1
|
Trivedi S, Cheng OJ, Brintz BJ, Charles RC, Leung DT. Mucosal-associated invariant T (MAIT) cell responses in Salmonella enterica serovar Typhi strain Ty21a oral vaccine recipients. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf002. [PMID: 40224569 PMCID: PMC11993846 DOI: 10.1093/oxfimm/iqaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional innate-like T cells abundant in human mucosal tissues and are associated with protective responses to microbial infections. MAIT cells have the capacity for rapid effector functions, including the secretion of cytokines and cytotoxic molecules. In this study, we examined the longitudinal circulating MAIT cell response to the live attenuated oral vaccine Ty21a (Ty21a) against Salmonella enterica serovar Typhi (S. Typhi). We enrolled healthy adults who received a course of oral live-attenuated S. Typhi strain Ty21a vaccine and assessed peripheral blood MAIT cell longitudinal responses pre-vaccination, and at seven days and one-month post-vaccination, using flow cytometry, cell migration, and tetramer decay assays. We showed that following vaccination, circulating MAIT cells were lower in frequency, but were more activated, and had higher levels of gut-homing marker integrin α4β7 and chemokine receptors CCR9 and CCR6, suggesting the potential of MAIT cells to migrate to mucosal sites. We found no significant differences in MAIT cell functionality, cytotoxicity and T-cell receptor avidity, except in TNF expression, which was higher post-vaccination. We show that MAIT cell immune responses are modulated post-vaccination against S. Typhi. This study contributes to our understanding of MAIT cells' potential role in oral vaccination against bacterial mucosal pathogens.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, United States
| | - Olivia J Cheng
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, United States
| | - Ben J Brintz
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, United States
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84108, United States
| | - Richelle C Charles
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, United States
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Daniel T Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, United States
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, 84132, United States
| |
Collapse
|
2
|
Sugimoto C, Wakao H. The Role of Mucosal-Associated Invariant T Cells in Viral Infections and Their Function in Vaccine Development. Vaccines (Basel) 2025; 13:155. [PMID: 40006702 PMCID: PMC11860804 DOI: 10.3390/vaccines13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Mucosal-Associated Invariant T (MAIT) cells, which bridge innate and adaptive immunity, have emerged as an important player in viral infections despite their inability to directly recognize viral antigens. This review provides a comprehensive analysis of MAIT cell responses across different viral infections, revealing consistent patterns in their behavior and function. We discuss the dynamics of MAIT cells during various viral infections, including changes in their frequency, activation status, and functional characteristics. Particular attention is given to emerging strategies for MAIT-cell-targeted vaccine development, including the use of MR1 ligands as mucosal adjuvants and the activation of MAIT cells through viral vectors and mRNA vaccines. Current knowledge of MAIT cell biology in viral infections provides promising approaches for harnessing their functions in vaccine development.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan;
| | | |
Collapse
|
3
|
De Pasquale C, Drommi F, Calabrò A, Botta C, Sidoti Migliore G, Carrega P, Vento G, Gaeini A, Pezzino G, Freni J, Bonaccorsi I, Vitale M, Filaci G, Fenoglio D, Iemmo R, Costa G, Cavaliere R, Ferlazzo G, Campana S. BNT162b2 COVID-19 vaccination elicits the expansion of CD16 +CD8 + T cells endowed with natural killer cell features. J Allergy Clin Immunol 2025:S0091-6749(25)00112-5. [PMID: 39894227 DOI: 10.1016/j.jaci.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/21/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The Pfizer-BioNtech vaccine, also known as BNT162b2, was developed using a novel technology based on mRNA and protects against coronavirus disease 2019 (COVID-19) via induction of specific antibody and T-cell responses. Much less is known about the broader effects of this new class of vaccines on unconventional cellular components of the immune system. OBJECTIVES We aimed to characterize a subset of unconventional T cells emerging following BNT162b2 mRNA vaccination. METHODS Peripheral blood from a total of 30 human healthy individuals who received 2 doses of the BNT162b2 mRNA vaccine was collected for the analysis of T-cell compartment by using multiparametric flow cytometry and single-cell transcriptome analyses. RESULTS In the peripheral blood of individuals undergoing BNT162b2 vaccination, we observed a sizable fraction of CD8+ T cells expressing CD16, a low-affinity FcR for IgG. These cells were severe acute respiratory coronavirus 2-specific, characterized by IFN-γ response gene transcripts and stimulation through CD16 and other natural killer (NK)-cell innate receptors elicited a functional response. Both CD16 and NKp30 could be induced on NKp80+ CD8+ T cells and the engagement of NKp80 in combination with CD16 resulted in synergic effects. CD16+ CD8+ T cells also showed a high expression of the inhibitory receptor G protein-coupled receptor 56 (GPR56), capable of limiting their activation via CD16. CONCLUSIONS These data indicate that BNT162b2 COVID-19 vaccination provides an additional large fraction of antibody-dependent cellular cytotoxicity (ADCC)-capable effector cells, endowed with innate functions and therefore able to potentially counteract a much wider array of diseases, including cancer.
Collapse
Affiliation(s)
- Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giacomo Sidoti Migliore
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Grazia Vento
- Department of Experimental Medicine, University of Genoa, Genova, Italy
| | | | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - José Freni
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Massimo Vitale
- Unit of Experimental Pathology and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Gilberto Filaci
- Biotherapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Daniela Fenoglio
- Biotherapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Raffaella Iemmo
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Gregorio Costa
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy; Clinical Pathology Unit, University Hospital Policlinico G. Martino, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy; Clinical Pathology Unit, University Hospital Policlinico G. Martino, Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine, University of Genoa, Genova, Italy; Unit of Experimental Pathology and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
4
|
Hu J, Pan M, Reid B, Tworoger S, Li B. Quantifiable blood TCR repertoire components associate with immune aging. Nat Commun 2024; 15:8171. [PMID: 39289351 PMCID: PMC11408526 DOI: 10.1038/s41467-024-52522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
T cell senescence alters the homeostasis of distinct T cell populations and results in decayed adaptive immune protection in older individuals, but a link between aging and dynamic T cell clone changes has not been made. Here, using a newly developed computational framework, Repertoire Functional Units (RFU), we investigate over 6500 publicly available TCR repertoire sequencing samples from multiple human cohorts and identify age-associated RFUs consistently across different cohorts. Quantification of RFU reduction with aging reveals accelerated loss under immunosuppressive conditions. Systematic analysis of age-associated RFUs in clinical samples manifests a potential link between these RFUs and improved clinical outcomes, such as lower ICU admission and reduced risk of complications, during acute viral infections. Finally, patients receiving bone marrow transplantation show a secondary expansion of the age-associated clones upon stem cell transfer from younger donors. Together, our results suggest the existence of a 'TCR clock' that could reflect the immune functions in aging populations.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mingyao Pan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett Reid
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Shelley Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Bo Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Amini A, Klenerman P, Provine NM. Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity. Curr Opin Virol 2024; 67:101412. [PMID: 38838550 PMCID: PMC11511680 DOI: 10.1016/j.coviro.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, UK; Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK.
| | - Nicholas M Provine
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
6
|
Galeota E, Bevilacqua V, Gobbini A, Gruarin P, Bombaci M, Pesce E, Favalli A, Lombardi A, Vincenti F, Ongaro J, Fabbris T, Curti S, Martinovic M, Toccafondi M, Lorenzo M, Critelli A, Clemente F, Crosti M, Sarnicola ML, Martinelli M, La Sala L, Espadas A, Donnici L, Borghi MO, De Feo T, De Francesco R, Prati D, Meroni PL, Notarbartolo S, Geginat J, Gori A, Bandera A, Abrignani S, Grifantini R. Tracking the immune response profiles elicited by the BNT162b2 vaccine in COVID-19 unexperienced and experienced individuals. Clin Immunol 2024; 261:110164. [PMID: 38417765 DOI: 10.1016/j.clim.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eugenia Galeota
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Valeria Bevilacqua
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Gobbini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Paola Gruarin
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mauro Bombaci
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Favalli
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Ph.D. Program in Translational and Molecular Medicine, Dottorato in Medicina Molecolare e Traslazionale (DIMET), University of Milan-Bicocca, Monza, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Francesca Vincenti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Jessica Ongaro
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Tanya Fabbris
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Serena Curti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Martina Martinovic
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mirco Toccafondi
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariangela Lorenzo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Angelica Critelli
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Clemente
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariacristina Crosti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Lucia Sarnicola
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | | | - Alejandro Espadas
- Laboratory of Transplant Immunology - North Italy Transplant program (NITp) - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
| | - Tullia De Feo
- Laboratory of Transplant Immunology - North Italy Transplant program (NITp) - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Raffaele De Francesco
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Pier Luigi Meroni
- IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
| | - Samuele Notarbartolo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Jens Geginat
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Gori
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Infectious Diseases Unit, Ospedale "Luigi Sacco", Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; CheckmAb Srl, Milan, Italy.
| |
Collapse
|
7
|
Airola C, Andaloro S, Gasbarrini A, Ponziani FR. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines (Basel) 2024; 12:349. [PMID: 38675732 PMCID: PMC11054513 DOI: 10.3390/vaccines12040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines prevent a significant number of deaths annually. However, certain populations do not respond adequately to vaccination due to impaired immune systems. Cirrhosis, a condition marked by a profound disruption of immunity, impairs the normal immunization process. Critical vaccines for cirrhotic patients, such as the hepatitis A virus (HAV), hepatitis B virus (HBV), influenza, pneumococcal, and coronavirus disease 19 (COVID-19), often elicit suboptimal responses in these individuals. The humoral response, essential for immunization, is less effective in cirrhosis due to a decline in B memory cells and an increase in plasma blasts, which interfere with the creation of a long-lasting response to antigen vaccination. Additionally, some T cell subtypes exhibit reduced activation in cirrhosis. Nonetheless, the persistence of memory T cell activity, while not preventing infections, may help to attenuate the severity of diseases in these patients. Alongside that, the impairment of innate immunity, particularly in dendritic cells (DCs), prevents the normal priming of adaptive immunity, interrupting the immunization process at its onset. Furthermore, cirrhosis disrupts the gut-liver axis balance, causing dysbiosis, reduced production of short-chain fatty acids (SCFAs), increased intestinal permeability, and bacterial translocation. Undermining the physiological activity of the immune system, these alterations could impact the vaccine response. Enhancing the understanding of the molecular and cellular factors contributing to impaired vaccination responses in cirrhotic patients is crucial for improving vaccine efficacy in this population and developing better prevention strategies.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Silvia Andaloro
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| |
Collapse
|
8
|
N’guessan KF, Machmach K, Swafford I, Costanzo MC, Wieczorek L, Kim D, Akapirat S, Polonis VR, Pitisuttithum P, Nitayaphan S, Gurunathan S, Sinangil F, Chariyalertsak S, Ake JA, O’connell RJ, Vasan S, Paquin-Proulx D. Innate immune cell activation after HIV-1 vaccine administration is associated with increased antibody production. Front Immunol 2024; 15:1339727. [PMID: 38420129 PMCID: PMC10900843 DOI: 10.3389/fimmu.2024.1339727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
The RV144 Thai phase III clinical trial's canarypox-protein HIV vaccine regimen showed modest efficacy in reducing infection. We therefore sought to determine the effects of vaccine administration on innate cell activation and subsequent associations with vaccine-induced immune responses. RV306 was a randomized, double-blind clinical trial in HIV-uninfected Thai adults that tested delayed boosting following the RV144 regimen. PBMC collected from RV306 participants prior to and 3 days after the last boost were used to investigate innate immune cell activation. Our analysis showed an increase in CD38+ mucosal associated invariant T (MAIT) cells, CD38+ invariant natural killer T (iNKT) cells, CD38+ γδ T cells, CD38+, CD69+ and HLA-DR+ NK cells 3 days after vaccine administration. An increase in CD14-CD16+ non-classical monocytes and CD14+CD16+ intermediate monocytes accompanied by a decrease in CD14+CD16- classical monocytes was also associated with vaccine administration. Inclusion of ALVAC-HIV in the boost did not further increase MAIT, iNKT, γδ T, and NK cell activation or increase the proportion of non-classical monocytes. Additionally, NK cell activation 3 days after vaccination was positively associated with antibody titers of HIV Env-specific total IgG and IgG1. Vδ1 T cell activation 3 days after vaccine administration was associated with HIV Env-specific IgG3 titers. Finally, we observed trending associations between MAIT cell activation and Env-specific IgG3 titers and between NK cell activation and TH023 pseudovirus neutralization titers. Our study identifies a potential role for innate cells, specifically NK, MAIT, and γδ T cells, in promoting antibody responses following HIV-1 vaccine administration.
Collapse
Affiliation(s)
- Kombo F. N’guessan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kawthar Machmach
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Isabella Swafford
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Margaret C. Costanzo
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Lindsay Wieczorek
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Dohoon Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Siriwat Akapirat
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Victoria R. Polonis
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Sorachai Nitayaphan
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, Lafayette, CA, United States
| | - Suwat Chariyalertsak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Julie A. Ake
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Robert J. O’connell
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
9
|
Kammann T, Gorin JB, Parrot T, Gao Y, Ponzetta A, Emgård J, Maleki KT, Sekine T, Rivera-Ballesteros O, Gredmark-Russ S, Rooyackers O, Skagerberg M, Eriksson LI, Norrby-Teglund A, Mak JY, Fairlie DP, Björkström NK, Klingström J, Ljunggren HG, Aleman S, Buggert M, Strålin K, Sandberg JK. Dynamic MAIT Cell Recovery after Severe COVID-19 Is Transient with Signs of Heterogeneous Functional Anomalies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:389-396. [PMID: 38117799 PMCID: PMC10784727 DOI: 10.4049/jimmunol.2300639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Magdalena Skagerberg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I. Eriksson
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Ford ES, Mayer-Blackwell K, Jing L, Laing KJ, Sholukh AM, St Germain R, Bossard EL, Xie H, Pulliam TH, Jani S, Selke S, Burrow CJ, McClurkan CL, Wald A, Greninger AL, Holbrook MR, Eaton B, Eudy E, Murphy M, Postnikova E, Robins HS, Elyanow R, Gittelman RM, Ecsedi M, Wilcox E, Chapuis AG, Fiore-Gartland A, Koelle DM. Repeated mRNA vaccination sequentially boosts SARS-CoV-2-specific CD8 + T cells in persons with previous COVID-19. Nat Immunol 2024; 25:166-177. [PMID: 38057617 PMCID: PMC10981451 DOI: 10.1038/s41590-023-01692-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRβ repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRβ repertoires and paired-chain TCRɑβ sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.
Collapse
Affiliation(s)
- Emily S Ford
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Anton M Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Russell St Germain
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily L Bossard
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Thomas H Pulliam
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Saumya Jani
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael R Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Brett Eaton
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Elizabeth Eudy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Michael Murphy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Elena Postnikova
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | | | | | - Rachel M Gittelman
- Adaptive Biotechnologies, Seattle, WA, USA
- Guardant Health, Redwood City, CA, USA
| | - Matyas Ecsedi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Takeda Oncology, Cambridge, MA, USA
| | - Elise Wilcox
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aude G Chapuis
- Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
11
|
Nehar-Belaid D, Sokolowski M, Ravichandran S, Banchereau J, Chaussabel D, Ucar D. Baseline immune states (BIS) associated with vaccine responsiveness and factors that shape the BIS. Semin Immunol 2023; 70:101842. [PMID: 37717525 DOI: 10.1016/j.smim.2023.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Vaccines are among the greatest inventions in medicine, leading to the elimination or control of numerous diseases, including smallpox, polio, measles, rubella, and, most recently, COVID-19. Yet, the effectiveness of vaccines varies among individuals. In fact, while some recipients mount a robust response to vaccination that protects them from the disease, others fail to respond. Multiple clinical and epidemiological factors contribute to this heterogeneity in responsiveness. Systems immunology studies fueled by advances in single-cell biology have been instrumental in uncovering pre-vaccination immune cell types and genomic features (i.e., the baseline immune state, BIS) that have been associated with vaccine responsiveness. Here, we review clinical factors that shape the BIS, and the characteristics of the BIS associated with responsiveness to frequently studied vaccines (i.e., influenza, COVID-19, bacterial pneumonia, malaria). Finally, we discuss potential strategies to enhance vaccine responsiveness in high-risk groups, focusing specifically on older adults.
Collapse
Affiliation(s)
| | - Mark Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
12
|
Hammer Q, Cuapio A, Bister J, Björkström NK, Ljunggren HG. NK cells in COVID-19-from disease to vaccination. J Leukoc Biol 2023; 114:507-512. [PMID: 36976012 DOI: 10.1093/jleuko/qiad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Natural killer cells participate in the host innate immune response to viral infection. Conversely, natural killer cell dysfunction and hyperactivation can contribute to tissue damage and immunopathology. Here, we review recent studies with respect to natural killer cell activity during infection with SARS-CoV-2. Discussed are initial reports of patients hospitalized with COVID-19, which revealed prompt natural killer cell activation during the acute disease state. Another hallmark of COVID-19, early on observed, was a decrease in numbers of natural killer cells in the circulation. Data from patients with acute SARS-CoV-2 infection as well as from in vitro models demonstrated strong anti-SARS-CoV-2 activity by natural killer cells, likely through direct cytotoxicity as well as indirectly by secreting cytokines. Additionally, we describe the molecular mechanisms underlying natural killer cell recognition of SARS-CoV-2-infected cells, which involve triggering of multiple activating receptors, including NKG2D, as well as loss of inhibition through NKG2A. Discussed is also the ability of natural killer cells to respond to SARS-CoV-2 infection via antibody-dependent cellular cytotoxicity. With respect to natural killer cells in the pathogenesis of COVID-19, we review studies demonstrating how hyperactivation and misdirected NK cell responses could contribute to disease course. Finally, while knowledge is still rather limited, we discuss current insights suggesting a contribution of an early natural killer cell activation response in the generation of immunity against SARS-CoV-2 following vaccination with anti-SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Angelica Cuapio
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| |
Collapse
|
13
|
Zheng Y, Han F, Ho A, Xue Y, Wu Z, Chen X, Sandberg JK, Ma S, Leeansyah E. Role of MAIT cells in gastrointestinal tract bacterial infections in humans: More than a gut feeling. Mucosal Immunol 2023; 16:740-752. [PMID: 37353006 DOI: 10.1016/j.mucimm.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells are the largest population of unconventional T cells in humans. These antimicrobial T cells are poised with rapid effector responses following recognition of the cognate riboflavin (vitamin B2)-like metabolite antigens derived from microbial riboflavin biosynthetic pathway. Presentation of this unique class of small molecule metabolite antigens is mediated by the highly evolutionarily conserved major histocompatibility complex class I-related protein. In humans, MAIT cells are widely found along the upper and lower gastrointestinal tracts owing to their high expression of chemokine receptors and homing molecules directing them to these tissue sites. In this review, we discuss recent findings regarding the roles MAIT cells play in various gastrointestinal bacterial infections, and how their roles appear to differ depending on the etiological agents and the anatomical location. We further discuss the potential mechanisms by which MAIT cells contribute to pathogen control, orchestrate adaptive immunity, as well as their potential contribution to inflammation and tissue damage during gastrointestinal bacterial infections, and the ensuing tissue repair following resolution. Finally, we propose and discuss the use of the emerging three-dimensional organoid technology to test different hypotheses regarding the role of MAIT cells in gastrointestinal bacterial infections, inflammation, and immunity.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yiting Xue
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
14
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Sandberg JK, Leeansyah E, Eller MA, Shacklett BL, Paquin-Proulx D. The Emerging Role of MAIT Cell Responses in Viral Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:511-517. [PMID: 37549397 PMCID: PMC10421619 DOI: 10.4049/jimmunol.2300147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 08/09/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells with innate-like antimicrobial responsiveness. MAIT cells are known for MR1 (MHC class I-related protein 1)-restricted recognition of microbial riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, recent progress has shown that MAIT cells can also respond to several viral infections in humans and in mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, in a primarily cognate Ag-independent manner. Depending on the disease context MAIT cells can provide direct or indirect antiviral protection for the host and may help recruit other immune cells, but they may also in some circumstances amplify inflammation and aggravate immunopathology. Furthermore, chronic viral infections are associated with varying degrees of functional and numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this review, we summarize recent progress and highlight outstanding questions regarding the emerging role of MAIT cells in antiviral immunity.
Collapse
Affiliation(s)
- Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Michael A. Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| |
Collapse
|
16
|
Dou X, Peng M, Jiang R, Li W, Zhang X. Upregulated CD8 + MAIT cell differentiation and KLRD1 gene expression after inactivated SARS-CoV-2 vaccination identified by single-cell sequencing. Front Immunol 2023; 14:1174406. [PMID: 37654490 PMCID: PMC10466403 DOI: 10.3389/fimmu.2023.1174406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Background The primary strategy for reducing the incidence of COVID-19 is SARS-CoV-2 vaccination. Few studies have explored T cell subset differentiation and gene expressions induced by SARS-CoV-2 vaccines. Our study aimed to analyze T cell dynamics and transcriptome gene expression after inoculation with an inactivated SARS-CoV-2 vaccine by using single-cell sequencing. Methods Single-cell sequencing was performed after peripheral blood mononuclear cells were extracted from three participants at four time points during the inactivated SARS-CoV-2 vaccination process. After library preparation, raw read data analysis, quality control, dimension reduction and clustering, single-cell T cell receptor (TCR) sequencing, TCR V(D)J sequencing, cell differentiation trajectory inference, differentially expressed genes, and pathway enrichment were analyzed to explore the characteristics and mechanisms of postvaccination immunodynamics. Results Inactivated SARS-CoV-2 vaccination promoted T cell proliferation, TCR clone amplification, and TCR diversity. The proliferation and differentiation of CD8+ mucosal-associated invariant T (MAIT) cells were significantly upregulated, as were KLRD1 gene expression and the two pathways of nuclear-transcribed mRNA catabolic process, nonsense-mediated decay, and translational initiation. Conclusion Upregulation of CD8+ MAIT cell differentiation and KLRD1 expression after inactivated SARS-CoV-2 vaccination was demonstrated by single-cell sequencing. We conclude that the inactivated SARS-CoV-2 vaccine elicits adaptive T cell immunity to enhance early immunity and rapid response to the targeted virus.
Collapse
Affiliation(s)
- Xiaowen Dou
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mian Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ruiwei Jiang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuming Zhang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Marzano P, Balin S, Terzoli S, Della Bella S, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Calcaterra F, Di Vito C, Cancellara A, Calvi M, Carletti A, Franzese S, Frigo A, Darwish A, Voza A, Mikulak J, Mavilio D. Transcriptomic profile of TNFhigh MAIT cells is linked to B cell response following SARS-CoV-2 vaccination. Front Immunol 2023; 14:1208662. [PMID: 37564651 PMCID: PMC10410451 DOI: 10.3389/fimmu.2023.1208662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Higher frequencies of mucosal-associated invariant T (MAIT) cells were associated with an increased adaptive response to mRNA BNT162b2 SARS-CoV-2 vaccine, however, the mechanistic insights into this relationship are unknown. In the present study, we hypothesized that the TNF response of MAIT cells supports B cell activation following SARS-CoV-2 immunization. Methods To investigate the effects of repeated SARS-CoV-2 vaccinations on the peripheral blood mononuclear cells (PBMCs), we performed a longitudinal single cell (sc)RNA-seq and scTCR-seq analysis of SARS-CoV-2 vaccinated healthy adults with two doses of the Pfizer-BioNTech BNT162b2 mRNA vaccine. Collection of PBMCs was performed 1 day before, 3 and 17 days after prime vaccination, and 3 days and 3 months following vaccine boost. Based on scRNA/TCR-seq data related to regulatory signals induced by the vaccine, we used computational approaches for the functional pathway enrichment analysis (Reactome), dynamics of the effector cell-polarization (RNA Velocity and CellRank), and cell-cell communication (NicheNet). Results We identified MAIT cells as an important source of TNF across circulating lymphocytes in response to repeated SARS-CoV-2 BNT162b2 vaccination. The TNFhigh signature of MAIT cells was induced by the second administration of the vaccine. Notably, the increased TNF expression was associated with MAIT cell proliferation and efficient anti-SARS-CoV-2 antibody production. Finally, by decoding the ligand-receptor interactions and incorporating intracellular signaling, we predicted TNFhigh MAIT cell interplay with different B cell subsets. In specific, predicted TNF-mediated activation was selectively directed to conventional switched memory B cells, which are deputed to high-affinity long-term memory. Discussion Overall, our results indicate that SARS-CoV-2 BNT162b2 vaccination influences MAIT cell frequencies and their transcriptional effector profile with the potential to promote B cell activation. This research also provides a blueprint for the promising use of MAIT cells as cellular adjuvants in mRNA-based vaccines.
Collapse
Affiliation(s)
- Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Valentina Cazzetta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Calcaterra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Assunta Cancellara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela Calvi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ahmed Darwish
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
18
|
Pankhurst TE, Buick KH, Lange JL, Marshall AJ, Button KR, Palmer OR, Farrand KJ, Montgomerie I, Bird TW, Mason NC, Kuang J, Compton BJ, Comoletti D, Salio M, Cerundolo V, Quiñones-Mateu ME, Painter GF, Hermans IF, Connor LM. MAIT cells activate dendritic cells to promote T FH cell differentiation and induce humoral immunity. Cell Rep 2023; 42:112310. [PMID: 36989114 PMCID: PMC10045373 DOI: 10.1016/j.celrep.2023.112310] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kaitlin H Buick
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joshua L Lange
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Kaileen R Button
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kathryn J Farrand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ngarangi C Mason
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand.
| |
Collapse
|
19
|
Provine NM, Klenerman P. Adenovirus vector and mRNA vaccines: Mechanisms regulating their immunogenicity. Eur J Immunol 2022:10.1002/eji.202250022. [PMID: 36330560 PMCID: PMC9877955 DOI: 10.1002/eji.202250022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) constructs represent two modular vaccine platforms that have attracted substantial interest over the past two decades. Due to the COVID-19 pandemic and the rapid development of multiple successful vaccines based on these technologies, there is now clear real-world evidence of the utility and efficacy of these platforms. Considerable optimization and refinement efforts underpin the successful application of these technologies. Despite this, our understanding of the specific pathways and processes engaged by these vaccines to stimulate the immune response remains incomplete. This review will synthesize our current knowledge of the specific mechanisms by which CD8+ T cell and antibody responses are induced by each of these vaccine platforms, and how this can be impacted by specific vaccine construction techniques. Key gaps in our knowledge are also highlighted, which can hopefully focus future studies.
Collapse
Affiliation(s)
- Nicholas M. Provine
- Translational Gastroenterology UnitNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Paul Klenerman
- Translational Gastroenterology UnitNuffield Department of MedicineUniversity of OxfordOxfordUK,Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
20
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
21
|
Jensen O, Trivedi S, Li K, Aubé J, Hale JS, Ryan ET, Leung DT. Use of a MAIT-Activating Ligand, 5-OP-RU, as a Mucosal Adjuvant in a Murine Model of Vibrio cholerae O1 Vaccination. Pathog Immun 2022; 7:122-144. [PMID: 36072570 PMCID: PMC9438945 DOI: 10.20411/pai.v7i1.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in the mucosa with capacity for B-cell help. We hypothesize that targeting MAIT cells, using a MAIT-activating ligand as an adjuvant, could improve mucosal vaccine responses to bacterial pathogens such as Vibrio cholerae. Methods We utilized murine models of V. cholerae vaccination to test the adjuvant potential of the MAIT-activating ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). We measured V. cholerae-specific antibody and antibody-secreting cell responses and used flow cytometry to examine MAIT-cell and B-cell phenotype, in blood, bronchoalveolar lavage fluid (BALF), and mucosal tissues, following intranasal vaccination with live V. cholerae O1 or a V. cholerae O1 polysaccharide conjugate vaccine. Results We report significant expansion of MAIT cells in the lungs (P < 0.001) and BALF (P < 0.001) of 5-OP-RU treated mice, and higher mucosal (BALF, P = 0.045) but not systemic (serum, P = 0.21) V. cholerae O-specific-polysaccharide IgG responses in our conjugate vaccine model when adjuvanted with low-dose 5-OP-RU. In contrast, despite significant MAIT cell expansion, no significant differences in V. cholerae-specific humoral responses were found in our live V. cholerae vaccination model. Conclusions Using a murine model, we demonstrate the potential, as well as the limitations, of targeting MAIT cells to improve antibody responses to mucosal cholera vaccines. Our study highlights the need for future research optimizing MAIT-cell targeting for improving mucosal vaccines.
Collapse
Affiliation(s)
- Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Scott Hale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|