1
|
Zhao Q, Wang T, Pei FJ, Chen Y, Chang XY, Mi JM, Zhang YM. Phenotypic Plasticity of Grain Size-Related Traits in Main-Crop and Ratoon Rice. PLANT, CELL & ENVIRONMENT 2025; 48:3890-3901. [PMID: 39834074 DOI: 10.1111/pce.15397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Grain size and weight of main-crop are larger than those of ratoon rice, indicating that increasing grain size and weight of ratoon rice is an effective way to increase rice yield. Thus, grain length (GL), grain width (GW), and thousand-grain weight (TGW) of main-crop and ratoon rice in 159 indica rice accessions were used to associate with 2 017 495 SNP markers to detect quantitative trait nucleotides (QTNs) and their interactions with meteorological factors (QMIs), such as temperature and sunlight hours. Around 59 QMIs identified for temperature and 80 QMIs identified for sunlight hours, first, candidate gene LOC_Os02g40840 for GW and LOC_Os04g45480 for TGW were found to interact with temperature, while LOC_Os01g19970 for GL, LOC_Os02g39360 and LOC_Os07g05720 for GW, and LOC_Os07g49460 for TGW were found to interact with sunlight hours. Based on the results of previous studies, LOC_Os04g45480 exhibits high expression levels in the main-crop under higher temperature, thereby enhancing the accumulation of the auxin receptor TIR1. TIR1, in turn, promotes starch accumulation in the endosperm, explaining why TGW is heavier in main-crop than in ratoon rice. Finally, the analysis of best linear unbiased prediction values revealed 1 (LOC_Os08g10350) and 3 (LOC_Os02g50860, LOC_Os08g28680, and LOC_Os08g29160) candidate genes responsible for GW and TGW, respectively. In addition, we discussed the four available and six unavailable candidate genes in ratoon rice breeding. This study provides new method and genes for studying differences in grain size-related traits between main-crop and ratoon rice.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Crop Genetics and Breeding, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tian Wang
- Department of Crop Genetics and Breeding, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Fa-Jing Pei
- Department of Crop Genetics and Breeding, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ying Chen
- Department of Crop Genetics and Breeding, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yu Chang
- Department of Crop Genetics and Breeding, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Ming Mi
- Department of Crop Genetics and Breeding, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yuan-Ming Zhang
- Department of Crop Genetics and Breeding, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Cui L, Song Y, Zhao Y, Gao R, Wang Y, Lin Q, Jiang J, Xie H, Cai Q, Zhu Y, Xie H, Zhang J. Nei 6 You 7075, a hybrid rice cultivar, exhibits enhanced disease resistance and drought tolerance traits. BMC PLANT BIOLOGY 2024; 24:1252. [PMID: 39725902 DOI: 10.1186/s12870-024-05998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Rice is the main food crop for much of the population in China. Therefore, selecting and breeding new disease resistance and drought tolerance in rice is essential to ensure national food security. The utilization of heterosis has significantly enhanced rice productivity, yet many of the molecular mechanisms underlying this phenomenon remain largely unexplored. 'Nei 6 You 7075' ('N6Y7075') is a novel hybrid rice cultivar with exceptional quality, developed through the crossbreeding of 'Fuhui 7075' ('FH7075') and 'Neixiang 6 A' ('NX6A'). However, the precise mechanisms underlying the disease resistance and drought tolerance in 'N6Y7075' are poorly understood. In this study, we investigated the resistance of hybrid rice 'N6Y7075' to bacterial blight (Xanthomonas oryzae pv. oryzae), rice blast (Magnaporthe oryzae), and drought and identified differentially expressed genes between hybrid rice 'N6Y7075' and its parents through RNA-seq analysis. RESULTS Our research found that the hybrid 'N6Y7075' and its female parent 'NX6A' were less susceptible to bacterial blight and rice blast than the male parent 'FH7075', while 'FH7075' showed better drought tolerance than 'NX6A'. The hybrid 'N6Y7075' exhibited heterosis. Clustering results revealed that the expression profiles of the F1 hybrid closely resembled those of its parental lines rather than exhibiting an intermediate profile between the two parental lines. The disease resistance of hybrid rice 'N6Y7075' may be attributed to the plant-pathogen interaction pathways involving Xa21, CDPK, and RPM1-mediated hypersensitive response and WRKY1-induced defense-related gene expression and programmed cell death. The MAPK signaling pathway PR1 could also be associated with plant defense responses. Hybrid rice 'N6Y7075' may enhance drought tolerance by regulating MAPKKK17 and WAK60 in the MAPK signaling pathway. These proteins affect ABA stress adaptation and stomatal development in plants, respectively. CONCLUSIONS Our results provide a preliminary exploration of 'N6Y7075' disease resistance and drought tolerance and provide a relevant theoretical basis for its further study and use. This study provides insights into the molecular mechanisms of heterosis in hybrid rice and identifies potential associated genes.
Collapse
Affiliation(s)
- Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yu Song
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yongchao Zhao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Rongrong Gao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yingheng Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiang Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Jiahuan Jiang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P. R. China.
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China.
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China.
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China.
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
3
|
Ren Y, Wu L, Zhong Y, Zhao X, Xu M, Wang J. Transcriptome Analysis Revealed the Paternal Importance to Vegetative Growth Heterosis in Populus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2278. [PMID: 39204714 PMCID: PMC11359908 DOI: 10.3390/plants13162278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Parental selection is important for heterosis formation during crossbreeding of Populus. However, in poplar hybrids, the effect of parents on vegetative growth heterosis is not well understood. In this study, one female parent (P. simonii XY4) and two male parents (P. nigra OH and P. deltoides × P. nigra BJLY3#) were used to produce two progenies (Hyb1 and Hyb2). Vegetative growth investigation showed that both Hyb1 and Hyb2 performed heterosis in plant growth and ground diameter. The vegetative growth of hybrids was strongly correlated with the male parents but not with the female parents. The gene expression levels in the hybrids were more biased toward the male parents. In Hyb1 and Hyb2, 51.93% and 45.03% of the expressed genes showed the non-additive effect, respectively, and over 65% of the non-additively expressed genes showed the dominant effect. It is noteworthy that genes of paternal expression dominant effect (ELD_♂) account for the majority of dominantly expressed genes, suggesting the paternal contribution to heterosis. KEGG enrichment analysis indicated that a large number of non-additively expressed genes were enriched in the plant hormone signal transduction pathway. WGCNA analysis showed that MEcyan was significantly correlated with the traits of hybrids, and 12 plant hormone signal transduction pathway genes were enriched in this module. Transcription factors (TFs) MYB88, LHY, and TCP4 may be involved in the regulation of these pathway genes. This finding supported that the male parents play an important role in the formation of vegetative growth heterosis of Populus. In addition, the non-additively expressed genes of the signal transduction pathway and the regulation of TFs related to these pathway genes may be one of the reasons for the generation of heterosis.
Collapse
Affiliation(s)
- Yuxin Ren
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lixia Wu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuhang Zhong
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xinwen Zhao
- Liaoning Provincial Institute of Poplar, Gaizhou 115213, China
| | - Meng Xu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Wang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Su J, Zhao L, Yang Y, Yang Y, Zhang X, Guan Z, Fang W, Chen F, Zhang F. Comparative transcriptome analysis provides molecular insights into heterosis of waterlogging tolerance in Chrysanthemum indicum. BMC PLANT BIOLOGY 2024; 24:259. [PMID: 38594635 PMCID: PMC11005212 DOI: 10.1186/s12870-024-04954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Limin Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yingnan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yang Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
5
|
Ren X, Chen L, Deng L, Zhao Q, Yao D, Li X, Cong W, Zang Z, Zhao D, Zhang M, Yang S, Zhang J. Comparative transcriptomic analysis reveals the molecular mechanism underlying seedling heterosis and its relationship with hybrid contemporary seeds DNA methylation in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1364284. [PMID: 38444535 PMCID: PMC10913200 DOI: 10.3389/fpls.2024.1364284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Heterosis is widely used in crop production, but phenotypic dominance and its underlying causes in soybeans, a significant grain and oil crop, remain a crucial yet unexplored issue. Here, the phenotypes and transcriptome profiles of three inbred lines and their resulting F1 seedlings were analyzed. The results suggest that F1 seedlings with superior heterosis in leaf size and biomass exhibited a more extensive recompilation in their transcriptional network and activated a greater number of genes compared to the parental lines. Furthermore, the transcriptional reprogramming observed in the four hybrid combinations was primarily non-additive, with dominant effects being more prevalent. Enrichment analysis of sets of differentially expressed genes, coupled with a weighted gene co-expression network analysis, has shown that the emergence of heterosis in seedlings can be attributed to genes related to circadian rhythms, photosynthesis, and starch synthesis. In addition, we combined DNA methylation data from previous immature seeds and observed similar recompilation patterns between DNA methylation and gene expression. We also found significant correlations between methylation levels of gene region and gene expression levels, as well as the discovery of 12 hub genes that shared or conflicted with their remodeling patterns. This suggests that DNA methylation in contemporary hybrid seeds have an impact on both the F1 seedling phenotype and gene expression to some extent. In conclusion, our study provides valuable insights into the molecular mechanisms of heterosis in soybean seedlings and its practical implications for selecting superior soybean varieties.
Collapse
Affiliation(s)
- Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Lin Deng
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Qiuzhu Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Weixuan Cong
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Dingyi Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Miao Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Du F, Wang Y, Wang J, Li Y, Zhang Y, Zhao X, Xu J, Li Z, Zhao T, Wang W, Fu B. The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1859-1873. [PMID: 36988217 DOI: 10.1111/jipb.13489] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Fengping Du
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yinxiao Wang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Wang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingbo Li
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Zhang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianlong Xu
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Anhui Agricultural University, Hefei, 230036, China
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wensheng Wang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Anhui Agricultural University, Hefei, 230036, China
- Hainan Yazhou Bay Seed Lab/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Binying Fu
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Sun Z, Peng J, Lv Q, Ding J, Chen S, Duan M, He Q, Wu J, Tian Y, Yu D, Tan Y, Sheng X, Chen J, Sun X, Liu L, Peng R, Liu H, Zhou T, Xu N, Lou J, Yuan L, Wang B, Yuan D. Dissecting the genetic basis of heterosis in elite super-hybrid rice. PLANT PHYSIOLOGY 2023; 192:307-325. [PMID: 36755501 PMCID: PMC10152689 DOI: 10.1093/plphys/kiad078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Y900 is one of the top hybrid rice (Oryza sativa) varieties, with its yield exceeding 15 t·hm-2. To dissect the mechanism of heterosis, we sequenced the male parent line R900 and female parent line Y58S using long-read and Hi-C technology. High-quality reference genomes of 396.41 Mb and 398.24 Mb were obtained for R900 and Y58S, respectively. Genome-wide variations between the parents were systematically identified, including 1,367,758 single-nucleotide polymorphisms, 299,149 insertions/deletions, and 4,757 structural variations. The level of variation between Y58S and R900 was the lowest among the comparisons of Y58S with other rice genomes. More than 75% of genes exhibited variation between the two parents. Compared with other two-line hybrids sharing the same female parent, the portion of Geng/japonica (GJ)-type genetic components from different male parents increased with yield increasing in their corresponding hybrids. Transcriptome analysis revealed that the partial dominance effect was the main genetic effect that constituted the heterosis of Y900. In the hybrid, both alleles from the two parents were expressed, and their expression patterns were dynamically regulated in different tissues. The cis-regulation was dominant for young panicle tissues, while trans-regulation was more common in leaf tissues. Overdominance was surprisingly prevalent in stems and more likely regulated by the trans-regulation mechanism. Additionally, R900 contained many excellent GJ haplotypes, such as NARROW LEAF1, Oryza sativa SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13, and Grain number, plant height, and heading date8, making it a good complement to Y58S. The fine-tuned mechanism of heterosis involves genome-wide variation, GJ introgression, key functional genes, and dynamic gene/allele expression and regulation pattern changes in different tissues and growth stages.
Collapse
Affiliation(s)
- Zhizhong Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | | | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Jia Ding
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Siyang Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiang He
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Tian
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dong Yu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiabing Sheng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jin Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuewu Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Rui Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tianshun Zhou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Na Xu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jianhang Lou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bingbing Wang
- Biobin Data Sciences Co., Ltd., Changsha 410221, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
8
|
SiMYBS3, Encoding a Setaria italica Heterosis-Related MYB Transcription Factor, Confers Drought Tolerance in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065418. [PMID: 36982494 PMCID: PMC10049516 DOI: 10.3390/ijms24065418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Drought is a major limiting factor affecting grain production. Drought-tolerant crop varieties are required to ensure future grain production. Here, 5597 DEGs were identified using transcriptome data before and after drought stress in foxtail millet (Setaria italica) hybrid Zhangza 19 and its parents. A total of 607 drought-tolerant genes were screened through WGCNA, and 286 heterotic genes were screened according to the expression level. Among them, 18 genes overlapped. One gene, Seita.9G321800, encoded MYBS3 transcription factor and showed upregulated expression after drought stress. It is highly homologous with MYBS3 in maize, rice, and sorghum and was named SiMYBS3. Subcellular localization analysis showed that the SiMYBS3 protein was located in the nucleus and cytoplasm, and transactivation assay showed SiMYBS3 had transcriptional activation activity in yeast cells. Overexpression of SiMYBS3 in Arabidopsis thaliana conferred drought tolerance, insensitivity to ABA, and earlier flowering. Our results demonstrate that SiMYBS3 is a drought-related heterotic gene and it can be used for enhancing drought resistance in agricultural crop breeding.
Collapse
|
9
|
Li R, Nie S, Zhang N, Tian M, Zhang L. Transcriptome Analysis Reveals a Major Gene Expression Pattern and Important Metabolic Pathways in the Control of Heterosis in Chinese Cabbage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1195. [PMID: 36904055 PMCID: PMC10005390 DOI: 10.3390/plants12051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Although heterosis is commonly used in Chinese cabbage, its molecular basis is poorly understood. In this study, 16Chinese cabbage hybrids were utilized as test subjects to explore the potential molecular mechanism of heterosis. RNA sequencing revealed 5815-10,252 differentially expressed genes (DEGs) (female parent vs. male parent), 1796-5990 DEGs (female parent-vs-hybrid), and 2244-7063 DEGs (male parent vs. hybrid) in 16 cross combinations at the middle stage of heading. Among of them, 72.83-84.20% DEGs conformed to the dominant expression pattern, which is the predominant expression pattern in hybrids. There were 13 pathways in which DEGs were significantly enriched in most cross combinations. Among them, the plant-pathogen interaction (ko04626) and circadian rhythm-plant (ko04712)were significantly enriched by DEGs in strong heterosis hybrids. WGCNA also proved that the two pathways were significantly related to heterosis in Chinese cabbage.
Collapse
|
10
|
Huang Z, Ye J, Zhai R, Wu M, Yu F, Zhu G, Wang Z, Zhang X, Ye S. Comparative Transcriptome Analysis of the Heterosis of Salt Tolerance in Inter-Subspecific Hybrid Rice. Int J Mol Sci 2023; 24:ijms24032212. [PMID: 36768538 PMCID: PMC9916944 DOI: 10.3390/ijms24032212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Soil salinity is one of the major abiotic stresses limiting rice growth. Hybrids outperform their parents in salt tolerance in rice, while its mechanism is not completely understood. In this study, a higher seedling survival was observed after salt treatment in an inter-subspecific hybrid rice, Zhegengyou1578 (ZGY1578), compared with its maternal japonica Zhegeng7A (ZG7A) and paternal indica Zhehui1578 (ZH1578). A total of 2584 and 3061 differentially expressed genes (DEGs) with at least twofold changes were identified between ZGY1578 and ZG7A and between ZGY1578 and ZH1578, respectively, in roots under salt stress using the RNA sequencing (RNA-Seq) approach. The expressions of a larger number of DEGs in hybrid were lower or higher than those of both parents. The DEGs associated with transcription factors, hormones, and reactive oxygen species (ROS)-related genes might be involved in the heterosis of salt tolerance. The expressions of the majority of transcription factors and ethylene-, auxin-, and gibberellin-related genes, as well as peroxidase genes, were significantly higher in the hybrid ZGY1578 compared with those of both parents. The identified genes provide valuable clues to elucidate the heterosis of salt tolerance in inter-subspecific hybrid rice.
Collapse
Affiliation(s)
- Zhibo Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingming Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (X.Z.); (S.Y.)
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (X.Z.); (S.Y.)
| |
Collapse
|
11
|
Liu X, Deng X, Kong W, Sun T, Li Y. The Pyramiding of Elite Allelic Genes Related to Grain Number Increases Grain Number per Panicle Using the Recombinant Lines Derived from Indica-japonica Cross in Rice. Int J Mol Sci 2023; 24:ijms24021653. [PMID: 36675168 PMCID: PMC9865901 DOI: 10.3390/ijms24021653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Indica(xian)-japonica(geng) hybrid rice has many heterosis traits that can improve rice yield. However, the traditional hybrid technology will struggle to meet future needs for the development of higher-yield rice. Available genomics resources can be used to efficiently understand the gene-trait association trait for rice breeding. Based on the previously constructed high-density genetic map of 272 high-generation recombinant inbred lines (RILs) originating from the cross of Luohui 9 (indica, as female) and RPY geng (japonica, as male) and high-quality genomes of parents, here, we further explore the genetic basis for an important complex trait: possible causes of grain number per panicle (GNPP). A total of 20 genes related to grains number per panicle (GNPP) with the differences of protein amino acid between LH9 and RPY were used to analyze genotype combinations, and PCA results showed a combination of PLY1, LAX1, DTH8 and OSH1 from the RPY geng with PYL4, SP1, DST and GNP1 from Luohui 9 increases GNPP. In addition, we also found that the combination of LAX1-T2 and GNP1-T3 had the most significant increase in GNPP. Notably, Molecular Breeding Knowledgebase (MBK) showed a few aggregated rice cultivars, LAX1-T2 and GNP1-T3, which may be a result of the natural geographic isolation between the two gene haplotypes. Therefore, we speculate that the pyramiding of japonica-type LAX-T2 with indica-type GNP1-T3 via hybridization can significantly improve rice yield by increasing GNPP.
Collapse
Affiliation(s)
- Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
12
|
Zhou T, Afzal R, Haroon M, Ma Y, Zhang H, Li L. Dominant complementation of biological pathways in maize hybrid lines is associated with heterosis. PLANTA 2022; 256:111. [PMID: 36352050 DOI: 10.1007/s00425-022-04028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Allele-specific expressed genes (ASEGs) are widespread in maize hybrid lines and play important roles of complementation of biological pathways in heterosis. Heterosis (hybrid vigor) is an important phenomenon with both theoretical and practical value. However, our understanding of the genetic and molecular mechanisms behind heterosis is still limited. Here, we analyzed a comprehensive dataset of maize (Zea mays L.), including RNA-seq data from three hybrid-parent triplets (HPTs) and acetylated protein data from one HPT. The gene expression patterns exhibited extensive variation between the hybrids and their parents, and a substantial number of allele-specific expressed genes (ASEGs) were identified in the hybrids. Notably, ASEGs from different HPTs were significantly enriched in various conserved pathways. The parental alleles of ASEGs with fewer deleterious single-nucleotide polymorphisms were more likely to be expressed in hybrid lines than other parental alleles. ASEGs were mainly enriched in the functional gene ontology terms protein biosynthesis, photosynthesis, and metabolism. In addition, the ASEGs across the three HPTs were involved in key photosynthetic pathways and might enhance the photosynthetic efficiency of the hybrids. These findings suggest that ASEGs involved in complementary biological pathways in maize hybrids contribute to heterosis, shedding new light on the molecular mechanism of heterosis.
Collapse
Affiliation(s)
- Tao Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rabail Afzal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuting Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Zhou D, Zhou X, Sun C, Tang G, Liu L, Chen L, He H, Xiong Q. Transcriptome and Metabolome Analysis Provides Insights into the Heterosis of Yield and Quality Traits in Two Hybrid Rice Varieties (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232112934. [PMID: 36361748 PMCID: PMC9654843 DOI: 10.3390/ijms232112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Heterosis is a common biological phenomenon that is useful for breeding superior lines. Using heterosis to increase the yield and quality of crops is one of the main achievements of modern agricultural science. In this study, we analysed the transcriptome and metabolome of two three-line hybrid rice varieties, Taiyou 871 (TY871), and Taiyou 398 (TY398) and the parental grain endosperm using RNA-seq (three biological repeats per variety) and untargeted metabolomic (six biological repeats per variety) methods. TY871 and TY398 showed specific heterosis in yield and quality. Transcriptome analysis of the hybrids revealed 638 to 4059 differentially expressed genes in the grain when compared to the parents. Metabolome analysis of the hybrids revealed 657 to 3714 differential grain metabolites when compared to the parents. The honeydew1 and grey60 module core genes Os04g0350700 and Os05g0154700 are involved in the regulation of awn development, grain size, and grain number, as well as the regulation of grain length and plant height, respectively. Rice grain length may be an important indicator for improving the quality of three-line hybrid rice. In addition, the rice quality-related metabolite NEG_M341T662 was highly connected to the module core genes Os06g0254300 and Os03g0168100. The functions of Os06g0254300 and Os03g0168100 are EF-hand calcium binding protein and late embroideries absolute protein repeat containing protein, respectively. These genes may play a role in the formation of rice quality. We constructed a gene and metabolite coexpression network, which provides a scientific basis for the utilization of heterosis in producing high-yield and high-quality hybrid rice.
Collapse
Affiliation(s)
- Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinyi Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Guoping Tang
- Jiangxi Academy of Agricultural Sciences Rice Research Institute, Nanchang 330200, China
| | - Lin Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Le Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (H.H.); (Q.X.)
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.H.); (Q.X.)
| |
Collapse
|
14
|
Zafar S, You H, Zhang F, Zhu SB, Chen K, Shen C, Wu H, Zhu F, Zhang C, Xu J. Genetic dissection of grain traits and their corresponding heterosis in an elite hybrid. FRONTIERS IN PLANT SCIENCE 2022; 13:977349. [PMID: 36275576 PMCID: PMC9581170 DOI: 10.3389/fpls.2022.977349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Rice productivity has considerably improved due to the effective employment of heterosis, but the genetic basis of heterosis for grain shape and weight remains uncertain. For studying the genetic dissection of heterosis for grain shape/weight and their relationship with grain yield in rice, quantitative trait locus (QTL) mapping was performed on 1,061 recombinant inbred lines (RILs), which was developed by crossing xian/indica rice Quan9311B (Q9311B) and Wu-shan-si-miao (WSSM). Whereas, BC1F1 (a backcross F1) was developed by crossing RILs with Quan9311A (Q9311A) combined with phenotyping in Hefei (HF) and Nanning (NN) environments. Overall, 114 (main-effect, mQTL) and 359 (epistatic QTL, eQTL) were identified in all populations (RIL, BC1F1, and mid-parent heterosis, HMPs) for 1000-grain weight (TGW), grain yield per plant (GYP) and grain shape traits including grain length (GL), grain width (GW), and grain length to width ratio (GLWR). Differential QTL detection revealed that all additive loci in RILs population do not show heterotic effects, and few of them affect the performance of BC1F1. However, 25 mQTL not only contributed to BC1F1's performance but also contributed to heterosis. A total of seven QTL regions was identified, which simultaneously affected multiple grain traits (grain yield, weight, shape) in the same environment, including five regions with opposite directions and two regions with same directions of favorable allele effects, indicating that partial genetic overlaps are existed between different grain traits. This study suggested different approaches for obtaining good grain quality with high yield by pyramiding or introgressing favorable alleles (FA) with the same direction of gene effect at the QTL regions affecting grain shape/weight and grain yield distributing on different chromosomes, or introgressing or pyramiding FA in the parents instead of fixing additive effects in hybrid as well as pyramiding the polymorphic overdominant/dominant loci between the parents and eliminating underdominant loci from the parents. These outcomes offer valuable information and strategy to develop hybrid rice with suitable grain type and weight.
Collapse
Affiliation(s)
- Sundus Zafar
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui You
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Bin Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Congcong Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hezhou Wu
- Hunan Tao-Hua-Yuan Agricultural Technologies Co., LTD., Hunan, China
| | - Fangjin Zhu
- Hunan Tao-Hua-Yuan Agricultural Technologies Co., LTD., Hunan, China
| | | | - Jianlong Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
15
|
QTL Mapping and Candidate Gene Analysis for Seed Germination Response to Low Temperature in Rice. Int J Mol Sci 2022; 23:ijms23137379. [PMID: 35806382 PMCID: PMC9266303 DOI: 10.3390/ijms23137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Low temperature is a serious threat to the seed emergence of rice, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In the current experiment, 120 lines of the Cheongcheong Nagdong Double Haploid (CNDH) population were used for quantitative trait locus (QTL) analysis of low-temperature germinability. The results showed a significant difference in germination under low different temperature (LDT) (15 °C, 20 °C) conditions. In total, four QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the four QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real-time polymerase chain reaction (qRT-PCR). Based on gene function annotation and level of expression under low-temperature, our study suggested the OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding and lay the basis for further mining molecular mechanisms of low-temperature germination tolerance in rice.
Collapse
|
16
|
Fu J, Zhang Y, Yan T, Li Y, Jiang N, Zhou Y, Zhou Q, Qin P, Fu C, Lin H, Zhong J, Han X, Lin Z, Wang F, He H, Wang K, Yang Y. Transcriptome profiling of two super hybrid rice provides insights into the genetic basis of heterosis. BMC PLANT BIOLOGY 2022; 22:314. [PMID: 35773646 PMCID: PMC9245205 DOI: 10.1186/s12870-022-03697-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/15/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Heterosis is a phenomenon that hybrids show superior performance over their parents. The successful utilization of heterosis has greatly improved rice productivity, but the molecular basis of heterosis remains largely unclear. RESULTS Here, the transcriptomes of young panicles and leaves of the two widely grown two-line super hybrid rice varieties (Jing-Liang-You-Hua-Zhan (JLYHZ) and Long-Liang-You-Hua-Zhan (LLYHZ)) and their parents were analyzed by RNA-seq. Transcriptome profiling of the hybrids revealed 1,778 ~ 9,404 differentially expressed genes (DEGs) in two tissues, which were identified by comparing with their parents. GO, and KEGG enrichment analysis showed that the pathways significantly enriched in both tissues of two hybrids were all related to yield and resistance, like circadian rhythm (GO:0,007,623), response to water deprivation (GO:0,009,414), and photosynthetic genes (osa00196). Allele-specific expression genes (ASEGs) were also identified in hybrids. The ASEGs were most significantly enriched in ionotropic glutamate receptor signaling pathway, which was hypothesized to be potential amino acid sensors in plants. Moreover, the ASEGs were also differentially expressed between parents. The number of variations in ASEGs is higher than expected, especially for large effect variations. The DEGs and ASEGs are the potential reasons for the formation of heterosis in the two elite super hybrid rice. CONCLUSIONS Our results provide a comprehensive understanding of the heterosis of two-line super hybrid rice and facilitate the exploitation of heterosis in hybrid rice breeding with high yield heterosis.
Collapse
Affiliation(s)
- Jun Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Yilin Zhang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Tianze Yan
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Yanfeng Li
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Nan Jiang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Yanbiao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Qunfeng Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Peng Qin
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Chenjian Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Haiyan Lin
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Jing Zhong
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China
| | - Xue Han
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zechuan Lin
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Fei Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China.
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Longping Hi-Tech (Sanya) Overseas Seed Industry R&D Co., Ltd, Sanya, 572099, China.
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128, China.
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| |
Collapse
|
17
|
Ma Y, Li D, Xu Z, Gu R, Wang P, Fu J, Wang J, Du W, Zhang H. Dissection of the Genetic Basis of Yield Traits in Line per se and Testcross Populations and Identification of Candidate Genes for Hybrid Performance in Maize. Int J Mol Sci 2022; 23:5074. [PMID: 35563470 PMCID: PMC9102962 DOI: 10.3390/ijms23095074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
Dissecting the genetic basis of yield traits in hybrid populations and identifying the candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV as the parental lines. The population was genotyped with 55,000 SNPs and testcrossed to Chang7-2 and PH6WC (two testers) to construct two testcross (TC) populations. The three populations were evaluated for hundred kernel weight (HKW) and yield per plant (YPP) in multiple environments. Marker-trait association analysis (MTA) identified 24 to 151 significant SNPs in the three populations. Comparison of the significant SNPs identified common and specific quantitative trait locus/loci (QTL) in the LPS and TC populations. Genetic feature analysis of these significant SNPs proved that these SNPs were associated with the tested traits and could be used to predict trait performance of both LPS and TC populations. RNA-seq analysis was performed using maize hybrid varieties and their parental lines, and differentially expressed genes (DEGs) between hybrid varieties and parental lines were identified. Comparison of the chromosome positions of DEGs with those of significant SNPs detected in the TC population identified potential candidate genes that might be related to hybrid performance. Combining RNA-seq analysis and MTA results identified candidate genes for hybrid performance, providing information that could be useful for maize hybrid breeding.
Collapse
Affiliation(s)
- Yuting Ma
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China;
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Dongdong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Zhenxiang Xu
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Riliang Gu
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Pingxi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Junjie Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Jianhua Wang
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Wanli Du
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Hongwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| |
Collapse
|
18
|
Chen L, Zhu Y, Ren X, Yao D, Song Y, Fan S, Li X, Zhang Z, Yang S, Zhang J, Zhang J. Heterosis and Differential DNA Methylation in Soybean Hybrids and Their Parental Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091136. [PMID: 35567137 PMCID: PMC9102035 DOI: 10.3390/plants11091136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 05/26/2023]
Abstract
Heterosis is an important biological phenomenon and is widely applied to increase agricultural productivity. However, the underlying molecular mechanisms of heterosis are still unclear. Here we constructed three combinations of reciprocal hybrids of soybean, and subsequently used MethylRAD-seq to detect CCGG and CCWGG (W = A or T) methylation in the whole genome of these hybrids and their parents at the middle development period of contemporary seed. We were able to prove that changes in DNA methylation patterns occurred in immature hybrid seeds and the parental variation was to some degree responsible for differential expression between the reciprocal hybrids. Non-additive differential methylation sites (DMSs) were also identified in large numbers in hybrids. Interestingly, most of these DMSs were hyper-methylated and were more concentrated in gene regions than the natural distribution of the methylated sites. Further analysis of the non-additive DMSs located in gene regions exhibited their participation in various biological processes, especially those related to transcriptional regulation and hormonal function. These results revealed DNA methylation reprogramming pattern in the hybrid soybean, which is associated with phenotypic variation and heterosis initiation.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Yanyu Zhu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yang Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Sujie Fan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Zhuo Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
- Department Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
19
|
Shen G, Hu W, Wang X, Zhou X, Han Z, Sherif A, Ayaad M, Xing Y. Assembly of yield heterosis of an elite rice hybrid is promising by manipulating dominant quantitative trait loci. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:688-701. [PMID: 34995015 DOI: 10.1111/jipb.13220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 05/27/2023]
Abstract
In the past, rice hybrids with strong heterosis have been obtained empirically, by developing and testing thousands of combinations. Here, we aimed to determine whether heterosis of an elite hybrid could be achieved by manipulating major quantitative trait loci. We used 202 chromosome segment substitution lines from the elite hybrid Shanyou 63 to evaluate single segment heterosis (SSH) of yield per plant and identify heterotic loci. All nine detected heterotic loci acted in a dominant fashion, and no SSH exhibited overdominance. Functional alleles of key yield-related genes Ghd7, Ghd7.1, Hd1, and GS3 were dispersed in both parents. No functional alleles of three investigated genes were expressed at higher levels in the hybrids than in the more desirable parents. A hybrid pyramiding eight heterotic loci in the female parent Zhenshan 97 background had a comparable yield to Shanyou 63 and much higher yield than Zhenshan 97. Five hybrids pyramiding eight or nine heterotic loci in the combined parental genome background showed similar yield performance to that of Shanyou 63. These results suggest that dominance underlying functional complementation is an important contributor to yield heterosis and that heterosis assembly might be successfully promised by manipulating several major dominant heterotic loci.
Collapse
Affiliation(s)
- Guojing Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianmeng Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhongming Han
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Sherif
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Mohammed Ayaad
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Abo-Zaabal, 13759, Egypt
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
20
|
Coelho de Sousa I, Nascimento M, de Castro Sant’anna I, Teixeira Caixeta E, Ferreira Azevedo C, Damião Cruz C, Lopes da Silva F, Ruas Alkimim E, Campana Nascimento AC, Vergara Lopes Serão N. Marker effects and heritability estimates using additive-dominance genomic architectures via artificial neural networks in Coffea canephora. PLoS One 2022; 17:e0262055. [PMID: 35081139 PMCID: PMC8791507 DOI: 10.1371/journal.pone.0262055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many methodologies are used to predict the genetic merit in animals and plants, but some of them require priori assumptions that may increase the complexity of the model. Artificial neural network (ANN) has advantage to not require priori assumptions about the relationships between inputs and the output allowing great flexibility to handle different types of complex non-additive effects, such as dominance and epistasis. Despite this advantage, the biological interpretability of ANNs is still limited. The aim of this research was to estimate the heritability and markers effects for two traits in Coffea canephora using an additive-dominance architecture ANN and to compare it with genomic best linear unbiased prediction (GBLUP). The data used consists of 51 clones of C. canephora varietal Conilon, 32 of varietal group Robusta and 82 intervarietal hybrids. From this, 165 phenotyped individuals were genotyped for 14,387 SNPs. Due to the high computational cost of ANNs, we used Bagging decision tree to reduce the dimensionality of the data, selecting the markers that accumulated 70% of the total importance. An ANN with three hidden layers was run, each varying from 1 to 40 neurons summing 64,000 neural networks. The network architectures with the best predictive ability were selected. The best architectures were composed by 4, 15, and 33 neurons in the first, second and third hidden layers, respectively, for yield, and by 13, 20, and 24 neurons, respectively for rust resistance. The predictive ability was greater when using ANN with three hidden layers than using one hidden layer and GBLUP, with 0.72 and 0.88 for yield and coffee leaf rust resistance, respectively. The concordance rate (CR) of the 10% larger markers effects among the methods varied between 10% and 13.8%, for additive effects and between 5.4% and 11.9% for dominance effects. The narrow-sense ([Formula: see text]) and dominance-only ([Formula: see text]) heritability estimates were 0.25 and 0.06, respectively, for yield, and 0.67 and 0.03, respectively for rust resistance. The ANN was able to estimate the heritabilities from an additive-dominance genomic architectures and the ANN with three hidden layers obtained best predictive ability when compared with those obtained from GBLUP and ANN with one hidden layer.
Collapse
Affiliation(s)
- Ithalo Coelho de Sousa
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Moysés Nascimento
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Isabela de Castro Sant’anna
- Rubber Tree and Agroforestry Systems Research Center, Campinas Agronomy Institute (IAC), Votuporanga, São Paulo, Brazil
| | | | | | - Cosme Damião Cruz
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Felipe Lopes da Silva
- Department of Plant Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
21
|
Zhang M, Li N, Yang W, Liu B. Genome-wide differences in gene expression and alternative splicing in developing embryo and endosperm, and between F1 hybrids and their parental pure lines in sorghum. PLANT MOLECULAR BIOLOGY 2022; 108:1-14. [PMID: 34846608 DOI: 10.1007/s11103-021-01196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Developing embryo and endosperm of sorghum show substantial and multifaceted differences in gene expression and alternative splicing, which are potentially relevant to heterosis. Differential regulation of gene expression and alternative splicing (AS) are major molecular mechanisms dictating plant growth and development, as well as underpinning heterosis in F1 hybrids. Here, using deep RNA-sequencing we analyzed differences in genome-wide gene expression and AS between developing embryo and endosperm, and between F1 hybrids and their pure-line parents in sorghum. We uncover dramatic differences in both gene expression and AS between embryo and endosperm with respect to gene features and functions, which are consistent with the fundamentally different biological roles of the two tissues. Accordingly, F1 hybrids showed substantial and multifaceted differences in gene expression and AS compared with their pure-line parents, again with clear tissue specificities including extents of difference, genes involved and functional enrichments. Our results provide useful transcriptome resources as well as novel insights for further elucidation of seed yield heterosis in sorghum and related crops.
Collapse
Affiliation(s)
- Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Weiguang Yang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
22
|
Wang M, Wang J. Transcriptome and DNA methylome analyses provide insight into the heterosis in flag leaf of inter-subspecific hybrid rice. PLANT MOLECULAR BIOLOGY 2022; 108:105-125. [PMID: 34855066 DOI: 10.1007/s11103-021-01228-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/22/2021] [Indexed: 05/26/2023]
Abstract
Flag leaf heterosis of inter-subspecific hybrid rice is suggested to be related to leaf area, gene expression pattern and allele-specific expression, putatively related to DNA methylation differences between the hybrid and its parents. Inter-subspecific hybrid rice combinations of indica × japonica have great potential to broaden genetic diversity and enhance the heterosis. The genetic and epigenetic molecular mechanism of its heterosis is not completely understood. Here, the dissection of gene expression and epigenetic regulation of an elite inter-subspecific hybrid rice were reported. In the hybrid, plant height, flag leaf area and Pn showed significant heterosis at the heading stage. Chloroplast-related differentially expressed genes (DEGs) and 530 allele-specific expression genes in hybrid were identified. Analysis of the genome-wide distribution of DNA methylation (5-methylcytosine, 5mC) and its association with transcription showed that there were variant DNA methylation maps and that the regulation of gene expression levels was negatively regulated by DNA methylation in the inter-subspecific hybrid rice. Differentially methylated DEGs were significantly enriched in photosynthetic functions. Moreover, distinct 5mC sequence contexts and distinct functional elements (promoter/gene body) may have different influences on heterosis related genes. The data identified heterosis related molecular mechanisms in inter-subspecific hybrid rice and suggested that epigenetic changes could extensively influence the flag leaf gene expression and heterosis.
Collapse
Affiliation(s)
- Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Wu X, Liu Y, Zhang Y, Gu R. Advances in Research on the Mechanism of Heterosis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:745726. [PMID: 34646291 PMCID: PMC8502865 DOI: 10.3389/fpls.2021.745726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Heterosis is a common biological phenomenon in nature. It substantially contributes to the biomass yield and grain yield of plants. Moreover, this phenomenon results in high economic returns in agricultural production. However, the utilization of heterosis far exceeds the level of theoretical research on this phenomenon. In this review, the recent progress in research on heterosis in plants was reviewed from the aspects of classical genetics, parental genetic distance, quantitative trait loci, transcriptomes, proteomes, epigenetics (DNA methylation, histone modification, and small RNA), and hormone regulation. A regulatory network of various heterosis-related genes under the action of different regulatory factors was summarized. This review lays a foundation for the in-depth study of the molecular and physiological aspects of this phenomenon to promote its effects on increasing the yield of agricultural production.
Collapse
Affiliation(s)
- Xilin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Ran Gu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Shu HY, Zhou H, Mu HL, Wu SH, Jiang YL, Yang Z, Hao YY, Zhu J, Bao WL, Cheng SH, Zhu GP, Wang ZW. Integrated Analysis of mRNA and Non-coding RNA Transcriptome in Pepper ( Capsicum chinense) Hybrid at Seedling and Flowering Stages. Front Genet 2021; 12:685788. [PMID: 34490032 PMCID: PMC8417703 DOI: 10.3389/fgene.2021.685788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Pepper is an important vegetable in the world. In this work, mRNA and ncRNA transcriptome profiles were applied to understand the heterosis effect on the alteration in the gene expression at the seedling and flowering stages between the hybrid and its parents in Capsicum chinense. Our phenotypic data indicated that the hybrid has dominance in leaf area, plant scope, plant height, and fruit-related traits. Kyoto Encyclopedia of Genes and Genomes analysis showed that nine members of the plant hormone signal transduction pathway were upregulated in the seedling and flowering stages of the hybrid, which was supported by weighted gene coexpression network analysis and that BC332_23046 (auxin response factor 8), BC332_18317 (auxin-responsive protein IAA20), BC332_13398 (ethylene-responsive transcription factor), and BC332_27606 (ethylene-responsive transcription factor WIN1) were candidate hub genes, suggesting the important potential role of the plant hormone signal transduction in pepper heterosis. Furthermore, some transcription factor families, including bHLH, MYB, and HSF were greatly over-dominant. We also identified 2,525 long ncRNAs (lncRNAs), 47 micro RNAs (miRNAs), and 71 circle RNAs (circRNAs) in the hybrid. In particular, downregulation of miR156, miR169, and miR369 in the hybrid suggested their relationship with pepper growth vigor. Moreover, we constructed some lncRNA–miRNA–mRNA regulatory networks that showed a multi-dimension to understand the ncRNA relationship with heterosis. These results will provide guidance for a better understanding of the molecular mechanism involved in pepper heterosis.
Collapse
Affiliation(s)
- Huang-Ying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - He Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Hai-Ling Mu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Shu-Hua Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Yi-Li Jiang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Zhuang Yang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Yuan-Yuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Wen-Long Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Shan-Han Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Guo-Peng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Zhi-Wei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
25
|
Molecular and Genetic Aspects of Grain Number Determination in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22020728. [PMID: 33450933 PMCID: PMC7828406 DOI: 10.3390/ijms22020728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Rice grain yield is a complex trait determined by three components: panicle number, grain number per panicle (GNPP) and grain weight. GNPP is the major contributor to grain yield and is crucial for its improvement. GNPP is determined by a series of physiological and biochemical steps, including inflorescence development, formation of rachis branches such as primary rachis branches and secondary rachis branches, and spikelet specialisation (lateral and terminal spikelets). The molecular genetic basis of GNPP determination is complex, and it is regulated by numerous interlinked genes. In this review, panicle development and the determination of GNPP is described briefly, and GNPP-related genes that influence its determination are categorised according to their regulatory mechanisms. We introduce genes related to rachis branch development and their regulation of GNPP, genes related to phase transition (from rachis branch meristem to spikelet meristem) and their regulation of GNPP, and genes related to spikelet specialisation and their regulation of GNPP. In addition, we describe other GNPP-related genes and their regulation of GNPP. Research on GNPP determination suggests that it is possible to cultivate rice varieties with higher grain yield by modifying GNPP-related genes.
Collapse
|
26
|
Liu C, Huang R, Wang L, Liang G. Functional Identification of EjGIF1 in Arabidopsis and Preliminary Analysis of Its Regulatory Mechanisms in the Formation of Triploid Loquat Leaf Heterosis. FRONTIERS IN PLANT SCIENCE 2021; 11:612055. [PMID: 33510754 PMCID: PMC7835675 DOI: 10.3389/fpls.2020.612055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Although several results have been obtained in triploid loquat heterosis (i.e., leaf size of triploid loquat) studies in the past years, the underlying mechanisms of the heterosis are still largely unknown, especially the regulation effects of one specific gene on the corresponding morphology heterosis. In this study, we sought to further illustrate the regulatory mechanisms of one specific gene on the leaf size heterosis of triploid loquats. A leaf size development-related gene (EjGIF1) and its promoter were successfully cloned. Ectopic expression of EjGIF1 in Arabidopsis showed that the leaf size of transgenic plantlets was larger than that of WTs, and the transgenic plantlets had more leaves than WTs. Quantitative Reverse Transcription PCR (qRT-PCR) showed that the expression level of EjGIF1 showed an AHP expression pattern in most of the hybrids, and this was consistent with our previous phenotype observations. Structure analysis of EjGIF1 promoter showed that there were significantly more light-responsive elements than other elements. To further ascertain the regulatory mechanisms of EjGIF1 on triploid loquat heterosis, the methylation levels of EjGIF1 promoter in different ploidy loquats were analyzed by using bisulfite sequencing. Surprisingly, the total methylation levels of EjGIF1 promoter in triploid showed a decreasing trend compared with the mid-parent value (MPV), and this was also consistent with the qRT-PCR results of EjGIF1. Taken together, our results suggested that EjGIF1 played an important role in promoting leaf size development of loquat, and demethylation of EjGIF1 promoter in triploid loquats caused EjGIF1 to exhibit over-dominance expression pattern and then further to promote leaf heterosis formation. In conclusion, EjGIF1 played an important role in the formation of triploid loquat leaf size heterosis.
Collapse
Affiliation(s)
- Chao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renwei Huang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Lingli Wang
- Technical Advice Station of Economic Crop, Chongqing, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Ren J, Zhang F, Gao F, Zeng L, Lu X, Zhao X, Lv J, Su X, Liu L, Dai M, Xu J, Ren G. Transcriptome and genome sequencing elucidates the molecular basis for the high yield and good quality of the hybrid rice variety Chuanyou6203. Sci Rep 2020; 10:19935. [PMID: 33203889 PMCID: PMC7673993 DOI: 10.1038/s41598-020-76762-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
The yield heterosis of rice is sought by farmers and strong contributes to food safety, but the quality of hybrid rice may be reduced. Therefore, developing new varieties with both high yield and good quality is a heavily researched topic in hybrid rice breeding. However, the molecular mechanism governing yield heterosis and high rice quality has not been elucidated to date. In this study, a comparative transcriptomics and genomic analysis was performed on a hybrid rice variety, Chuanyou6203 (CY6203), and its parents to investigate the molecular mechanism and gene regulation network governing the formation of yield and quality stages. A total of 66,319 SNPs and InDels between CH3203 and C106B were detected in the 5'-UTR, exon, intronic, and 3'-UTR regions according to the reference genome annotation, which involved 7473 genes. A total of 436, 70, 551, 993, and 1216 common DEGs between CY6203 and both of its parents were identified at the same stage in panicles and flag leaves. Of the common DEGs, the numbers of upregulated DEGs between CY6203 and CH3203 were all greater than those of upregulated DEGs between CY6203 and C106B in panicles and flag leaves at the booting, flowering, and middle filling stages. Approximately 40.61% of mRNA editing ratios were between 0.4 and 0.6, and 1.68% of mRNA editing events (editing ratio ≥ 0.8) in CY6203 favored one of its parents at three stages or a particular stage, suggesting that the hypothetical heterosis mechanism of CY6203 might involve dominance or epistasis. Also 15,934 DEGs were classified into 19 distinct modules that were classified into three groups by the weighted gene coexpression network analysis. Through transcriptome analysis of panicles and flag leaves in the yield and quality stages, the DEGs in the green-yellow module primarily contributed to the increase in the source of CY6203 due to an in increase in photosynthetic efficiency and nitrogen utilization efficiency, and a small number of DEGs related to the grain number added spikelet number per panicle amplified its sink. The balanced expression of the major high-quality alleles of C106B and CH3203 in CY6203 contributed to the outstanding quality of CY6203. Our transcriptome and genome analyses offer a new data set that may help to elucidate the molecular mechanism governing the yield heterosis and high quality of a hybrid rice variety.
Collapse
Affiliation(s)
- Juansheng Ren
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Fangyuan Gao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Lihua Zeng
- Sichuan Normal University, Chengdu, 610066, People's Republic of China
| | - Xianjun Lu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianqun Lv
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Xiangwen Su
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Liping Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Mingli Dai
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guangjun Ren
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China.
| |
Collapse
|
28
|
Huang Z, Lv Q, Xin Y, Yuan L, Fu X, Zhu L, Wang Z. Heterotic performance of the main yield traits in different types of
Indica
hybrid rice. Food Energy Secur 2020. [DOI: 10.1002/fes3.210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- ZhiYuan Huang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Hunan Agricultural University Changsha China
- State Key Laboratory of Hybrid Rice Hunan Hybrid Rice Research Center Changsha China
| | - QiMing Lv
- State Key Laboratory of Hybrid Rice Hunan Hybrid Rice Research Center Changsha China
| | - YeYun Xin
- State Key Laboratory of Hybrid Rice Hunan Hybrid Rice Research Center Changsha China
| | - LongPing Yuan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Hunan Agricultural University Changsha China
- State Key Laboratory of Hybrid Rice Hunan Hybrid Rice Research Center Changsha China
| | - XiQin Fu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Hunan Agricultural University Changsha China
- State Key Laboratory of Hybrid Rice Hunan Hybrid Rice Research Center Changsha China
| | - LiHuang Zhu
- State Key Laboratory of Hybrid Rice Hunan Hybrid Rice Research Center Changsha China
- State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - ZhiLong Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Hunan Agricultural University Changsha China
| |
Collapse
|
29
|
Ghaleb MAA, Li C, Shahid MQ, Yu H, Liang J, Chen R, Wu J, Liu X. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles. BMC PLANT BIOLOGY 2020; 20:83. [PMID: 32085735 PMCID: PMC7035737 DOI: 10.1186/s12870-020-2291-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Neo-tetraploid rice, which is a new germplasm developed from autotetraploid rice, has a powerful biological and yield potential and could be used for commercial utilization. The length of panicle, as a part of rice panicle architecture, contributes greatly to high yield. However, little information about long panicle associated with heterosis or hybrid vigor is available in neo-tetraploid rice. RESULTS In the present study, we developed a neo-tetraploid rice line, Huaduo 8 (H8), with long panicles and harboring wide-compatibility genes for pollen and embryo sac fertility. All the hybrids generated by H8 produced significant high-parent yield heterosis and displayed long panicles similar to H8. RNA-seq analysis detected a total of 4013, 7050, 6787 and 6195 differentially expressed genes uniquely belonging to F1 and specifically (DEGFu-sp) associated with leaf, sheath, main panicle axis and spikelet in the two hybrids, respectively. Of these DEGFu-sp, 279 and 89 genes were involved in kinase and synthase, and 714 cloned genes, such as GW8, OsGA20ox1, Ghd8, GW6a, and LP1, were identified and validated by qRT-PCR. A total of 2925 known QTLs intervals, with an average of 1~100 genes per interval, were detected in both hybrids. Of these, 109 yield-related QTLs were associated with seven important traits in rice. Moreover, 1393 non-additive DEGs, including 766 up-regulated and 627 down-regulated, were detected in both hybrids. Importantly, eight up-regulated genes associated with panicle were detected in young panicles of the two hybrids compared to their parents by qRT-PCR. Re-sequencing analysis depicted that LP (a gene controlling long panicle) sequence of H8 was different from many other neo-tetraploid rice and most of the diploid and autotetraploid lines. The qRT-PCR results showed that LP was up-regulated in the hybrid compared to its parents at very young stage of panicle development. CONCLUSIONS These results suggested that H8 could overcome the intersubspecific autotetraploid hybrid rice sterility caused by embryo sac and pollen sterility loci. Notably, long panicles of H8 showed dominance phenomenon and played an important role in yield heterosis, which is a complex molecular mechanism. The neo-tetraploid rice is a useful germplasm to attain high yield of polyploid rice.
Collapse
Affiliation(s)
- Mohammed Abdullah Abdulraheem Ghaleb
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Cong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Junhong Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Ruoxin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| |
Collapse
|
30
|
Su R, Zhou R, Mmadi MA, Li D, Qin L, Liu A, Wang J, Gao Y, Wei M, Shi L, Wu Z, You J, Zhang X, Dossa K. Root diversity in sesame (Sesamum indicum L.): insights into the morphological, anatomical and gene expression profiles. PLANTA 2019; 250:1461-1474. [PMID: 31321496 DOI: 10.1007/s00425-019-03242-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
Sesame harbors a large diversity in root morphological and anatomical traits and a high root biomass improves the plant aboveground biomass as well as the seed yield. Sesame provides one of the most nutritious and healthy vegetable oils, sparking an increasing demand of its seeds. However, with the low yield and productivity of sesame, there is still a huge gap between the seed demand and supply. Improving the root system has a high potential to increase crop productivity, but information on the diversity of the sesame root systems is still lacking. In this study, 40 diverse sesame varieties were grown in soil and hydroponics systems and the diversity of the root system was investigated. The results showed that sesame holds a large root morphological and anatomical diversity, which can be harnessed in breeding programmes. Based on the clustering of the genotypes in hydroponics and soil culture systems, we found that similar genotypes were commonly clustered either in the small-root or in the big-root group, indicating that the hydroponics system can be employed for a large-scale root phenotyping. Our results further revealed that the root biomass positively contributes to increased seed yield in sesame, based on multi-environmental trials. By comparing the root transcriptome of two contrasting genotypes, 2897 differentially expressed genes were detected and they were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, flavonoid biosynthesis, suggesting that these pathways are crucial for sesame root growth and development. Overall, this study sheds light on the diversity of sesame root system and offers the basis for improving root traits and increasing sesame seed yield.
Collapse
Affiliation(s)
- Ruqi Su
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Marie Ali Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Lu Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Jianqiang Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Mengyuan Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Lisong Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China.
| | - Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China.
| |
Collapse
|
31
|
Zheng Y, Wang P, Chen X, Sun Y, Yue C, Ye N. Transcriptome and Metabolite Profiling Reveal Novel Insights into Volatile Heterosis in the Tea Plant ( Camellia Sinensis). Molecules 2019; 24:E3380. [PMID: 31533323 PMCID: PMC6767024 DOI: 10.3390/molecules24183380] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Tea aroma is a key indicator for evaluating tea quality. Although notable success in tea aroma improvement has been achieved with heterosis breeding technology, the molecular basis underlying heterosis remains largely unexplored. Thus, the present report studies the tea plant volatile heterosis using a high-throughput next-generation RNA-seq strategy and gas chromatography-mass spectrometry. Phenotypically, we found higher terpenoid volatile and green leaf volatile contents by gas chromatography-mass spectrometry in the F1 hybrids than in their parental lines. Volatile heterosis was obvious in both F1 hybrids. At the molecular level, the comparative transcriptomics analysis revealed that approximately 41% (9027 of 21,995) of the genes showed non-additive expression, whereas only 7.83% (1723 of 21,995) showed additive expression. Among the non-additive genes, 42.1% showed high parental dominance and 17.6% showed over-dominance. Among different expression genes with high parental dominance and over-dominance expression patterns, KEGG and GO analyses found that plant hormone signal transduction, tea plant physiological process related pathways and most pathways associated with tea tree volatiles were enriched. In addition, we identified multiple genes (CsDXS, CsAATC2, CsSPLA2, etc.) and transcription factors (CsMYB1, CsbHLH79, CsWRKY40, etc.) that played important roles in tea volatile heterosis. Based on transcriptome and metabolite profiling, we conclude that non-additive action plays a major role in tea volatile heterosis. Genes and transcription factors involved in tea volatiles showing over-dominance expression patterns can be considered candidate genes and provide novel clues for breeding high-volatile tea varieties.
Collapse
Affiliation(s)
- Yucheng Zheng
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Pengjie Wang
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Xuejin Chen
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Yun Sun
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Chuan Yue
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Naixing Ye
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
32
|
Chen L, Yuan Y, Wu J, Chen Z, Wang L, Shahid MQ, Liu X. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes. RICE (NEW YORK, N.Y.) 2019; 12:34. [PMID: 31076936 PMCID: PMC6510787 DOI: 10.1186/s12284-019-0294-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/23/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Autotetraploid rice hybrids have great potential to increase the production, but hybrid sterility is a major hindrance in the utilization of hybrid vigor in polyploid rice, which is mainly caused by pollen abortion. Our previous study showed that double pollen fertility neutral genes, Sa-n and Sb-n, can overcome hybrid sterility in autotetraploid rice. Here, we used an autotetraploid rice line harboring double neutral genes to develop hybrids by crossing with auto- and neo-tetraploid rice, and evaluated heterosis and its underlying molecular mechanism. RESULTS All autotetraploid rice hybrids, which harbored double pollen fertility neutral genes, Sa-n and Sb-n, displayed high seed setting and significant positive heterosis for yield and yield-related traits. Cytological observations revealed normal chromosome behaviors and higher frequency of bivalents in the hybrid than parents during meiosis. Transcriptome analysis revealed significantly higher expressions of important saccharides metabolism and starch synthase related genes, such as OsBEIIb and OsSSIIIa, in the grains of hybrid than parents. Furthermore, many meiosis-related and specific genes, including DPW and CYP703A3, displayed up-regulation in the hybrid compared to a parent with low seed setting. Many non-additive genes were detected in the hybrid, and GO term of carbohydrate metabolic process was significantly enriched in all the transcriptome tissues except flag leaf (three days after flowering). Moreover, many differentially expressed genes (DEGs) were identified in the yield-related quantitative trait loci (QTLs) regions as possible candidate genes. CONCLUSION Our results revealed that increase in the number of bivalents improved the seed setting of hybrid harboring double pollen fertility neutral genes. Many important genes, including meiosis-related and meiosis-specific genes and saccharides metabolism and starch synthase related genes, exhibited heterosis specific expression patterns in polyploid rice during different development stages. The functional analysis of important genes will provide valuable information for molecular mechanisms of heterosis in polyploid rice.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yun Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhixiong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Lan Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
33
|
Affiliation(s)
- Lisa M Smith
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|