1
|
Yang Y, Li Q, Yan S, Zhang P, Zhang H, Kong X, Wang H, Hansson LA, Xie S, Xu J, Wang H. Eutrophication promotes resource use efficiency and toxin production of Microcystis in a future climate warming scenario. ENVIRONMENTAL RESEARCH 2024; 263:120219. [PMID: 39448008 DOI: 10.1016/j.envres.2024.120219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Addressing the risks of cyanobacterial blooms and toxin production under ongoing and accelerating eutrophication and climate warming is crucial for both water ecosystem services and human health. Therefore, we here explored the interactive effects of eutrophication and warming on freshwater ecosystems, focusing on Microcystis and its cyanotoxin production. We employed a large-scale mesocosm system simulating future climate warming scenarios in concert with varying degrees of nutrient enrichment. We explored the full range of identified cyanobacterial toxins and cyanotoxin-producing genes under different experimental conditions and assessed the effects of both eutrophication and warming on both phytoplankton community structure (algal densities, community stability) and function (resource use efficiency, RUE). We show here that eutrophication increases the RUE of Microcystis and promotes an increase in toxin-producing genes, leading to a substantial increase in the dominance of Microcystis. This increase correlates with enhanced cyanotoxin production, a trend exacerbated under the influence of future climate warming, suggesting interactions between eutrophication and climate warming on Microcystis ecology and cyanotoxin dynamics. Hence, heatwaves and eutrophication lead the phytoplankton community to be dominated by a minority of algal species with higher toxic capacity. In a broader context, our study underscores the urgent need for holistic management strategies, addressing both nutrient control and climate mitigation, to effectively manage the escalating ecological risks associated with cyanobacterial dominance and toxin production.
Collapse
Affiliation(s)
- Yalan Yang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China; College of Ocean and Earth Sciences, Xiamen University, China.
| | - Qi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, China.
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Xianghong Kong
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | | | - Songguang Xie
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Jun Xu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Grabowska-Grucza K, Kiersztyn B. Relationships between Legionella and Aeromonas spp. and associated lake bacterial communities across seasonal changes in an anthropogenic eutrophication gradient. Sci Rep 2023; 13:17076. [PMID: 37816753 PMCID: PMC10564844 DOI: 10.1038/s41598-023-43234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
Anthropogenic eutrophication of lakes threatens their homeostasis and carries an increased risk of development of potentially pathogenic microorganisms. In this paper we show how eutrophication affects seasonal changes in the taxonomic structure of bacterioplankton and whether these changes are associated with the relative abundance of pathogenic bacteria of the genera Legionella and Aeromonas. The subject of the study was a unique system of interconnected lakes in northern Poland (Great Masurian Lakes system), characterized by the presence of eutrophic gradient. We found that the taxonomic structure of the bacterial community in eutrophic lakes was significantly season dependent. No such significant seasonal changes were observed in meso-eutrophic lakes. We found that there is a specific taxonomic composition of bacteria associated with the occurrence of Legionella spp. The highest positive significant correlations were found for families Pirellulaceae, Mycobacteriaceae and Gemmataceae. The highest negative correlations were found for the families Sporichthyaceae, Flavobacteriaceae, the uncultured families of class Verrucomicrobia and Chitinophagaceae. We used also an Automatic Neural Network model to estimate the relative abundance of Legionella spp. based on the relative abundance of dominant bacterial families. In the case of Aeromonas spp. we did not find a clear relationship with bacterial communities inhabiting lakes of different trophic state. Our research has shown that anthropogenic eutrophication causes significant changes in the taxonomic composition of lake bacteria and contributes to an increase in the proportion of potentially pathogenic Legionella spp.
Collapse
Affiliation(s)
- Karolina Grabowska-Grucza
- Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland.
| | - Bartosz Kiersztyn
- Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| |
Collapse
|
3
|
Shi X, Huang Q, Shen X, Wu J, Nan J, Li J, Lu H, Yang C. Distribution, driving forces, and risk assessment of 2-MIB and its producer in a drinking water source-oriented shallow lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27506-z. [PMID: 37162675 DOI: 10.1007/s11356-023-27506-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
Freshwater blooms of harmful cyanobacteria in drinking water source-oriented shallow lakes affect public health and ecosystem services worldwide. Therefore, identifying 2-methylisoborneol (2-MIB)-producing cyanobacteria and predicting the risks of 2-MIB are critical for managing 2-MIB-infected water sources. Previous studies on the potential producers and risks of 2-MIB have focused on reservoirs or have been limited by the ecosystems of phytoplankton-dominated areas. We investigated the producers, distribution, and occurrence of 2-MIB in East Taihu Lake-a drinking water source-oriented shallow lake with macrophyte- and phytoplankton-dominated areas-from August 2020 to November 2021. We observed that Pseudanabaena sp. produces 2-MIB in this lake, as determined by the maximum correlation coefficient (R = 0.71, p < 0.001), maximum detection rate, and minimum false positive/negative ratio exhibited by this genus. Extreme odor events occurred in this lake during late summer and early autumn in 2021, with the mean 2-MIB concentration increasing to 727 ± 426 ng/L and 369 ± 176 ng/L in August and September, respectively. Moreover, the macrophyte-dominated area, particularly the wetland area, exhibited a significant decrease (p < 0.01) in bloom intensity and 2-MIB production during these extreme odor events. Pseudanabaena sp. outbreak was likely owing to eutrophication, seasonal gradients, and macrophyte reduction, considering that temporal trends were consistent with high water temperature, high total phosphorus levels, and low-light conditions. Moreover, 2-MIB production was sensitive to short-term hydrometeorological processes, with high water levels and radiant intensity enhancing 2-MIB production. The risk assessment results showed that the probability of 2-MIB concentration exceeding the odor threshold (10 ng/L) is up to 90% when the cell density of Pseudanabaena sp. reaches 1.8 × 107 cell/L; this risk is reduced to 50 and 25% at densities of < 3.8 × 105 cell/L and 5.6 × 104 cell/L, respectively. Our findings support calls for shallow lake management efforts to maintain a macrophyte-dominated state and control odorous cyanobacteria growth.
Collapse
Affiliation(s)
- Xinyi Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
| | - Qinghui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education of China, Tongji University, Shanghai, 200092, China
| | - Xiaobing Shen
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
- Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Jianbin Wu
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
- Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Jing Nan
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haiming Lu
- Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Changtao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China.
| |
Collapse
|
4
|
Tarafdar L, Mohapatra M, Muduli PR, Kumar A, Mishra DR, Rastogi G. Co-occurrence patterns and environmental factors associated with rapid onset of Microcystis aeruginosa bloom in a tropical coastal lagoon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116580. [PMID: 36323116 DOI: 10.1016/j.jenvman.2022.116580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The environmental factors contributing to the Microcystis aeruginosa bloom (hereafter referred to as Microcystis bloom) are still debatable as they vary with season and geographic settings. We examined the environmental factors that triggered Microcystis bloom outbreak in India's largest brackish water coastal lagoon, Chilika. The warmer water temperature (25.31-32.48 °C), higher dissolved inorganic nitrogen (DIN) loading (10.15-13.53 μmol L-1), strong P-limitation (N:P ratio 138.47-246.86), higher water transparency (46.62-73.38 cm), and low-salinity (5.45-9.15) exerted a strong positive influence on blooming process. During the bloom outbreak, M. aeruginosa proliferated, replaced diatoms, and constituted 70-88% of the total phytoplankton population. The abundances of M. aeruginosa increased from 0.89 × 104 cells L-1 in September to 1.85 × 104 cells L-1 in November and reduced drastically during bloom collapse (6.22 × 103 cells L-1) by the late November of year 2017. The decrease in M. aeruginosa during bloom collapse was associated with a decline in DIN loading (2.97 μmol L-1) and N:P ratio (73.95). Sentinel-3 OLCI-based satellite monitoring corroborated the field observations showing Cyanophyta Index (CI) > 0.01 in September, indicative of intense bloom and CI < 0.0001 during late November, suggesting bloom collapse. The presence of M. aeruginosa altered the phytoplankton community composition. Furthermore, co-occurrence network indicated that bloom resulted in a less stable community with low diversity, inter-connectedness, and prominence of a negative association between phytoplankton taxa. Variance partitioning analysis revealed that TSM (16.63%), salinity (6.99%), DIN (5.21%), and transparency (5.15%) were the most influential environmental factors controlling the phytoplankton composition. This study provides new insight into the phytoplankton co-occurrences and combination of environmental factors triggering the rapid onset of Microcystis bloom and influencing the phytoplankton composition dynamics of a large coastal lagoon. These findings would be valuable for future bloom forecast modeling and aid in the management of the lagoon.
Collapse
Affiliation(s)
- Lipika Tarafdar
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India; Department of Marine Sciences, Berhampur University, Bhanjabihar, 760007, Odisha, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Pradipta R Muduli
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Abhishek Kumar
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
| | - Deepak R Mishra
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India.
| |
Collapse
|
5
|
Yan X, Zhao F, Wang G, Wang Z, Zhou M, Zhang L, Wang G, Chen Y. Metabolomic Analysis of Microcystis aeruginosa After Exposure to the Algicide L-Lysine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:12. [PMID: 36512146 DOI: 10.1007/s00128-022-03658-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
The widespread occurrence of cyanobacteria blooms damages the water ecosystem and threatens the safety of potable water and human health. Exogenous L-lysine significantly inhibits the growth of a dominant cyanobacteria Microcystis aeruginosa in freshwater. However, the molecular mechanism of how lysine inhibits the growth of M. aeruginosa is unclear. In this study, both non-target and target metabolomic analysis were performed to investigate the effects of algicide L-lysine. The results showed that 8 mg L- 1 lysine most likely disrupts the metabolism of amino acids, especially the arginine and proline metabolism. According to targeted amino acid metabolomics analysis, only 3 amino acids (L-arginine, ornithine, and citrulline), which belong to the ornithine-ammonia cycle (OAC) in arginine metabolic pathway, showed elevated levels. The intracellular concentrations of ornithine, citrulline, and arginine increased by 115%, 124%, and 19.4%, respectively. These results indicate that L-lysine may affect arginine metabolism and OAC to inhibit the growth of M. aeruginosa.
Collapse
Affiliation(s)
- Xiangjuan Yan
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, 210023, Nanjing, China
| | - Fei Zhao
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, 210023, Nanjing, China
| | - Guosheng Wang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, 210023, Nanjing, China
| | - Zhen Wang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, 210023, Nanjing, China
| | - Mingxi Zhou
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Limin Zhang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
- Green Economy Development Institute, Nanjing University of Finance and Economics, 210023, Nanjing, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, 210023, Nanjing, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, 210023, Nanjing, China.
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
6
|
Briddon CL, Szekeres E, Hegedüs A, Nicoară M, Chiriac C, Stockenreiter M, Drugă B. The combined impact of low temperatures and shifting phosphorus availability on the competitive ability of cyanobacteria. Sci Rep 2022; 12:16409. [PMID: 36180771 PMCID: PMC9525609 DOI: 10.1038/s41598-022-20580-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
In freshwater systems, cyanobacteria are strong competitors under enhanced temperature and eutrophic conditions. Understanding their adaptive and evolutionary potential to multiple environmental states allows us to accurately predict their response to future conditions. To better understand if the combined impacts of temperature and nutrient limitation could suppress the cyanobacterial blooms, a single strain of Microcystis aeruginosa was inoculated into natural phytoplankton communities with different nutrient conditions: oligotrophic, eutrophic and eutrophic with the addition of bentophos. We found that the use of the bentophos treatment causes significant differences in prokaryotic and eukaryotic communities. This resulted in reduced biodiversity among the eukaryotes and a decline in cyanobacterial abundance suggesting phosphorus limitation had a strong impact on the community structure. The low temperature during the experiment lead to the disappearance of M. aeruginosa in all treatments and gave other phytoplankton groups a competitive advantage leading to the dominance of the eukaryotic families that have diverse morphologies and nutritional modes. These results show cyanobacteria have a reduced competitive advantage under certain temperature and nutrient limiting conditions and therefore, controlling phosphorus concentrations could be a possible mitigation strategy for managing harmful cyanobacterial blooms in a future warmer climate.
Collapse
Affiliation(s)
- Charlotte L Briddon
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Edina Szekeres
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Adriana Hegedüs
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Maria Nicoară
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Cecilia Chiriac
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005, České Budějovice, Czech Republic
| | - Maria Stockenreiter
- Department of Biology II, Experimental Aquatic Ecology, Ludwig-Maximilians-Universitӓt Müchen, Groβhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Bogdan Drugă
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Fu Y, Liu Y, Xu S, Xu Z. Assessment of a Multifunctional River Using Fuzzy Comprehensive Evaluation Model in Xiaoqing River, Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12264. [PMID: 36231561 PMCID: PMC9565060 DOI: 10.3390/ijerph191912264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Rivers are beneficial to humans due to their multiple functions. However, human meddling substantially degrades the functions of rivers and constitutes a threat to river health. Therefore, it is vital to assess and maintain river function. This study used the Xiaoqing River in Shandong Province, China, as a case study and established a multilayered multifunctional river evaluation indicator system consisting of environmental function, ecological function, social function, and economic function. The weights of indicators were calculated using the analytic hierarchy process (AHP) and the entropy method. Furthermore, a fuzzy comprehensive evaluation model based on the Cauchy distribution function was developed to assess the operation status of each function in each river segment. The results of the indicator and criterion layers in different river sections varied. The multifunctionality of the river decreased from upstream to downstream. The Jinan section was the most multifunctional, followed by the Binzhou, Zibo, and Dongying sections, and finally the Weifang section. Through additional analysis, this study determined the constraint indicators and functions of each river section. Overall, the results reveal that the idea of a "multifunctional river" can advance the theoretical understanding of a river's function, and the fuzzy comprehensive evaluation model is demonstrated to provide fresh perspectives for evaluating river function.
Collapse
Affiliation(s)
- Yongfei Fu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250024, China
| | - Yuyu Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250024, China
| | - Shiguo Xu
- School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250024, China
| |
Collapse
|
8
|
Chang W, Zhu X, Sun J, Pang Y, Zhang S. Effects of lead pollution on bacterial communities in biofilm attached to submerged plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1358-1372. [PMID: 36178811 DOI: 10.2166/wst.2022.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Submerged plants and biofilms have significant advantages in hydro-ecology rehabilitation, but their tolerance and physiological responses to heavy metal stress have thus far been under-investigated. This study investigated the influence of lead on physiological and biochemical responses, as well as variation in bacterial communities and functional characteristics of submerged plant biofilms. The results showed that chlorophyll a content of two submerged plants decreased with increased lead concentration. The concentration of malondialdehyde of both submerged plants was higher under high lead concentrations than under low lead concentrations, and the concentrations of malondialdehyde and hydrogen peroxide in Vallisneria natans were more stable. The antioxidant enzyme systems of the two plants played protective roles against lead stress. High lead concentration can inhibit the bacterial community and lead to decreased diversity. The most abundant bacterial phyla were Proteobacteria (40.9%), Cyanobacteria (21.5%), and Bacteroidetes (14.3%). Proteobacteria abundance decreased with increased lead concentration, while Cyanobacteria abundance increased. The lead concentration in plants (19.7%, P < 0.01) and the lead concentration in aquatic environment (17.7%, P < 0.01) were significantly correlated with variation in bacterial communities. High lead concentration inhibits the activity of these bacteria related to the conversion of nitrogen and sulfur.
Collapse
Affiliation(s)
- Wenjie Chang
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing 210000, China E-mail: ; Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing 210000, China; College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| | - Xiaoxiao Zhu
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing 210000, China E-mail: ; Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing 210000, China
| | - Jieli Sun
- College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| | - Yong Pang
- College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| |
Collapse
|
9
|
He Y, Wang X, Xu F. How reliable is chlorophyll-a as algae proxy in lake environments? New insights from the perspective of n-alkanes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155700. [PMID: 35523340 DOI: 10.1016/j.scitotenv.2022.155700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Chlorophyll-a (Chl-a) has been employed as the "golden proxy" of algae biomass and algae cell densities in lake environments for many years. However, how reliable Chl-a is as algae proxy in lake environments needs further evaluation. Here, we take the eutrophic Lake Chaohu and 46 lakes and reservoirs across China as objects on temporal and spatial scales, respectively, to resolve this issue from the perspective of n-alkanes. Our results showed that Chl-a ranged from 10.5 to 735 μg∙L-1 with a geometric mean of 92.4 μg∙L-1 in Lake Chaohu. There were no statistically significant correlations between Chl-a and algae cell densities in all seasons (Pearson's correlation, p > 0.05), and also for macrophytes and terrestrial plants input (p > 0.05). It was related to the complex changes of environmental factors. By contrast, Chl-a ranged from 7.1 to 1608 μg∙L-1 with a geometric mean of 125 μg∙L-1 in nationwide lakes and reservoirs, and its occurrence was not only related to algae, but also associated with macrophytes and terrestrial plants (p < 0.05). In summary, Chl-a can be applied as an algae proxy, but its application is subject to certain restrictions. Besides, the multiple sources of Chl-a in lake environments may result in an overestimation of algae cell densities. Compared to Chl-a, biogenic n-heptadecane (bio C17) could be regarded as a potential alternative. Hence, we compared the advantages and disadvantages of bio C17 and Chl-a in the aspects of specificity, accuracy, sensitivity and applicability. We found that for most scenarios, their limitations could be surmounted by each other, but failed in some scenarios. Accordingly, an ensemble proxy system may be used for more reliable representation of algae in lake environments.
Collapse
Affiliation(s)
- Yong He
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiangyu Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fuliu Xu
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Dashkova V, Malashenkov DV, Baishulakova A, Davidson TA, Vorobjev IA, Jeppesen E, Barteneva NS. Changes in Phytoplankton Community Composition and Phytoplankton Cell Size in Response to Nitrogen Availability Depend on Temperature. Microorganisms 2022; 10:microorganisms10071322. [PMID: 35889045 PMCID: PMC9324377 DOI: 10.3390/microorganisms10071322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The climate-driven changes in temperature, in combination with high inputs of nutrients through anthropogenic activities, significantly affect phytoplankton communities in shallow lakes. This study aimed to assess the effect of nutrients on the community composition, size distribution, and diversity of phytoplankton at three contrasting temperature regimes in phosphorus (P)–enriched mesocosms and with different nitrogen (N) availability imitating eutrophic environments. We applied imaging flow cytometry (IFC) to evaluate complex phytoplankton communities changes, particularly size of planktonic cells, biomass, and phytoplankton composition. We found that N enrichment led to the shift in the dominance from the bloom-forming cyanobacteria to the mixed-type blooming by cyanobacteria and green algae. Moreover, the N enrichment stimulated phytoplankton size increase in the high-temperature regime and led to phytoplankton size decrease in lower temperatures. A combination of high temperature and N enrichment resulted in the lowest phytoplankton diversity. Together these findings demonstrate that the net effect of N and P pollution on phytoplankton communities depends on the temperature conditions. These implications are important for forecasting future climate change impacts on the world’s shallow lake ecosystems.
Collapse
Affiliation(s)
- Veronika Dashkova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 00010, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
- Correspondence: (V.D.); (N.S.B.)
| | - Dmitry V. Malashenkov
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
- National Laboratory Astana, Nur-Sultan 00010, Kazakhstan
| | - Assel Baishulakova
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
| | - Thomas A. Davidson
- Department of Ecoscience, Aarhus University Center for Water Technology (WATEC), 8000 Aarhus, Denmark; (T.A.D.); (E.J.)
| | - Ivan A. Vorobjev
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University Center for Water Technology (WATEC), 8000 Aarhus, Denmark; (T.A.D.); (E.J.)
- Sino-Danish Centre for Education and Research, Beijing 100049, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey
- Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| | - Natasha S. Barteneva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
- The Environment & Resource Efficiency Cluster, Nazarbayev University, Nur-Sultan 00010, Kazakhstan
- Correspondence: (V.D.); (N.S.B.)
| |
Collapse
|
11
|
Effect of Culture pH on Properties of Exopolymeric Substances from Synechococcus PCC7942: Implications for Carbonate Precipitation. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered medium remained constant at 7.5, but in non-buffered medium it increased to 9.5 within a day and leveled off at 10.5. The cell yield at harvest was twice as high in non-buffered medium than in buffered medium. High molecular weight (>10 kDa) and low molecular weight (3–10 kDa) fractions of EPS were obtained from both cultures. The cell-specific EPS production in buffered medium was twice as high as in non-buffered medium. EPS from non-buffered cultures contained more negatively charged macromolecules and more proteins than EPS from buffered cultures. The higher protein content at elevated pH may be due to the induction of carbon-concentrating mechanisms, necessary to perform photosynthetic carbon fixation in these conditions. Forced precipitation showed smaller calcite carbonate crystals in EPS from non-buffered medium and larger minerals in polymers from buffered medium. Vaterite formed only at low EPS concentrations. Experimental results are used to conceptually model the impact of pH on the potential of cyanobacterial blooms to produce minerals. We hypothesize that in freshwater systems, small crystal production may benefit the picoplankton by minimizing the mineral ballast, and thus prolonging the residence time in the photic zone, which might result in slow sinking rates.
Collapse
|
12
|
Nijhawan A, Howard G. Associations between climate variables and water quality in low- and middle-income countries: A scoping review. WATER RESEARCH 2022; 210:117996. [PMID: 34959067 DOI: 10.1016/j.watres.2021.117996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding how climate change will affect water quality and therefore, health, is critical for building resilient water services in low- and middle-income countries (LMICs) where the effect of climate change will be felt most acutely. Evidence of the effect of climate variables such as temperate and rainfall on water quality can generate insights into the likely impact of future climate change. While the seasonal effects on water quality are known, and there is strong qualitative evidence that climate change will impact water quality, there are no reviews that synthesise quantitative evidence from LMICs on links between climate variables and water quality. We mapped the available evidence on a range of climate exposures and water quality outcomes and identified 98 peer-reviewed studies. This included observational studies on the impact of temperature and rainfall events (which may cause short-term changes in contaminant concentrations), and modelling studies on the long-term impacts of sea level rise. Evidence on links between antecedent rainfall and microbiological contamination of water supplies is strong and relatively evenly distributed geographically, but largely focused on faecal indicator bacteria and on untreated shallow groundwater sources of drinking water. The literature on climate effects on geogenic contaminants was sparse. There is substantial research on the links between water temperature and cyanobacteria blooms in surface waters, although most studies were from two countries and did not examine potential effects on water treatment. Similarly, studies modelling the impact of sea level rise on groundwater salinity, mostly from south-Asia and the Middle East, did not discuss challenges for drinking water supplies. We identified key future research priorities based on this review. These include: more studies on specific pathogens (including opportunistic pathogens) in water supplies and their relationships with climate variables; more studies that assess likely relationships between climate variables and water treatment processes; studies into the relationships between climate variables and geogenic contaminants, including risks from heavy metals released as glacier retreat; and, research into the impacts of wildfires on water quality in LMICs given the current dearth of studies but recognised importance.
Collapse
Affiliation(s)
- Anisha Nijhawan
- Department of Civil Engineering and Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1TR, UK.
| | - Guy Howard
- Department of Civil Engineering and Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1TR, UK.
| |
Collapse
|
13
|
Tarafdar L, Kim JY, Srichandan S, Mohapatra M, Muduli PR, Kumar A, Mishra DR, Rastogi G. Responses of phytoplankton community structure and association to variability in environmental drivers in a tropical coastal lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146873. [PMID: 33865134 DOI: 10.1016/j.scitotenv.2021.146873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Spatial and seasonal heterogeneity in phytoplankton communities are governed by many biotic and abiotic drivers. However, the identification of long-term spatial and temporal trends in abiotic drivers, and their interdependencies with the phytoplankton communities' structure is understudied in tropical brackish coastal lagoons. We examined phytoplankton communities' spatiotemporal dynamics from a 5-year dataset (n = 780) collected from 13 sampling stations in Chilika Lagoon, India, where the salinity gradient defined the spatial patterns in environmental variables. Generalized additive models showed a declining trend in phytoplankton biomass, pH, and dissolved PO4 in the lagoon. Hierarchical modelling of species communities revealed that salinity (44.48 ± 28.19%), water temperature (4.37 ± 5.65%), and season (4.27 ± 0.96%) accounted for maximum variation in the phytoplankton composition. Bacillariophyta (Indicator Value (IV): 0.74) and Dinophyta (IV: 0.72) emerged as top indicators for polyhaline regime whereas, Cyanophyta (IV: 0.81), Euglenophyta (IV: 0.79), and Chlorophyta (IV: 0.75) were strong indicators for oligohaline regime. The responses of Dinophyta and Chrysophyta to environmental drivers were much more complex as random effects accounted for ~70-75% variation in their abundances. Prorocentrum minimum (IV: 0.52), Gonyaulax sp. (IV: 0.52), and Alexandrium sp. (IV: 0.51) were potential indicators of P-limitation. Diploneis weissflogii (IV: 0.43), a marine diatom, emerged as a potential indicator of N-limitation. Hierarchical modelling revealed the positive association between Cyanophyta, Chlorophyta, and Euglenophyta whereas, Dinophyta and Chrysophyta showed a negative association with Cyanophyta, Chlorophyta, and Euglenophyta. Landsat 8-Operational Land Imager satellite models predicted the highest and lowest Cyanophyta abundances in northern and southern sectors, respectively, which were in accordance with the near-coincident field-based measurements from the lagoon. This study highlighted the dynamics of phytoplankton communities and their relationships with environmental drivers by separating the signals of habitat filtering and biotic interactions in a monsoon-regulated tropical coastal lagoon.
Collapse
Affiliation(s)
- Lipika Tarafdar
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Ji Yoon Kim
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Suchismita Srichandan
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Pradipta R Muduli
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Abhishek Kumar
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA 30602, USA
| | - Deepak R Mishra
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA 30602, USA
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India.
| |
Collapse
|
14
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Kim M, Lee J, Yang D, Park HY, Park W. Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115198. [PMID: 32668373 DOI: 10.1016/j.envpol.2020.115198] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaebok Lee
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dongwoo Yang
- Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Does an Emissions Trading Policy Improve Environmental Efficiency? Evidence from China. SUSTAINABILITY 2020. [DOI: 10.3390/su12062165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An emissions trading system is a market instrument for pollution control that has been used in China for many years. The Ministry of Environmental Protection of China has approved the implementation of emissions trading pilot projects in 11 provinces since 2007, yet the effectiveness of the policy has not been comprehensively estimated. With panel data from 29 provinces and cities in China between 2003 and 2012, this study uses the data envelopment model-slack based measurement (DEA-SBM) method to measure environmental efficiency indicators and a difference in difference (DID) model to examine the impact of the emissions trading system on environmental efficiency. The results indicate that the policy has significantly improved environmental efficiency in the pilot provinces. However, the effects are heterogeneous with different efficiency levels across the diverse regions. Higher impacts were found in the central and western regions. Some suggestions for the optimization of the emissions trading system are suggested in this study.
Collapse
|
17
|
Wang M, Strokal M, Burek P, Kroeze C, Ma L, Janssen ABG. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:865-873. [PMID: 30769310 DOI: 10.1016/j.scitotenv.2019.02.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Intensive agriculture and rapid urbanization have increased nutrient inputs to Lake Taihu in recent decades. This resulted in eutrophication. We aim to better understand the sources of river export of total dissolved nitrogen (TDN) and phosphorus (TDP) to Lake Taihu in relation to critical nutrient loads. We implemented the MARINA-Lake (Model to Assess River Inputs of Nutrients to seAs) model for Lake Taihu. The MARINA-Lake model quantifies river export of dissolved inorganic and organic N and P to the lake by source from sub-basins. Results from the PCLake model are used to identify to what extent river export of nutrients exceeds critical loads. We calculate that rivers exported 61 kton of TDN and 2 kton of TDP to Lake Taihu in 2012. More than half of these nutrients were from human activities (e.g., agriculture, urbanization) in Sub-basins I (north) and IV (south). Most of the nutrients were in dissolved inorganic forms. Diffuse sources contributed 90% to river export of TDN with a relatively large share of synthetic fertilizers. Point sources contributed 52% to river export of TDP with a relatively large share of sewage systems. The relative shares of diffuse and point sources varied greatly among nutrient forms and sub-basins. To meet critical loads, river export of TDN and TDP needs to be reduced by 46-92%, depending on the desired level of chlorophyll-a. There are different opportunities to meet the critical loads. Reducing N inputs from synthetic fertilizers and P from sewage systems may be sufficient to meet the least strict critical loads. A combination of reductions in diffuse and point sources is needed to meet the most strict critical loads. Combining improved nutrient use efficiencies and best available technologies in wastewater treatment may be an effective opportunity. Our study can support the formulation of effective solutions for lake restoration.
Collapse
Affiliation(s)
- Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands; Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China.
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands
| | - Peter Burek
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2362 Laxenburg, Austria
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Annette B G Janssen
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
18
|
Yang J, Holbach A, Wilhelms A, Qin Y, Zheng B, Zou H, Qin B, Zhu G, Norra S. Highly time-resolved analysis of seasonal water dynamics and algal kinetics based on in-situ multi-sensor-system monitoring data in Lake Taihu, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:329-339. [PMID: 30640101 DOI: 10.1016/j.scitotenv.2019.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Predicting algal blooms is challenging due to rapid growth rates under suitable conditions and the complex physical, chemical, and biological processes involved. Physico-chemical parameters, monitored in this study by a high-resolution in-situ multi-sensor system and derived from lab-based water sample analyses, show the seasonal variation and have different degrees of vertical gradients across the water column. Through analyzing the changes and relations between multi-factors, we reveal pictures of water quality dynamics and algal kinetics. Nitrate has regular seasonal changes different to the seasonal patterns of total dissolved Phosphorus. Positive correlations are found between Chlorophyll a fluorescence and temperature, wind-induced resuspension and mixing promote the augment of Cyanobacteria fluorescence (Phycocyanin) signal. While the resuspension can also result in the increase of turbidity and affect the light environment for hydrophytes, the algal scums are the main reason for the high turbidity on the surface, which lower the illumination radiation in the water body. Those parameters are the primary dominants responsible for the change of algae from our monitoring data, which could be used as indicators for the dynamic changes of algae in the future.
Collapse
Affiliation(s)
- Jingwei Yang
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Andreas Holbach
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Andre Wilhelms
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Yanwen Qin
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012, PR China
| | - Binghui Zheng
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012, PR China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Boqiang Qin
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008 Nanjing, PR China
| | - Guangwei Zhu
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008 Nanjing, PR China
| | - Stefan Norra
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
19
|
Li Q, Wang M, Duan L, Qiu Y, Ma T, Chen L, Breitholtz M, Bergman Å, Zhao J, Hecker M, Wu L. Multiple biomarker responses in caged benthic gastropods Bellamya aeruginosa after in situ exposure to Taihu Lake in China. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:34. [PMID: 30221106 PMCID: PMC6132844 DOI: 10.1186/s12302-018-0164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Freshwater sediments have been recognized as a long-term sink and potential source for environmental pollutants released into the aquatic ecosystems. In this study, the sediment quality of Taihu Lake, which is susceptible to anthropogenic contamination, was assessed by a combination of chemical analytical and biological end points. Specifically, the snail Bellamya aeruginosa was caged in situ at two locations representing different pollution levels for different exposure times (7, 14 and 21 days). At each of these time points, biochemical parameters, i.e., phase I biotransformation enzymes ethoxyresorufin-O-deethylase (EROD), the antioxidant enzymes superoxide dismutase and catalase, reactive oxygen species, protein carbonyl content and lipid peroxidation, were evaluated in the hepatopancreas of snails. In addition, surface sediments were collected for analysis of contaminants of concern, including inorganic pollutants, organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers. RESULTS Chemical analyses revealed that sediments from Taihu Lake were contaminated with trace elements and organic pollutants. Concentrations of trace elements (Cu, Ni and As) and organochlorinated pesticides (4,4'-DDE) exceeded their corresponding threshold effect level according to the sediment quality assessment values for freshwater ecosystems in Canada, indicating that adverse biological effects may occur. All biomarkers, except EROD activity, were induced in snails during all exposure times. The integrated biomarker response index (IBR) indicated that during the initial exposure phase (7 days), B. aeruginosa were subjected to significant environmental stress, which diminished during later sampling time points. CONCLUSIONS Results showed that IBR correlated well with the levels of environmental contaminants, demonstrating the applicability of this biomonitoring approach to complex environmental exposure scenarios.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Meng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Lei Duan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Taowu Ma
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000 China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Magnus Breitholtz
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| | - Åke Bergman
- Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, 15136 Södertälje, Sweden
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Markus Hecker
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Lingling Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| |
Collapse
|