1
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of post-traumatic stress disorder. Neural Regen Res 2025; 20:1957-1970. [PMID: 39101663 PMCID: PMC11691471 DOI: 10.4103/nrr.nrr-d-24-00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events. Currently, there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder. In addition, the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment. Evidence suggests that this condition is a multisystem disorder that affects many biological systems, raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder. We performed a PubMed search for microRNAs (miRNAs) in post-traumatic stress disorder (PTSD) that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023. These included four studies with whole blood, seven with peripheral blood mononuclear cells, four with plasma extracellular vesicles/exosomes, and one with serum exosomes. One of these studies had also used whole plasma. Two studies were excluded as they did not involve microRNA biomarkers. Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat, and only two were from recently traumatized adult subjects. In measuring miRNA expression levels, many of the studies had used microarray miRNA analysis, miRNA Seq analysis, or NanoString panels. Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls. The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood; miR-193a-5p, -7113-5p, -125a, -181c, and -671-5p in peripheral blood mononuclear cells; miR-10b-5p, -203a-3p, -4488, -502-3p, -874-3p, -5100, and -7641 in plasma extracellular vesicles/exosomes; and miR-18a-3p and -7-1-5p in blood plasma. Several important limitations identified in the studies need to be taken into account in future studies. Further studies are warranted with war veterans and recently traumatized children, adolescents, and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Xu M, Cui M, Wang Y, Li B, Feng L, Xing H, Zhang K. Therapeutic potentials of natural products for post-traumatic stress disorder: A focus on epigenetics. CHINESE HERBAL MEDICINES 2025; 17:203-219. [PMID: 40256720 PMCID: PMC12009077 DOI: 10.1016/j.chmed.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 07/18/2024] [Indexed: 04/22/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a relatively common but complex mental illness with a range of diverse risk factors. Typical symptoms include the re-experience or avoidance of traumatic events, cognitive impairment, and hypervigilance. While the exact pathogenesis of PTSD is unclear, many studies indicate that epigenetic regulation plays a key role in its development. Specifically, numerous studies have indicated that the levels of histone acetylation and methylation, DNA methylation, and noncoding RNA are altered in PTSD patients. Further to this, natural products have been found to achieve epigenetic regulation of PTSD by regulating the expression of epigenetic enzymes, long noncoding RNA (lncRNA), and miRNA, thereby playing a role in improving PTSD symptoms. To date, however, no epigenetic regulation related drugs have been used in the treatment of PTSD. Furthermore, while natural products that can epigenetically regulate PTSD have received increasing levels of attention, there have not yet been any systematic reports on the topic. Here, we summarized the roles and mechanisms of natural products in the epigenetic regulation of PTSD, providing a novel and unique perspective that will help to guide the development and application of new PTSD treatments.
Collapse
Affiliation(s)
- Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minghui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Wellington NJ, Boucas AP, Lagopoulos J, Kuballa AV. Clinical potential of epigenetic and microRNA biomarkers in PTSD. J Neurogenet 2024; 38:79-101. [PMID: 39470065 DOI: 10.1080/01677063.2024.2419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Molecular studies identifying alterations associated with PTSD have predominantly focused on candidate genes or conducted genome-wide analyses, often encountering issues with replicability. This review aims to identify robust bi-directional epigenetic and microRNA (miRNA) regulators focusing on their functional impacts on post-traumatic stress disorder (PTSD) and their utility in clinical diagnosis, whilst examining knowledge gaps in the existing research. A systematic search was conducted across multiple databases, including Web of Science, Scopus, Global Health (CABI), and PubMed, augmented by grey literature, yielding 3465 potential articles. Ultimately, 92 studies met the inclusion criteria and were analysed to pinpoint significant epigenetic changes with clinically relevant potential in PTSD. The selected studies explored histone modifications, CpG sites, single nucleotide polymorphisms (SNPs), and miRNA biomarkers. Specifically, nine studies examined epigenetic markers, detailing the influence of methylation on chromatin accessibility at histone positions H3K4, H3K9, and H3K36 within a PTSD context. Seventy-three studies investigated DNA methylation, identifying 20 hypermethylated and five hypomethylated CpG islands consistently observed in PTSD participants. Nineteen studies linked 88 SNPs to PTSD, with only one SNP replicated within these studies. Furthermore, sixteen studies focused on miRNAs, with findings indicating 194 downregulated and 24 upregulated miRNAs were associated with PTSD. Although there are epigenetic mechanisms that are significantly affected by PTSD, a granular deconstruction of these mechanisms elucidates the need to incorporate more nuanced approaches to identifying the factors that contribute to PTSD. Technological advances in diagnostic tools are driving the need to integrate detailed participant characteristics, trauma type, genetic susceptibilities, and best practices for robust reporting. This comprehensive approach will be crucial for enhancing the translational potential of PTSD research for clinical application.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, Australia
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| | | | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| |
Collapse
|
4
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
5
|
Liu Y, Hu G, Jia Y, Qin L, Xu L, Chang Y, Li B, Li H. Wnt10b knockdown regulates the relative balance of adipose tissue-resident T cells and inhibits white fat deposition. Mol Biol Rep 2024; 51:272. [PMID: 38302806 DOI: 10.1007/s11033-024-09249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Wnt10b is one of critical Wnt family members that being involved in networks controlling stemness, pluripotency and cell fate decisions. However, its role in adipose-resident T lymphocytes and further in fat metabolism yet remains largely unknown. METHODS AND RESULTS In the present study, we demonstrated a distinctive effect for Wnt10b on the relative balance of T lymphocytes in adipose tissue by using a Wnt10b knockdown mouse model. Wnt10b knockdown led to a reduction of adipose-resident CD4+ T cells and an elevation of Foxp3+/CD4+ Treg cells. Wnt10b-knockdown mice fed with standard diet showed less white fat deposition owing to the suppressed adipogenic process. Moreover, under high fat diet conditions, Wnt10b knockdown resulted in an alleviated obesity symptoms, as well as an improvement of glucose homeostasis and hepatic steatosis. CONCLUSIONS Collectively, we reveal an unexpected and novel function for Wnt10b in mediating the frequency of adipose-resident T cell subsets, that when knockdown skewing toward a Treg-dominated phenotype and further improving fat metabolism.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanxin Jia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Lining Qin
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Longfei Xu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yaxin Chang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Bin Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
6
|
Golubeva E, Zeltser A, Zorkina Y, Ochneva A, Tsurina A, Andreyuk D, Kostyuk G, Morozova A. Epigenetic Alterations in Post-Traumatic Stress Disorder: Comprehensive Review of Molecular Markers. Complex Psychiatry 2024; 10:71-107. [PMID: 39564465 PMCID: PMC11573359 DOI: 10.1159/000541822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024] Open
Abstract
Background Post-traumatic stress disorder (PTSD) can occur after a traumatic event. PTSD is characterized by nightmares, flashbacks and avoidance of stressors. It currently affects 2-8% of the population, with military personnel particularly susceptible. Studies show that environmental stressors can induce various epigenetic changes that shape the PTSD phenotype. Despite the significant impact of epigenetic factors on PTSD symptoms and susceptibility, they have not been widely discussed in the literature. This review focuses on describing epigenetic mechanisms in PTSD, especially DNA methylation, chromatin regulation, and noncoding RNA. Summary The article includes relevant studies published from 2013 to 2023, excluding non-English-language studies or studies with insufficient data. This review investigated gene methylation changes in association with PTSD, including those related to the hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, neurotransmitters, and immune system functioning, as well as the role of histones and regulatory noncoding RNAs. Key Messages Epigenetic alterations play a crucial role in shaping PTSD susceptibility, symptomatology, and long-term outcomes, highlighting their potential as important markers and therapeutic targets. Understanding these alterations can aid in developing clinical strategies to better predict, prevent, and treat PTSD. However, further large-scale longitudinal studies are needed to establish the temporal relationship between epigenetic changes and the onset of PTSD, as well as to classify other potential epigenetic mechanisms.
Collapse
Affiliation(s)
- Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | | | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of Higher Education Russian Biotechnological University, Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
7
|
Ell MA, Schiele MA, Iovino N, Domschke K. Epigenetics of Fear, Anxiety and Stress - Focus on Histone Modifications. Curr Neuropharmacol 2024; 22:843-865. [PMID: 36946487 PMCID: PMC10845084 DOI: 10.2174/1570159x21666230322154158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 03/23/2023] Open
Abstract
Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.
Collapse
Affiliation(s)
- Marco A. Ell
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicola Iovino
- Department of Chromation Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Zhu Z, Huang X, Du M, Wu C, Fu J, Tan W, Wu B, Zhang J, Liao ZB. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. Mol Psychiatry 2023; 28:2630-2644. [PMID: 37340171 PMCID: PMC10615752 DOI: 10.1038/s41380-023-02126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Post-traumatic stress disorder (PTSD) is usually considered a psychiatric disorder upon emotional trauma. However, with the rising number of conflicts and traffic accidents around the world, the incidence of PTSD has skyrocketed along with traumatic brain injury (TBI), a complex neuropathological disease due to external physical force and is also the most common concurrent disease of PTSD. Recently, the overlap between PTSD and TBI is increasingly attracting attention, as it has the potential to stimulate the emergence of novel treatments for both conditions. Of note, treatments exploiting the microRNAs (miRNAs), a well-known class of small non-coding RNAs (ncRNAs), have rapidly gained momentum in many nervous system disorders, given the miRNAs' multitudinous and key regulatory role in various biological processes, including neural development and normal functioning of the nervous system. Currently, a wealth of studies has elucidated the similarities of PTSD and TBI in pathophysiology and symptoms; however, there is a dearth of discussion with respect to miRNAs in both PTSD and TBI. In this review, we summarize the recent available studies of miRNAs in PTSD and TBI and discuss and highlight promising miRNAs therapeutics for both conditions in the future.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Z B Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Abd-Elmawla MA, Essam RM, Ahmed KA, Abdelmonem M. Implication of Wnt/GSK-3β/β-Catenin Signaling in the Pathogenesis of Mood Disturbances Associated with Hyperthyroidism in Rats: Potential Therapeutic Effect of Naringin. ACS Chem Neurosci 2023. [PMID: 37196197 DOI: 10.1021/acschemneuro.3c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Patients with hyperthyroidism are commonly diagnosed with mood disorders. Naringin, (4',5,7-trihydrocyflavanone-7-O-rhamnoglucoside), a natural bioflavonoid, has many neurobehavioral activities including anxiolytic and antidepressant properties. The role of Wingless (Wnt) signaling in psychiatric disorders is considered substantial but debatable. Recently, regulation of Wnt signaling by naringin has been reported in different disorders. Therefore, the present study aimed to investigate the possible role of Wnt/GSK-3β/β-catenin signaling in hyperthyroidism-induced mood disturbances and explore the therapeutic effects of naringin. Hyperthyroidism was induced in rats by intraperitoneal injection of 0.3 mg/kg levothyroxine for 2 weeks. Naringin was orally administered to rats with hyperthyroidism at a dose of 50 or 100 mg/kg for 2 weeks. Hyperthyroidism induced mood alterations as revealed by behavioral tests and histopathological changes including marked necrosis and vacuolation of neurons in the hippocampus and cerebellum. Intriguingly, hyperthyroidism activated Wnt/p-GSK-3β/β-catenin/DICER1/miR-124 signaling pathway in the hippocampus along with an elevation in serotonin, dopamine, and noradrenaline contents and a reduction in brain-derived neurotrophic factor (BDNF) content. Additionally, hyperthyroidism induced upregulation of cyclin D-1 expression, malondialdehyde (MDA) elevation, and glutathione (GSH) reduction. Naringin treatment alleviated behavioral and histopathological alterations and reversed hyperthyroidism-induced biochemical changes. In conclusion, this study revealed, for the first time, that hyperthyroidism could affect mental status by stimulating Wnt/p-GSK-3β/β-catenin signaling in the hippocampus. The observed beneficial effects of naringin could be attributed to increasing hippocampal BDNF, controlling the expression of Wnt/p-GSK-3β/β-catenin signaling as well as its antioxidant properties.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
- Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza 3296121, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
11
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
12
|
Perkins RS, Singh R, Abell AN, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease: A 10-year update. Front Cell Dev Biol 2023; 11:1120365. [PMID: 36814601 PMCID: PMC9939717 DOI: 10.3389/fcell.2023.1120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/β-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rishika Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gustavo A. Miranda-Carboni
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States,Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Gustavo A. Miranda-Carboni,
| |
Collapse
|
13
|
Singh NP, Yang X, Bam M, Nagarkatti M, Nagarkatti P. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces multigenerational alterations in the expression of microRNA in the thymus through epigenetic modifications. PNAS NEXUS 2023; 2:pgac290. [PMID: 36712935 PMCID: PMC9833045 DOI: 10.1093/pnasnexus/pgac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/07/2022] [Indexed: 05/11/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, is an environmental contaminant that is known for mediating toxicity across generations. However, whether TCDD can induce multigenerational changes in the expression of microRNAs (miRs) has not been previously studied. In the current study, we investigated the effect of administration of TCDD in pregnant mice (F0) on gestational day 14, on the expression of miRs in the thymus of F0 and subsequent generations (F1 and F2). Of the 3200 miRs screened, 160 miRs were dysregulated similarly in F0, F1, and F2 generations, while 46 miRs were differentially altered in F0 to F2 generations. Pathway analysis revealed that the changes in miR signature profile mediated by TCDD affected the genes that regulate cell signaling, apoptosis, thymic atrophy, cancer, immunosuppression, and other physiological pathways. A significant number of miRs that showed altered expression exhibited dioxin response elements (DRE) on their promoters. Focusing on one such miR, namely miR-203 that expressed DREs and was induced across F0 to F2 by TCDD, promoter analysis showed that one of the DREs expressed by miR-203 was functional to TCDD-mediated upregulation. Also, the histone methylation status of H3K4me3 in the miR-203 promoter was significantly increased near the transcriptional start site in TCDD-treated thymocytes across F0 to F2 generations. Genome-wide chromatin immunoprecipitation sequencing study suggested that TCDD may cause alterations in histone methylation in certain genes across the three generations. Together, the current study demonstrates that gestational exposure to TCDD can alter the expression of miRs in F0 through direct activation of DREs as well as across F0, F1, and F2 generations through epigenetic pathways.
Collapse
Affiliation(s)
- Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Chen YL, Tong L, Chen Y, Fu CH, Peng JB, Ji LL. MiR-153 downregulation alleviates PTSD-like behaviors and reduces cell apoptosis by upregulating the Sigma-1 receptor in the hippocampus of rats exposed to single-prolonged stress. Exp Neurol 2022; 352:114034. [PMID: 35259352 DOI: 10.1016/j.expneurol.2022.114034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that may lead to a series of changes in the central nervous system, including impaired synaptic plasticity, neuronal dendritic spine loss, enhanced apoptosis and increased inflammation. However, the specific mechanism of PTSD has not been studied clearly. In the present study, we found that the level of miR-153-3p in the hippocampus of rats exposed tosingle-prolonged stresss (SPS) was upregulated, but its downstream target σ-1R showed a significant decrease. The downregulation of miR-153 could alleviate the PTSD-like behaviors in the rats exposed to SPS, and this effect might be related to the upregulation of σ-1R and PSD95. Furthermore, anti-miR-153 could also increase the dendritic spine density and reduce cell apoptosis in the hippocampus of SPS rats. In addition, we showed that the mTOR signaling pathway might be involved in the regulation of σ-1R in the hippocampus of rats exposed to SPS. The results of this study indicated that miR-153 might alleviate PTSD-like behaviors by regulating cell morphology and reducing cell apoptosis in the hippocampus of rats exposed to SPS by targeting σ-1R, which might be related to the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu-Lu Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Long non-coding RNA LINC00926 regulates WNT10B signaling pathway thereby altering inflammatory gene expression in PTSD. Transl Psychiatry 2022; 12:200. [PMID: 35551428 PMCID: PMC9098154 DOI: 10.1038/s41398-022-01971-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), which frequently occurs in the aftermath of a psychologically traumatic event is characterized by heightened inflammation. People with PTSD also suffer from a number of comorbid clinical and behavioral disorders that are related to chronic inflammation. Thus, understanding the mechanisms of enhanced inflammation in PTSD can provide insights into the relationship between PTSD and associated comorbid disorders. In the current study, we investigated the role of large intervening non-coding RNAs (lincRNAs) in the regulation of inflammation in people diagnosed with PTSD. We observed that WNT ligand, WNT10B, was upregulated in the peripheral blood mononuclear cells (PBMCs) of PTSD patients. This observation was associated with higher H3K4me3 signals around WNT10B promotor in PTSD patients compared to those without PTSD. Increased H3K4me3 resulted from LINC00926, which we found to be upregulated in the PTSD sample, bringing in histone methyltransferase, MLL1, onto WNT10B promotor leading to the introduction of H3K4 trimethylation. The addition of recombinant human WNT10B to pre-activated peripheral blood mononuclear cells (PBMCs) led to increased expression of inflammatory genes such as IFNG and IL17A, suggesting that WNT10B is involved in their upregulation. Together, our data suggested that LINC00926 interacts physically with MLL1 and thereby controls the expression of IFNG and IL17A. This is the first time a long non-coding RNA is shown to regulate the expression of WNT10B and consequently inflammation. This observation has high relevance to our understanding of disease mechanisms of PTSD and comorbidities associated with PTSD.
Collapse
|
16
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022; 10:1107. [PMID: 35625844 PMCID: PMC9138536 DOI: 10.3390/biomedicines10051107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6-10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.
Collapse
Affiliation(s)
- Diana L. Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - José J. Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Carlos A. Orozco-Castaño
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| |
Collapse
|
17
|
Yang X, Rutkovsky AC, Zhou J, Zhong Y, Reese J, Schnell T, Albrecht H, Owens WB, Nagarkatti PS, Nagarkatti M. Characterization of Altered Gene Expression and Histone Methylation in Peripheral Blood Mononuclear Cells Regulating Inflammation in COVID-19 Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1968-1977. [PMID: 35379747 PMCID: PMC9012677 DOI: 10.4049/jimmunol.2101099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
The pandemic of COVID-19 has caused >5 million deaths in the world. One of the leading causes of the severe form of COVID-19 is the production of massive amounts of proinflammatory cytokines. Epigenetic mechanisms, such as histone/DNA methylation, miRNA, and long noncoding RNA, are known to play important roles in the regulation of inflammation. In this study, we investigated if hospitalized COVID-19 patients exhibit alterations in epigenetic pathways in their PBMCs. We also compared gene expression profiles between healthy controls and COVID-19 patients. Despite individual variations, the expressions of many inflammation-related genes, such as arginase 1 and IL-1 receptor 2, were significantly upregulated in COVID-19 patients. We also found the expressions of coagulation-related genes Von Willebrand factor and protein S were altered in COVID-19 patients. The expression patterns of some genes, such as IL-1 receptor 2, correlated with their histone methylation marks. Pathway analysis indicated that most of those dysregulated genes were in the TGF-β, IL-1b, IL-6, and IL-17 pathways. A targeting pathway revealed that the majority of those altered genes were targets of dexamethasone, which is an approved drug for COVID-19 treatment. We also found that the expression of bone marrow kinase on chromosome X, a member of TEC family kinases, was increased in the PBMCs of COVID-19 patients. Interestingly, some inhibitors of TEC family kinases have been used to treat COVID-19. Overall, this study provides important information toward identifying potential biomarkers and therapeutic targets for COVID-19 disease.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Alex C Rutkovsky
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Juhua Zhou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Yin Zhong
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Julian Reese
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - Timothy Schnell
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - Helmut Albrecht
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - William B Owens
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| |
Collapse
|
18
|
Busbee PB, Bam M, Yang X, Abdulla OA, Zhou J, Ginsberg JPJ, Aiello AE, Uddin M, Nagarkatti M, Nagarkatti PS. Dysregulated TP53 Among PTSD Patients Leads to Downregulation of miRNA let-7a and Promotes an Inflammatory Th17 Phenotype. Front Immunol 2022; 12:815840. [PMID: 35058939 PMCID: PMC8763839 DOI: 10.3389/fimmu.2021.815840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder and patients diagnosed with PTSD often express other comorbid health issues, particularly autoimmune and inflammatory disorders. Our previous reports investigating peripheral blood mononuclear cells (PBMCs) from PTSD patients showed that these patients exhibit an increased inflammatory T helper (Th) cell phenotype and widespread downregulation of microRNAs (miRNAs), key molecules involved in post-transcriptional gene regulation. A combination of analyzing prior datasets on gene and miRNA expression of PBMCs from PTSD and Control samples, as well as experiments using primary PBMCs collected from human PTSD and Controls blood, was used to evaluate TP53 expression, DNA methylation, and miRNA modulation on Th17 development. In the current report, we note several downregulated miRNAs were linked to tumor protein 53 (TP53), also known as p53. Expression data from PBMCs revealed that compared to Controls, PTSD patients exhibited decreased TP53 which correlated with an increased inflammatory Th17 phenotype. Decreased expression of TP53 in the PTSD population was shown to be associated with an increase in DNA methylation in the TP53 promotor region. Lastly, the most significantly downregulated TP53-associated miRNA, let-7a, was shown to negatively regulate Th17 T cells. Let-7a modulation in activated CD4+ T cells was shown to influence Th17 development and function, via alterations in IL-6 and IL-17 production, respectively. Collectively, these studies reveal that PTSD patients could be susceptible to inflammation by epigenetic dysregulation of TP53, which alters the miRNA profile to favor a proinflammatory Th17 phenotype.
Collapse
Affiliation(s)
- Philip B Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Marpe Bam
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Osama A Abdulla
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Juhua Zhou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay Paul Jack Ginsberg
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States.,Departments of Psychophysiology, Clinical Psychology, and Research Office, Saybrook University, Pasadena, CA, United States
| | - Allison E Aiello
- Department of Epidemiology, University of North Carolina (UNC) Gillings School of Global Public Health, University of North Carolina, Mcgavran-Greenberg Hall, Chapel Hill, NC, United States
| | - Monica Uddin
- Genomics Program, University of South Florida College of Public Health, Tampa, FL, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
19
|
Gupta S, Guleria RS, Szabo YZ. MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in Veterans. Psychiatry Res 2021; 305:114252. [PMID: 34739954 PMCID: PMC8857765 DOI: 10.1016/j.psychres.2021.114252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a common psychiatric disorder for military Veterans, characterized by hyperarousal, intrusive thoughts, flashbacks, hypervigilance, and distress after experiencing traumatic events. Some of the known physiological effects of PTSD include hypothalamic-pituitary-adrenal (HPA)-axis imbalance, a cortical function resulting in neuronal deficit and changes in behavior. Moreover, excessive discharge of inflammatory molecules and a dysregulated immune system are implicated in the pathophysiology of PTSD. Due to complex nature of this disorder, the biological underpinnings of PTSD remain inexplicable. Investigating novel biomarkers to understanding the pathogenesis of PTSD may reflect the underlying molecular network for therapeutic use and treatment. Circulatory microRNAs (miRNAs) and exosomes are evolving biomarkers that have shown a key role in psychiatric and neurological disorders including PTSD. Given the unique nature of combat trauma, as well as evidence that a large portion of Veterans do not benefit from frontline treatments, focus on veterans specifically is warranted. In the present review, we delineate the identification and role of several miRNAs in PTSD among veterans. An association of miRNA with HPA-axis regulation through FKBP5, a key modulator in PTSD is discussed as an emerging molecule in psychiatric diseases. We conclude that miRNAs may be used as circulatory biomarker detection in Veterans with PTSD.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- VISN 17 Center of Excellence for Research on Returning War Veterans, Biomarkers & Genetics Core, Central Texas Veterans Health Care System, 4800 Memorial Drive (151C), Waco, TX, 76711, USA.
| | - Rakeshwar S. Guleria
- VISN 17 Center of Excellence for Research on Returning War Veterans, Biomarkers & Genetics Core, Central Texas Veterans Health Care System, 4800 Memorial Drive (151C), Waco, Texas, 76711
| | - Yvette Z. Szabo
- VISN 17 Center of Excellence for Research on Returning War Veterans, Biomarkers & Genetics Core, Central Texas Veterans Health Care System, 4800 Memorial Drive (151C), Waco, Texas, 76711
| |
Collapse
|
20
|
Katakia YT, Thakkar NP, Thakar S, Sakhuja A, Goyal R, Sharma H, Dave R, Mandloi A, Basu S, Nigam I, Kuncharam BVR, Chowdhury S, Majumder S. Dynamic alterations of H3K4me3 and H3K27me3 at ADAM17 and Jagged-1 gene promoters cause an inflammatory switch of endothelial cells. J Cell Physiol 2021; 237:992-1012. [PMID: 34520565 DOI: 10.1002/jcp.30579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023]
Abstract
Histone protein modifications control the inflammatory state of many immune cells. However, how dynamic alteration in histone methylation causes endothelial inflammation and apoptosis is not clearly understood. To examine this, we explored two contrasting histone methylations; an activating histone H3 lysine 4 trimethylation (H3K4me3) and a repressive histone H3 lysine 27 trimethylation (H3K27me3) in endothelial cells (EC) undergoing inflammation. Through computer-aided reconstruction and 3D printing of the human coronary artery, we developed a unique model where EC were exposed to a pattern of oscillatory/disturbed flow as similar to in vivo conditions. Upon induction of endothelial inflammation, we detected a significant rise in H3K4me3 caused by an increase in the expression of SET1/COMPASS family of H3K4 methyltransferases, including MLL1, MLL2, and SET1B. In contrast, EC undergoing inflammation exhibited truncated H3K27me3 level engendered by EZH2 cytosolic translocation through threonine 367 phosphorylation and an increase in the expression of histone demethylating enzyme JMJD3 and UTX. Additionally, many SET1/COMPASS family of proteins, including MLL1 (C), MLL2, and WDR5, were associated with either UTX or JMJD3 or both and such association was elevated in EC upon exposure to inflammatory stimuli. Dynamic enrichment of H3K4me3 and loss of H3K27me3 at Notch-associated gene promoters caused ADAM17 and Jagged-1 derepression and abrupt Notch activation. Conversely, either reducing H3K4me3 or increasing H3K27me3 in EC undergoing inflammation attenuated Notch activation, endothelial inflammation, and apoptosis. Together, these findings indicate that dynamic chromatin modifications may cause an inflammatory and apoptotic switch of EC and that epigenetic reprogramming can potentially improve outcomes in endothelial inflammation-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Niyati P Thakkar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sumukh Thakar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ashima Sakhuja
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Raghav Goyal
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Rakshita Dave
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ayushi Mandloi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sayan Basu
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ishan Nigam
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Bhanu V R Kuncharam
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| |
Collapse
|
21
|
Hamdan Y, Mazini L, Malka G. Exosomes and Micro-RNAs in Aging Process. Biomedicines 2021; 9:968. [PMID: 34440172 PMCID: PMC8393989 DOI: 10.3390/biomedicines9080968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes' cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes' cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.
Collapse
Affiliation(s)
| | - Loubna Mazini
- Institute of Biological Sciences, Université Mohammed VI Polytechnique, Lot 660 Hay Moulay Rachid, Ben Guerir 3150, Morocco; (Y.H.); (G.M.)
| | | |
Collapse
|
22
|
Zheng Q, Bi R, Xu M, Zhang DF, Tan LW, Lu YP, Yao YG. Exploring the Genetic Association of the ABAT Gene with Alzheimer's Disease. Mol Neurobiol 2021; 58:1894-1903. [PMID: 33404980 DOI: 10.1007/s12035-020-02271-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence demonstrated that GABAergic dysfunction contributes to the pathogenesis of Alzheimer's disease (AD). The GABA aminotransferase (ABAT) gene encodes a mitochondrial GABA transaminase and plays key roles in the biogenesis and metabolism of gamma-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. In this study, we performed an integrative study at the genetic and expression levels to investigate the potential genetic association between the ABAT gene and AD. Through re-analyzing data from the currently largest meta-analysis of AD genome-wide association study (GWAS), we identified genetic variants in the 3'-UTR of ABAT as the top AD-associated SNPs (P < 1 × 10-4) in this gene. Functional annotation of these AD-associated SNPs indicated that these SNPs are located in the regulatory regions of transcription factors or/and microRNAs. Expression quantitative trait loci (eQTL) analysis and luciferase reporter assay showed that the AD risk alleles of these SNPs were associated with a reduced expression level of ABAT. Further analysis of mRNA expression data and single-cell transcriptome data of AD patients showed that ABAT reduction in the neuron is an early event during AD development. Overall, our results indicated that ABAT genetic variants may be associated with AD through affecting its mRNA expression. An abnormal level of ABAT will lead to a disturbance of the GABAergic signal pathway in AD brains.
Collapse
Affiliation(s)
- Quanzhen Zheng
- College of Life Sciences, Anhui Normal University, Wuhu, 241002, Anhui, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Li-Wen Tan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ya-Ping Lu
- College of Life Sciences, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|