardiology Division Department of Medicine University of Hong Kong Shenzhen Hospital Shenzhen China
| | - Mei-Zhen Wu
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Yu-Juan Yu
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Zhe Zhen
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Kevin Lai
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Tommy Cheung
- 3 Division of Rheumatology Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Lai-Ming Ho
- 4 School of Public Health The University of Hong Kong Hong Kong
| | - Ho-Yin Chung
- 3 Division of Rheumatology Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Chak-Sing Lau
- 3 Division of Rheumatology Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China
| | - Hung-Fat Tse
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China.,2 Cardiology Division Department of Medicine University of Hong Kong Shenzhen Hospital Shenzhen China
| | - Kai-Hang Yiu
- 1 Cardiology Division Department of Medicine Queen Mary Hospital University of Hong Kong Hong Kong SAR China.,2 Cardiology Division Department of Medicine University of Hong Kong Shenzhen Hospital Shenzhen China
| |
Collapse
|
31
|
Ganeb S, Egaila S, Hamed A, Hassan W. Significance of serum albumin and derived neutrophil-to-lymphocyte ratio score in assessment of disease activity in rheumatoid arthritis patients. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2020. [DOI: 10.1186/s43166-020-00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Albumin and derived neutrophil to lymphocyte ratio (dNLR) are known biomarkers that can reflect systemic inflammation and it has been hypothesized that combination of both markers in one score (albumin-dNLR score) can be useful in monitoring rheumatoid arthritis (RA) patients. The current study intended to measure albumin -dNLR score in patients with RA in the order to find whether these new biomarkers could reflect the activity of the disease and the articular activity detected by ultrasonography. We measured serum albumin and dNLR in blood samples obtained from 100 RA patients and from 100 apparently healthy controls (HC). Albumin -dNLR score was calculated according to the presence of hypoalbuminemia (≤ 3.76 gm/dl) and/or raised dNLR (>1.37).
Results
RA patients had a significantly elevated dNLR (p< 0.001) and albumin-dNLR score (p< 0.001) compared to their levels in HC, while serum albumin was significantly decreased (p< 0.001) in RA patients than its level in HC. In RA patients, albumin-dNLR score correlated significantly with DAS28 (p< 0.001), erythrocyte sedimentation rate (ESR) (p< 0.001), C-reactive protein (p< 0.001), grey scale (p< 0.001), power Doppler (p< 0.001) and total ultrasound score (p< 0.001). Also, tender joint count, ESR and albumin-dNLR score were significant predictors of DAS28 in multivariate regression analysis.
Conclusions
Our study settled that albumin - dNLR score is increased in RA patients than in healthy subjects. The score correlated well with DAS28, acute phase reactants, and ultrasonographic synovitis scores implying that it could be an easy valuable biomarker to monitor RA disease activity.
Collapse
|
32
|
Boissier MC, Biton J, Semerano L, Decker P, Bessis N. Origins of rheumatoid arthritis. Joint Bone Spine 2020; 87:301-306. [DOI: 10.1016/j.jbspin.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
33
|
Kim AR, Kim JH, Choi YH, Jeon YE, Cha JH, Bak EJ, Yoo YJ. The presence of neutrophils causes RANKL expression in periodontal tissue, giving rise to osteoclast formation. J Periodontal Res 2020; 55:868-876. [PMID: 32583887 DOI: 10.1111/jre.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS AND OBJECTIVE Increased neutrophil infiltration and osteoclast formation are key characteristics of periodontitis. The effect of these neutrophils on osteoclast formation in periodontitis remains unclear. Therefore, we investigated the effects of neutrophils on osteoclast formation in a neutrophil-deficient mouse model of periodontitis. METHODS Anti-Ly6G antibody (Ab) was used for neutrophil depletion in two mouse models: periodontitis and air pouch. In the periodontitis experiments, mice were divided into PBS-administered control (C), control Ab-administered periodontitis (P), and anti-Ly6G Ab-administered periodontitis (P + Ly6G) groups. Periodontitis was induced by ligature of mandibular first molars. In the air pouch experiments, mice were divided into PBS-administered (C), LPS and control Ab-administered (LPS), and LPS and anti-Ly6G Ab-administered (LPS + Ly6G) groups. Neutrophil migration into air pouches was induced by LPS injection. Flow cytometry was used to examine CD11b+ Ly6G+ neutrophils in the blood of periodontitis mice and CD11b+ Ly6G+ RANKL+ neutrophils in exudates of air pouch mice. In periodontal tissue, Ly6G+ neutrophil and RANKL+ cell numbers in periodontal ligament and alveolar bone areas were estimated using immunohistochemistry, osteoclast numbers were measured using TRAP assay, and alveolar bone loss was determined by H&E staining. RESULTS In blood, CD11b+ Ly6G+ neutrophils were found in greater percentage in the P group than in the C group on days 3 and 7. However, the percentage of neutrophils was lower in the P + Ly6G group than in the C and P groups. In periodontal tissue, the numbers of Ly6G+ neutrophils and RANKL+ cells were lower in the P + Ly6G group than in the P group on day 3. Ly6G+ neutrophil numbers decreased more in the P + Ly6G group than in the P group on day 7, but RANKL+ cell numbers did not decrease in the P + Ly6G group. In exudates, the number of CD11b+ Ly6G+ RANKL+ neutrophils was greater in the LPS group than in the C and LPS + Ly6G groups. On days 3 and 7, the numbers of osteoclasts and alveolar bone loss were greater in periodontal tissue in the P and P + Ly6G groups than in the C group. Interestingly, there were fewer osteoclasts in the P + Ly6G group than in the P group on day 3. CONCLUSION Neutrophil deficiency caused a reduction in numbers of both RANKL+ cells and osteoclasts in periodontitis-induced tissues only on day 3. Furthermore, in the LPS-injected air pouch model, neutrophil deficiency reduced the influx of RANKL+ neutrophils. These findings suggest that the presence of neutrophils induces RANKL expression and could induce osteoclast formation in the early stages of periodontitis.
Collapse
Affiliation(s)
- Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ji-Hye Kim
- Department of Dental Hygiene, Baekseok University, Cheonan, South Korea
| | - Yun Hui Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeong-Eui Jeon
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
34
|
Damian LO, Zmarandache CD, Vele P, Albu A, Belizna C, Crăciun A. Osteogenesis imperfecta and rheumatoid arthritis: is there a link? Arch Osteoporos 2020; 15:40. [PMID: 32144589 DOI: 10.1007/s11657-020-0681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED We present the cases of a mother and daughter with osteogenesis imperfecta, also diagnosed later with rheumatoid arthritis. In our patients finding and treating the over-imposed arthritis improved the joint pain initially attributed to osteogenesis imperfecta. Exploring joint inflammation in this setting could help ease the disease burden. PURPOSE Osteogenesis imperfecta (OI) is a rare hereditary disease evolving with recurrent fractures upon minor trauma, blue sclerae, and hearing loss. Although inflammation was not generally considered a feature of the disease, systemic inflammation was recently reported in children with OI and in murine models of OI. METHOD We present the cases of a mother and a daughter with OI, without a personal or family history of autoimmune diseases, who were also diagnosed with rheumatoid arthritis seropositive for anti-cyclic citrullinated peptide autoantibodies and rheumatoid factor. RESULTS The genetic tests identified in both patients a deletion in COL1A1 gene (c.3399del, p.Ala1134Profs*105), not previously reported, not present in population databases, creating a premature translational stop signal in the COL1A1 gene in the collagen I major ligand binding region 3. In our patients finding and treating the over-imposed arthritis improved the joint pain initially attributed to OI. Possible pathogenic links between OI and RA are discussed. CONCLUSION The prevalence of joint inflammation in OI is unknown and may be underestimated. As musculoskeletal involvement affects the quality of life in most OI patients, exploring this relation may help ease the disease burden.
Collapse
Affiliation(s)
- Laura Otilia Damian
- Rheumatology Department, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor Street, 400006, Cluj-Napoca, Romania. .,CMI Reumatologie Dr Damian, 6-8 Petru Maior Str., 400002, Cluj-Napoca, Romania.
| | - Carmen-Delia Zmarandache
- Radiology Department, Emergency Clinical County Hospital Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Paulina Vele
- Rheumatology Department, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor Street, 400006, Cluj-Napoca, Romania.,"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania
| | - Adriana Albu
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania.,2nd Internal Medicine Department, Emergency Clinical County Hospital Cluj, Cluj-Napoca, Romania
| | - Cristina Belizna
- Centre Vasculaire et de la Coagulation CHU (Centre Hospitalier Universitaire), Angers 4 rue Larrey, 49000, Angers, France
| | - Alexandra Crăciun
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania.,Molecular Sciences Department, Cluj-Napoca, Romania
| |
Collapse
|
35
|
The Possible Role of Neutrophils in the Induction of Osteoclastogenesis. J Immunol Res 2019; 2019:8672604. [PMID: 31637266 PMCID: PMC6766092 DOI: 10.1155/2019/8672604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
The ligand of the receptor activator of NF-κB (RANKL) is a key molecule in the formation of osteoclasts, the key cells that cause the disease-associated alveolar bone resorption in periodontitis. We hypothesized that polymorphonuclear leukocytes (PMNs), found as the most prominent cells of inflamed periodontal tissues, could play an important role in providing signals to trigger osteoclastogenesis and thus activating pathological bone resorption in periodontitis. RANKL expression was investigated on circulatory PMNs (cPMNs) and oral PMNs (oPMNs) taken from both controls and periodontitis patients. On average, 2.3% and 2.4% RANKL expression was detected on the cPMNs and oPMNs from periodontitis patients, which did not differ significantly from healthy controls. Since cPMNs may acquire a more osteoclastogenesis-facilitating phenotype while migrating into the inflamed periodontium, we next investigated whether stimulated (with LPS, TNF-α, or IL-6) cPMNs have the capacity to contribute to osteoclastogenesis. Enduring surface expression of RANKL for short-lived cells as cPMNs was achieved by fixating stimulated cPMNs. RANKL expression on stimulated cPMNs, as assessed by flow cytometry and immunohistochemistry, was limited (6.48 ± 0.72%, mean expression ± SEM) after 24 and 48 hours of stimulation with LPS. Likewise, stimulation with TNF-α and IL-6 resulted in limited RANKL expression levels. These limited levels of expression did not induce osteoclastogenesis when cocultured with preosteoclasts for 10 days. We report that, under the aforementioned experimental conditions, neither cPMNs nor oPMNs directly induced osteoclastogenesis. Further elucidation of the key cellular players and immune mediators that stimulate alveolar bone resorption in periodontitis will help to unravel its pathogenesis.
Collapse
|
36
|
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7:2050312119876146. [PMID: 35154753 PMCID: PMC8826259 DOI: 10.1177/2050312119876146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis and systemic lupus erythematosus are two highly prevalent autoimmune diseases that generate disability and low quality of life. The innate immune system, a long-forgotten issue in autoimmune diseases, is becoming increasingly important and represents a new focus for the treatment of these entities. This review highlights the role that innate immune system plays in the pathophysiology of rheumatoid arthritis and systemic lupus erythematosus. The role of the innate immune system in rheumatoid arthritis and systemic lupus erythematosus pathophysiology is not only important in early stages but is essential to maintain the immune response and to allow disease progression. In rheumatoid arthritis, genetic and environmental factors are involved in the initial stimulation of the innate immune response in which macrophages are the main participants, as well as fibroblast-like synoviocytes. In systemic lupus erythematosus, all the cells contribute to the inflammatory response, but the complement system is the major effector of the inflammatory process. Detecting alterations in the normal function of these cells, besides its contribution to the understanding of the pathophysiology of autoimmune diseases, could help to establish new treatment strategies for these diseases.
Collapse
Affiliation(s)
| | | | - Jorge Bruce Flórez-Suárez
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
| | - Paola Ximena Coral-Alvarado
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Paul Méndez-Patarroyo
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Gerardo Quintana-López
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
37
|
Lee SH, Ryu SY, Park J, Shin MH, Han MA, Choi SW. The Relationship of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio with Bone Mineral Density in Korean Postmenopausal Women. Chonnam Med J 2019; 55:150-155. [PMID: 31598472 PMCID: PMC6769246 DOI: 10.4068/cmj.2019.55.3.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
The neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) are known to be markers of the systemic inflammatory response. However, the few studies that have been done on the relationship between the NLR and PLR and osteoporosis have yielded inconsistent results. Therefore, we assessed the relationship between the NLR and PLR and bone mineral density (BMD). This study was conducted with postmenopausal patients admitted to an orthopaedic hospital. Data including BMD, NLR, PLR and covariates were obtained from the subjects' medical records. In total, 407 postmenopausal patients were enrolled in this study. Analysis of covariance was performed to identify significant differences in BMD according to NLR and PLR. After adjusting for other covariates, a quartile of NLR was negatively associated with the mean value of lumbar BMD (p=0.040, p for trend=0.005) but not with the mean value of femur neck BMD. However, there were no significant associations among the PLR, the BMD of the lumbar and the femur neck. In conclusion, the quartile of NLR was negatively associated with the mean value of lumbar BMD in Korean postmenopausal patients.
Collapse
Affiliation(s)
- San-Hui Lee
- Department of Health Science, Graduate School of Chosun University, Gwangju, Korea
| | - So-Yeon Ryu
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Korea
| | - Jong Park
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - Mi-Ah Han
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Korea
| | - Seong-Woo Choi
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Korea
| |
Collapse
|
38
|
Jiang J, Liu X, Lai B, Hu D, Lai L, Xu J, Chen S, Li X. Correlational analysis between neutrophil granulocyte levels and osteonecrosis of the femoral head. BMC Musculoskelet Disord 2019; 20:393. [PMID: 31470845 PMCID: PMC6717348 DOI: 10.1186/s12891-019-2778-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background The correlation between peripheral blood neutrophil level and osteonecrosis of the femoral head (ONFH) has not been extensively studied. Thus, we aimed to investigate the correlation between neutrophil level in the peripheral blood (neutrophil granulocyte) and ONFH. Methods A total of 984 cases of ONFH and femoral neck fractures (non-ONFH) diagnosed at the Department of Orthopedics at our institution between January 1, 2011 and December 31, 2016 were retrospectively reviewed. The ONFH and non-ONFH groups comprised 488 and 496 cases, respectively. Basic information and peripheral blood cell levels of the two groups were compared. Results The patients’ mean age was 59.89 ± 17.06 years (range: 38–82 years). There were 457 male and 527 female patients, with a male-to-female ratio of 1:1.15. We found that neutrophil granulocyte levels and percentage of neutrophil granulocytes were significantly different between the ONFH and non-ONFH groups. Multimodal regression analysis showed that the percentage of neutrophil granulocytes was an independent protective factor against ONFH. Conclusions The factors influencing ONFH are neutrophil granulocyte levels and percentage of neutrophil granulocytes. Percentage of neutrophil granulocytes has a significant correlation with aseptic femoral head necrosis, providing a new perspective and direction for further study of femoral head necrosis.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China
| | - Xuqiang Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China
| | - Baojian Lai
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China
| | - Dengjiong Hu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China
| | - Lizhen Lai
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China
| | - Jiaxiang Xu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China
| | - Songqing Chen
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China
| | - Xiaofeng Li
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17 Yongwaizheng Street, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
39
|
Ribon M, Mussard J, Semerano L, Singer BB, Decker P. Extracellular Chromatin Triggers Release of Soluble CEACAM8 Upon Activation of Neutrophils. Front Immunol 2019; 10:1346. [PMID: 31258530 PMCID: PMC6587075 DOI: 10.3389/fimmu.2019.01346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/28/2019] [Indexed: 01/13/2023] Open
Abstract
Increased concentrations of extracellular chromatin are observed in cancer, sepsis, and inflammatory autoimmune diseases like systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA). In SLE and RA, extracellular chromatin may behave as a danger-associated molecular pattern (DAMP). Polymorphonuclear neutrophils (PMN) are described as typical pro-inflammatory cells but possess also immunoregulatory properties. They are activated in SLE and RA but surprisingly remain moderately studied in these diseases, and especially the disease-associated stimuli triggering PMN activation are still not completely characterized. PMN express plasma membrane carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 8 (CD66b) and secrete a soluble form of CEACAM8 after activation. Soluble CEACAM8 has in turn immunoregulatory functions. However, few natural stimuli inducing soluble CEACAM8 secretion by PMN have been identified. Here we demonstrate for the first time that extracellular chromatin triggers secretion of soluble CEACAM8 by primary human PMN. Priming of PMN was not required. Secretion was associated with activation of PMN. Similar induction of soluble CEACAM8 release was observed with purified mono-nucleosomes as well as long chromatin fragments and occurred in a time-dependent and concentration-dependent manner. Results indicate that chromatin induces both neo-synthesis of soluble CEACAM8 and release of soluble CEACAM8 through degranulation. In addition, we report the presence of soluble CEACAM8 at high concentration in the synovial fluid of RA patients. Thus, we describe here a novel mechanism by which a natural DAMP, with inflammatory properties in SLE and RA, induces soluble CEACAM8 secretion by activated PMN with potential immunoregulatory consequences on other immune cells, including PMN.
Collapse
Affiliation(s)
- Matthieu Ribon
- Li2P, University of Paris 13, Sorbonne Paris Cité, Bobigny, France.,Inserm UMR 1125, Li2P, Bobigny, France
| | - Julie Mussard
- Li2P, University of Paris 13, Sorbonne Paris Cité, Bobigny, France.,Inserm UMR 1125, Li2P, Bobigny, France
| | - Luca Semerano
- Li2P, University of Paris 13, Sorbonne Paris Cité, Bobigny, France.,Inserm UMR 1125, Li2P, Bobigny, France.,Rheumatology Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Patrice Decker
- Li2P, University of Paris 13, Sorbonne Paris Cité, Bobigny, France.,Inserm UMR 1125, Li2P, Bobigny, France
| |
Collapse
|
40
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
41
|
Papadaki M, Rinotas V, Violitzi F, Thireou T, Panayotou G, Samiotaki M, Douni E. New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Front Immunol 2019; 10:97. [PMID: 30804932 PMCID: PMC6370657 DOI: 10.3389/fimmu.2019.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL), a member of the Tumor Necrosis Factor (TNF) superfamily, constitutes the master regulator of osteoclast formation and bone resorption, whereas its involvement in inflammatory diseases remains unclear. Here, we used the human TNF transgenic mouse model of erosive inflammatory arthritis to determine if the progression of inflammation is affected by either genetic inactivation or overexpression of RANKL in transgenic mouse models. TNF-mediated inflammatory arthritis was significantly attenuated in the absence of functional RANKL. Notably, TNF overexpression could not compensate for RANKL-mediated osteopetrosis, but promoted osteoclastogenesis between the pannus and bone interface, suggesting RANKL-independent mechanisms of osteoclastogenesis in inflamed joints. On the other hand, simultaneous overexpression of RANKL and TNF in double transgenic mice accelerated disease onset and led to severe arthritis characterized by significantly elevated clinical and histological scores as shown by aggressive pannus formation, extended bone resorption, and massive accumulation of inflammatory cells, mainly of myeloid origin. RANKL and TNF cooperated not only in local bone loss identified in the inflamed calcaneous bone, but also systemically in distal femurs as shown by microCT analysis. Proteomic analysis in inflamed ankles from double transgenic mice overexpressing human TNF and RANKL showed an abundance of proteins involved in osteoclastogenesis, pro-inflammatory processes, gene expression regulation, and cell proliferation, while proteins participating in basic metabolic processes were downregulated compared to TNF and RANKL single transgenic mice. Collectively, these results suggest that RANKL modulates modeled inflammatory arthritis not only as a mediator of osteoclastogenesis and bone resorption but also as a disease modifier affecting inflammation and immune activation.
Collapse
Affiliation(s)
- Maria Papadaki
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Foteini Violitzi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Trias Thireou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George Panayotou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Martina Samiotaki
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| |
Collapse
|
42
|
Ponzetti M, Rucci N. Updates on Osteoimmunology: What's New on the Cross-Talk Between Bone and Immune System. Front Endocrinol (Lausanne) 2019; 10:236. [PMID: 31057482 PMCID: PMC6482259 DOI: 10.3389/fendo.2019.00236] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
The term osteoimmunology was coined many years ago to describe the research field that deals with the cross-regulation between bone cells and the immune system. As a matter of fact, many factors that are classically considered immune-related, such as InterLeukins (i.e., IL-6, -11, -17, and -23), Tumor Necrosis Factor (TNF)-α, Receptor-Activator of Nuclear factor Kappa B (RANK), and its Ligand (RANKL), Nuclear Factor of Activated T-cell, cytoplasmatic-1 (NFATc1), and others have all been found to be crucial in osteoclast and osteoblast biology. Conversely, bone cells, which we used to think would only regulate each other and take care of remodeling bone, actually regulate immune cells, by creating the so-called "endosteal niche." Both osteoblasts and osteoclasts participate to this niche, either by favoring engraftment, or mobilization of Hematopoietic Stem Cells (HSCs). In this review, we will describe the main milestones at the base of the osteoimmunology and present the key cellular players of the bone-immune system cross-talk, including HSCs, osteoblasts, osteoclasts, bone marrow macrophages, osteomacs, T- and B-lymphocytes, dendritic cells, and neutrophils. We will also briefly describe some pathological conditions in which the bone-immune system cross-talk plays a crucial role, with the final aim to portray the state of the art in the mechanisms regulating the bone-immune system interplay, and some of the latest molecular players in the field. This is important to encourage investigation in this field, to identify new targets in the treatment of bone and immune diseases.
Collapse
|
43
|
Interleukin 17 under hypoxia mimetic condition augments osteoclast mediated bone erosion and expression of HIF-1α and MMP-9. Cell Immunol 2018; 332:39-50. [DOI: 10.1016/j.cellimm.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/24/2018] [Accepted: 07/14/2018] [Indexed: 01/05/2023]
|
44
|
Adhikary R, Sultana S, Bishayi B. Clitoria ternatea flower petals: Effect on TNFR1 neutralization via downregulation of synovial matrix metalloproteases. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:209-222. [PMID: 28826781 DOI: 10.1016/j.jep.2017.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/17/2017] [Accepted: 08/12/2017] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clitoria ternatea Linn. (C. ternatea) is a traditionally used herb in arthritis, and its anti-arthritic activity has been attributed to polyphenols (e.g. quercetins) from its flower petal. AIM OF THE STUDY The present study was designed to investigate whether C. ternatea or quercetin-3ß-D-glucoside (QG) support the antibody mediated TNFα-receptor 1 (TNFR1) neutralization to ameliorate arthritis in mice. MATERIALS AND METHODS Development of collagen-induced arthritis (CIA) in male Swiss mice (20-22g, 3-4 weeks of age) was followed by estimation of synovial polymorphonuclear cell (PMN) accumulation (in terms of myeloperoxidase activity), synovial and systemic release of cytokines, chemokines and C-reactive protein (CRP) by enzyme-linked immunosorbent assay (ELISA), biochemical estimation of synovial free radical generation and antioxidant status, as well as immunoblot assessment of synovial TNFR1, toll-like receptor 2(TLR2), cyclooxygenase-2(COX-2) and inducible nitric oxide synthase (iNOS) expression; and zymographic analysis of synovial matrix-metalloprotease-2 (MMP-2) activity. RESULTS CIA was induced from day 2 post-secondary immunizations as evidenced from arthritic scores and joint swelling in parallel to increased inflammatory and oxidative stress parameters in synovial joints. Long term supplementation with extract from Clitoria ternatea flower petals CTE (50mg/kg) and QG (2.5mg/kg) upto 24 days post booster immunization augmented anti-arthritic potential of TNFR1 neutralization with anti-TNFR1 antibody (10μg per mice) in terms of reduced MPO activity, decrease in release of pro-inflammatory cytokines, chemokines, reactive oxygen species (ROS)/ reactive nitrogen species (RNS) production in parallel to significant (p<0.05) reduction in TNFR1, TLR2, iNOS, COX-2 and MMP-2 expression. CONCLUSION CTE and QG possess potential anti-arthritic activity which targets synovial MMP-2 in arthritic joints and TNFR1 targeting followed by CTE or QG treatment might become a combinatorial approach in future therapeutic research in treatment of arthritis.
Collapse
Affiliation(s)
- Rana Adhikary
- Department of Physiology, Immunology and Microbiology laboratory. University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Sahin Sultana
- Department of Physiology, Immunology and Microbiology laboratory. University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology and Microbiology laboratory. University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
45
|
Perpétuo IP, Caetano-Lopes J, Rodrigues AM, Campanilho-Marques R, Ponte C, Canhão H, Ainola M, Fonseca JE. Methotrexate and low-dose prednisolone downregulate osteoclast function by decreasing receptor activator of nuclear factor-κβ expression in monocytes from patients with early rheumatoid arthritis. RMD Open 2017; 3:e000365. [PMID: 28955481 PMCID: PMC5604603 DOI: 10.1136/rmdopen-2016-000365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a systemic, immune-mediated inflammatory disease that ultimately leads to bone erosions and joint destruction. Methotrexate (MTX) slows bone damage but the mechanism by which it acts is still unknown. In this study, we aimed to assess the effect of MTX and low-dose prednisolone (PDN) on circulating osteoclast (OC) precursors and OC differentiation in patients with RA. Methods Patients with RA before and at least 6 months after MTX therapy were analysed and compared with healthy donors. A blood sample was collected in order to assess receptor activator of NF-κβ (RANK) ligand surface expression on circulating leucocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers and cytokines and OC differentiation assays were performed. Results Classical activation markers of monocytes and RANK increased in patients with RA at baseline, compared with control healthy donors, and after MTX and low-dose PDN (MTX+PDN) exposure they decreased to control levels. Although the number of OC was not different between groups, the percentage of resorbed area and the resorbed area per pit reduced after treatment. Serum soluble receptor activator of nuclear factor-kappa (RANKL) levels increased at baseline compared with healthy donors and normalised after therapy. Conclusion Our results suggest that MTX+PDN play an important role in downregulating OC function, which we believe occurs through the decrease in RANK surface expression in monocytes.
Collapse
Affiliation(s)
- Inês Pedro Perpétuo
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Caetano-Lopes
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Maria Rodrigues
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Raquel Campanilho-Marques
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisboa, Portugal
| | - Cristina Ponte
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisboa, Portugal
| | - Helena Canhão
- EpiDoC Unit, CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mari Ainola
- Department of Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - João Eurico Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisboa, Portugal
| |
Collapse
|
46
|
Folwaczny M, Karnesi E, Berger T, Paschos E. Clinical association between chronic periodontitis and the leukocyte extravasation inhibitors developmental endothelial locus-1 and pentraxin-3. Eur J Oral Sci 2017. [PMID: 28643381 DOI: 10.1111/eos.12357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This clinical study aimed to determine whether periodontal disease is associated with expression of developmental endothelial locus-1 (Del-1) and pentraxin-3 (PTX-3), endogenous inhibitors of leukocyte extravasation in humans. Expression of DEL1, PTX3, interleukin-17A (IL17A), and lymphocyte function-associated antigen-1 (LFA1) was determined, using RT-PCR and melting curve analysis, in biopsies of gingival tissues from 95 patients: 42 with moderate periodontitis; 40 with severe periodontitis; and 13 healthy controls. Relative expression of DEL1 and PTX3 was statistically significantly weaker in patients with periodontitis than in the control subjects. On the contrary, both IL17A and LFA1 showed statistically significant stronger expression in patients with periodontitis than in healthy controls. Correlation analysis, performed using Spearman's test, showed that expression of DEL1 was statistically significantly linked to periodontitis (ρ = -0.103) and to age (ρ = -0.134), but not to the gender of the patient, and that expression of PTX3 was significantly correlated with periodontitis (ρ = -0.354). Expression of neutrophil extravasation inhibitors DEL1 and PTX3 show significant, but weak, association with the clinical manifestation of chronic periodontitis.
Collapse
Affiliation(s)
- Matthias Folwaczny
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Evangelia Karnesi
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Tamara Berger
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Ekaterini Paschos
- Department of Orthodontics, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
47
|
Arthritis models: usefulness and interpretation. Semin Immunopathol 2017; 39:469-486. [PMID: 28349194 DOI: 10.1007/s00281-017-0622-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Animal models of arthritis are used to better understand pathophysiology of a disease or to seek potential therapeutic targets or strategies. Focusing on models currently used for studying rheumatoid arthritis, we show here in which extent models were invaluable to enlighten different mechanisms such as the role of innate immunity, T and B cells, vessels, or microbiota. Moreover, models were the starting point of in vivo application of cytokine-blocking strategies such as anti-TNF or anti-IL-6 treatments. The most popular models are the different types of collagen-induced arthritis and arthritis in KBN mice. As spontaneous arthritides, human TNF-α transgenic mice are a reliable model. It is mandatory to use animal models in the respect of ethical procedure, particularly regarding the number of animals and the control of pain. Moreover, design of experiments should be of the highest level, animal models of arthritis being dedicated to exploration of well-based novelties, and never used for confirmation or replication of already proven concepts. The best interpretations of data in animal models of arthritis suppose integrated research, including translational studies from animals to humans.
Collapse
|
48
|
Castañeda-Delgado JE, Bastián-Hernandez Y, Macias-Segura N, Santiago-Algarra D, Castillo-Ortiz JD, Alemán-Navarro AL, Martínez-Tejada P, Enciso-Moreno L, Garcia-De Lira Y, Olguín-Calderón D, Trouw LA, Ramos-Remus C, Enciso-Moreno JA. Type I Interferon Gene Response Is Increased in Early and Established Rheumatoid Arthritis and Correlates with Autoantibody Production. Front Immunol 2017; 8:285. [PMID: 28373872 PMCID: PMC5357778 DOI: 10.3389/fimmu.2017.00285] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is an inflammatory debilitating disease that affects the joints in the early and productive phases of an individual’s life. Several cytokines have been linked to the disease pathogenesis and are known to contribute to the inflammatory state characteristic of RA. The participation of type I interferon (IFN) in the pathogenesis of the disease has been already described as well as the identity of the genes that are regulated by this molecule, which are collectively known as the type I IFN signature. These genes have several functions associated with apoptosis, transcriptional regulation, protein degradation, Th2 cell induction, B cell proliferation, etc. This article evaluated the expression of several genes of the IFN signature in different stages of disease and their correlation with the levels of anticitrullinated protein antibodies (ACPA) anticarbamylated protein (Anti-CarP) antibodies. Methods Samples from individuals with early and established RA, high-risk individuals (ACPA+ and ACPA−), and healthy controls were recruited at “Unidad de Artritis y Rheumatismo” (Rheumatism and Arthritis Unit) in Guadalajara Jalisco Mexico. Determinations of ACPA were made with Eurodiagnostica ACPA plus kit. Anti-CarP determinations were made according to previously described protocols. RNA was isolated, and purity and integrity were determined according to RNA integrity number >6. Gene expression analysis was made by RT-qPCR using specific primers for mRNAs of the type I IFN signature. Relative gene expression was calculated according to Livak and Schmitgen. Results Significant differences in gene expression were identified when comparing the different groups for MXA and MXB (P < 0.05), also when comparing established RA and ACPA− in both IFIT 1 and G15. An increased expression of ISG15 was identified (P < 0.05), and a clear tendency toward increase was identified for HERC5. EPSTRI1, IFI6, and IFI35 were found to be elevated in the chronic/established RA and early RA (P < 0.05). Significant correlations were identified for the IFN signature genes with the levels of ACPA and anti-CarP (P < 0.05). Conclusion Our data confirm previous observations in the role of IFN signature and the pathogenesis of RA. Also, we provide evidence of an association between several genes of the IFN signature (that regulate Th2 cells and B cell proliferation) with the levels of anti-CarP antibodies and ACPA.
Collapse
Affiliation(s)
- Julio E Castañeda-Delgado
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS, Zacatecas, Mexico; National Council of Science and Technology, CONACYT, Catedras-CONACYT, Zacatecas, Mexico
| | - Yadira Bastián-Hernandez
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS, Zacatecas, Mexico; National Council of Science and Technology, CONACYT, Catedras-CONACYT, Zacatecas, Mexico
| | - Noe Macias-Segura
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS, Zacatecas, Mexico; Departamento de fisiología y farmacología, centro de ciencias básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, Mexico
| | - David Santiago-Algarra
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Jose D Castillo-Ortiz
- Unidad de Investigación en Enfermedades Crónico-Degenerativas , Guadalajara, Jalisco , México
| | - Ana L Alemán-Navarro
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Pedro Martínez-Tejada
- General Hospital: "Emilio Varela Lujan", Mexican Institute of Social Security, IMSS , Zacatecas , Mexico
| | - Leonor Enciso-Moreno
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Yolanda Garcia-De Lira
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Diana Olguín-Calderón
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center , Leiden , Netherlands
| | | | - Jose A Enciso-Moreno
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| |
Collapse
|
49
|
Perpétuo IP, Caetano-Lopes J, Vieira-Sousa E, Campanilho-Marques R, Ponte C, Canhão H, Ainola M, Fonseca JE. Ankylosing Spondylitis Patients Have Impaired Osteoclast Gene Expression in Circulating Osteoclast Precursors. Front Med (Lausanne) 2017; 4:5. [PMID: 28191455 PMCID: PMC5269449 DOI: 10.3389/fmed.2017.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Ankylosing spondylitis (AS) is typically characterized by focal bone overgrowth and also by systemic bone loss. We hypothesize that the increased osteoproliferation found in AS might be partially due to reduced ability of osteoclast precursors (OCPs) to differentiate into osteoclasts (OCs). Therefore, our aim was to characterize bone remodeling and pro-osteoclastogenesis inflammatory environment, monocytes' phenotype, and in vitro osteoclast differentiation in AS patients. METHODS Patients with active AS without any ongoing therapy and age- and gender-matched healthy donors were recruited. Receptor activator of nuclear factor-κβ (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations were assessed. Quantification of serum levels of bone turnover markers and cytokines, in vitro OC differentiation assay and quantitative reverse transcription real-time PCR for OC-specific genes were performed. RESULTS Pro- and anti-inflammatory cytokine serum levels were higher in AS patients than in controls. RANKL neutrophil expression was higher in AS patients when compared to healthy donors, but CD51/CD61 expression was lower in the classical monocyte subpopulation. Concerning osteoclastogenesis, we found no differences in the in vitro osteoclast differentiating potential of these cells when compared to healthy donors. However, we observed low expression of CSF1R, RANK, and NFATc1 in AS OCPs. CONCLUSION Despite the high levels of pro-inflammatory cytokines present in AS patients, no differences in the number of OC or resorbed area were found between AS patients and healthy donors. Moreover, we observed that OCPs have low OC-specific gene expression. These findings support our hypothesis of an impaired response of OCPs to pro-osteoclastogenic stimuli in vivo in AS patients.
Collapse
Affiliation(s)
- Inês P Perpétuo
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Joana Caetano-Lopes
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Elsa Vieira-Sousa
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| | - Raquel Campanilho-Marques
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| | - Cristina Ponte
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| | - Helena Canhão
- EpiDoC Unit, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa , Lisboa , Portugal
| | - Mari Ainola
- Musculoskeletal Diseases and Inflammation Research Group, Biomedicum Helsinki 1, Faculty of Medicine, Institute of Clinical Medicine, University of Helsinki , Helsinki , Finland
| | - João E Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| |
Collapse
|
50
|
Krejsek J, Koláčková M, Lonský V, Trojáčková Kudlová M, Manďák J, Kuneš P, Jankovičová K, Vlášková D, Andrýs C. RANK/RANKL Expression Is Induced by Cardiac Surgical Operation. ACTA MEDICA (HRADEC KRÁLOVÉ) 2016. [DOI: 10.14712/18059694.2016.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: Cardiac surgery provokes a systemic inflammatory response in any patient. This complex body reaction involves also RANK/RANKL molecules which have been recently identified as principal regulators of bone metabolism. Aims: To follow the changes in the expression of RANK/RANKL molecules on innate immune cells of cardiac surgical patients. Patients and Methods: Twenty-six patients undergoing cardiac surgical were assigned to undergo coronary artery bypass grafting using either cardiopulmonary bypass (“on-pump”) or modified “miniinvasive on-pump”. The expression of RANK/RANKL was performed by flow cytometry. Results: Significantly increased expression of RANK on monocytes of “miniinvasive on-pump” patients was found at the 1st, the 3nd, and 7th postoperative days. The similar pattern was found also for monocyte RANKL expression. In addition, RANKL expression was significantly increased at the 3rd postoperative day in “on-pump” patient. No significant differences between “miniinvasive on-pump” and “on-pump” cardiac surgical patients were found. Conclusion: The expression of both RANK and RANKL molecules is significantly enhanced on monocytes of “miniinvasive on-pump” cardiac surgical patients.
Collapse
|