1
|
ICHIKAWA Y, IINUMA Y, OKAGAWA T, SHIMBO R, ENKHTUUL B, KHURTSBAATAR O, KINOSHITA Y, NIWA H, AOSHIMA K, KOBAYASHI A, BATBAATAR V, OHASHI K, KIMURA T. Comparison of immunogenicity of 17 Burkholderia mallei antigens and whole cell lysate using indirect ELISA. J Vet Med Sci 2025; 87:394-401. [PMID: 40044168 PMCID: PMC11964862 DOI: 10.1292/jvms.25-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 04/04/2025] Open
Abstract
Glanders is a World Organization for Animal Health (WOAH)-notifiable equine disease caused by the infection of Burkholderia mallei, and is endemic in Mongolia, South Asia, Africa, and South America. While the complement fixation test (CFT) has been widely used for serodiagnosis of glanders and is considered a standard serological test, it has several limitations. These limitations include poor specificity, labor intensive techniques, variability in antigen and protocol. Consequently, indirect enzyme-linked immunosorbent assays (iELISAs) based on recombinant proteins have been developed as alternative serodiagnostic assays to address some of the challenges associated with the CFT. The accuracy of iELISA relies on the B. mallei proteins used as an antigen. Hence, to determine the best diagnostic candidate in iELISA, in terms of sensitivity and specificity, a comparison of 17 immunogenic B. mallei proteins and detergent-based whole cell lysate (WCL) was performed. According to the sensitivity and specificity on the sera from glanderous and non-glanderous Mongolian native horses, iELISA using Hcp1, GroEL, and detergent-based WCL represented the highest diagnostic accuracy. These three candidates did not have cross-reactivity to horse sera with several other equine diseases. WCL, Hcp1, and GroEL showed considerable potential as antigens for iELISA in the serodiagnosis of glanders in Mongolia. Detergent-based WCL extraction offers a consistent approach for the preparation of reliable B. mallei antigen. WCL-iELISA should be further validated in a large-scale study to meet WOAH demands.
Collapse
Affiliation(s)
- Yoshiki ICHIKAWA
- Laboratory of Comparative Pathology, Department of Clinical
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yukiko IINUMA
- Department of Disease Control, Faculty of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan
| | - Tomohiro OKAGAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan
| | - Ryo SHIMBO
- Laboratory of Comparative Pathology, Department of Clinical
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Batchuluun ENKHTUUL
- Laboratory of Infectious Disease and Immunology, Institute
of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Ochirbat KHURTSBAATAR
- Laboratory of Infectious Disease and Immunology, Institute
of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Yuta KINOSHITA
- Equine Research Institute, Japan Racing Association,
Tochigi, Japan
| | - Hidekazu NIWA
- Equine Research Institute, Japan Racing Association,
Tochigi, Japan
| | - Keisuke AOSHIMA
- Laboratory of Comparative Pathology, Department of Clinical
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Atsushi KOBAYASHI
- Laboratory of Comparative Pathology, Department of Clinical
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Vanaabaatar BATBAATAR
- Laboratory of Infectious Disease and Immunology, Institute
of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Kazuhiko OHASHI
- Department of Disease Control, Faculty of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan
- International Affairs Office, Faculty of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi KIMURA
- Laboratory of Comparative Pathology, Department of Clinical
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
2
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
3
|
Tan KY, Deng S, Tan TK, Hari R, Sitam FT, Othman RY, Wong KT, Mohidin TBM, Choo SW. Genome sequence analysis of Malayan pangolin ( Manis javanica) forensic samples reveals the presence of Paraburkholderia fungorum sequences. PeerJ 2023; 11:e16002. [PMID: 37810781 PMCID: PMC10559893 DOI: 10.7717/peerj.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Malayan pangolin (Manis javanica) is a placental mammal and is listed as Critically Endangered on the IUCN Red List of Threatened Species. Most previous attempts to breed pangolins in captivity have met with little success because of dietary issues, infections, and other complications, although a previous study reported breeding pangolins in captivity to the third generation. In our previous pangolin genome sequencing data analysis, we obtained a considerable amount of bacterial DNA from a pregnant female Malayan pangolin (named "UM3"), which was likely infected by Paraburkholderia fungorum-an agent of biodegradation and bioremediation in agriculture. Methodology Here, we further confirmed and characterized this bacterial species using PCR, histological staining, whole-genome sequencing, and bioinformatics approaches. PCR assays with in-house designed primer sets and 16S universal primers showed clear positive bands in the cerebrum, cerebellum, lung, and blood of UM3 suggesting that UM3 might have developed septicaemia. Histological staining showed the presence of Gram-negative rod-shaped bacteria in the pangolin brain and lungs, indicating the colonization of the bacteria in these two organs. In addition, PCR screening of UM3's fetal tissues revealed the presence of P. fungorum in the gastrocnemius muscle, but not in other tissues that we examined. We also sequenced and reconstructed the genome of pangolin P. fungorum, which has a genome size of 7.7 Mbps. Conclusion Our study is the first to present detailed evidence of the presence of P. fungorum in a pangolin and her fetus (although preliminary results were presented in our previous article). Here, we raise the concern that P. fungorum may potentially infect humans, especially YOPI (young, old, pregnant, and immunocompromised) people. Therefore, caution should be exercised when using this bacterial species as biodegradation or bioremediation agents in agriculture.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Siwei Deng
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ranjeev Hari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Frankie Thomas Sitam
- National Wildlife Forensic Laboratory, Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Skaar EP. Imaging Infection Across Scales of Size: From Whole Animals to Single Molecules. Annu Rev Microbiol 2021; 75:407-426. [PMID: 34343016 DOI: 10.1146/annurev-micro-041521-121457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases are a leading cause of global morbidity and mortality, and the threat of infectious diseases to human health is steadily increasing as new diseases emerge, existing diseases reemerge, and antimicrobial resistance expands. The application of imaging technology to the study of infection biology has the potential to uncover new factors that are critical to the outcome of host-pathogen interactions and to lead to innovations in diagnosis and treatment of infectious diseases. This article reviews current and future opportunities for the application of imaging to the study of infectious diseases, with a particular focus on the power of imaging objects across a broad range of sizes to expand the utility of these approaches. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| |
Collapse
|
5
|
Kotsiou OS, Papagiannis D, Papadopoulou R, Gourgoulianis KI. Calprotectin in Lung Diseases. Int J Mol Sci 2021; 22:1706. [PMID: 33567747 PMCID: PMC7915440 DOI: 10.3390/ijms22041706] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Calprotectin (CLP) is a heterodimer formed by two S-100 calcium-binding cytosolic proteins, S100A8 and S100A9. It is a multifunctional protein expressed mainly by neutrophils and released extracellularly by activated or damaged cells mediating a broad range of physiological and pathological responses. It has been more than 20 years since the implication of S100A8/A9 in the inflammatory process was shown; however, the evaluation of its role in the pathogenesis of respiratory diseases or its usefulness as a biomarker for the appropriate diagnosis and prognosis of lung diseases have only gained attention in recent years. This review aimed to provide current knowledge regarding the potential role of CLP in the pathophysiology of lung diseases and describe how this knowledge is, up until now, translated into daily clinical practice. CLP is involved in numerous cellular processes in lung health and disease. In addition to its anti-microbial functions, CLP also serves as a molecule with pro- and anti-tumor properties related to cell survival and growth, angiogenesis, DNA damage response, and the remodeling of the extracellular matrix. The findings of this review potentially introduce CLP in daily clinical practice within the spectrum of respiratory diseases.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Dimitrios Papagiannis
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK;
| | | |
Collapse
|
6
|
Amemiya K, Zeng X, Bearss JJ, Cote CK, Soffler C, Bernhards RC, Dankmeyer JL, Ribot WJ, Trevino SR, Welkos SL, Worsham PL, Waag DM. Laser Scanning Confocal Microscopy Was Used to Validate the Presence of Burkholderia Pseudomallei or B. Mallei in Formalin-Fixed Paraffin Embedded Tissues. Trop Med Infect Dis 2020; 5:tropicalmed5020065. [PMID: 32365605 PMCID: PMC7345562 DOI: 10.3390/tropicalmed5020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022] Open
Abstract
Burkholderia pseudomallei and B. mallei are Gram-negative, facultative intracellular bacteria that cause melioidosis and glanders, respectively. Currently, there are no vaccines for these two diseases. Animal models have been developed to evaluate vaccines and therapeutics. Tissues from infected animals, however, must be fixed in formalin and embedded in paraffin (FFPE) before analysis. A brownish staining material in infected tissues that represents the exopolysaccharide of the pathogen was seen by bright field microscopy but not the actual microorganism. Because of these results, FFPE tissue was examined by laser scanning confocal microscopy (LSCM) in an attempt to see the microorganism. Archival FFPE tissues were examined from ten mice, and five nonhuman primates after exposure to B. pseudomallei or B.mallei by LSCM. Additionally, a historical spleen biopsy from a human suspected of exposure to B. mallei was examined. B. pseudomallei was seen in many of the infected tissues from mice. Four out of five nonhuman primates were positive for the pathogen. In the human sample, B. mallei was seen in pyogranulomas in the spleen biopsy. Thus, the presence of the pathogen was validated by LSCM in murine, nonhuman primate, and human FFPE tissues.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
- Correspondence: ; Tel.: +1-301-619-2182
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (X.Z.); (J.J.B.)
| | - Jeremy J. Bearss
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (X.Z.); (J.J.B.)
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Carl Soffler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Robert C. Bernhards
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA;
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Wilson J. Ribot
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Sylvia R. Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| |
Collapse
|
7
|
DeShazer D. A novel contact-independent T6SS that maintains redox homeostasis via Zn 2+ and Mn 2+ acquisition is conserved in the Burkholderia pseudomallei complex. Microbiol Res 2019; 226:48-54. [PMID: 31284944 DOI: 10.1016/j.micres.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
The Burkholderia pseudomallei complex consists of six phylogenetically related Gram-negative bacterial species that include environmental saprophytes and mammalian pathogens. These microbes possess multiple type VI secretion systems (T6SS) that provide a fitness advantage in diverse niches by translocating effector molecules into prokaryotic and eukaryotic cells in a contact-dependent manner. Several recent studies have elucidated the regulation and function of T6SS-2, a novel contact-independent member of the T6SS family. Expression of the T6SS-2 gene cluster is repressed by OxyR, Zur and TctR and is activated by GvmR and reactive oxygen species (ROS). The last two genes of the T6SS-2 gene cluster encode a zincophore (TseZ) and a manganeseophore (TseM) that are exported into the extracellular milieu in a contact-independent fashion when microbes encounter oxidative stress. TseZ and TseM bind Zn2+ and Mn2+, respectively, and deliver them to bacteria where they provide protection against the lethal effects of ROS. The TonB-dependent transporters that interact with TseZ and TseM, and actively transport Zn2+ and Mn2+ across the outer membrane, have also been identified. Finally, T6SS-2 provides a contact-independent growth advantage in nutrient limited environments and is critical for virulence in Galleria mellonella larvae, but is dispensable for virulence in rodent models of infection.
Collapse
Affiliation(s)
- David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA.
| |
Collapse
|
8
|
Hernandez R, Glaros T, Rizzo G, Ferreira DF. Purification and Proteomic Analysis of Alphavirus Particles from Sindbis Virus Grown in Mammalian and Insect Cells. Bio Protoc 2019; 9:e3239. [PMID: 33654768 DOI: 10.21769/bioprotoc.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 11/02/2022] Open
Abstract
Current mass spectrometry (MS) methods and new instrumentation now allow for more accurate identification of proteins in low abundance than previous protein fractionation and identification methods. It was of interest if this method could serve to define the virus proteome of a membrane-containing virus. To evaluate the efficacy of mass spec to determine the proteome of medically important viruses, Sindbis virus (SINV), the prototypical alphavirus was chosen for evaluation. This model system was chosen specifically because the alphaviruses contain members which are human pathogens, this virus is well defined biochemically and structurally, and grows to high titers in both vertebrate and non-vertebrate host cells. The SINV proteome was investigated using this method to determine if host proteins are specifically packaged into infectious virions. It was also of interest if the SINV proteome, when grown in multiple host cells representing vertebrate and mosquito hosts, incorporated specific host proteins from all hosts. Observation of recurrent or distinctive proteins in the virus proteome aided in the determination of proteins incorporated into the virion as opposed to those bound to the particle exterior. Mass spectrometry analysis identified the total protein content of purified virions within limits of detection. The most significant finding was that in addition to the host proteins, SINV non-structural protein 2 (nsP2) was detected within virions grown in all host cells examined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress, identifying at least one host factor integrally involved in alphavirus replication. Key to the success of this analysis is the method of virus purification which must deliver measurably infectious virus free of high levels of contaminants. For SINV and other members of the alphavirus family, this is accomplished by isopycnic centrifugation through potassium tartrate, followed by a high salt wash.
Collapse
Affiliation(s)
- Raquel Hernandez
- Department of Molecular and Structural Biology, North Carolina State University, Raleigh, USA
| | - Trevor Glaros
- U.S. Army Combat Capabilities Development Command (CCDC) Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Gabrielle Rizzo
- Excet, Inc. 6225 Brandon Ave, Suite 360, Springfield, VA 22150, USA
| | - Davis F Ferreira
- Department of Molecular and Structural Biology, North Carolina State University, Raleigh, USA.,Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication. J Virol 2018; 92:JVI.00694-18. [PMID: 29743363 PMCID: PMC6026752 DOI: 10.1128/jvi.00694-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus, to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts, and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro, and Chikungunya viruses. The most significant finding was that in addition to the host proteins, SINV nonstructural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic alphaviruses, such as Chikungunya and Mayaro viruses, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens, such as dengue fever, West Nile, and Yellow fever viruses. With few exceptions, there are no vaccines or prophylactics for these agents, leaving one-third of the world population at risk of infection. Identifying effective antivirals has been a long-term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses.
Collapse
|
10
|
Host-based lipid inflammation drives pathogenesis in Francisella infection. Proc Natl Acad Sci U S A 2017; 114:12596-12601. [PMID: 29109289 DOI: 10.1073/pnas.1712887114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry imaging (MSI) was used to elucidate host lipids involved in the inflammatory signaling pathway generated at the host-pathogen interface during a septic bacterial infection. Using Francisella novicida as a model organism, a bacterial lipid virulence factor (endotoxin) was imaged and identified along with host phospholipids involved in the splenic response in murine tissues. Here, we demonstrate detection and distribution of endotoxin in a lethal murine F. novicida infection model, in addition to determining the temporally and spatially resolved innate lipid inflammatory response in both 2D and 3D renderings using MSI. Further, we show that the cyclooxygenase-2-dependent lipid inflammatory pathway is responsible for lethality in F. novicida infection due to overproduction of proinflammatory effectors including prostaglandin E2. The results of this study emphasize that spatial determination of the host lipid components of the immune response is crucial to identifying novel strategies to effectively address highly pathogenic and lethal infections stemming from bacterial, fungal, and viral origins.
Collapse
|
11
|
Recent advances in sample pre-treatment for emerging methods in proteomic analysis. Talanta 2017; 174:738-751. [DOI: 10.1016/j.talanta.2017.06.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
|
12
|
Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection. Sci Rep 2017; 7:2786. [PMID: 28584281 PMCID: PMC5459799 DOI: 10.1038/s41598-017-03100-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome.
Collapse
|
13
|
Calprotectin as a Biomarker for Melioidosis Disease Progression and Management. J Clin Microbiol 2017; 55:1205-1210. [PMID: 28179407 DOI: 10.1128/jcm.02284-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/01/2017] [Indexed: 01/03/2023] Open
Abstract
Melioidosis is a neglected tropical disease that is caused by the bacterium Burkholderia pseudomallei and is underreported in many countries where the disease is endemic. A long and costly administration of antibiotics is needed to clear infections, and there is an unmet need for biomarkers to guide antibiotic treatment and increase the number of patients that complete therapy. We identified calprotectin as a lead biomarker of B. pseudomallei infections and examined correlations between this serum protein and the antibiotic treatment outcomes of patients with melioidosis. Serum levels of calprotectin and C-reactive protein were significantly higher in patients with melioidosis and nonmelioidosis sepsis than in healthy controls. Median calprotectin levels were higher in patients with melioidosis than in those with nonmelioidosis sepsis, whereas C-reactive protein levels were similar in both groups. Notably, intensive intravenous antibiotic treatment of patients with melioidosis resulted in lower levels of calprotectin and C-reactive protein (P < 0.0001), coinciding with recovery. The median percent reduction of calprotectin and C-reactive protein was 71% for both biomarkers after antibacterial therapy. In contrast, we found no significant differences in calreticulin levels between the two melioidosis treatment phases. Thus, reductions in serum calprotectin levels were linked to therapeutic responses to antibiotics. Our results suggest that calprotectin may be a sensitive indicator of melioidosis disease activity and illustrate the potential utility of this biomarker in guiding the duration of antibiotic therapy.
Collapse
|
14
|
Longuespée R, Casadonte R, Kriegsmann M, Pottier C, Picard de Muller G, Delvenne P, Kriegsmann J, De Pauw E. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology. Proteomics Clin Appl 2016; 10:701-19. [PMID: 27188927 DOI: 10.1002/prca.201500140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.
Collapse
Affiliation(s)
- Rémi Longuespée
- Proteopath GmbH, Trier, Germany.,Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | | | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Jörg Kriegsmann
- Proteopath GmbH, Trier, Germany.,MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Ma H, Chen G, Guo M. Mass spectrometry based translational proteomics for biomarker discovery and application in colorectal cancer. Proteomics Clin Appl 2016; 10:503-15. [PMID: 26616366 DOI: 10.1002/prca.201500082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death in the world. Clinically, early detection of the disease is the most effective approach to tackle this tough challenge. Discovery and development of reliable and effective diagnostic tools for the assessment of prognosis and prediction of response to drug therapy are urgently needed for personalized therapies and better treatment outcomes. Among many ongoing efforts in search for potential CRC biomarkers, MS-based translational proteomics provides a unique opportunity for the discovery and application of protein biomarkers toward better CRC early detection and treatment. This review updates most recent studies that use preclinical models and clinical materials for the identification of CRC-related protein markers. Some new advances in the development of CRC protein markers such as CRC stem cell related protein markers, SRM/MRM-MS and MS cytometry approaches are also discussed in order to address future directions and challenges from bench translational research to bedside clinical application of CRC biomarkers.
Collapse
Affiliation(s)
- Hong Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China.,Haematology and Oncology Division, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|