1
|
Laragione T, Harris C, Gulko PS. Huntingtin-Interacting Protein 1-Related (HIP1R) Regulates Rheumatoid Arthritis Synovial Fibroblast Invasiveness. Cells 2025; 14:483. [PMID: 40214437 PMCID: PMC11987873 DOI: 10.3390/cells14070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Huntingtin-interacting protein 1-related (HIP1R) shares some function similarities with HIP1, and HIP1 regulates arthritis and RA fibroblast-like synoviocytes (FLS) invasiveness. Therefore, we hypothesized that HIP1R might be involved in the regulation of FLS phenotypes and molecular processes relevant to RA. siRNA was used to knockdown HIP1R, HIP1 or control in RA FLS, followed by cell studies for invasion in Matrigel, migration, proliferation, and adhesion. RNA was sequenced and analyzed. HIP1R knockdown significantly reduced RA FLS invasiveness and migration (p < 0.05). The DEGs in siRNA HIP1R had an enrichment for GO processes "astrocyte and glial cell projection", "small GTPase signaling", and "PDGFR signaling". The most significantly DEGs had decreased expression in siRNA HIP1R and included AKT1S1, GABBR2, GPR56, and TXNDC12. siRNA HIP1 RA FLS had an enrichment for the "Rap1 signaling pathway" and "Growth factor receptor binding". The most significantly DEGs in HIP1 siRNA included FGF2, PGF, and SLC39A8. HIP1R and HIP1 DEG lists had a greater than expected number of similar genes (p = 0.0015), suggesting that, despite the major differences detected, both have partially overlapping functions in RA FLS. The most significantly DEGs in both HIP1R and HIP1 analyses are involved in cancer cell behaviors and outcomes. HIP1R is a new gene implicated in RA FLS invasiveness and migration, and regulates unique pathways and cell processes relevant to both RA as well as cancer biology. Our study provides new insight into processes implicated in FLS invasiveness, which is relevant for joint damage in RA, and identify new potential gene targets for FLS-specific treatments.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.L.); (C.H.)
| |
Collapse
|
2
|
Ahmed EA, Alzahrani AM, Abdelsalam SA, Ibrahim HIM. Flavipin from fungi as a potential inhibitor of rheumatoid arthritis signaling molecules. Inflammopharmacology 2024; 32:1171-1186. [PMID: 38349589 DOI: 10.1007/s10787-024-01429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 04/11/2024]
Abstract
Flavipin, a fungal lower molecular weight biomolecule (MW 196.16 g/mol), has not been yet extensively studied for beneficial preclinical and clinical applications. In recent years, various preclinical mouse models including adjuvant-induced arthritis (AIA) were employed to understand mechanisms associated with Rheumatoid arthritis (RA) and to develop new therapeutic drugs. In the current study, we studied the inhibitory effect of Flavipin on major signaling molecules involved in the inflammatory response during RA using both in-silico virtual interaction and in vivo mouse model of AIA. Our in-silico results clarified that Flavipin interacts with the tumor necrosis factor alpha (TNF-α) through conventional hydrogen binding (H-H) at one of TNF-α critical amino acids tyrosine residues, Tyr119, with binding energy (b.e.) -5.9. In addition, Flavipin binds to ATP-binging sites of the Jesus kinases, JAK1, JAK2 and JAK3, through H-H (b. e. between -5.8 and -6.1) and then it may inhibit JAKs, regulators of RA signaling molecules. Moreover, our molecular dynamics stimulation for the docked TNF-α/Flavipin complex confirmed the specificity and the stability of the interaction. In vitro, Flavipin is not toxic to normal cells at doses below 50 µM (its IC50 in normal fibroblast cell line was above 100 µM). However, in vivo, the arthritis score and hind paw oedema parameters were modulated in Flavipin treated mice. Consistent with the in-silico results the levels of the TNF-α, the nuclear transcription factor kappaB (NF-κB) and the signal transduction and activator of transcription (STAT3, downstream of JAKs) were modulated at joint tissues of the hind-paw of Flavipin/AIA treated mice. Our data suggest Flavipin as a potential therapeutic agent for arthritis can inhibit RA major signaling molecules.
Collapse
Affiliation(s)
- Emad A Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia.
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
| | - Abdulaah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
| | - Salah A Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt
| | - Hairul-Islam M Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam, Pondicherry, 605104, India
| |
Collapse
|
3
|
Zhang J, Liu H, Chen Y, Liu H, Zhang S, Yin G, Xie Q. Augmenting regulatory T cells: new therapeutic strategy for rheumatoid arthritis. Front Immunol 2024; 15:1312919. [PMID: 38322264 PMCID: PMC10844451 DOI: 10.3389/fimmu.2024.1312919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Elhai M, Micheroli R, Houtman M, Mirrahimi M, Moser L, Pauli C, Bürki K, Laimbacher A, Kania G, Klein K, Schätzle P, Frank Bertoncelj M, Edalat SG, Keusch L, Khmelevskaya A, Toitou M, Geiss C, Rauer T, Sakkou M, Kollias G, Armaka M, Distler O, Ospelt C. The long non-coding RNA HOTAIR contributes to joint-specific gene expression in rheumatoid arthritis. Nat Commun 2023; 14:8172. [PMID: 38071204 PMCID: PMC10710443 DOI: 10.1038/s41467-023-44053-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Although patients with rheumatoid arthritis (RA) typically exhibit symmetrical joint involvement, some patients develop alternative disease patterns in response to treatment, suggesting that different molecular mechanism may underlie disease progression depending on joint location. Here, we identify joint-specific changes in RA synovium and synovial fibroblasts (SF) between knee and hand joints. We show that the long non-coding RNA HOTAIR, which is only expressed in knee SF, regulates more than 50% of this site-specific gene expression in SF. HOTAIR is downregulated after stimulation with pro-inflammatory cytokines and is expressed at lower levels in knee samples from patients with RA, compared with osteoarthritis. Knockdown of HOTAIR in knee SF increases PI-Akt signalling and IL-6 production, but reduces Wnt signalling. Silencing HOTAIR inhibits the migratory function of SF, decreases SF-mediated osteoclastogenesis, and increases the recruitment of B cells by SF. We propose that HOTAIR is an important epigenetic factor in joint-specific gene expression in RA.
Collapse
Affiliation(s)
- Muriel Elhai
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael Micheroli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Masoumeh Mirrahimi
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Moser
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Institute for Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Kristina Bürki
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Laimbacher
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Mojca Frank Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Leandra Keusch
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandra Khmelevskaya
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Melpomeni Toitou
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Celina Geiss
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Rauer
- Department of Trauma Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Chen J, Tan J, Li J, Cheng W, Ke L, Wang A, Wang Q, Lin S, Li G, Wang B, Chen J, Zhang P. Genetically Engineered Biomimetic Nanoparticles for Targeted Delivery of mRNA to Treat Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300678. [PMID: 37526322 DOI: 10.1002/smtd.202300678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Indexed: 08/02/2023]
Abstract
In addition to inhibiting persistent inflammation, phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is known as an important therapeutic target for alleviating rheumatoid arthritis (RA) symptoms. Modulation of PTEN gene expression in synovial tissue using messenger RNA (mRNA) is a promising approach to combat RA. However, mRNA therapeutics are often hampered by unsatisfactory stability and inefficient localization in synovial tissue. In this study, a genetically engineered biomimetic membrane-coated mRNA (MR@P-mPTEN) carrier that effectively delivers mRNA-PTEN (mPTEN) directly to the RA joint is presented. By overexpressing tumor necrosis factor (TNF-α) receptors on macrophage biomimetic membranes via plasmid transfection, decoys that reduce inflammatory pathway activation are prepared for TNF-α. The resulting construct, MR@P-mPTEN, shows good stability and RA targeting based on in vivo fluorescence imaging. It is also found that MR@P-mPTEN competitively binds TNF-α and activates the PTEN pathway in vitro and in vivo, thereby inhibiting synovitis and joint damage. Clinical micro-computed tomography and histological analyses confirm the treatment effects. These results suggest that the genetically engineered biomimetic therapeutic platform MR@P-mPTEN both inhibits pro-inflammatory cytokines and upregulates PTEN protein expression to alleviate RA damage, providing a new a new combination strategy for RA treatment.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Anqiao Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Qiqing Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Benguo Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
6
|
Sun F, Hao W, Meng X, Xu D, Li X, Zheng K, Yu Y, Wang D, Pan W. Polyene phosphatidylcholine ameliorates synovial inflammation: involvement of PTEN elevation and glycolysis suppression. Mol Biol Rep 2023; 50:687-696. [PMID: 36370296 DOI: 10.1007/s11033-022-08043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Synovial inflammation, characterized by the activation of synovial fibroblasts (SFs), is a crucial factor to drive the progression of rheumatoid arthritis (RA). Polyene phosphatidylcholine (PPC), the classic hepatoprotective drug, has been reported to ameliorate arthritis in animals. However, the molecular mechanism remains poorly understood. METHODS AND RESULTS: Using in vitro primary synovial fibroblast (SFs) culture system, we revealed that phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, mediates the anti-inflammatory effect of PPC in lipopolysaccharide (LPS)-stimulated primary SFs. PPC decreased the production of TNF-α and IL-6 production while elevating the level of IL-10 and TGF-β. Furthermore, PPC up-regulated the expression of PTEN, but inhibited the expression of p-AKT (ser473) and PI3K-p85α. Moreover, pre-treatment of SF1670 (the inhibitor of PTEN) or 740Y-P (the agonist of AKT/PI3K pathways) partially abrogated the anti-inflammatory effect of PPC. In addition, PPC could inhibit the expression of GLUT4, a key transporter of glucose that fuels the glycolysis, which is accompanied by the expression downregualtion of glycolytic enzymes PFKFB3 and PKM2. Furthermore, PPC could reduce ROS production and mitochondrial membrane potential in LPS-stimulated SFs and MH7A cell line. CONCLUSION The present study supported that PPC can alleviate synovial inflammation, which involves in the elevation of PTEN and blockage of glycolysis.
Collapse
Affiliation(s)
- Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Wenting Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xianran Meng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Zhou H, Huang L, Zhan K, Liu X. Wenhua Juanbi Recipe Attenuates Rheumatoid Arthritis via Inhibiting miRNA-146a-Mediated Autophagy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1768052. [PMID: 36440364 PMCID: PMC9683957 DOI: 10.1155/2022/1768052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/23/2023]
Abstract
Background Wenhua Juanbi Recipe (WJR) is widely used for the treatment of rheumatoid arthritis (RA) in China. However, its mechanism of action remains unclear. This study was designed to investigate the potential therapeutic effects of WJR on the proliferation and apoptosis of synovial fibroblasts in RA and its efficacy in inhibiting miRNA-146a-mediated cellular autophagy. Methods A collagen-induced arthritis (CIA) Wistar rat model was established. The model rats were administered WJR or methotrexate (MTX) to assess the therapeutic effect of the drugs. The chemical components of WJR were analyzed using UPLC-Q/TOF-MS. Histological changes; miRNA-146a, ATG5, ATG7, ATG12, Beclin1, LC3II, Bax, and Bcl2 expression; synovial apoptosis; and cellular proliferation were assessed. Primary synovial fibroblasts (FLS) were cultured in vitro using tissue block and transfected with miRNA-146a; an autophagy inducer was added to FLS, inhibiting the PI3K/AKT/mTOR pathway. FLS were cocultured with WJR-containing serum to observe the effects of miRNA-146a-mediated autophagy via the PI3K/AKT/mTOR pathway on CIA-affected rats. Results Forty and thirty-one compounds were identified in WJR in the positive and negative ion modes, respectively. WJR significantly reduced toe swelling, arthritis scores, and expression of miRNA-146a and autophagy genes (ATG5, ATG7, ATG12, Beclin1, LC32, and Bcl2). Moreover, Bax expression, apoptosis, and attenuated proliferation were observed in rats. WJR could, therefore, regulate autophagy by influencing the miRNA-146a-mediated PI3K/AKT/mTOR pathway, which induces apoptosis and proliferation of FLS. Conclusion WJR can inhibit autophagy, apoptosis, and proliferation in a CIA rat model by inhibiting the miRNA-146a-mediated PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Haili Zhou
- Second Clinical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310000, China
| | - Liuyun Huang
- Second Clinical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310000, China
| | - Kuijun Zhan
- Second Clinical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310000, China
| | - Xide Liu
- Department of Arthropathy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
8
|
Baicalein Induces Apoptosis of Rheumatoid Arthritis Synovial Fibroblasts through Inactivation of the PI3K/Akt/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3643265. [PMID: 36118088 PMCID: PMC9473868 DOI: 10.1155/2022/3643265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
Purpose Rheumatoid arthritis (RA) shows abnormal proliferation, apoptosis, and invasion in fibroblast-like synoviocytes (FLSs). Baicalein (BAI), extracted from Scutellaria baicalensis, is used as an anticancer drug through inducing cancer cells apoptosis. However, the mechanism of BAI in RA progression still remains unknown. Here, we demonstrated that BAI inhibited FLS proliferation and migration, whereas it enhanced apoptosis via the PI3K/Akt/mTOR pathway in vitro. Methods Cell viability and colony formation were analyzed by MTT and plate colony formation assays in SW982 cells, respectively. Apoptosis was detected by flow cytometry and western blotting. Epithelial-mesenchymal transition (EMT), MMP family proteins (MMP2/9), and the PI3K/Akt/mTOR pathway were detected by western blot. Cell migration was detected by scratch healing assay under BAI treatment in SW982 cells. Results BAI dose-dependently inhibited cell viability and colony forming in SW982 cells. BAI upregulated apoptotic proteins and downregulated EMT-related proteins, resulting in enhanced cell apoptosis and inhibited cell migration in SW982 cells. BAI also dose-dependently inhibited the phosphorylation of PI3K, Akt, and mTOR. Conclusions These results indicated that BAI inhibited FLSs proliferation and EMT, whereas induced cell apoptosis through blocking the PI3K/Akt/mTOR pathway, supporting clinical application for RA progression.
Collapse
|
9
|
Vickovic S, Schapiro D, Carlberg K, Lötstedt B, Larsson L, Hildebrandt F, Korotkova M, Hensvold AH, Catrina AI, Sorger PK, Malmström V, Regev A, Ståhl PL. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun Biol 2022; 5:129. [PMID: 35149753 PMCID: PMC8837632 DOI: 10.1038/s42003-022-03050-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic recruitment and expansion of multiple cell types that interact in multifaceted ways within a localized area. Rheumatoid arthritis synovium has primarily been studied either by immunostaining or by molecular profiling after tissue homogenization. Here, we use Spatial Transcriptomics, where tissue-resident RNA is spatially labeled in situ with barcodes in a transcriptome-wide fashion, to study local tissue interactions at the site of chronic synovial inflammation. We report comprehensive spatial RNA-Seq data coupled to cell type-specific localization patterns at and around organized structures of infiltrating leukocyte cells in the synovium. Combining morphological features and high-throughput spatially resolved transcriptomics may be able to provide higher statistical power and more insights into monitoring disease severity and treatment-specific responses in seropositive and seronegative rheumatoid arthritis.
Collapse
Affiliation(s)
- Sanja Vickovic
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden. .,New York Genome Center, New York, NY, USA.
| | - Denis Schapiro
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Institute for Computational Biomedicine and Institute of Pathology, Faculty of Medicine, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Konstantin Carlberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Britta Lötstedt
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Franziska Hildebrandt
- Department of Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marina Korotkova
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Aase H Hensvold
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Vivianne Malmström
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
10
|
Cheng CF, Liao HJ, Wu CS. Tissue microenvironment dictates inflammation and disease activity in rheumatoid arthritis. J Formos Med Assoc 2022; 121:1027-1033. [PMID: 35144834 DOI: 10.1016/j.jfma.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/08/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
The recent advance in treatments for rheumatoid arthritis (RA) has significantly improved the prognosis of RA patients. However, these novel therapies do not work well for all RA patients. The unmet need suggests that the current understanding about how inflammatory response arises and progresses in RA is limited. Recent accumulating evidence reveals an important role for the tissue microenvironment in the pathogenesis of RA. The synovium, the main tissue where the RA activity occurs, is composed by a unique extracellular matrix (ECM) and residing cells. The ECM molecules provide environmental signals that determine programmed site-specific cell behavior. Improved understanding of the tissue microenvironment, especially how the synovial architecture, ECM molecules, and site-specific cell behavior promote chronic inflammation and tissue destruction, will enhance deciphering the pathogenesis of RA. Moreover, in-depth analysis of tissue microenvironment will allow us to identify potential therapeutic targets. Research is now undertaken to explore potential candidates, both cellular and ECM molecules, to develop novel therapies. This article reviews recent advances in knowledge about how changes in cellular and ECM factors within the tissue microenvironment result in propagation of chronic inflammation in RA.
Collapse
Affiliation(s)
- Chiao-Feng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan
| | - Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Cao L, Jiang H, Yang J, Mao J, Wei G, Meng X, Zang H. LncRNA MIR31HG is induced by tocilizumab and ameliorates rheumatoid arthritis fibroblast-like synoviocyte-mediated inflammation via miR-214-PTEN-AKT signaling pathway. Aging (Albany NY) 2021; 13:24071-24085. [PMID: 34753831 PMCID: PMC8610144 DOI: 10.18632/aging.203644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Fibroblast-like synoviocytes (FLS) obtained from the joint synovium of rheumatoid arthritis (RA) patients exhibit hyperplasia and aggressive inflammatory phenotypes. This study was designed to explore the anti-inflammatory mechanism of IL-6R inhibitor, tocilizumab, in FLS-mediated inflammation in RA from the perspective of non-coding RNAs (ncRNAs). To this end, we sorted primary FLS obtained from the synovium of patients with RA and cultured them in vitro. The cells were then treated with tocilizumab and subjected to lncRNA- and miRNA-seq to identify the ncRNAs regulated by tocilizumab treatment using bioinformatic analysis and experimental verification. Tocilizumab treatment enhanced the expression of lncRNA MIR31HG and reduced that of micoRNA-214 (miR-214). In addition, miR-214 activated the AKT signaling pathway by directly targeting MIR31HG and PTEN. In addition, the tocilizumab-MIR31HG-miR-214-PTEN-AKT axis regulated the proliferation, migration, and production of inflammatory molecules and matrix metalloproteinases (MMPs) in RA-FLS. Furthermore, co-culture experiments showed that this axis could inhibit the inflammatory phenotype of macrophages and protect chondrocytes. In summary, our study shows that tocilizumab suppresses RA-FLS inflammation by regulating the MIR31HG-miR-214-PTEN-AKT pathway, and presents new insights on RA pathogenesis and potential targets for RA therapy.
Collapse
Affiliation(s)
- Liang Cao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Jing Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jun Mao
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Guofeng Wei
- Department of Emergency, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Hongmei Zang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Li XF, Wu S, Yan Q, Wu YY, Chen H, Yin SQ, Chen X, Wang H, Li J. PTEN Methylation Promotes Inflammation and Activation of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. Front Pharmacol 2021; 12:700373. [PMID: 34305608 PMCID: PMC8296842 DOI: 10.3389/fphar.2021.700373] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by a tumor-like expansion of the synovium and subsequent destruction of adjacent articular cartilage and bone. In our previous work we showed that phosphatase and tension homolog deleted on chromosome 10 (PTEN) contributes to the activation of fibroblast-like synoviocytes (FLS) in adjuvant-induced arthritis (AIA), but the underlying mechanism is not unknown. In this study, we show that PTEN is downregulated while DNA methyltransferase (DNMT)1 is upregulated in FLS from RA patients and a rat model of AIA. DNA methylation of PTEN was increased by administration of tumor necrosis factor (TNF)-α in FLS of RA patients, as determined by chromatin immunoprecipitation and methylation-specific PCR. Treatment with the methylation inhibitor 5-azacytidine suppressed cytokine and chemokine release and FLS activation in vitro and alleviated paw swelling in vivo. PTEN overexpression reduced inflammation and activation of FLS via protein kinase B (AKT) signaling in RA, and intra-articular injection of PTEN-expressing adenovirus into the knee of AIA rats markedly reduced inflammation and paw swelling. Thus, PTEN methylation promotes the inflammation and activation of FLS in the pathogenesis of RA. These findings provide insight into the molecular basis of articular cartilage destruction in RA, and indicate that therapeutic strategies that prevent PTEN methylation may an effective treatment.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Postdoctoral Station of Clinical Medicine of Anhui Medical University, Hefei, China
| | - Sha Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - He Chen
- Departments of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Su-Qin Yin
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Chen
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
13
|
Zhao Q, Zhao F, Liu C, Xu T, Song K. LncRNA FOXD2-AS1 promotes cell proliferation and invasion of fibroblast-like synoviocytes by regulation of miR-331-3p/PIAS3 pathway in rheumatoid arthritis. Autoimmunity 2021; 54:254-263. [PMID: 34030529 DOI: 10.1080/08916934.2021.1919879] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to systemic inflammation of diarthrodial joint, synovial hyperplasia, cartilage damage, and ultimately joint destruction and deformity. As the dominant non-immune cells in the synovium, fibroblast-like synoviocytes (FLSs) significantly contribute to the deterioration of RA. Our study aimed to explore the regulatory role of long non-coding RNA FOXD2-AS1 in RA progression. Compared to patients with joint trauma, the expression of FOXD2-AS1 was elevated in serum and synovial tissue samples of RA patients. FOXD2-AS1 knockdown inhibited the proliferation and invasion of rheumatoid FLSs but restored their apoptotic ability. Furthermore, FOXD2-AS1 acted as a sponge for microRNA (miR)-331-3p. The expressions of FOXD2-AS1 and miR-331-3p in synovial tissues of RA patients were negatively correlated. Protein inhibitor of activated STAT 3 (PIAS3) was predicted as a downstream target of miR-331-3p. The expressions of FOXD2-AS1 and PIAS3 in synovial tissues of RA patients were positively correlated, whereas a negative correlation was observed between the levels of miR-331-3p and PIAS3. Moreover, increased proliferation and invasion of rheumatoid FLSs induced by FOXD2-AS1 overexpression was inhibited by the knockdown of PIAS3. In summary, this study demonstrated that FOXD2-AS1 promoted RA progression via regulating the miR-331-3p/PIAS3 pathway, suggesting that therapeutic strategies based on the FOXD2-AS1/miR-331-3p/PIAS3 axis may represent a promising treatment approach for RA patients.
Collapse
Affiliation(s)
- Qirui Zhao
- Department of Orthopedic Joint and Sports Medicine Ward, The First Affiliated Hospital of Harbin Medical University, Harbin City, China
| | - Fengnian Zhao
- Department of Orthopedic Joint and Sports Medicine Ward, The First Affiliated Hospital of Harbin Medical University, Harbin City, China
| | - Chang Liu
- Department of Orthopedic Joint and Sports Medicine Ward, The First Affiliated Hospital of Harbin Medical University, Harbin City, China
| | - Tongtong Xu
- School of Daxinganling Vocational College, Daxing'anling, China
| | - Keguan Song
- Department of Orthopedic Joint and Sports Medicine Ward, The First Affiliated Hospital of Harbin Medical University, Harbin City, China
| |
Collapse
|
14
|
Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 2021; 17:195-212. [PMID: 33526927 DOI: 10.1038/s41584-020-00570-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.
Collapse
|
15
|
Abdel-Dayem SIA, Khalil MNA, Abdelrahman EH, El-Gohary HM, Kamel AS. Sesquiterpene lactones; Damsin and neoambrosin suppress cytokine-mediated inflammation in complete Freund's adjuvant rat model via shutting Akt/ERK1/2/STAT3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113407. [PMID: 32979413 DOI: 10.1016/j.jep.2020.113407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGIAL RELEVANCE Although Damsissa (Ambrosia maritima) is traditionally used as anti-inflammatory and diuretic, the biological activity and mechanism of action of its major constituents are to be elucidated. AIM to decipher the anti-arthritic potential of damsin (DMS) and neoambrosin (NMS) and to unfold their molecular signaling in complete Freund's adjuvant (CFA)-induced arthritis model. MATERIALS AND METHODS the right hind paw was inoculated with CFA (0.1 ml) at day 0 and 7 while treatments were started from the 14th day and continued for 2 weeks. Rats were randomly assigned into 4 groups; normal group (NRML), CFA-induced arthritis group, CFA-induced arthritis treated with DMS and NMS (10 mg/kg/day) as 3rd and 4th group; respectively. RESULTS Throughout experimental period, treatments ameliorated the increase of paw volume, knee joint diameter and nociception tests as reflected in open field arena. Also, DSM and NMS suppressed phosphorylation of Akt, STAT-3, ERK1/2 which was further mirrored by inactivation of GSK3β and downregulation of MCP-1 together with CCN1 and NF-kβ in hind paw tissue. Concomitantly, inflammation markers; TNF-α, IL-6, -12 were lowered as confirmed microscopically during examination of hind paw tissue. CONCLUSION DSM and NMS-induced suppression of NF-kβ subdues clinical features of RA most probably through repression of Akt/ERK1/2/STAT3 pathway. Therefore, DMS and NMS can serve as safe and effective treatment for rheumatoid arthritis, one of the most disabling chronic, inflammatory and painful autoimmune disease.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Mohammed N A Khalil
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt; Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11361, Egypt.
| | - Enas H Abdelrahman
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Hamida M El-Gohary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Ahmed S Kamel
- Pharmacology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
16
|
Rheumatoid Arthritis and CLOVES Syndrome: A Tricky Diagnosis. Diagnostics (Basel) 2020; 10:diagnostics10070467. [PMID: 32660056 PMCID: PMC7400073 DOI: 10.3390/diagnostics10070467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/02/2023] Open
Abstract
The PI3K/AKT/mTOR signaling pathway is significantly activated in rheumatoid arthritis. In addition, somatic activating mutations of the PI3K/AKT/mTOR pathway may result in PIK3CA-related overgrowth spectrum diseases, including CLOVES (Congenital Lipomatous Overgrowth, Vascular malformation, Epidermal nevi, Skeletal abnormalities/Scoliosis) syndrome. We describe the case of a young female patient, with anti-citrullinated peptide antibodies-positive rheumatoid arthritis, referred for persistent finger pain and stiffness. Examination revealed discrete macrodactyly involving two fingers, scoliosis, asymmetrical calves, venectasias, a shoulder nevus and triangular feet with a “sandal gap” between two toes. These mild dysmorphic features with early-onset and the history of surgeries for thoracic lipoma and venous malformation were strongly suggestive of CLOVES syndrome. Confirmatory mutation analysis was not performed, as blood or saliva testing is not contributive for tissue-specific localized effects in the PIK3CA-related overgrowth spectrum. Nevertheless, lack of detection of a PIK3CA mutation does not exclude the diagnosis in patients fulfilling clinical criteria. Due to the patient’s wish to plan a pregnancy, therapy consisted in sulfasalazine and hydroxychloroquine, along with orthotic correction of leg length discrepancy. Overgrowth syndromes and arthritis may share common pathways. Mild macrodactyly should be differentiated from dactylitis. Diagnosing patients with minimal dysmorphic features within the PI3K-related overgrowth spectrum may help design better care strategies, in the quest for personalized medicine.
Collapse
|
17
|
Li XF, Chen X, Bao J, Xu L, Zhang L, Huang C, Meng XM, Li J. PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3687-3696. [PMID: 31842626 DOI: 10.1080/21691401.2019.1661849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by tumor-like expansion of the synovium and the subsequent destruction of adjacent articular cartilage and bone. The latest studies proved phosphatase and tension homolog deleted on chromosome 10 (PTEN) might contribute to the surviving, proliferation and pro-inflammatory cytokines in RA. The purpose of this study was to explore the function and underlying mechanisms of PTEN in RA pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes (FLSs). Increased level of PTEN was observed in adjuvant-induced arthritis (AIA) FLSs in comparison to normal rats. Increased concentrations of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), chemokines (CCL-2 and CCL-3), VCAM-1 and VEGF-α expression were observed in FLSs with PTEN inhibitor bpv or PTEN-RNAi. Moreover, co-incubation FLSs with overexpression vector with PTEN-GV141 reduced the expression of pro-inflammatory cytokines, chemokines, VCAM-1 and VEGF-α in AIA. Interestingly, we also found DNA methylation could regulate PTEN expression and activation of AKT signaling was with a change of PTEN. Altogether, our findings in the present study suggested that PTEN might play a pivotal role during pro-inflammatory cytokines and chemokines of FLSs through activation of AKT signaling pathway. In addition, PTEN expression may be regulated by DNA methylation in the pathogenesis of AIA.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Hematology Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Le Xu
- Departments of Stomatology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
18
|
Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects 0.5-1% of the world population. Current treatments include on one hand non-steroidal anti-inflammatory drugs and glucocorticoids (GCs) for treating pain and on the other hand disease-modifying anti-rheumatic drugs such as methotrexate, Janus kinase inhibitors or biologics such as antibodies targeting mainly cytokine expression. More recently, nucleic acids such as siRNA, miRNA, or anti-miRNA have shown strong potentialities for the treatment of RA. This review discusses the way nanomedicines can target GCs and nucleic acids to inflammatory sites, increase drug penetration within inflammatory cells, achieve better subcellular distribution and finally protect drugs against degradation. For GCs such a targeting effect would allow the treatment to be more effective at lower doses and to reduce the administration frequency as well as to induce much fewer side-effects. In the case of nucleic acids, particularly siRNA, knocking down proteins involved in RA, could importantly be facilitated using nanomedicines. Finally, the combination of both siRNA and GCs in the same carrier allowed for the same cell to target both the GCs receptor as well as any other signaling pathway involved in RA. Nanomedicines appear to be very promising for the delivery of conventional and novel drugs in RA therapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Zhibo Yu
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mathilde Lorscheider
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
19
|
Rapamycin inhibits B-cell activating factor (BAFF)-stimulated cell proliferation and survival by suppressing Ca 2+-CaMKII-dependent PTEN/Akt-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Cell Calcium 2020; 87:102171. [PMID: 32062191 DOI: 10.1016/j.ceca.2020.102171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/21/2023]
Abstract
B-cell activating factor (BAFF) is a crucial survival factor for B cells, and excess BAFF contributes to development of autoimmune diseases. Recent studies have shown that rapamycin can prevent BAFF-induced B-cell proliferation and survival, but the underlying mechanism remains to be elucidated. Here we found that rapamycin inhibited human soluble BAFF (hsBAFF)-stimulated cell proliferation by inducing G1-cell cycle arrest, which was through downregulating the protein levels of CDK2, CDK4, CDK6, cyclin A, cyclin D1, and cyclin E. Rapamycin reduced hsBAFF-stimulated cell survival by downregulating the levels of anti-apoptotic proteins (Mcl-1, Bcl-2, Bcl-xL and survivin) and meanwhile upregulating the levels of pro-apoptotic proteins (BAK and BAX). The cytostatic and cytotoxic effects of rapamycin linked to its attenuation of hsBAFF-elevated intracellular free Ca2+ ([Ca2+]i). In addition, rapamycin blocked hsBAFF-stimulated B-cell proliferation and survival by preventing hsBAFF from inactivating PTEN and activating the Akt-Erk1/2 pathway. Overexpression of wild type PTEN or ectopic expression of dominant negative Akt potentiated rapamycin's suppression of hsBAFF-induced Erk1/2 activation and proliferation/viability in Raji cells. Interestingly, PP242 (mTORC1/2 inhibitor) or Akt inhibitor X, like rapamycin (mTORC1 inhibitor), reduced the basal or hsBAFF-induced [Ca2+]i elevations. Chelating [Ca2+]i with BAPTA/AM, preventing [Ca2+]i elevation using EGTA, 2-APB or verapamil, inhibiting CaMKII with KN93, or silencing CaMKII strengthened rapamycin's inhibitory effects. The results indicate that rapamycin inhibits BAFF-stimulated B-cell proliferation and survival by blunting mTORC1/2-mediated [Ca2+]i elevations and suppressing Ca2+-CaMKII-dependent PTEN/Akt-Erk1/2 signaling pathway. Our finding underscores that rapamycin may be exploited for prevention of excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.
Collapse
|
20
|
Guo S, Liu J, Jiang T, Lee D, Wang R, Zhou X, Jin Y, Shen Y, Wang Y, Bai F, Ding Q, Wang G, Zhang J, Zhou X, Schrodi SJ, He D. (5R)-5-Hydroxytriptolide (LLDT-8) induces substantial epigenetic mediated immune response network changes in fibroblast-like synoviocytes from rheumatoid arthritis patients. Sci Rep 2019; 9:11155. [PMID: 31371761 PMCID: PMC6671973 DOI: 10.1038/s41598-019-47411-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Tripterygium is a traditional Chinese medicine that has widely been used in the treatment of rheumatic disease. (5R)-5-hydroxytriptolide (LLDT-8) is an extracted compound from Tripterygium, which has been shown to have lower cytotoxicity and relatively higher immunosuppressive activity when compared to Tripterygium. However, our understanding of LLDT-8-induced epigenomic impact and overall regulatory changes in key cell types remains limited. Doing so will provide critically important mechanistic information about how LLDT-8 wields its immunosuppressive activity. The purpose of this study was to assess the effects of LLDT-8 on transcriptome including mRNAs and long non-coding RNA (lncRNAs) in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) by a custom genome-wide microarray assay. Significant differential expressed genes were validated by QPCR. Our work shows that 394 genes (281 down- and 113 up-regulated) were significantly differentially expressed in FLS responding to the treatment of LLDT-8. KEGG pathway analysis showed 20 pathways were significantly enriched and the most significantly enriched pathways were relevant to Immune reaction, including cytokine-cytokine receptor interaction (P = 4.61 × 10−13), chemokine signaling pathway (P = 1.01 × 10−5) and TNF signaling pathway (P = 2.79 × 10−4). Furthermore, we identified 618 highly negatively correlated lncRNA-mRNA pairs from the selected significantly differential lncRNA and mRNA including 27 cis-regulated and 591 trans-regulated lncRNA-mRNAs modules. KEGG and GO based function analysis to differential lncRNA also shown the enrichment of immune response. Finally, lncRNA-transcription factor (TF) and lncRNA-TF-mRNA co-expression network were constructed with high specific network characteristics, indicating LLDT-8 would influence the expression network within the whole FLS cells. The results indicated that the LLDT-8 would mainly influence the FLS cells systemically and specially in the process of immune related pathways.
Collapse
Affiliation(s)
- Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States, 54449
| | - Jia Liu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China.,Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China
| | - Ting Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China.,Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China
| | - Dungyang Lee
- Division of Biostatistics, University of Texas School of Public Health, Houston, TX, USA
| | - Rongsheng Wang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China.,Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China
| | - Xinpeng Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China
| | - Yehua Jin
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China
| | - Yi Shen
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China.,Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China
| | - Yan Wang
- Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China
| | - Fengmin Bai
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China.,Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China
| | - Qin Ding
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China.,Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China
| | - Grace Wang
- Washington University, St. Louis, Missouri, 63130, USA
| | - Jianyong Zhang
- Shenzhen Traditional Chinese Medicine Hospital and The fourth Clinical Medical College of Guangzhou University of Chinese Medicine. Fuhua Road, Shenzhen, Guangzhou, 518033, China
| | - Xiaodong Zhou
- University of Texas Medical School at Houston, 6431 Fannin, MSB5.270, Houston, TX, 77030, USA
| | - Steven J Schrodi
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States, 54449.,Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai, 200052, China. .,Arthritis Institute of integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, 200052, China.
| |
Collapse
|
21
|
Yan X, Liu Y, Kong X, Ji J, Zhu H, Zhang Z, Fu T, Yang J, Zhang Z, Liu F, Gu Z. MicroRNA-21-5p are involved in apoptosis and invasion of fibroblast-like synoviocytes through PTEN/PI3K/AKT signal. Cytotechnology 2019; 71:317-328. [PMID: 30599075 DOI: 10.1007/s10616-018-0288-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022] Open
Abstract
The function of microRNA-21-5p (miR-21) in fibroblast-like synoviocytes in RA was still unclear. In our study, we used tumor necrosis factor alpha (TNFα) (10 ng/ml) to mimic RA-FLSs and we found that normal FLS stimulated with TNFα caused the increasing expression of miR-21, a disintegrin and metalloproteinase with thrombospondin motifs 5 and matrix metalloproteinase 3, which were in accord with RA-FLSs changes. Our data showed that miR-21 overexpression significantly increased cell invasion and decreased apoptosis in FLSs. Knockdown of miR-21 in FLSs causes the opposite result. However, miR-21 may not affect the proliferation of FLSs. Meanwhile, we showed that miR-21 activated the PI3K/AKT signaling pathway to participate in RA by inhibiting PTEN expression. Taken together, our results suggested that miR-21 may play a positive role in RA and may be a promising new therapeutic target for RA.
Collapse
Affiliation(s)
- Xin Yan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xaoli Kong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hai Zhu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zexu Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhongyuan Zhang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
22
|
Malemud CJ. Defective T-Cell Apoptosis and T-Regulatory Cell Dysfunction in Rheumatoid Arthritis. Cells 2018; 7:E223. [PMID: 30469466 PMCID: PMC6316166 DOI: 10.3390/cells7120223] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease that mostly affects small and large synovial joints. At the molecular level, RA is characterized by a profoundly defective innate and adaptive immune response that results in a chronic state of inflammation. Two of the most significant alterations in T-lymphocyte (T-cell) dysfunction in RA is the perpetual activation of T-cells that result in an abnormal proliferation state which also stimulate the proliferation of fibroblasts within the joint synovial tissue. This event results in what we have termed "apoptosis resistance", which we believe is the leading cause of aberrant cell survival in RA. Finding therapies that will induce apoptosis under these conditions is one of the current goals of drug discovery. Over the past several years, a number of T-cell subsets have been identified. One of these T-cell subsets are the T-regulatory (Treg) cells. Under normal conditions Treg cells dictate the state of immune tolerance. However, in RA, the function of Treg cells become compromised resulting in Treg cell dysfunction. It has now been shown that several of the drugs employed in the medical therapy of RA can partially restore Treg cell function, which has also been associated with amelioration of the clinical symptoms of RA.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Foley Medical Building, 2061 Cornell Road, Suite 207, Cleveland, OH 44122-5076, USA.
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Meng Q, Du X, Wang H, Gu H, Zhan J, Zhou Z. Astragalus polysaccharides inhibits cell growth and pro-inflammatory response in IL-1β-stimulated fibroblast-like synoviocytes by enhancement of autophagy via PI3K/AKT/mTOR inhibition. Apoptosis 2018; 22:1138-1146. [PMID: 28660311 DOI: 10.1007/s10495-017-1387-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hyperplastic growth of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) and inflammatory response are pathological hallmarks of RA. It has been reported that Astragalus polysaccharides (APS) possess appreciable anti-inflammatory activity against adjuvant-induced arthritis. Nevertheless, little is known about the role and detailed mechanism underlying the therapeutic effects of APS in RA. This study demonstrated that administration of APS dose-dependently impaired cell viability, increased cell apoptosis by decreasing Bcl-2 expression, increasing Bax expression and Caspase3 activity in IL-1β-stimulated RSC-364 cells and RA-FLS. Simultaneously, IL-1β-induced production of pro-inflammatory cytokines IL-6 and TNF-α was significantly decreased after APS treatment. Furthermore, preconditioning with APS dramatically enhanced autophagy activity by increasing Beclin-1 and LC3II/LC3I expression coupled with decreasing p62 expression and augmenting the number of LC3 puncta in IL-1β-stimulated RSC-364 cells. More importantly, autophagy inhibitor 3-methyladenine (3-MA) partly abolished APS-triggered inhibitory effects on cell growth and production of pro-inflammatory cytokines. APS also repressed the activation of PI3K/Akt/mTOR signaling pathway in IL-1β-stimulated RSC-364 cells. Moreover, treatment with insulin-like growth factor-1 (IGF-1), an activator of PI3K/Akt signaling, partly reversed the therapeutic effects of APS in IL-1β-stimulated RSC-364 cells. Collectively, we concluded that APS might attenuate the pathological progression of RA by exerting the pro-apoptotic and anti-inflammatory effects in IL-1β-stimulated FLSs by regulating the PI3K/AKT/mTOR-autophagy pathway.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Xuzhao Du
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Huilian Wang
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Huimin Gu
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Junping Zhan
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China.
| | - Zipeng Zhou
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| |
Collapse
|
24
|
Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat Commun 2018; 9:791. [PMID: 29476078 PMCID: PMC5824814 DOI: 10.1038/s41467-017-02659-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively parallel cellular profiling. While this approach offers the exciting promise to deconvolute cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly instrumentation has hindered widespread adoption of droplet microfluidic techniques. To address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and deploy it in a clinical environment to perform single-cell transcriptome profiling of disaggregated synovial tissue from five rheumatoid arthritis patients. We sequence 20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology. Additionally, we identify previously uncharacterized fibroblast subpopulations and discern their spatial location within the synovium. We envision that this instrument will have broad utility in both research and clinical settings, enabling low-cost and routine application of microfluidic techniques. Droplet-based single-cell RNA-seq is a powerful tool for cellular heterogeneity profiling in disease but is limited by instrumentation required. Here the authors develop a 3D printed microfluidic platform for massive parallel sequencing of rheumatoid arthritis tissues.
Collapse
|
25
|
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory arthropathy. The majority of evidence, derived from genetics, tissue analyses, models, and clinical studies, points to an immune-mediated etiology associated with stromal tissue dysregulation that together propogate chronic inflammation and articular destruction. A pre-RA phase lasting months to years may be characterized by the presence of circulating autoantibodies, increasing concentration and range of inflammatory cytokines and chemokines, and altered metabolism. Clinical disease onset comprises synovitis and systemic comorbidities affecting the vasculature, metabolism, and bone. Targeted immune therapeutics and aggressive treatment strategies have substantially improved clinical outcomes and informed pathogenetic understanding, but no cure as yet exists. Herein we review recent data that support intriguing models of disease pathogenesis. They allude to the possibility of restoration of immunologic homeostasis and thus a state of tolerance associated with drug-free remission. This target represents a bold vision for the future of RA therapeutics.
Collapse
Affiliation(s)
| | - Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow G128QQ, UK.
| |
Collapse
|
26
|
TGF-β induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep 2017; 7:812. [PMID: 28400560 PMCID: PMC5429747 DOI: 10.1038/s41598-017-00845-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
Fundamental cell signaling mechanisms that regulate dynamic remodeling of the extracellular matrix (ECM) in mechanically loaded tissues are not yet clearly understood. Trabecular meshwork (TM) tissue in the eye is under constant mechanical stress and continuous remodeling of ECM is crucial to maintain normal aqueous humor drainage and intraocular pressure (IOP). However, excessive ECM remodeling can cause fibrosis of the TM as in primary open-angle glaucoma (POAG) patients, and is characterized by increased resistance to aqueous humor drainage, elevated IOP, optic nerve degeneration and blindness. Increased levels of active transforming growth factor-β2 (TGF-β2) in the aqueous humor is the main cause of fibrosis of TM in POAG patients. Herein, we report a novel finding that, in TM cells, TGF-β-induced increase in collagen expression is associated with phosphorylation of phosphatase and tensin homolog (PTEN) at residues Ser380/Thr382/383. Exogenous overexpression of a mutated form of PTEN with enhanced phosphatase activity prevented the TGF-β-induced collagen expression by TM cells. We propose that rapid alteration of PTEN activity through changes in its phosphorylation status could uniquely regulate the continuous remodeling of ECM in the normal TM. Modulating PTEN activity may have high therapeutic potential to alleviating the fibrosis of TM in POAG patients.
Collapse
|
27
|
Rheumatoid Arthritis Fibroblast-like Synoviocyte Suppression Mediated by PTEN Involves Survivin Gene Silencing. Sci Rep 2017; 7:367. [PMID: 28337018 PMCID: PMC5428713 DOI: 10.1038/s41598-017-00517-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Survivin is a proto-oncogene biomarker known for its anti-apoptotic and cell cycle regulating properties induced by the activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In the context of non-cancer pathology, such as rheumatoid arthritis (RA), survivin has emerged as a feature associated with severe joint damage and poor treatment response. Phosphatase and tensin homolog (PTEN) is a phosphatase antagonizing all classes of PI3K. The interplay between survivin oncogenic mechanisms and proliferation suppression networks in RA has remained largely elusive. This study investigated the effect of PTEN on survivin gene expression in rheumatiod arthritis fibroblast-like synoviocyte (RA-FLS). We showed for the first time that the suppression of RA-FLS was mediated by PTEN involving survivin silencing. Considering that survivin suppressants are currently available in clinical trials and clinical use, their effects in RA-FLS support a probably RA therapy to clinical practice.
Collapse
|
28
|
PTEN ameliorates autoimmune arthritis through down-regulating STAT3 activation with reciprocal balance of Th17 and Tregs. Sci Rep 2016; 6:34617. [PMID: 27708408 PMCID: PMC5052580 DOI: 10.1038/srep34617] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
PTEN is a tyrosine phosphatase with significant function in inhibiting STAT3 activation. Recently, inactivation of STAT3 has been demonstrated as a therapeutic candidate for autoimmune arthritis. The expression of PTEN controlled by p53 regulates autoimmune arthritis through modulating the balance between Th17 and Treg. We hypothesized that PTEN regulated by p53 might reduce CIA severity and inflammatory response via inhibiting STAT3 activation. Our results revealed that PTEN could ameliorate experimental autoimmune arthritis by reducing STAT3 activity and Th17 differentiation. Systemic infusion of PTEN overexpression downregulated CIA severity. In addition, PTEN overexpression decreased the activation of T cells and modulated reciprocal differentiation of Th17 and Treg cells. We observed that PTEN expression downregulated by p53 deficiency induced the activation of STAT3. Loss of p53 exacerbated autoimmune arthritis and dysregulated the population of Th17 and Treg. These data suggest that induction of STAT3-modulatory activity of PTEN may be a therapeutic target for rheumatoid arthritis therapy.
Collapse
|
29
|
Maeshima K, Stanford SM, Hammaker D, Sacchetti C, Zeng LF, Ai R, Zhang V, Boyle DL, Aleman Muench GR, Feng GS, Whitaker JW, Zhang ZY, Wang W, Bottini N, Firestein GS. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation. JCI Insight 2016; 1. [PMID: 27275015 DOI: 10.1172/jci.insight.86580] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The PTPN11 gene, encoding the tyrosine phosphatase SHP-2, is overexpressed in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) compared with osteoarthritis (OA) FLS and promotes RA FLS invasiveness. Here, we explored the molecular basis for PTPN11 overexpression in RA FLS and the role of SHP-2 in RA pathogenesis. Using computational methods, we identified a putative enhancer in PTPN11 intron 1, which contained a glucocorticoid receptor- binding (GR-binding) motif. This region displayed enhancer function in RA FLS and contained 2 hypermethylation sites in RA compared with OA FLS. RA FLS stimulation with the glucocorticoid dexamethasone induced GR binding to the enhancer and PTPN11 expression. Glucocorticoid responsiveness of PTPN11 was significantly higher in RA FLS than OA FLS and required the differentially methylated CpGs for full enhancer function. SHP-2 expression was enriched in the RA synovial lining, and heterozygous Ptpn11 deletion in radioresistant or innate immune cells attenuated K/BxN serum transfer arthritis in mice. Treatment with SHP-2 inhibitor 11a-1 reduced RA FLS migration and responsiveness to TNF and IL-1β stimulation and reduced arthritis severity in mice. Our findings demonstrate how abnormal epigenetic regulation of a pathogenic gene determines FLS behavior and demonstrate that targeting SHP-2 or the SHP-2 pathway could be a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Keisuke Maeshima
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Deepa Hammaker
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Cristiano Sacchetti
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Li-Fan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Vida Zhang
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - David L Boyle
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - German R Aleman Muench
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - John W Whitaker
- Janssen Pharmaceuticals Companies of Johnson and Johnson, La Jolla, California, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA.; Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
30
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
31
|
Stanford SM, Aleman Muench GR, Bartok B, Sacchetti C, Kiosses WB, Sharma J, Maestre MF, Bottini M, Mustelin T, Boyle DL, Firestein GS, Bottini N. TGFβ responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Ann Rheum Dis 2016; 75:295-302. [PMID: 25378349 PMCID: PMC4422771 DOI: 10.1136/annrheumdis-2014-205790] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/20/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) that line joint synovial membranes aggressively invade the extracellular matrix, destroying cartilage and bone. As signal transduction in FLS is mediated through multiple pathways involving protein tyrosine phosphorylation, we sought to identify protein tyrosine phosphatases (PTPs) regulating the invasiveness of RA FLS. We describe that the transmembrane receptor PTPκ (RPTPκ), encoded by the transforming growth factor (TGF) β-target gene, PTPRK, promotes RA FLS invasiveness. METHODS Gene expression was quantified by quantitative PCR. PTP knockdown was achieved using antisense oligonucleotides. FLS invasion and migration were assessed in transwell or spot assays. FLS spreading was assessed by immunofluorescence microscopy. Activation of signalling pathways was analysed by Western blotting of FLS lysates using phosphospecific antibodies. In vivo FLS invasiveness was assessed by intradermal implantation of FLS into nude mice. The RPTPκ substrate was identified by pull-down assays. RESULTS PTPRK expression was higher in FLS from patients with RA versus patients with osteoarthritis, resulting from increased TGFB1 expression in RA FLS. RPTPκ knockdown impaired RA FLS spreading, migration, invasiveness and responsiveness to platelet-derived growth factor, tumour necrosis factor and interleukin 1 stimulation. Furthermore, RPTPκ deficiency impaired the in vivo invasiveness of RA FLS. Molecular analysis revealed that RPTPκ promoted RA FLS migration by dephosphorylation of the inhibitory residue Y527 of SRC. CONCLUSIONS By regulating phosphorylation of SRC, RPTPκ promotes the pathogenic action of RA FLS, mediating cross-activation of growth factor and inflammatory cytokine signalling by TGFβ in RA FLS.
Collapse
Affiliation(s)
- Stephanie M. Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - German R. Aleman Muench
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Beatrix Bartok
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, California, USA
| | - Cristiano Sacchetti
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Inflammatory and Infectious Disease Center, Sanford-Burnham Institute for Medical Research, La Jolla, California, USA
| | - William B. Kiosses
- Microscopy Core, The Scripps Research Institute, La Jolla, California, USA
| | - Jay Sharma
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Michael F. Maestre
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Massimo Bottini
- Inflammatory and Infectious Disease Center, Sanford-Burnham Institute for Medical Research, La Jolla, California, USA
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Tomas Mustelin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Institute for Medical Research, La Jolla, California, USA
| | - David L. Boyle
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, California, USA
| | - Gary S. Firestein
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, California, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
32
|
Lauzier A, Lavoie RR, Charbonneau M, Gouin-Boisvert B, Harper K, Dubois CM. Snail Is a Critical Mediator of Invadosome Formation and Joint Degradation in Arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:359-74. [PMID: 26704941 DOI: 10.1016/j.ajpath.2015.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/31/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
Progressive cartilage destruction, mediated by invasive fibroblast-like synoviocytes, is a central feature in the pathogenesis of rheumatoid arthritis (RA). Members of the Snail family of transcription factors are required for cell migration and invasion, but their role in joint destruction remains unknown. Herein, we demonstrate that Snail is essential for the formation of extracellular matrix-degrading invadosomal structures by synovial cells from collagen-induced arthritis (CIA) rats and RA patients. Mechanistically, Snail induces extracellular matrix degradation in synovial cells by repressing PTEN, resulting in increased phosphorylation of platelet-derived growth factor receptor and activation of the phosphatidylinositol 3-kinase/AKT pathway. Of significance, Snail is overexpressed in synovial cells and tissues of CIA rats and RA patients, whereas knockdown of Snail in CIA joints prevents cartilage invasion and joint damage. Furthermore, Snail expression is associated with an epithelial-mesenchymal transition gene signature characteristic of transglutaminase 2/transforming growth factor-β activation. Transforming growth factor-β and transglutaminase 2 stimulate Snail-dependent invadosome formation in rat and human synoviocytes. Our results identify the Snail-PTEN platelet-derived growth factor receptor/phosphatidylinositol 3-kinase axis as a novel regulator of the prodestructive invadosome-forming phenotype of synovial cells. New therapies for RA target inflammation, and are only partly effective in preventing joint damage. Blocking Snail and/or its associated gene expression program may provide an additional tool to improve the efficacy of treatments to prevent joint destruction.
Collapse
Affiliation(s)
- Annie Lauzier
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roxane R Lavoie
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Béatrice Gouin-Boisvert
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kelly Harper
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
33
|
Li N, Wang Z, Lin J. Up-regulated expression of PTEN after splenetomy may prevent the progression of liver fibrosis in rats. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 23:50-56. [PMID: 26545563 DOI: 10.1002/jhbp.300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND/PURPOSE To investigate the mechanisms of delaying progression of liver fibrosis by splenectomy. METHODS Liver fibrosis was induced by common bile duct ligation. Rats were divided into 3 groups randomly: group A with common bile duct ligation and splenectomy (n = 45), group B with common bile duct ligation and spleen sham operation (n = 45), group C with sham common bile duct ligation and spleen sham operation (n = 45). Liver samples were collected at the 1st, 3rd and 5th week. H&E staining and Sirius staining were used to evaluate the degree of liver fibrosis, immunohistochemical staining was used to measure the expression of α-SMA and PTEN. PTEN mRNA and protein expression was measured by real-time PCR and Western-blot. RESULTS Over time, liver fibrosis developed gradually in group A and B. The expression of PTEN mRNA and protein in group A was higher than that in group B (P < 0.05), while the expression of α-SMA was higher in group B (P < 0.05). The expression of PTEN was negatively correlated with α-SMA (r = -0.86, P < 0.05). CONCLUSIONS In this study, splenectomy can up-regulate the expression of PTEN and reduce the secretion of α-SMA, thereby deterring the progression of liver fibrosis.
Collapse
Affiliation(s)
- Naishu Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziming Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Lin
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Synovial fibroblasts continue to grow in prominence both as the subjects of research into the pathogenesis of rheumatoid arthritis and as novel therapeutic targets. This timely review aims to integrate the most recent findings with existing paradigms of fibroblast-related mechanisms of disease. RECENT FINDINGS Linking the role of synovial fibroblasts as innate sentinels expressing pattern recognition receptors such as toll-like receptors to their effector roles in joint damage and interactions with leukocyte subpopulations has continued to advance. Understanding of the mechanisms underlying increased fibroblast survival in the inflamed synovium has led to therapeutic strategies such as cyclin-dependent kinase inhibition. Major advances have taken place in understanding of the interactions between epigenetic and micro-RNA regulation of transcription in synovial fibroblasts, improving our understanding of the unique pathological phenotype of these cells. Finally, the impact of new markers for fibroblast subpopulations is beginning to become apparent, offering the potential for targeting of pathological cells as the roles of different populations become clearer. SUMMARY Over the past 2 years, major advances have continued to emerge in understanding of the relationship between synovial fibroblasts and the regulation of inflammatory pathways in the rheumatoid arthritis synovium.
Collapse
|
35
|
Grabiec AM, Angiolilli C, Hartkamp LM, van Baarsen LGM, Tak PP, Reedquist KA. JNK-dependent downregulation of FoxO1 is required to promote the survival of fibroblast-like synoviocytes in rheumatoid arthritis. Ann Rheum Dis 2015; 74:1763-71. [PMID: 24812285 DOI: 10.1136/annrheumdis-2013-203610] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/13/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Forkhead box O (FoxO) transcription factors integrate environmental signals to modulate cell proliferation and survival, and alterations in FoxO function have been reported in rheumatoid arthritis (RA). OBJECTIVES To examine the relationship between inflammation and FoxO expression in RA, and to analyse the mechanisms and biological consequences of FoxO regulation in RA fibroblast-like synoviocytes (FLS). METHODS RNA was isolated from RA patient and healthy donor (HD) peripheral blood and RA synovial tissue. Expression of FoxO1, FoxO3a and FoxO4 was measured by quantitative PCR. FoxO1 DNA binding, expression and mRNA stability in RA FLS were measured by ELISA-based assays, immunoblotting and quantitative PCR. FLS were transduced with adenovirus encoding constitutively active FoxO1 (FoxO1ADA) or transfected with small interfering RNA targeting FoxO1 to examine the effects on cell viability and gene expression. RESULTS FoxO1 mRNA levels were reduced in RA patient peripheral blood compared with HD blood, and RA synovial tissue FoxO1 expression correlated negatively with disease activity. RA FLS stimulation with interleukin 1β or tumour necrosis factor caused rapid downregulation of FoxO1. This effect was independent of protein kinase B (PKB), but dependent on c-Jun N-terminal kinase (JNK)-mediated acceleration of FoxO1 mRNA degradation. FoxO1ADA overexpression in RA FLS induced apoptosis associated with altered expression of genes regulating cell cycle and survival, including BIM, p27(Kip1) and Bcl-XL. CONCLUSIONS Our findings identify JNK-dependent modulation of mRNA stability as an important PKB-independent mechanism underlying FoxO1 regulation by cytokines, and suggest that reduced FoxO1 expression is required to promote FLS survival in RA.
Collapse
Affiliation(s)
- Aleksander M Grabiec
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chiara Angiolilli
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda M Hartkamp
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul P Tak
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands GlaxoSmithKline, Stevenage, and University of Cambridge, Cambridge, UK
| | - Kris A Reedquist
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Blüml S, Sahin E, Saferding V, Goncalves-Alves E, Hainzl E, Niederreiter B, Hladik A, Lohmeyer T, Brunner JS, Bonelli M, Koenders MI, van den Berg WB, Superti-Furga G, Smolen JS, Schabbauer G, Redlich K. Phosphatase and tensin homolog (PTEN) in antigen-presenting cells controls Th17-mediated autoimmune arthritis. Arthritis Res Ther 2015; 17:230. [PMID: 26307404 PMCID: PMC4549861 DOI: 10.1186/s13075-015-0742-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Autoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood. METHODS We measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN(-/-)) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN(-/-) mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells. RESULTS We show that myeloid-specific PTEN(-/-) mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions. CONCLUSIONS These data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.
Collapse
Affiliation(s)
- Stephan Blüml
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | - Emine Sahin
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090, Vienna, Austria.
| | - Victoria Saferding
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | - Eliana Goncalves-Alves
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | - Eva Hainzl
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090, Vienna, Austria.
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | - Anastasia Hladik
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | - Tobias Lohmeyer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090, Vienna, Austria.
| | - Julia S Brunner
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090, Vienna, Austria.
| | - Michael Bonelli
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | - Marije I Koenders
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Nijmegen Medical Center, Geert Grooteplein-Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| | - Wim B van den Berg
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Nijmegen Medical Center, Geert Grooteplein-Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| | - Giulio Superti-Furga
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, Vienna, 1090, Austria.
| | - Josef S Smolen
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090, Vienna, Austria.
| | - Kurt Redlich
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| |
Collapse
|
37
|
Filer A, Antczak P, Parsonage GN, Legault HM, O’Toole M, Pearson MJ, Thomas AM, Scheel-Toellner D, Raza K, Buckley CD, Falciani F. Stromal transcriptional profiles reveal hierarchies of anatomical site, serum response and disease and identify disease specific pathways. PLoS One 2015; 10:e0120917. [PMID: 25807374 PMCID: PMC4373951 DOI: 10.1371/journal.pone.0120917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/09/2015] [Indexed: 01/11/2023] Open
Abstract
Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through _3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts.
Collapse
Affiliation(s)
- Andrew Filer
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
- University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2WB, UK
- * E-mail: (FF), (AF)
| | - Philipp Antczak
- Centre of Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Greg N. Parsonage
- School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, B15 2TT, UK
| | - Holly M. Legault
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140, USA
| | - Margot O’Toole
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140, USA
| | - Mark J. Pearson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
| | - Andrew M. Thomas
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
| | - Karim Raza
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
- Sandwell and West Birmingham Hospitals NHS Trust, Dudley Road, Birmingham, B18 7QH, UK
| | - Christopher D. Buckley
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
- Sandwell and West Birmingham Hospitals NHS Trust, Dudley Road, Birmingham, B18 7QH, UK
| | - Francesco Falciani
- Centre of Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
- * E-mail: (FF), (AF)
| |
Collapse
|
38
|
Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop 2015; 6:172-189. [PMID: 25793158 PMCID: PMC4363800 DOI: 10.5312/wjo.v6.i2.172] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/28/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression.
Collapse
|
39
|
Abstract
The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721;
| | | |
Collapse
|
40
|
Raninga PV, Trapani GD, Tonissen KF. Cross Talk between Two Antioxidant Systems, Thioredoxin and DJ-1: Consequences for Cancer. Oncoscience 2014; 1:95-110. [PMID: 25593990 PMCID: PMC4295760 DOI: 10.18632/oncoscience.12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress, which is associated with an increased concentration of reactive oxygen species (ROS), is involved in the pathogenesis of numerous diseases including cancer. In response to increased ROS levels, cellular antioxidant molecules such as thioredoxin, peroxiredoxins, glutaredoxins, DJ-1, and superoxide dismutases are upregulated to counteract the detrimental effect of ROS. However, cancer cells take advantage of upregulated antioxidant molecules for protection against ROS-induced cell damage. This review focuses on two antioxidant systems, Thioredoxin and DJ-1, which are upregulated in many human cancer types, correlating with tumour proliferation, survival, and chemo-resistance. Thus, both of these antioxidant molecules serve as potential molecular targets to treat cancer. However, targeting one of these antioxidants alone may not be an effective anti-cancer therapy. Both of these antioxidant molecules are interlinked and act on similar downstream targets such as NF-κβ, PTEN, and Nrf2 to exert cytoprotection. Inhibiting either thioredoxin or DJ-1 alone may allow the other antioxidant to activate downstream signalling cascades leading to tumour cell survival and proliferation. Targeting both thioredoxin and DJ-1 in conjunction may completely shut down the antioxidant defence system regulated by these molecules. This review focuses on the cross-talk between thioredoxin and DJ-1 and highlights the importance and consequences of targeting thioredoxin and DJ-1 together to develop an effective anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Prahlad V. Raninga
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| | - Giovanna Di Trapani
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
| | - Kathryn F. Tonissen
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
41
|
Stanford SM, Maestre MF, Campbell AM, Bartok B, Kiosses WB, Boyle DL, Arnett HA, Mustelin T, Firestein GS, Bottini N. Protein tyrosine phosphatase expression profile of rheumatoid arthritis fibroblast-like synoviocytes: a novel role of SH2 domain-containing phosphatase 2 as a modulator of invasion and survival. ACTA ACUST UNITED AC 2013; 65:1171-80. [PMID: 23335101 DOI: 10.1002/art.37872] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/10/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The fibroblast-like synoviocytes (FLS) in the synovial intimal lining of the joint are key mediators of inflammation and joint destruction in rheumatoid arthritis (RA). In RA, these cells aggressively invade the extracellular matrix, producing cartilage-degrading proteases and inflammatory cytokines. The behavior of FLS is controlled by multiple interconnected signal transduction pathways involving reversible phosphorylation of proteins on tyrosine residues. However, little is known about the role of the protein tyrosine phosphatases (PTPs) in FLS function. This study was undertaken to explore the expression of all of the PTP genes (the PTPome) in FLS. METHODS A comparative screening of the expression of the PTPome in FLS from patients with RA and patients with osteoarthritis (OA) was conducted. The functional effect on RA FLS of SH2 domain-containing phosphatase 2 (SHP-2), a PTP that was up-regulated in RA, was then analyzed by knockdown using cell-permeable antisense oligonucleotides. RESULTS PTPN11 was overexpressed in RA FLS compared to OA FLS. Knockdown of PTPN11, which encodes SHP-2, reduced the invasion, migration, adhesion, spreading, and survival of RA FLS. Additionally, signaling in response to growth factors and inflammatory cytokines was impaired by SHP-2 knockdown. RA FLS that were deficient in SHP-2 exhibited decreased activation of focal adhesion kinase and mitogen-activated protein kinases. CONCLUSION These findings indicate that SHP-2 has a novel role in mediating human FLS function and suggest that it promotes the invasiveness and survival of RA FLS. Further investigation may reveal SHP-2 to be a candidate therapeutic target for RA.
Collapse
|
42
|
Abstract
Background Nowadays, we believe that cancer is a genetic disease. We focus on the genetic targets and epigenetic changes in a tumor. Remarkably, many crucial signal pathways in a malignant cell involve “stem-ness” genes. The prevalence of stem-ness in cancer suggests that cancer has a stem-cell origin and is a stem-cell disease. Presentation of the hypothesis The observation that many innate stem-ness properties are easily interchangeable with malignant hallmarks needs to be further elucidated. There appears to be a malignant potential in every stem cell and a stem cell potential in every malignant cell. I hypothesize that cancer is a stem-cell disease rather than a genetic disease. Testing the hypothesis We will use homeobox genes to endow a certain progenitor cell with specific stem-ness properties and confer different stem-cell phenotypes to the particular cell type in a hierarchical manner. We will demonstrate that an earlier homeobox gene plus a genetic defect (such as Pten loss) tend to form a more virulent tumor, while a later homeobox gene plus the same genetic defect tend to express a more indolent phenotype. Importantly, we will show that in clinically relevant cancer subtypes, those with worse clinical outcomes may paradoxically harbor fewer genetic mutations than those with better outcomes do. Implications of the hypothesis The recognition that cancer is a stem-cell disease will instigate major paradigm shifts in our basic understanding of cancer. Many fundamental principles of oncology, such as multistep carcinogenesis, need to be reconciled. The realization that cancer is a stem-cell disease will also have profound clinical implications on personalized care. Many aspects of our current clinical trials need to be reevaluated.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Department of Genitourinary Medical Oncology, Unit 1374, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030-3721, USA.
| |
Collapse
|
43
|
CIP2A facilitates apoptotic resistance of fibroblast-like synoviocytes in rheumatoid arthritis independent of c-Myc expression. Rheumatol Int 2013; 33:2241-8. [DOI: 10.1007/s00296-013-2711-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
|
44
|
Nakano K, Boyle DL, Firestein GS. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1297-303. [PMID: 23277489 PMCID: PMC3552038 DOI: 10.4049/jimmunol.1202572] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease in which fibroblast-like synoviocytes (FLS) exhibit an aggressive phenotype. Although the mechanisms responsible are not well defined, epigenetic determinants such as DNA methylation might contribute. DNA methyltransferases (DNMTs) are critical enzymes that establish and maintain DNA methylation. We evaluated whether proinflammatory cytokines might contribute to differential DNA methylation previously described in RA FLS through altered DNMT expression. FLS were obtained from RA and osteoarthritis (OA) synovium at the time of total joint replacement. Gene expression was determined by quantitative real-time PCR and protein expression by Western blot analysis. DNMT activity was measured with a functional assay, and global methylation was determined by an immunoassay that detects methylcytosine. Resting expression of DNMT1, -3a, and -3b mRNA were similar in RA and OA FLS. Western blot showed abundant DNMT1 and DNMT3a protein. Exposure to IL-1 decreased DNMT1 and DNMT3a mRNA expression in FLS. Dose responses demonstrated decreased DNMT expression at concentrations as low as 1 pg/ml of IL-1. DNMT mRNA levels decreased rapidly, with significant suppression after 2-8 h of IL-1 stimulation. IL-1 stimulation of OA FLS did not affect methylation of LINE1 sites but led to demethylation of a CHI3L1 locus that is hypomethylated in RA FLS. Chronic IL-1 stimulation also mimicked the effect of a DNMT inhibitor on FLS gene expression. Exposure to proinflammatory mediators reversibly alters DNA methylation in FLS by decreasing DNMT expression and function. These data suggest that IL-1 can potentially imprint cells in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kazuhisa Nakano
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA
- University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - David L. Boyle
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA
| | - Gary S. Firestein
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA
| |
Collapse
|
45
|
Tian J, Chen JW, Gao JS, Li L, Xie X. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway. Rheumatol Int 2013; 33:1829-35. [PMID: 23328930 DOI: 10.1007/s00296-012-2657-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 12/28/2012] [Indexed: 11/29/2022]
Abstract
Resveratrol (trans-3,4'-trihydroxystilbene), a natural phytoalexin, possesses anti-inflammatory, anti-proliferative, and immunomodulatory properties and has the potential for treating inflammatory disorders. The present study was designed to investigate the effects of resveratrol on TNF-α-induced inflammatory cytokines production of IL-1β and MMP3 in Rheumatoid arthritis (RA) Fibroblast-like synoviocytes (FLS) and further to explore the role of PI3K/Akt signaling pathway by which resveratrol modulates those cytokines production. The levels of IL-1β, MMP-3 in cultural supernatants among groups were measured by enzyme-linked immunosorbent assay. Messenger RNA expression of IL-1β and MMP-3 in RA FLS was analyzed using a reverse transcription-polymerase chain reaction. Western blot analysis was used to detect proteins expression in RA FLS intervened by resveratrol. Resveratrol inhibited both mRNA and proteins expressions of IL-1β and MMP-3 on RA FLS in a dose-dependent manner. Resveratrol also decreased significantly the expression of phosphorylated Akt dose dependently. Activation of PI3K/Akt signaling pathway exists in TNF-α-induced production of IL-1β and MMP3 on RA FLS, which is hampered by PI3K inhibitor LY294002. Immunofluorescence staining showed that TNF-α alone increased the production of P-Akt, whereas LY294002 and 50 μM resveratrol suppressed the TNF-α-stimulated expression of P-Akt. Resveratrol attenuates TNF-α-induced production of IL-1β and MMP-3 via inhibition of PI3K-Akt signaling pathway in RA FLS, suggesting that resveratrol plays an anti-inflammatory role and might have beneficial effects in preventing and treating RA.
Collapse
Affiliation(s)
- Jing Tian
- Department of Rheumatology and Immunology, Xiang Ya Second Hospital, Central South University, Changsha 410011, China
| | | | | | | | | |
Collapse
|
46
|
Abstract
OBJECTIVES Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. METHODS Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RESULTS RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. CONCLUSIONS Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
Collapse
Affiliation(s)
- Kazuhisa Nakano
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - John W Whitaker
- Department of Chemistry and Biochemistry, University of California San Diego School of Medicine, La Jolla, California, USA
| | - David L Boyle
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Gary S Firestein
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
47
|
Xu K, Xu P, Yao JF, Zhang YG, Hou WK, Lu SM. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm Res 2012. [PMID: 23178792 DOI: 10.1007/s00011-012-0572-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Defective apoptosis contributes to the massive synovial hyperplasia in rheumatoid arthritis (RA), but the mechanism is largely unknown. To investigate the reasons for the reduced apoptosis in RA synovium, we analyzed autophagy and its relationship to apoptosis in synovial tissues from RA and osteoarthritis (OA) patients. METHODS Synovial tissues were obtained from seven RA and 12 OA patients undergoing knee replacement surgery. Apoptosis was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and staining for p85 fragment of PolyADP-ribose polymerase (PARP). Autophagy was determined by immunoblotting for the autophagic markers Beclin-1 and LC3. MicroRNA-30a (miR-30a), which targets Beclin-1, was measured by real-time RT-PCR. The interplay between autophagy and apoptosis was determined via Spearman's correlation analysis. RESULTS In comparison with OA, the synovial tissues from RA displayed decreased TUNEL-positive nuclei (P < 0.01). In contrast, Beclin-1 and LC3 were overexpressed in the synovial lining layers of RA, which was correlated with decreased levels of miR-30a. Moreover, there was a significant reverse relationship between apoptosis and autophagy in RA synovial tissues (P < 0.01 and r = -0.8937). CONCLUSION The impaired apoptosis in RA synovium might result from increased autophagy, which in turn could be due to the deregulation of miRNA-30a.
Collapse
Affiliation(s)
- Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | | | | | | | | | | |
Collapse
|
48
|
Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 2012; 9:24-33. [PMID: 23147896 DOI: 10.1038/nrrheum.2012.190] [Citation(s) in RCA: 692] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by hyperplastic synovial pannus tissue, which mediates destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS) are a key component of this invasive synovium and have a major role in the initiation and perpetuation of destructive joint inflammation. The pathogenic potential of FLS in RA stems from their ability to express immunomodulating cytokines and mediators as well as a wide array of adhesion molecule and matrix-modelling enzymes. FLS can be viewed as 'passive responders' to the immunoreactive process in RA, their activated phenotype reflecting the proinflammatory milieu. However, FLS from patients with RA also display unique aggressive features that are autonomous and vertically transmitted, and these cells can behave as primary promoters of inflammation. The molecular bases of this 'imprinted aggressor' phenotype are being clarified through genetic and epigenetic studies. The dual behaviour of FLS in RA suggests that FLS-directed therapies could become a complementary approach to immune-directed therapies in this disease. Pathophysiological characteristics of FLS in RA, as well as progress in targeting these cells, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Reedquist KA, Tak PP. Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases. Open Rheumatol J 2012; 6:259-72. [PMID: 23028410 PMCID: PMC3460313 DOI: 10.2174/1874312901206010259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/28/2023] Open
Abstract
Ras superfamily small GTPases represent a wide and diverse class of intracellular signaling proteins that are highly conserved during evolution. These enzymes serve as key checkpoints in coupling antigen receptor, growth factor, cytokine and chemokine stimulation to cellular responses. Once activated, via their ability to regulate multiple downstream signaling pathways, small GTPases amplify and diversify signaling cascades which regulate cellular proliferation, survival, cytokine expression, trafficking and retention. Small GTPases, particularly members of the Ras, Rap, and Rho family, critically coordinate the function and interplay of immune and stromal cells during inflammatory respones, and increasing evidence indicates that alterations in small GTPase signaling contribute to the pathological behavior of these cell populations in human chronic inflammatory diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Here, we review how Ras, Rap, and Rho family GTPases contribute to the biology of cell populations relevant to human chronic inflammatory disease, highlight recent advances in understanding how alterations in these pathways contribute to pathology in RA and SLE, and discuss new therapeutic strategies that may allow specific targeting of small GTPases in the clinic.
Collapse
Affiliation(s)
- Kris A Reedquist
- Division of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Banham-Hall E, Clatworthy MR, Okkenhaug K. The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases. Open Rheumatol J 2012; 6:245-58. [PMID: 23028409 PMCID: PMC3460535 DOI: 10.2174/1874312901206010245] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/16/2011] [Accepted: 11/20/2011] [Indexed: 12/14/2022] Open
Abstract
The class 1 PI3Ks are lipid kinases with key roles in cell surface receptor-triggered signal transduction pathways. Two isoforms of the catalytic subunits, p110γ and p110δ, are enriched in leucocytes in which they promote activation, cellular growth, proliferation, differentiation and survival through the generation of the second messenger PIP3. Genetic inactivation or pharmaceutical inhibition of these PI3K isoforms in mice result in impaired immune responses and reduced susceptibility to autoimmune and inflammatory conditions. We review the PI3K signal transduction pathways and the effects of inhibition of p110γ and/or p110δ on innate and adaptive immunity. Focusing on rheumatoid arthritis and systemic lupus erythematosus we discuss the preclinical evidence and prospects for small molecule inhibitors of p110γ and/or p110δ in autoimmune disease.
Collapse
Affiliation(s)
- Edward Banham-Hall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| | - Menna R Clatworthy
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical
Medicine, Cambridge CB2 0XY, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| |
Collapse
|