1
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
3
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
4
|
Chen W, Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. A review of advances in aptamer-based cell detection technology. Mol Biol Rep 2023; 50:5425-5438. [PMID: 37101007 DOI: 10.1007/s11033-023-08410-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Since cells are the basic structural and functional units of organisms, the detection or quantitation of cells is one of the most common basic problems in life science research. The established cell detection techniques mainly include fluorescent dye labeling, colorimetric assay, and lateral flow assay, all of which employ antibodies as cell recognition elements. However, the widespread application of the established methods generally dependent on antibodies is limited, because the preparation of antibodies is complicated and time-consuming, and unrecoverable denaturation is prone to occur with antibodies. By contrast, aptamers that are generally selected through the systematic evolution of ligands by exponential enrichment can avoid the disadvantages of antibodies due to their controllable synthesis, thermostability, and long shelf life, etc. Accordingly, aptamers may serve as novel molecular recognition elements like antibodies in combination with various techniques for cell detection. This paper reviews the developed aptamer-based cell detection methods, mainly including aptamer-fluorescent labeling, aptamer-isothermal amplification assay, electrochemical aptamer sensor, aptamer-based lateral flow analysis, and aptamer-colorimetric assay. The principles, advantages, progress of application in cell detection and future development trend of these methods were specially discussed. Overall, different assays are suitable for different detection purposes, and the development of more accurate, economical, efficient, and rapid aptamer-based cell detection methods is always on the road in the future. This review is expected to provide a reference for achieving efficient and accurate detection of cells as well as improving the usefulness of aptamers in the field of analytical applications.
Collapse
Affiliation(s)
- Wenrong Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China.
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China.
| |
Collapse
|
5
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Chavda VP, Balar PC, Patel SB. Interventional nanotheranostics in hepatocellular carcinoma. Nanotheranostics 2023; 7:128-141. [PMID: 36793354 PMCID: PMC9925354 DOI: 10.7150/ntno.80120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Interventional nanotheranostics is a system of drug delivery that does a dual function; along with the therapeutic action, it also does have diagnostic features. This method helps in early detection, targeted delivery, and the least chances of damage to surrounding tissue. It ensures the highest efficiency for the management of the disease. Imaging is the near future for the quickest and most accurate detection of disease. After combing both effective measures, it ensures the most meticulous drug delivery system. Nanoparticles such as Gold NPs, Carbon NPs, Silicon NPS, etc. The article emphasizes on effect of this delivery system in the treatment of Hepatocellular Carcinoma. It is one of the widely spreading diseases and theranostics is trying to make the scenario better. The review suggests the pitfall of the current system and how theranostics can help. It describes the mechanism used to generate its effect and believes that interventional nanotheranostics do have a future with rainbow color. The article also describes the current hindrance to the flourishing of this miraculous technology.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Pankti C. Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Srushti B. Patel
- Pharmacy Section, Government Pharmacy College, Gandhinagar, India
| |
Collapse
|
7
|
Widyasari DA, Kristiani A, Randy A, Manurung RV, Dewi RT, Andreani AS, Yuliarto B, Jenie SNA. Optimized antibody immobilization on natural silica-based nanostructures for the selective detection of E. coli. RSC Adv 2022; 12:21582-21590. [PMID: 35975066 PMCID: PMC9346624 DOI: 10.1039/d2ra03143d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
This study reports for the first time the surface modification of fluorescent nanoparticles derived from geothermal silica precipitate with Escherichia coli (E. coli) antibody. The immobilization of biomolecules on the inorganic surface has been carried out using two different pathways, namely the silanization and hydrosilylation reactions. The former applied (3-aminopropyl)triethoxysilane (APTES) as the crosslinker, while the latter used N-hydroxysuccinimide coupled with N-ethyl-N'-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC/NHS). Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX), and fluorescence spectroscopy were used to confirm the chemical, physical, and optical properties of the surface-modified fluorescent silica nanoparticles (FSNPs). Based on the results of the FTIR, fluorescence spectroscopy and stability tests, the modified FSNPs with EDC/NHS with a ratio of 4 : 1 were proven to provide the optimum results for further conjugation with antibodies, affording the FSNP-Ab2 sample. The FSNP-Ab2 sample was further tested as a nanoplatform for the fluorescence-quenching detection of E. coli, which provided a linear range of 102 to 107 CFU mL-1 for E. coli with a limit of detection (LoD) of 1.6 × 102 CFU mL-1. The selectivity of the biosensor was observed to be excellent for E. coli compared to that for P. aeruginosa and S. typhimurium, with reductions in the maximum fluorescence intensity at 588 nm of 89.22%, 26.23%, and 54.06%, respectively. The inorganic nanostructure-biomolecule conjugation with optimized coupling agents showed promising analytical performance as a selective nanoplatform for detecting E. coli bacteria.
Collapse
Affiliation(s)
- Diaz Ayu Widyasari
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK, Building 452, Serpong Tangerang Selatan 15314 Banten Indonesia
- Department of Physics Engineering, Research Centre for Nanosciences and Nanotechnology, Institut Teknologi Bandung (ITB) Jl. Ganesha 10 Bandung 40312 Jawa Barat Indonesia
| | - Anis Kristiani
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK, Building 452, Serpong Tangerang Selatan 15314 Banten Indonesia
| | - Ahmad Randy
- Research Centre for Raw Material for Medicine and Traditional Medicine, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK, Serpong Tangerang Selatan 15314 Banten Indonesia
| | - Robeth V Manurung
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices Jl. Ganesha 10 Bandung 40132 Jawa Barat Indonesia
- Research Centre for Telecommunications, National Research and Innovation Agency (BRIN) Komplek LIPI Gd. 20, Jl. Cisitu Lama, Dago, Kecamatan Coblong Bandung 40135 Jawa Barat Indonesia
| | - Rizna Triana Dewi
- Research Centre for Raw Material for Medicine and Traditional Medicine, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK, Serpong Tangerang Selatan 15314 Banten Indonesia
| | - Agustina Sus Andreani
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK, Building 452, Serpong Tangerang Selatan 15314 Banten Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices Jl. Ganesha 10 Bandung 40132 Jawa Barat Indonesia
| | - Brian Yuliarto
- Department of Physics Engineering, Research Centre for Nanosciences and Nanotechnology, Institut Teknologi Bandung (ITB) Jl. Ganesha 10 Bandung 40312 Jawa Barat Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices Jl. Ganesha 10 Bandung 40132 Jawa Barat Indonesia
| | - S N Aisyiyah Jenie
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK, Building 452, Serpong Tangerang Selatan 15314 Banten Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices Jl. Ganesha 10 Bandung 40132 Jawa Barat Indonesia
| |
Collapse
|
8
|
Ladju RB, Ulhaq ZS, Soraya GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma. World J Gastroenterol 2022; 28:176-187. [PMID: 35110943 PMCID: PMC8776531 DOI: 10.3748/wjg.v28.i2.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an epidemic burden and remains highly prevalent worldwide. The significant mortality rates of HCC are largely due to the tendency of late diagnosis and the multifaceted, complex nature of treatment. Meanwhile, current therapeutic modalities such as liver resection and transplantation are only effective for resolving early-stage HCC. Hence, alternative approaches are required to improve detection and enhance the efficacy of current treatment options. Nanotheranostic platforms, which utilize biocompatible nanoparticles to perform both diagnostics and targeted delivery, has been considered a potential approach for cancer management in the past few decades. Advancement of nanomaterials and biomedical engineering techniques has led to rapid expansion of the nanotheranostics field, allowing for more sensitive and specific diagnosis, real-time monitoring of drug delivery, and enhanced treatment efficacies across various malignancies. The focus of this review is on the applications of nanotheranostics for HCC. The review first explores the current epidemiology and the commonly encountered obstacles in HCC diagnosis and treatment. It then presents the current technological and functional advancements in nanotheranostic technology for cancer in general, and then specifically explores the use of nanotheranostic modalities as a promising option to address the key challenges present in HCC management.
Collapse
Affiliation(s)
- Rusdina Bte Ladju
- Department of Anatomic Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Zulvikar Syambani Ulhaq
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University, Malang 65151, Indonesia
- National Research and Innovation Agency, Central Jakarta 10340, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
9
|
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021; 9:733792. [PMID: 34557478 PMCID: PMC8452863 DOI: 10.3389/fbioe.2021.733792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Ayodele OO, Adesina AO, Pourianejad S, Averitt J, Ignatova T. Recent Advances in Nanomaterial-Based Aptasensors in Medical Diagnosis and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:932. [PMID: 33917467 PMCID: PMC8067492 DOI: 10.3390/nano11040932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Rapid and accurate diagnosis of various biomarkers associated with medical conditions including early detection of viruses and bacteria with highly sensitive biosensors is currently a research priority. Aptamer is a chemically derived recognition molecule capable of detecting and binding small molecules with high specificity and its fast preparation time, cost effectiveness, ease of modification, stability at high temperature and pH are some of the advantages it has over traditional detection methods such as High Performance Liquid Chromatography (HPLC), Enzyme-linked Immunosorbent Assay (ELISA), Polymerase Chain Reaction (PCR). Higher sensitivity and selectivity can further be achieved via coupling of aptamers with nanomaterials and these conjugates called "aptasensors" are receiving greater attention in early diagnosis and therapy. This review will highlight the selection protocol of aptamers based on Traditional Systematic Evolution of Ligands by EXponential enrichment (SELEX) and the various types of modified SELEX. We further identify both the advantages and drawbacks associated with the modified version of SELEX. Furthermore, we describe the current advances in aptasensor development and the quality of signal types, which are dependent on surface area and other specific properties of the selected nanomaterials, are also reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Tetyana Ignatova
- Nanoscience Department, The Joint School of Nanoscience & Nanoengineering, University of North Carolina, Greensboro, NC 27401, USA; (O.O.A.); (A.O.A.); (S.P.); (J.A.)
| |
Collapse
|
11
|
Kumar Kulabhusan P, Hussain B, Yüce M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020; 12:E646. [PMID: 32659966 PMCID: PMC7407196 DOI: 10.3390/pharmaceutics12070646] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Aptamers are synthetic single-stranded DNA or RNA sequences selected from combinatorial oligonucleotide libraries through the well-known in vitro selection and iteration process, SELEX. The last three decades have witnessed a sudden boom in aptamer research, owing to their unique characteristics, like high specificity and binding affinity, low immunogenicity and toxicity, and ease in synthesis with negligible batch-to-batch variation. Aptamers can specifically bind to the targets ranging from small molecules to complex structures, making them suitable for a myriad of diagnostic and therapeutic applications. In analytical scenarios, aptamers are used as molecular probes instead of antibodies. They have the potential in the detection of biomarkers, microorganisms, viral agents, environmental pollutants, or pathogens. For therapeutic purposes, aptamers can be further engineered with chemical stabilization and modification techniques, thus expanding their serum half-life and shelf life. A vast number of antagonistic aptamers or aptamer-based conjugates have been discovered so far through the in vitro selection procedure. However, the aptamers face several challenges for its successful clinical translation, and only particular aptamers have reached the marketplace so far. Aptamer research is still in a growing stage, and a deeper understanding of nucleic acid chemistry, target interaction, tissue distribution, and pharmacokinetics is required. In this review, we discussed aptamers in the current diagnostics and theranostics applications, while addressing the challenges associated with them. The report also sheds light on the implementation of aptamer conjugates for diagnostic purposes and, finally, the therapeutic aptamers under clinical investigation, challenges therein, and their future directions.
Collapse
Affiliation(s)
| | - Babar Hussain
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan;
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
12
|
Kou X, Zhang X, Shao X, Jiang C, Ning L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal Bioanal Chem 2020; 412:6691-6705. [PMID: 32642836 DOI: 10.1007/s00216-020-02774-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.
Collapse
Affiliation(s)
- Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Xujia Zhang
- Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China. .,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan, 250103, Shandong, China.
| | - Limin Ning
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
13
|
Target-responsive ratiometric fluorescent aptasensor for OTA based on energy transfer between [Ru(bpy) 3] 2+ and silica quantum dots. Mikrochim Acta 2020; 187:270. [PMID: 32291531 DOI: 10.1007/s00604-020-04245-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
A ratiometric fluorescent aptasensor based on energy transfer between [Ru(bpy)3]2+ and silica quantum dots (silica QDs) for assaying OTA was fabricated. The aptamer for OTA was used as the gate to shield the fluorescent reagent [Ru(bpy)3]2+ into mesoporous silica nanoparticle (MSN). In the presence of OTA, the constrained [Ru(bpy)3]2+ was released from MSN due to a target-induced aptamer conformational change. The released [Ru(bpy)3]2+ adsorbed onto the negatively charged silica QDs through electrostatic interaction. This creates appearance of fluorescence from [Ru(bpy)3]2+ at 625 nm and decrease of the fluorescence from silica QDs at 442 nm owing to the energy transfer. The value of FL625nm/FL442nm was in proportion to the concentration of OTA in the range 0.5~100 ng mL-1 with a LOD of 0.08 ng mL-1. Practical applicability of this method was validated by the determination of OTA in flour samples. Graphical abstract The sensing principle of this sensor.
Collapse
|
14
|
Tao Y, Wang J, Xu X. Emerging and Innovative Theranostic Approaches for Mesoporous Silica Nanoparticles in Hepatocellular Carcinoma: Current Status and Advances. Front Bioeng Biotechnol 2020; 8:184. [PMID: 32211399 PMCID: PMC7075945 DOI: 10.3389/fbioe.2020.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal solid cancers globally. To improve diagnosis sensitivities and treatment efficacies, the development of new theranostic nanoplatforms for efficient HCC management is urgently needed. In the past decade, mesoporous silica nanoparticles (MSNs) with tailored structure, large surface area, high agents loading volume, abundant chemistry functionality, acceptable biocompatibility have received more and more attention in HCC theranostic. This review outlines the recent advances in MSNs-based systems for HCC therapy and diagnosis. The multifunctional hybrid nanostructures that have both of therapy and diagnosis abilities are highlighted. And the precision delivery strategies of MSNs in HCC are also discussed. Final, we conclude with our personal perspectives on the future development and challenges of MSNs.
Collapse
Affiliation(s)
- Yaoye Tao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jianguo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| |
Collapse
|
15
|
Bakare OO, Fadaka AO, Klein A, Keyster M, Pretorius A. Diagnostic approaches of pneumonia for commercial-scale biomedical applications: an overview. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1826363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Adewale Oluwaseun Fadaka
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Department of Science and Technology/Mintek Nanotechnology Innovation Centre, Bio-labels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashley Pretorius
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
16
|
Water-dispersed silicon quantum dots for on-off-on fluorometric determination of chromium(VI) and ascorbic acid. Mikrochim Acta 2019; 186:673. [PMID: 31494775 DOI: 10.1007/s00604-019-3751-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
Water-dispersed silicon quantum dots (SiQDs) with the quantum yield of 25% was prepared using aminopropyltrimethoxysilane as the silicon source and ascorbic acid (AA) as the reduction reagent. The SiQDs display blue fluorescence with excitation/emission peaks at 350 nm/440 nm. The synthesized SiQDs are shown to be a viable "on-off-on" fluorescent probe for the detection of Cr(VI) and AA. Cr(VI) ions exert an inner filter effect on the fluorescence of the SiQDs which results in a reduction of fluorescence (off-state). On addition of AA, Cr(VI) is chemically reduced to Cr(III) which weakens the inner filter effect and restores fluorescence (on-state). The method has low detection limits for both Cr(VI) and AA (0.16 μM and 0.57 μM, respectively). It was applied to the analysis of spiked lotus seeds and human serum samples. Graphical abstract A simple and facile "on-off-on" fluorometric method for Cr(VI) and ascorbic acid (AA) was developed using water-soluble silicon quantum dots (SiQDs) as the fluorescent probe. The approach was also used to assay Cr(VI) and AA in the lotus seeds and human serum, respectively.
Collapse
|
17
|
Zhang GQ, Zhong LP, Yang N, Zhao YX. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J Gastroenterol 2019; 25:3359-3369. [PMID: 31341361 PMCID: PMC6639558 DOI: 10.3748/wjg.v25.i26.3359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023] Open
Abstract
Aptamers are a class of single oligonucleotide molecules (DNA or RNA) that are screened from random DNA or RNA oligonucleotide chain libraries by the systemic evolution of ligands by exponential enrichment technology. The selected aptamers are capable of specifically binding to different targeting molecules, which is achieved by the three-dimensional structure of aptamers. Aptamers are similar in function to monoclonal antibodies, and therefore, they are also referred to as "chemical antibodies". Due to their high affinity and specificity and low immunogenicity, aptamers are topics of intense interest in today's biological targeting research especially in tumor research. They not only have high potential for clinical advances in tumor targeting detection but also are highly promising as targeted tumor drug carriers for use in tumor therapy. Various experimental studies have shown that aptamer-based diagnostic and therapeutic methods for liver cancer have great potential for application. This paper summarizes the structure, characteristics, and screening methods of aptamers and reviews the recent research progress on nucleic acid aptamers in the targeted diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Guo-Qing Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Xiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
Lenzi E, Jimenez de Aberasturi D, Liz-Marzán LM. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sens 2019; 4:1126-1137. [PMID: 31046243 DOI: 10.1021/acssensors.9b00321] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have recently witnessed a major improvement in the quality of nanoparticles encoded with Raman-active molecules (SERS tags). Such progress relied mainly on a major improvement of fabrication methods for building-blocks, resulting in widespread application of this powerful tool in various fields, with the potential to replace commonly used techniques, such as those based on fluorescence. We present hereby a brief Perspective on surface enhanced Raman scattering (SERS) tags, regarding their composition, morphology, and structure, and describe our own selection from the current state-of-the-art. We then focus on the main bioimaging applications of SERS tags, showing a gradual evolution from two-dimensional studies to three-dimensional analysis. Recent improvements in sensitivity and multiplexing ability have enabled great advancements toward in vivo applications, e.g., highlighting tumor boundaries to guide surgery. In addition, the high level of biomolecule sensitivity reached by SERS tags promises an expansion toward biomarker detection in cases for which traditional methods offer limited reliability, as a consequence of the frequently low analyte concentrations.
Collapse
Affiliation(s)
- Elisa Lenzi
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | | | - Luis M. Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
19
|
Sun Y, Yuan B, Deng M, Wang Q, Huang J, Guo Q, Liu J, Yang X, Wang K. A light-up fluorescence assay for tumor cell detection based on bifunctional split aptamers. Analyst 2019; 143:3579-3585. [PMID: 29999048 DOI: 10.1039/c8an01008k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Light-up aptamers have attracted growing attention due to their advantages of being label-free and having low fluorescence background. In this work, we developed a light-up fluorescence assay for label-free detection of tumor cells based on a bifunctional split aptamer (BFSA) that contained two DNA strands (BFSA-a and BFSA-b). BFSA-a and BFSA-b were constructed by combining aptamers ZY11 and ThT.2-2, which could specifically bind to the tumor cell SMMC-7721 and activate the fluorescence of thioflavin T (ThT). A Helper strand was introduced to hybridize with BFSA-b, and then BFSA-a and BFSA-b were separated if the target cell was absent. Only when the target cell is present can BFSA-a approach and hybridize with BFSA-b due to the 'induced-fit effect', which made the Helper strand dissociate. Then ThT bound to BFSA and the fluorescence of ThT was activated. The results indicated that this fluorescence assay had a good linear response to the target cells in the range of 250-20 000 cells in 100 μL binding buffer; the lowest cell number actually detected was 125 cells in 100 μL buffer. This assay also displayed excellent selectivity and was successfully applied to detect target cells in 20% human serum samples. The design of bifunctional split aptamers realized no-washing, label-free, low-cost, one-step detection of tumor cells, which could generate detectable fluorescence signals just by mixing nucleic acid aptamers and fluorescent reporter molecules with target cells. Such a design of aptamer probes also has the potential to construct stimuli-responsive controlled drug delivery systems.
Collapse
Affiliation(s)
- Yuqiong Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
NIR-Fluorescent Multidye Silica Nanoparticles with Large Stokes Shifts for Versatile Biosensing Applications. J Fluoresc 2019; 29:293-305. [PMID: 30613851 DOI: 10.1007/s10895-018-02339-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
We have synthesized and characterized of a series of single and multidye copolymerized nanoparticles with large to very large Stokes shifts (100 to 255 nm) for versatile applications as standalone or multiplexed probes in biological matrices. Nanoparticles were prepared via the Stöber method and covalently copolymerized with various combinations of three dyes, including one novel aminocyanine dye. Covalently encapsulated dyes exhibited no significant leakage from the nanoparticle matrix after more than 200 days of storage in ethanol. Across multiple batches of nanoparticles with varying dye content, the average yields and average radii were found to be highly reproducible. Furthermore, the batch to batch variability in the relative amounts of dye incorporated was small (relative standard deviations <2.3%). Quantum yields of dye copolymerized nanoparticles were increased 50% to 1000% relative to those of their respective dye-silane conjugates, and fluorescence intensities were enhanced by approximately three orders of magnitude. Prepared nanoparticles were surface modified with polyethylene glycol and biotin and bound to streptavidin microspheres as a proof of concept. Under single wavelength excitation, microsphere-bound nanoparticles displayed readily distinguishable fluorescence signals at three different emission wavelengths, indicating their potential applications to multicolor sensing. Furthermore, nanoparticles modified with polyethylene glycol and biotin demonstrated hematoprotective qualities and reduced nonspecific binding of serum proteins, indicating their potential suitability to in vivo imaging applications.
Collapse
|
21
|
Zhao X, Zhang Y, Zhang J, Xue P, Wang Y, Liu R, Cao R, Zhu L, Li G, Sha Z. Natural Dissociation Ratio of Carboxyl Group Controlled Highly Dispersed Silver Nanoparticles on PSA Microspheres and Their Catalytic Performance. NANOSCALE RESEARCH LETTERS 2018; 13:406. [PMID: 30565192 PMCID: PMC6298914 DOI: 10.1186/s11671-018-2824-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/02/2018] [Indexed: 05/08/2023]
Abstract
The highly dispersed silver nanoparticle-loaded poly(styrene-co-acrylic acid) nanocomposites (nAg@PSA) were prepared and characterized by transmission electron microscopy and thermogravimetry. The amount and distribution of colloidal silver per particle were related to the dissociation ratio of carboxyl groups in the PSA sphere. The amount of carboxyl groups was evaluated by a conductivity titration curve. However, the dissociation of carboxyl groups on PSA is difficult to determine accurately via existing methods because the dissociation ratio will increase with increasing impurity ions during titration. We developed a technique to determine the dissociation ratio of PSA without impurity ions. This employs a novel distance-variable parallel electrode system. Thus, the relationship between nano silver distribution and natural dissociation of carboxyl groups on the surface of the PSA spheres was investigated for the first time. Accurately measuring and controlling the dissociation facilitated the production of PSA spheres containing highly dispersed silver nanoparticles. The catalytic performance of as-prepared nAg@PSA catalysts was studied by reduction of 4-nitrophenol. By controlling the amount of natural dissociation ratio of carboxyl group on PSA sphere, dispersion of silver nanoparticles can be designed and attained controllably. They offer easy synthesis, high catalytic performance, and good recyclability.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yingbing Zhang
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Jin Zhang
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Peijie Xue
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yanfei Wang
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Ruge Cao
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Liang Zhu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Zuoliang Sha
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
22
|
Implementation of electrochemical impedance spectroscopy to evaluate HER-2 aptamer conjugation to Ecoflex® nanoparticles for docetaxel delivery in breast cancer cells. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1273-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Aptamers as Diagnostic Tools in Cancer. Pharmaceuticals (Basel) 2018; 11:ph11030086. [PMID: 30208607 PMCID: PMC6160954 DOI: 10.3390/ph11030086] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Researchers have been working hard on investigating not only improved therapeutics but also on early detection methods, both critical to increasing treatment efficacy, and developing methods for disease prevention. The use of nucleic acids, or aptamers, has emerged as more specific and accurate cancer diagnostic and therapeutic tools. Aptamers are single-stranded DNA or RNA molecules that recognize specific targets based on unique three-dimensional conformations. Despite the fact aptamer development has been mainly restricted to laboratory settings, the unique attributes of these molecules suggest their high potential for clinical advances in cancer detection. Aptamers can be selected for a wide range of targets, and also linked with an extensive variety of diagnostic agents, via physical or chemical conjugation, to improve previously-established detection methods or to be used as novel biosensors for cancer diagnosis. Consequently, herein we review the principal considerations and recent updates in cancer detection and imaging through aptamer-based molecules.
Collapse
|
24
|
Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens Bioelectron 2018; 120:8-14. [PMID: 30142479 DOI: 10.1016/j.bios.2018.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
In this work, a competitive and label-free electrochemical platform was performed for the ultrasensitive cytosensing of liver cancer cells based on DNA nanotetrahedron (NTH) structure and rolling circle amplification (RCA) directed DNAzyme strategy. The multifunctional nanoprobes were fabricated through a DNA primer probe, carboxyfluorescein (FAM) functionalized TLS11a aptamer and horseradish peroxidase (HRP) immobilized on the surfaces of the platinum nanoparticles (PtNPs). Then the NTH-based complementary DNA (cDNA) probe, complementary to the TLS11a aptamer, was attached on a disposable screen-printed gold electrode (SPGE) for increasing the reactivity and accessibility with the prepared nanoprobes. Due to the primer probe and the circular probe with G-quadruplex sequences for RCA, it can lead to the formation of numerous G-quadruplex/hemin DNAzyme, thus generating a remarkable electrochemical response. When the target cells were present, the nanoprobes were released from the SPGE due to the specific recognition of TLS11a aptamers for HepG2 cells, resulting in the electrochemical signal changes. The cytosensor was ultrasensitive for HepG2 tumor cell detection with a detection limit of 3 cell per mL. Furthermore, this strategy was also demonstrated to be applicable for cancer cell imaging. In summary, this electrochemical cytosensor holds great potential for circulating tumor cell detection in the early cancer diagnose.
Collapse
|
25
|
Mukhametshina AR, Fedorenko SV, Petrov AM, Zakyrjanova GF, Petrov KA, Nurullin LF, Nizameev IR, Mustafina AR, Sinyashin OG. Targeted Nanoparticles for Selective Marking of Neuromuscular Junctions and ex Vivo Monitoring of Endogenous Acetylcholine Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14948-14955. [PMID: 29652477 DOI: 10.1021/acsami.8b04471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present work for the first time introduces nanosensors for luminescent monitoring of acetylcholinesterase (AChE)-catalyzed hydrolysis of endogenous acetylcholine (ACh) released in neuromuscular junctions of isolated muscles. The sensing function results from the quenching of Tb(III)-centered luminescence due to proton-induced degradation of luminescent Tb(III) complexes doped into silica nanoparticles (SNs, 23 nm), when acetic acid is produced from the enzymatic hydrolysis of ACh. The targeting of the silica nanoparticles by α-bungarotoxin was used for selective staining of the synaptic space in the isolated muscles by the nanosensors. The targeting procedure was optimized for the high sensing sensitivity. The measuring of the Tb(III)-centered luminescence intensity of the targeted SNs by fluorescent microscopy enables us to sense a release of endogenous ACh in neuromuscular junctions of the isolated muscles under their stimulation by a high-frequency train (20 Hz, for 3 min). The ability of the targeted SNs to sense an inhibiting effect of paraoxon on enzymatic activity of AChE in ex vivo conditions provides a way of mimicking external stimuli effects on enzymatic processes in the isolated muscles.
Collapse
Affiliation(s)
- Alsu R Mukhametshina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Svetlana V Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Alexey M Petrov
- Kazan State Medial University , Butlerov Str. 49 , 420012 Kazan , Russian Federation
- Kazan Institute of Biochemistry and Biophysics , Federal Research Center "Kazan Scientific Center of RAS" , P.O. Box 30 , 420111 Kazan , Russian Federation
| | - Guzel F Zakyrjanova
- Kazan Institute of Biochemistry and Biophysics , Federal Research Center "Kazan Scientific Center of RAS" , P.O. Box 30 , 420111 Kazan , Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Leniz F Nurullin
- Kazan Institute of Biochemistry and Biophysics , Federal Research Center "Kazan Scientific Center of RAS" , P.O. Box 30 , 420111 Kazan , Russian Federation
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| |
Collapse
|
26
|
Tan J, Lai Z, Zhong L, Zhang Z, Zheng R, Su J, Huang Y, Huang P, Song H, Yang N, Zhou S, Zhao Y. A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM. NANOSCALE RESEARCH LETTERS 2018; 13:66. [PMID: 29605867 PMCID: PMC5878827 DOI: 10.1186/s11671-017-2403-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluorescence is almost all quenched. Conversely, when the CCRF-CEM cells are added, the quenched fluorescence can be recovered rapidly and significantly. Therefore, based on the change of fluorescence signals, we can detect the number of CCRF-CEM cells in a wide range from 1 × 102 to 1 × 107 cells/mL with a limit of detection (LOD) of 10 cells/mL. Therefore, this strategy of graphene oxide-based fluorescent aptasensor may be promising for the detection of cancer.
Collapse
Affiliation(s)
- Jie Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Liping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Zhenghua Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Rong Zheng
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Jing Su
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Panpan Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Hui Song
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Sufang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| |
Collapse
|
27
|
Ladju RB, Pascut D, Massi MN, Tiribelli C, Sukowati CH. Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget 2018; 9:2951-2961. [PMID: 29416827 PMCID: PMC5788695 DOI: 10.18632/oncotarget.23359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. Late diagnosis and poor prognosis are still a major drawback since curative therapies such as liver resection and liver transplantation are effective only for an early stage HCC. Development of novel molecular targeting therapies against HCC may provide new options that will improve the efficiency of the diagnosis and the success of the therapy, thus ameliorating the life expectancy of the patients. The aptamer is an oligonucleotide nanomedicine that has high binding affinity and specificity to small and large target molecules in the intracellular and extracellular environment with agonist or antagonist function. Currently, several aptamers for diagnostic and therapeutic purposes are under development to recognize different molecules of HCC. In in vitro models, the aptamer has been shown to be able to reduce the growth of HCC cells and increase the sensitivity to conventional chemotherapies. In in vivo mouse models, aptamer could induce cell apoptosis with antitumor activity. Overall data had shown that aptamer has limited toxicity and might be safe in clinical application. This review summarizes recent information of aptamer as a potential oligonucleotide nanomedicine tool, in diagnostics, targeted therapy, and as drug delivery nano-vehicles.
Collapse
Affiliation(s)
- Rusdina Bte Ladju
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Devis Pascut
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
| | | |
Collapse
|
28
|
Hori SI, Herrera A, Rossi JJ, Zhou J. Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers (Basel) 2018; 10:cancers10010009. [PMID: 29301363 PMCID: PMC5789359 DOI: 10.3390/cancers10010009] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy.
Collapse
Affiliation(s)
- Shin-Ichiro Hori
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|