1
|
Qiu Z, Cai W, Liu Q, Liu K, Liu C, Yang H, Huang R, Li P, Zhao Q. Unravelling novel and pleiotropic genes for cannon bone circumference and bone mineral density in Yorkshire pigs. J Anim Sci 2024; 102:skae036. [PMID: 38330300 PMCID: PMC10914368 DOI: 10.1093/jas/skae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Leg weakness is a prevalent health condition in pig farms. The augmentation of cannon bone circumference and bone mineral density can effectively improve limb strength in pigs and alleviate leg weakness. This study measured forelimb cannon bone circumference (fCBC) and rear limb cannon bone circumference (rCBC) using an inelastic tapeline and rear limb metatarsal area bone mineral density (raBMD) using a dual-energy X-ray absorptiometry bone density scanner. The samples of Yorkshire castrated boars were genotyped using a 50K single-nucleotide polymorphism (SNP) array. The SNP-chip data were imputed to the level of whole-genome sequencing data (iWGS). This study used iWGS data to perform genome-wide association studies and identified novel significant SNPs associated with fCBC on SSC6, SSC12, and SSC13, rCBC on SSC12 and SSC14, and raBMD on SSC7. Based on the high phenotypic and genetic correlations between CBC and raBMD, multi-trait meta-analysis was performed to identify pleiotropic SNPs. A significant potential pleiotropic quantitative trait locus (QTL) regulating both CBC and raBMD was identified on SSC15. Bayes fine mapping was used to establish the confidence intervals for these novel QTLs with the most refined confidence interval narrowed down to 56 kb (15.11 to 15.17 Mb on SSC12 for fCBC). Furthermore, the confidence interval for the potential pleiotropic QTL on SSC15 in the meta-analysis was narrowed down to 7.45 kb (137.55 to137.56 Mb on SSC15). Based on the biological functions of genes, the following genes were identified as novel regulatory candidates for different phenotypes: DDX42, MYSM1, FTSJ3, and MECOM for fCBC; SMURF2, and STC1 for rCBC; RGMA for raBMD. Additionally, RAMP1, which was determined to be located 23.68 kb upstream of the confidence interval of the QTL on SSC15 in the meta-analysis, was identified as a potential pleiotropic candidate gene regulating both CBC and raBMD. These findings offered valuable insights for identifying pathogenic genes and elucidating the genetic mechanisms underlying CBC and BMD.
Collapse
Affiliation(s)
- Zijian Qiu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Cai
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyue Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilong Yang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Qingbo Zhao
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Ewaoluwagbemiga EO, Bee G, Kasper C. Genetic analysis of protein efficiency and its association with performance and meat quality traits under a protein-restricted diet. Genet Sel Evol 2023; 55:35. [PMID: 37268880 DOI: 10.1186/s12711-023-00812-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND An essential component in the development of sustainable pig production is the reduction of nitrogen excretion in fattening pigs. Pig feeds typically contain high levels of dietary crude protein, and due to incomplete conversion to muscle tissue, excess nitrogen is excreted, resulting in environmental problems such as nitrate pollution and greenhouse gas emissions. Therefore, improving protein efficiency (PE), i.e., the proportion of dietary protein that remains in the carcass, is desirable. The aim of this study was to estimate the heritability (h2) of PE and its genetic correlations with phosphorus efficiency, three performance, seven meat quality and two carcass quality traits when pigs were fed a 20% protein-restricted diet, using 1071 Swiss Large White pigs. To determine PE, the intake of feed with known nutrient content was accurately recorded for each pig and the nitrogen and phosphorus content of the carcass was determined using dual-energy X-ray absorptiometry. RESULTS We found an average PE of 0.39 ± 0.04 and a heritability of 0.54 ± 0.10. PE showed a high genetic correlation with phosphorus efficiency (0.61 ± 0.16), moderate genetic correlations with feed conversion ratio (- 0.55 ± 0.14) and average daily feed intake (- 0.53 ± 0.14), and a low genetic correlation with average daily gain (- 0.19 ± 0.19). While PE has favourable genetic correlations with the performance traits and some meat quality traits, there is a potentially unfavourable correlation of PE with meat colour (redness [rg = - 0.27 ± 0.17]; yellowness [rg = - 0.31 ± 0.18]) and intra-muscular fat (IMF; rg = - 0.39 ± 0.15). Feed conversion ratio (FCR) also showed unfavourable genetic correlations with meat lightness, redness yellowness, IMF and cooking loss. CONCLUSIONS PE is a heritable trait that can be considered in breeding programs to reduce the environmental impact of pig production. We found no strong negative correlation of PE with meat quality traits, and that there is potential to indirectly select for improved phosphorus efficiency. Selecting nutrient efficiencies might be a more suitable strategy to reduce nitrogen pollution from manure than focusing on FCR because the latter also shows genetic antagonism with some meat quality traits in our population.
Collapse
Affiliation(s)
- Esther Oluwada Ewaoluwagbemiga
- Animal GenoPhenomics, Agroscope, 1725, Posieux, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Giuseppe Bee
- Swine Research Unit, Agroscope, 1725, Posieux, Switzerland
| | - Claudia Kasper
- Animal GenoPhenomics, Agroscope, 1725, Posieux, Switzerland.
| |
Collapse
|
3
|
Lagler DK, Hannemann E, Eck K, Klawatsch J, Seichter D, Russ I, Mendel C, Lühken G, Krebs S, Blum H, Upadhyay M, Medugorac I. Fine-mapping and identification of candidate causal genes for tail length in the Merinolandschaf breed. Commun Biol 2022; 5:918. [PMID: 36068271 PMCID: PMC9448734 DOI: 10.1038/s42003-022-03854-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
Docking the tails of lambs in long-tailed sheep breeds is a common practice worldwide. But this practice is associated with pain. Breeding for a shorter tail could offer an alternative. Therefore, this study aimed to analyze the natural tail length variation in the Merinolandschaf and to identify causal alleles for the short tail phenotype segregating within long-tailed breeds. We used SNP-based association analysis and haplotype-based mapping in 362 genotyped (Illumina OvineSNP50) and phenotyped Merinolandschaf lambs. Genome-wide significant regions were capture sequenced in 48 lambs and comparatively analyzed in various long and short-tailed sheep breeds and wild sheep subspecies. Here we show a SNP located in the first exon of HOXB13 and a SINE element located in the promotor of HOXB13 as promising candidates. These results enable more precise breeding towards shorter tails, improve animal welfare by amplification of ancestral alleles and contribute to a better understanding of differential embryonic development.
Collapse
Affiliation(s)
- Dominik Karl Lagler
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Elisabeth Hannemann
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
| | - Kim Eck
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Jürgen Klawatsch
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Doris Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Christian Mendel
- Institute for Animal Breeding, Bavarian State Research Center for Agriculture, Prof.-Dürrwaechter-Platz 1, 85586, Poing, Germany
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, JLU Gießen, Ludwigstr. 21, 35390, Gießen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany.
| |
Collapse
|
4
|
Ma H, Jiang J, He J, Liu H, Han L, Gong Y, Li B, Yu Z, Tang S, Zhang Y, Duan Y, Yin Y, Zeng Q, Yi J, He X, Zeng Y, Kim KS, Xu K, Liang F, He J. Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds. Mol Ecol Resour 2021; 22:1508-1520. [PMID: 34758184 DOI: 10.1111/1755-0998.13550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Advances in long-read sequencing technology and genome assembly provide an opportunity to improve the pig genome and reveal the full range of structural variations (SVs) between local Chinese and European pigs. To date, little is known about the genomes of some unique Chinese indigenous breeds, such as the Ningxiang pig. Here, we report the sequencing and assembly of a highly contiguous Ningxiang pig genome (NX) via an integration of PacBio single-molecule real-time sequencing, Illumina next-generation sequencing, BioNano optical mapping and Hi-C (chromosome conformation capture) approaches. The assembled genome comprises 2.44 Gb with a contig N50 of 26.1 Mb and 418 contigs in total. These contigs are organized into 121 scaffolds with a scaffold N50 of 139.0 Mb. More than 99.1% of the assembled sequence could be localized to 19 pseudochromosomes and is annotated with 20,914 protein-coding genes and 34.04% repetitive sequences. Comparisons between the NX and European Duroc assemblies revealed many SVs in genes involved in the immune system, nervous system, lipid metabolism and environmental adaptation. The genetic variants include 47 Chinese domestic pig-specific SVs and the associated 74 genes may contribute to the differences in domestic traits compared to European pigs. Moreover, single nucleotide polymorphisms (SNPs) identified from whole genome resequencing data of 73 Chinese pigs, representing 17 geographically isolated breeds, showed their specific genetic variations, population structure and evolutionary patterns. Finally, we explore transcriptional regulation in the first intron of the MYL4 gene, as the genomic SV (281-bp deletion) in Ningxiang pig promotes its subcutaneous fat compared to European pig breeds. This work identifies a set of Asian-specific SVs and SNPs, which will be important resources for modern pig breeding and genetic conservation.
Collapse
Affiliation(s)
- Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Juan Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | | | | | - Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Zonggang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Shengguo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| | - Yehui Duan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, PR China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, PR China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China.,Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd, Ningxiang, PR China
| | | | - Xinglong He
- Bureau of Animal Husbandry, Veterinary and Fisheries in Ningxiang City, Ningxiang, PR China
| | - Yongbo Zeng
- Bureau of Animal Husbandry, Veterinary and Fisheries in Ningxiang City, Ningxiang, PR China
| | - Kung Seok Kim
- Department of Natural Resources Ecology and Management, Iowa State University, Ames, Iowa, USA
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, PR China
| | - Fan Liang
- Grandomics Biosciences, Wuhan, PR China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR China
| |
Collapse
|
5
|
Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, Yu Y. Comparative Analyses of Sperm DNA Methylomes Among Three Commercial Pig Breeds Reveal Vital Hypomethylated Regions Associated With Spermatogenesis and Embryonic Development. Front Genet 2021; 12:740036. [PMID: 34691153 PMCID: PMC8527042 DOI: 10.3389/fgene.2021.740036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Identifying epigenetic changes is essential for an in-depth understanding of phenotypic diversity and pigs as the human medical model for anatomizing complex diseases. Abnormal sperm DNA methylation can lead to male infertility, fetal development failure, and affect the phenotypic traits of offspring. However, the whole genome epigenome map in pig sperm is lacking to date. In this study, we profiled methylation levels of cytosine in three commercial pig breeds, Landrace, Duroc, and Large White using whole-genome bisulfite sequencing (WGBS). The results showed that the correlation of methylation levels between Landrace and Large White pigs was higher. We found that 1,040-1,666 breed-specific hypomethylated regions (HMRs) were associated with embryonic developmental and economically complex traits for each breed. By integrating reduced representation bisulfite sequencing (RRBS) public data of pig testis, 1743 conservated HMRs between sperm and testis were defined, which may play a role in spermatogenesis. In addition, we found that the DNA methylation patterns of human and pig sperm showed high similarity by integrating public data from WGBS and chromatin immunoprecipitation sequencing (ChIP-seq) in other mammals, such as human and mouse. We identified 2,733 conserved HMRs between human and pig involved in organ development and brain-related traits, such as NLGN1 (neuroligin 1) containing a conserved-HMR between human and pig. Our results revealed the similarities and diversity of sperm methylation patterns among three commercial pig breeds and between human and pig. These findings are beneficial for elucidating the mechanism of male fertility, and the changes in commercial traits that undergo strong selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Wu P, Wang K, Zhou J, Chen D, Jiang A, Jiang Y, Zhu L, Qiu X, Li X, Tang G. A combined GWAS approach reveals key loci for socially-affected traits in Yorkshire pigs. Commun Biol 2021; 4:891. [PMID: 34285319 PMCID: PMC8292486 DOI: 10.1038/s42003-021-02416-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Socially affected traits in pigs are controlled by direct genetic effects and social genetic effects, which can make elucidation of their genetic architecture challenging. We evaluated the genetic basis of direct genetic effects and social genetic effects by combining single-locus and haplotype-based GWAS on imputed whole-genome sequences. Nineteen SNPs and 25 haplotype loci are identified for direct genetic effects on four traits: average daily feed intake, average daily gain, days to 100 kg and time in feeder per day. Nineteen SNPs and 11 haplotype loci are identified for social genetic effects on average daily feed intake, average daily gain, days to 100 kg and feeding speed. Two significant SNPs from single-locus GWAS (SSC6:18,635,874 and SSC6:18,635,895) are shared by a significant haplotype locus with haplotype alleles 'GGG' for both direct genetic effects and social genetic effects in average daily feed intake. A candidate gene, MT3, which is involved in growth, nervous, and immune processes, is identified. We demonstrate the genetic differences between direct genetic effects and social genetic effects and provide an anchor for investigating the genetic architecture underlying direct genetic effects and social genetic effects on socially affected traits in pigs.
Collapse
Affiliation(s)
- Pingxian Wu
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Kai Wang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jie Zhou
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dejuan Chen
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Anan Jiang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yanzhi Jiang
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Yaan, Sichuan China
| | - Li Zhu
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiaotian Qiu
- grid.410634.4National Animal Husbandry Service, Beijing, Beijing, China
| | - Xuewei Li
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Guoqing Tang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
7
|
Phenotyping of the Visceral Adipose Tissue Using Dual Energy X-Ray Absorptiometry (DXA) and Magnetic Resonance Imaging (MRI) in Pigs. Animals (Basel) 2020; 10:ani10071165. [PMID: 32660013 PMCID: PMC7401593 DOI: 10.3390/ani10071165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to phenotype visceral adipose tissue (VAT) in pigs. In this context, the ability to detect VAT by using the DXA CoreScan mode within the enCORE software, version 17 (GE Healthcare) was evaluated in comparison with MRI measurements (Siemens Magnetom C!) of the same body region. A number of 120 crossbred pigs of the F1 and F2 generation, with the parental breeds Large White, Landrace, Piétrain, and Duroc, were examined at an age of 150 days. A whole-body scan in two different modes ("thick", "standard") was carried out by a GE Lunar iDXA scanner. Very strong relationships (R2 = 0.95, RMSE = 175cm3) were found for VAT between the two DXA modes. The comparison of VAT measured by MRI and DXA shows high linear relationships ("thick": R2 = 0.76, RMSE = 399.25cm3/"standard": R2 = 0.71, RMSE = 443.42cm3), but is biased, according to the Bland-Altman analysis. A variance analysis of VAT shows significant differences for both DXA modes and for MRI between male and female pigs, as well as between F1 and F2. In conclusion, DXA "CoreScan" has the ability to estimate VAT in pigs with a close relationship to MRI but needs bias correction.
Collapse
|
8
|
Fu L, Jiang Y, Wang C, Mei M, Zhou Z, Jiang Y, Song H, Ding X. A Genome-Wide Association Study on Feed Efficiency Related Traits in Landrace Pigs. Front Genet 2020; 11:692. [PMID: 32719719 PMCID: PMC7350416 DOI: 10.3389/fgene.2020.00692] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Feed efficiency (FE) traits in pigs are of utmost economic importance. Genetic improvement of FE related traits in pigs might significantly reduce production cost and energy consumption. Hence, our study aimed at identifying SNPs and candidate genes associated with FE related traits, including feed conversion ratio (FCR), average daily gain (ADG), average daily feed intake (ADFI), and residual feed intake (RFI). A genome-wide association study (GWAS) was performed for the four FE related traits in 296 Landrace pigs genotyped with PorcineSNP50 BeadChip. Two different single-trait methods, single SNP linear model GWAS (LM-GWAS) and single-step GWAS (ssGWAS), were implemented. Our results showed that the two methods showed high consistency with respect to SNP identification. A total of 32 common significant SNPs associated with the four FE related traits were identified. Bioinformatics analysis revealed eight common QTL regions, of which three QTL regions related to ADFI and RFI traits were overlapped. Gene ontology analysis revealed six common candidate genes (PRELID2, GPER1, PDX1, TEX2, PLCL2, ICAM2) relevant for the four FE related traits. These genes are involved in the processes of fat synthesis and decomposition, lipid transport process, insulin metabolism, among others. Our results provide, new insights into the genetic mechanisms and candidate function genes of FE related traits in pigs. However, further investigations to validate these results are warranted.
Collapse
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Mengran Mei
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ziwen Zhou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hailiang Song
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lamb HJ, Ross EM, Nguyen LT, Lyons RE, Moore SS, Hayes BJ. Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing. J Anim Sci 2020; 98:5823688. [PMID: 32318708 DOI: 10.1093/jas/skaa127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Brahman cattle (Bos indicus) are well adapted to thrive in tropical environments. Since their introduction to Australia in 1933, Brahman's ability to grow and reproduce on marginal lands has proven their value in the tropical beef industry. The poll phenotype, which describes the absence of horns, has become desirable in the cattle industry for animal welfare and handler safety concerns. The poll locus has been mapped to chromosome one. Four alleles, each a copy number variant, have been reported across this locus in B. indicus and Bos taurus. However, the causative mutation in Brahman cattle has not been fully characterized. Oxford Nanopore Technologies' minION sequencer was used to sequence four homozygous poll (PcPc), four homozygous horned (pp), and three heterozygous (Pcp) Brahmans to characterize the poll allele in Brahman cattle. A total of 98 Gb were sequenced and an average coverage of 3.33X was achieved. Read N50 scores ranged from 9.9 to 19 kb. Examination of the mapped reads across the poll locus revealed insertions approximately 200 bp in length in the poll animals that were absent in the horned animals. These results are consistent with the Celtic poll allele, a 212-bp duplication that replaces 10 bp. This provides direct evidence that the Celtic poll allele is segregating in the Australian Brahman population.
Collapse
Affiliation(s)
- Harrison J Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Loan T Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Russell E Lyons
- Neogen Australasia, University of Queensland, Gatton, QLD, Australia
| | - Stephen S Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Ben J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
10
|
Bernau M, Schrott J, Schwanitz S, Kreuzer LS, Scholz AM. "Sex" and body region effects on bone mineralization in male pigs. Arch Anim Breed 2020; 63:103-111. [PMID: 32318622 PMCID: PMC7163300 DOI: 10.5194/aab-63-103-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/02/2020] [Indexed: 11/30/2022] Open
Abstract
Lameness in pigs is one of the major reasons for culling and early losses in
pigs. This can be linked to osteoporosis due to pathologic alterations in
bone mineral density (BMD) or bone mineral content (BMC) and may also be
linked to the sex. Dealing with the ban on piglet castration without
anaesthesia in Germany 2021, we have three male “sex” types: entire
boars (EB), immunocastrated boars (IB), and surgically castrated boars (SB).
The hypothesis of the present study is that BMC or BMD varies between different
male sex types. If sex has an effect on bone mineralization
(BMC or BMD) and if this affects leg health, it could result in more lameness
and problems during fattening in the negatively affected sex type. The
present study evaluated bone mineralization (in terms of BMD and BMC) and
body composition traits using dual-energy X-ray absorptiometry (DXA) three
times during growth at 30, 50, and 90 kg live body weight. Nine body regions
were analysed for bone mineral traits and compared for different male sex
types and the fattening season. Significant differences were found
regarding BMD (and BMC) among EB, IB, and SB for whole-body BMD (BMC).
Additionally significant differences were found in the front and lower hind
limbs, where SB showed a significantly higher BMD compared to EB, with IB
in between. Additionally regional differences were detected among the groups.
Further studies are needed to evaluate the effect of these differences in
bone mineralization on leg health.
Collapse
Affiliation(s)
- Maren Bernau
- Livestock Center Oberschleissheim of the Veterinary Faculty, Ludwig-Maximilians-Universität München, St. Hubertusstrasse 12, 85764 Oberschleissheim, Germany.,Faculty of Agriculture, Economics and Management, Nuertingen-Geislingen University, Neckarsteige 6-10, 72622 Nürtingen, Germany
| | - Juliane Schrott
- Livestock Center Oberschleissheim of the Veterinary Faculty, Ludwig-Maximilians-Universität München, St. Hubertusstrasse 12, 85764 Oberschleissheim, Germany
| | - Sebastian Schwanitz
- Livestock Center Oberschleissheim of the Veterinary Faculty, Ludwig-Maximilians-Universität München, St. Hubertusstrasse 12, 85764 Oberschleissheim, Germany
| | - Lena Sophie Kreuzer
- Livestock Center Oberschleissheim of the Veterinary Faculty, Ludwig-Maximilians-Universität München, St. Hubertusstrasse 12, 85764 Oberschleissheim, Germany
| | - Armin Manfred Scholz
- Livestock Center Oberschleissheim of the Veterinary Faculty, Ludwig-Maximilians-Universität München, St. Hubertusstrasse 12, 85764 Oberschleissheim, Germany
| |
Collapse
|
11
|
Nan JH, Yin LL, Tang ZS, Xiang T, Ma GJ, Li XY, Liu XL, Zhao SH, Liu XD. Identification of novel variants and candidate genes associated with porcine bone mineral density using genome-wide association study. J Anim Sci 2020; 98:5736012. [PMID: 32055823 PMCID: PMC7166125 DOI: 10.1093/jas/skaa052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Pig leg weakness not only causes huge economic losses for producers but also affects animal welfare. However, genes with large effects on pig leg weakness have not been identified and suitable methods to study porcine leg weakness are urgently needed. Bone mineral density (BMD) is an important indicator for determining leg soundness in pigs. Increasing pig BMD is likely to improve pig leg soundness. In this study, porcine BMD was measured using an ultrasound bone densitometer in a population with 212 Danish Landrace pigs and 537 Danish Yorkshires. After genotyping all the individuals using GeneSeek Porcine 50K SNP chip, genetic parameter estimation was performed to evaluate the heritability of BMD. Genome-wide association study and haplotype analysis were also performed to identify the variants and candidate genes associated with porcine BMD. The results showed that the heritability of BMD was 0.21 in Landrace and 0.31 in Yorkshire. Five single-nucleotide polymorphisms on chromosome 6 identified were associated with porcine BMD at suggestive significance level. Two candidate quantitative trait loci (74.47 to 75.33 Mb; 80.20 to 83.83 Mb) and three potential candidate genes (ZBTB40, CNR2, and Lin28a) of porcine BMD were detected in this study.
Collapse
Affiliation(s)
- Jiuhong-H Nan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Lilin-L Yin
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhenshuang-S Tang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Tao Xiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Guanjun-J Ma
- Key Lab of Swine Healthy Breeding of Ministry of Agriculture and Rural Affairs, Guangxi Yangxiang Co., Ltd., Guigang, Guangxi, P.R. China
| | - Xinyun-Y Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiaolei-L Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Shuhong-H Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiangdong-D Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China.,Key Lab of Swine Healthy Breeding of Ministry of Agriculture and Rural Affairs, Guangxi Yangxiang Co., Ltd., Guigang, Guangxi, P.R. China
| |
Collapse
|
12
|
Eck K, Kunz E, Mendel C, Lühken G, Medugorac I. Morphometric measurements in lambs as a basis for future mapping studies. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Usai MG, Casu S, Sechi T, Salaris SL, Miari S, Sechi S, Carta P, Carta A. Mapping genomic regions affecting milk traits in Sarda sheep by using the OvineSNP50 Beadchip and principal components to perform combined linkage and linkage disequilibrium analysis. Genet Sel Evol 2019; 51:65. [PMID: 31744455 PMCID: PMC6862840 DOI: 10.1186/s12711-019-0508-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background The detection of regions that affect quantitative traits (QTL), to implement selection assisted by molecular information, remains of particular interest in dairy sheep for which genetic gain is constrained by the high costs of large-scale phenotype and pedigree recording. QTL detection based on the combination of linkage disequilibrium and linkage analysis (LDLA) is the most suitable approach in family-structured populations. The main issue in performing LDLA mapping is the handling of the identity-by-descent (IBD) probability matrix. Here, we propose the use of principal component analysis (PCA) to perform LDLA mapping for milk traits in Sarda dairy sheep. Methods A resource population of 3731 ewes belonging to 161 sire families and genotyped with the OvineSNP50 Beadchip was used to map genomic regions that affect five milk traits. The paternally and maternally inherited gametes of genotyped individuals were reconstructed and IBD probabilities between them were defined both at each SNP position and at the genome level. A QTL detection model fitting fixed effects of principal components that summarize IBD probabilities was tested at each SNP position. Genome-wide (GW) significance thresholds were determined by within-trait permutations. Results PCA resulted in substantial dimensionality reduction, in fact 137 and 32 (on average) principal components were able to capture 99% of the IBD variation at the locus and genome levels, respectively. Overall, 2563 positions exceeded the 0.05 GW significance threshold for at least one trait, which clustered into 75 QTL regions most of which affected more than one trait. The strongest signal was obtained for protein content on Ovis aries (OAR) chromosome 6 and overlapped with the region that harbours the casein gene cluster. Additional interesting positions were identified on OAR4 for fat content and on OAR11 for the three yield traits. Conclusions PCA is a good strategy to summarize IBD probabilities. A large number of regions associated to milk traits were identified. The outputs provided by the proposed method are useful for the selection of candidate genes, which need to be further investigated to identify causative mutations or markers in strong LD with them for application in selection programs assisted by molecular information.
Collapse
Affiliation(s)
- Mario Graziano Usai
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sara Casu
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy.
| | - Tiziana Sechi
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sotero L Salaris
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sabrina Miari
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Stefania Sechi
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Patrizia Carta
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Antonello Carta
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| |
Collapse
|
14
|
Ramayo-Caldas Y, Mármol-Sánchez E, Ballester M, Sánchez JP, González-Prendes R, Amills M, Quintanilla R. Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs. Genet Sel Evol 2019; 51:48. [PMID: 31477014 PMCID: PMC6721172 DOI: 10.1186/s12711-019-0490-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Feed efficiency (FE) has a major impact on the economic sustainability of pig production. We used a systems-based approach that integrates single nucleotide polymorphism (SNP) co-association and gene-expression data to identify candidate genes, biological pathways, and potential predictors of FE in a Duroc pig population. RESULTS We applied an association weight matrix (AWM) approach to analyse the results from genome-wide association studies (GWAS) for nine FE associated and production traits using 31K SNPs by defining residual feed intake (RFI) as the target phenotype. The resulting co-association network was formed by 829 SNPs. Additive effects of this SNP panel explained 61% of the phenotypic variance of RFI, and the resulting phenotype prediction accuracy estimated by cross-validation was 0.65 (vs. 0.20 using pedigree-based best linear unbiased prediction and 0.12 using the 31K SNPs). Sixty-eight transcription factor (TF) genes were identified in the co-association network; based on the lossless approach, the putative main regulators were COPS5, GTF2H5, RUNX1, HDAC4, ESR1, USP16, SMARCA2 and GTF2F2. Furthermore, gene expression data of the gluteus medius muscle was explored through differential expression and multivariate analyses. A list of candidate genes showing functional and/or structural associations with FE was elaborated based on results from both AWM and gene expression analyses, and included the aforementioned TF genes and other ones that have key roles in metabolism, e.g. ESRRG, RXRG, PPARGC1A, TCF7L2, LHX4, MAML2, NFATC3, NFKBIZ, TCEA1, CDCA7L, LZTFL1 or CBFB. The most enriched biological pathways in this list were associated with behaviour, immunity, nervous system, and neurotransmitters, including melatonin, glutamate receptor, and gustation pathways. Finally, an expression GWAS allowed identifying 269 SNPs associated with the candidate genes' expression (eSNPs). Addition of these eSNPs to the AWM panel of 829 SNPs did not improve the accuracy of genomic predictions. CONCLUSIONS Candidate genes that have a direct or indirect effect on FE-related traits belong to various biological processes that are mainly related to immunity, behaviour, energy metabolism, and the nervous system. The pituitary gland, hypothalamus and thyroid axis, and estrogen signalling play fundamental roles in the regulation of FE in pigs. The 829 selected SNPs explained 61% of the phenotypic variance of RFI, which constitutes a promising perspective for applying genetic selection on FE relying on molecular-based prediction.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Emilio Mármol-Sánchez
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Ballester
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Juan Pablo Sánchez
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Rayner González-Prendes
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- grid.7080.fDepartament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Quintanilla
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| |
Collapse
|
15
|
Grishina EE, Zmijewski P, Semenova EA, Cięszczyk P, Humińska-Lisowska K, Michałowska-Sawczyn M, Maculewicz E, Crewther B, Orysiak J, Kostryukova ES, Kulemin NA, Borisov OV, Khabibova SA, Larin AK, Pavlenko AV, Lyubaeva EV, Popov DV, Lysenko EA, Vepkhvadze TF, Lednev EM, Bondareva EA, Erskine RM, Generozov EV, Ahmetov II. Three DNA Polymorphisms Previously Identified as Markers for Handgrip Strength Are Associated With Strength in Weightlifters and Muscle Fiber Hypertrophy. J Strength Cond Res 2019; 33:2602-2607. [PMID: 31361736 DOI: 10.1519/jsc.0000000000003304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Grishina, EE, Zmijewski, P, Semenova, EA, Cięszczyk, P, Humińska-Lisowska, K, Michałowska-Sawczyn, M, Maculewicz, E, Crewther, B, Orysiak, J, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Bondareva, EA, Erskine, RM, Generozov, EV, and Ahmetov, II. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J Strength Cond Res 33(10): 2602-2607, 2019-Muscle strength is a highly heritable trait. So far, 196 single nucleotide polymorphisms (SNPs) associated with handgrip strength have been identified in 3 genome-wide association studies. The aim of our study was to validate the association of 35 SNPs with strength of elite Russian weightlifters and replicate the study in Polish weightlifters. Genotyping was performed using micro-array analysis or real-time polymerase chain reaction. We found that the rs12055409 G-allele near the MLN gene (p = 0.004), the rs4626333 G-allele near the ZNF608 gene (p = 0.0338), and the rs2273555 A-allele in the GBF1 gene (p = 0.0099) were associated with greater competition results (total lifts in snatch and clean and jerk adjusted for sex and weight) in 53 elite Russian weightlifters. In the replication study of 76 sub-elite Polish weightlifters, rs4626333 GG homozygotes demonstrated greater competition results (p = 0.0155) and relative muscle mass (p = 0.046), adjusted for sex, weight, and age, compared with carriers of the A-allele. In the following studies, we tested the hypotheses that these SNPs would be associated with skeletal muscle hypertrophy and handgrip strength. We found that the number of strength-associated alleles was positively associated with fast-twitch muscle fiber cross-sectional area in the independent cohort of 20 male power athletes (p = 0.021) and with handgrip strength in 87 physically active individuals (p = 0.015). In conclusion, by replicating previous findings in 4 independent studies, we demonstrate that the rs12055409 G-, rs4626333 G-, and rs2273555 A-alleles are associated with higher levels of strength, muscle mass, and muscle fiber size.
Collapse
Affiliation(s)
- Elina E Grishina
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Piotr Zmijewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Poland.,Research and Development Center Legia Lab, Legia Warszawa, Poland
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Department of Biochemistry, Kazan Federal University, Kazan, Russia
| | - Paweł Cięszczyk
- Department of Theory and Practice of Sport, Academy of Physical Education in Katowice, Katowice, Poland
| | - Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Ewelina Maculewicz
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene Epidemiology, Warsaw, Poland
| | - Blair Crewther
- Institute of Sport-National Research Institute, Warsaw, Poland
| | - Joanna Orysiak
- Institute of Sport-National Research Institute, Warsaw, Poland
| | - Elena S Kostryukova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Nickolay A Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Sofya A Khabibova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexander V Pavlenko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina V Lyubaeva
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana F Vepkhvadze
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Egor M Lednev
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Elvira A Bondareva
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, St. Petersburg, Russia
| |
Collapse
|
16
|
Gong H, Xiao S, Li W, Huang T, Huang X, Yan G, Huang Y, Qiu H, Jiang K, Wang X, Zhang H, Tang J, Li L, Li Y, Wang C, Qiao C, Ren J, Huang L, Yang B. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J Anim Breed Genet 2019; 136:3-14. [PMID: 30417949 DOI: 10.1111/jbg.12365] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/29/2018] [Accepted: 09/22/2018] [Indexed: 12/21/2022]
Abstract
Bamaxiang pig is from Guangxi province in China, characterized by its small body size and two-end black coat colour. It is an important indigenous breed for local pork market and excellent animal model for biomedical research. In this study, we performed genomewide association studies (GWAS) on 43 growth and carcass traits in 315 purebred Bamaxiang pigs based on a 1.4 million SNP array. We observed considerable phenotypic variability in the growth and carcass traits in the Bamaxiang pigs. The corresponding SNP based heritability varied greatly across the 43 traits and ranged from 9.0% to 88%. Through a conditional GWAS, we identified 53 significant associations for 35 traits at p value threshold of 10-6 . Among which, 26 associations on chromosome 3, 7, 14 and X passed a genomewide significance threshold of 5 × 10-8 . The most remarkable loci were at around 30.6 Mb on chromosome 7, which had growth stage-dependent effects on body lengths and cannon circumferences and showed large effects on multiple carcass traits. We discussed HMGA1 NUDT3, EIF2AK1, TMEM132C and AFF2 that near the lead SNP of significant loci as plausible candidate genes for corresponding traits. We also showed that including phenotypic covariate in GWAS can help to reveal additional significant loci for the target traits. The results provide insight into the genetic architecture of growth and carcass traits in Bamaxiang pigs.
Collapse
Affiliation(s)
- Huanfa Gong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wanbo Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaochang Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guorong Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yizhong Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hengqing Qiu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kai Jiang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaopeng Wang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hui Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jianhong Tang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lin Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiping Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chenbin Wang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chuanmin Qiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Ren
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
17
|
He T, He L, Gao E, Hu J, Zang J, Wang C, Zhao J, Ma X. Fat deposition deficiency is critical for the high mortality of pre-weanling newborn piglets. J Anim Sci Biotechnol 2018; 9:66. [PMID: 30155244 PMCID: PMC6109977 DOI: 10.1186/s40104-018-0280-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The high mortality of pre-weanling piglets is a dominant challenge which severely restricts the development of pig industry. A number of factors including nutrients imbalance and temperature variation during postnatal period of piglets have been reported to closely associated with the high mortality of postnatal piglets. This study aims to find out the relationship between fat deposition and survival of newborn piglets. RESULTS There were no differences in organ coefficient and bone density between the surviving and dead piglets (P > 0.05). The body weight and the fat deposition in the dead piglets were lower than the live individuals (P < 0.05). Consistently, the average sizes of white adipocytes in back and abdominal adipose tissues of dead piglets were smaller than the survivals (P < 0.05). The protein expression levels of adipocyte differentiation markers PPARγ and C/EBPα in the back and abdominal adipose tissues were lower in dead piglets compared to live piglets. The mRNA expressions of thermogenic markers PGC1α and PRDM16 in adipose tissues were decreased in the dead piglets (P < 0.05). The microarray of back fat samples from the surviving and dead piglets were conducted; two down-regulated genes namely AAMDC and CASTOR1 were identified from the dead piglets. According to quantitative real-time PCR (RT-PCR) analysis, the mRNA expression of AAMDC decreased, whereas CASTOR1 expression elevated in the dead piglets compared to the surviving piglets (P < 0.05). CONCLUSIONS The fat deposition and adipocyte differentiation in the dead piglets are insufficient compared to the surviving piglets, which may attenuate the thermogenic ability of white adipose tissue (WAT). Our data indicate that fat deposition in newborn piglets is vital to their survival.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Long He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Enen Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jinhua Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109 China
- Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
18
|
Rothammer S, Kunz E, Krebs S, Bitzer F, Hauser A, Zinovieva N, Klymiuk N, Medugorac I. Remapping of the belted phenotype in cattle on BTA3 identifies a multiplication event as the candidate causal mutation. Genet Sel Evol 2018; 50:36. [PMID: 29980171 PMCID: PMC6035435 DOI: 10.1186/s12711-018-0407-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background It has been known for almost a century that the belted phenotype in cattle follows a pattern of dominant inheritance. In 2009, the approximate position of the belt locus in Brown Swiss cattle was mapped to a 922-kb interval on bovine chromosome 3 and, subsequently, assigned to a 336-kb haplotype block based on an animal set that included, Brown Swiss, Dutch Belted (Lakenvelder) and Belted Galloway individuals. A possible candidate gene in this region i.e. HES6 was investigated but the causal mutation remains unknown. Thus, to elucidate the causal mutation of this prominent coat color phenotype, we decided to remap the belted phenotype in an independent animal set of several European bovine breeds, i.e. Gurtenvieh (belted Brown Swiss), Dutch Belted and Belted Galloway and to systematically scan the candidate region. We also checked the presence of the detected causal mutation in the genome of belted individuals from a Siberian cattle breed. Results A combined linkage disequilibrium and linkage analysis based on 110 belted and non-belted animals identified a candidate interval of 2.5 Mb. Manual inspection of the haplotypes in this region identified four candidate haplotypes that consisted of five to eight consecutive SNPs. One of these haplotypes overlapped with the initial 922-kb interval, whereas two were positioned proximal and one was positioned distal to this region. Next-generation sequencing of one heterozygous and two homozygous belted animals identified only one private belted candidate allele, i.e. a multiplication event that is located between 118,608,000 and 118,614,000 bp. Targeted locus amplification and quantitative real-time PCR confirmed an increase in copy number of this region in the genomes of both European (Belted Galloway, Dutch Belted and Gurtenvieh) and Siberian (Yakutian cattle) breeds. Finally, using nanopore sequencing, the exact breakpoints were determined at 118,608,362 and 118,614,132 bp. The closest gene to the candidate causal mutation (16 kb distal) is TWIST2. Conclusions Based on our findings and those of a previously published study that identified the same multiplication event, a quadruplication on bovine chromosome 3 between positions 118,608,362 and 118,614,132 bp is the most likely candidate causal mutation for the belted phenotype in cattle. Electronic supplementary material The online version of this article (10.1186/s12711-018-0407-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Rothammer
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center Munich, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Fanny Bitzer
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Andreas Hauser
- Laboratory for Functional Genome Analysis, Gene Center Munich, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Natalia Zinovieva
- The L.K. Ernst Institute of Animal Husbandry, Moscow Region, Russian Federation
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Hackerstr. 27, 85764, Oberschleissheim, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany.
| |
Collapse
|
19
|
Derks MFL, Megens HJ, Bosse M, Lopes MS, Harlizius B, Groenen MAM. A systematic survey to identify lethal recessive variation in highly managed pig populations. BMC Genomics 2017; 18:858. [PMID: 29121877 PMCID: PMC5680825 DOI: 10.1186/s12864-017-4278-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Lethal recessive variation can cause prenatal death of homozygous offspring. Although usually present at low-frequency in populations, the impact on individual fitness can be substantial. Until recently, the presence of recessive embryonic lethal variation could only be measured indirectly through reduced fertility. In this study, we estimate the presence of genetic loci associated with both early and late termination of development during gestation in pigs from the wealth of genome data routinely generated by a commercial breeding company. RESULTS We examined three commercial pig (Sus scrofa) populations for potentially deleterious genetic variation based on 80 K SNP-chip genotypes, and estimate the effects on reproductive traits. 24,000 pigs from three populations were analyzed for missing or depletion of homozygous haplotypes. We identified 145 haplotypes (ranging from 0.5-4 Mb in size) in the genome with complete absence or depletion of homozygous animals. Thirty-five haplotypes show a negative effect on at least one of the analysed reproductive traits (total number born, number of stillborn, and number of mummified piglets). One variant in particular appeared to result in relative late termination of development of fetuses, responsible for a significant fraction of observed stillborn piglets ('mummies'), as they die mid-gestation. Moreover, we identified the BMPER gene as a likely candidate underlying this phenomenon. CONCLUSIONS Our study shows that although lethal recessive variation is present, the frequency of these alleles is invariably low in these highly managed populations. Nevertheless, due to cumulative effects of deleterious variants, large numbers of affected offspring are produced. Furthermore, our study demonstrates the use of a large-scale commercial genetic experiment to systematically screen for 'natural knockouts' that can increase understanding of gene function.
Collapse
Affiliation(s)
- Martijn F L Derks
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - Hendrik-Jan Megens
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Marcos S Lopes
- Topigs Norsvin Research Center, Beuningen, the Netherlands.,Topigs Norsvin, Curitiba, Brazil
| | | | - Martien A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
20
|
Rothammer S, Bernau M, Kremer-Rücker PV, Medugorac I, Scholz AM. Genome-wide QTL mapping results for regional DXA body composition and bone mineral density traits in pigs. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-51-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. In a previous study, genome-wide mapping of quantitative trait loci (QTL) for five body composition traits, three bone mineral traits and live weight was performed using whole-body dual-energy X-ray absorptiometry (DXA) data. Since QTL for bone mineral traits were rare, the current study aimed to clarify whether the mapping results were influenced by the analysed body regions. Thus, the same material (551 pigs) and methods as in the whole-body QTL mapping study were used. However, for evaluation of the DXA scans, we manually defined two body regions: (i) from the last ribs to the pelvis (A) and (ii) including the pelvis and the hind limbs (P). Since live weight was not affected by the regional analysis, it was omitted from the QTL mapping design. Our results show an overall high consistency of mapping results especially for body composition traits. Two thirds of the initial whole-body QTL are significant for both A and P. Possible causes for the still low number of bone mineral QTL and the lower consistency found for these traits are discussed. For body composition traits, the data presented here show high genome-wide Pearson correlations between mapping results that are based on DXA scans with the time-saving whole-body standard setting and mapping results for DXA data that were obtained by time-consuming manual definition of the regions of interest. However, our results also suggest that whole-body or regional DXA scans might generally be less suitable for mapping of bone mineral traits in pigs. An analysis of single reference bones could be more useful.
Collapse
|
21
|
Müller MP, Rothammer S, Seichter D, Russ I, Hinrichs D, Tetens J, Thaller G, Medugorac I. Genome-wide mapping of 10 calving and fertility traits in Holstein dairy cattle with special regard to chromosome 18. J Dairy Sci 2017; 100:1987-2006. [PMID: 28109604 DOI: 10.3168/jds.2016-11506] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/20/2016] [Indexed: 01/07/2023]
Abstract
Over the last decades, a dramatic decrease in reproductive performance has been observed in Holstein cattle and fertility problems have become the most common reason for a cow to leave the herd. The premature removal of animals with high breeding values results in both economic and breeding losses. For efficient future Holstein breeding, the identification of loci associated with low fertility is of major interest and thus constitutes the aim of this study. To reach this aim, a genome-wide combined linkage disequilibrium and linkage analysis (cLDLA) was conducted using data on the following 10 calving and fertility traits in the form of estimated breeding values: days from first service to conception of heifers and cows, nonreturn rate on d 56 of heifers and cows, days from calving to first insemination, days open, paternal and maternal calving ease, paternal and maternal stillbirth. The animal data set contained 2,527 daughter-proven Holstein bulls from Germany that were genotyped with Illumina's BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For the cLDLA, 41,635 sliding windows of 40 adjacent single nucleotide polymorphisms (SNP) were used. At each window midpoint, a variance component analysis was executed using ASReml. The underlying mixed linear model included random quantitative trait locus (QTL) and polygenic effects. We identified 50 genome-wide significant QTL. The most significant peak was detected for direct calving ease at 59,179,424 bp on chromosome 18 (BTA18). Next, a mixed-linear model association (MLMA) analysis was conducted. A comparison of the cLDLA and MLMA results with special regard to BTA18 showed that the genome-wide most significant SNP from the MLMA was associated with the same trait and located on the same chromosome at 57,589,121 bp (i.e., about 1.5 Mb apart from the cLDLA peak). The results of 5 different cLDLA and 2 MLMA models, which included the fixed effects of either SNP or haplotypes, suggested that the cLDLA method outperformed the MLMA in accuracy and precision. The haplotype-based cLDLA method allowed for a more precise mapping and the definition of ancestral and derived QTL alleles, both of which are essential for the detection of underlying quantitative trait nucleotides.
Collapse
Affiliation(s)
- M-P Müller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - S Rothammer
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - D Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - I Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - D Hinrichs
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - J Tetens
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - G Thaller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - I Medugorac
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
22
|
Soladoye O, López Campos Ó, Aalhus J, Gariépy C, Shand P, Juárez M. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations. Meat Sci 2016; 121:310-316. [DOI: 10.1016/j.meatsci.2016.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
23
|
Livshits G, Gao F, Malkin I, Needhamsen M, Xia Y, Yuan W, Bell CG, Ward K, Liu Y, Wang J, Bell JT, Spector TD. Contribution of Heritability and Epigenetic Factors to Skeletal Muscle Mass Variation in United Kingdom Twins. J Clin Endocrinol Metab 2016; 101:2450-9. [PMID: 27144936 PMCID: PMC4891794 DOI: 10.1210/jc.2016-1219] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Skeletal muscle mass (SMM) is one of the major components of human body composition, with deviations from normal values often leading to sarcopenia. OBJECTIVE Our major aim was to conduct a genome-wide DNA methylation study in an attempt to identify potential genomic regions associated with SMM. DESIGN This was a mixed cross-sectional and longitudinal study. SETTING Community-based study. PARTICIPANTS A total of 1550 middle-aged United Kingdom twins (monozygotic [MZ] and dizygotic [DZ]), 297 of which were repeatedly measured participated in the study. MAIN OUTCOME MEASURE Appendicular lean mass assessed using dual-energy X-ray absorptiometry technology, and methylated DNA immunoprecipitation sequencing DNA methylation profiling genome-wide were obtained from each individual. RESULTS Heritability estimate of SMM, with simultaneous adjustment for covariates obtained using variance decomposition analysis, was h(2) = 0.809 ± 0.050. After quality control and analysis of longitudinal stability, the DNA methylation data comprised of 723 029 genomic sites, with positive correlations between repeated measurements (Rrepeated = 0.114-0.905). Correlations between MZ and DZ twins were 0.51 and 0.38 at a genome-wide average, respectively, and clearly increased with Rrepeated. Testing for DNA methylation association with SMM in 50 discordant MZ twins revealed 36 081 nominally significant results, of which the top-ranked 134 signals (P < .01 and Rrepeated > 0.40) were subjected to replication in the sample of 1196 individuals. Seven SMM methylation association signals replicated at a false discovery rate less than 0.1, and these were located in or near genes DNAH12, CAND1, CYP4F29P, and ZFP64, which have previously been highlighted in muscle-related studies. Adjusting for age, smoking, and blood cell heterogeneity did not alter significance of these associations. CONCLUSION This epigenome-wide study, testing longitudinally stable methylation sites, discovered and replicated a number of associations between DNA methylation at CpG loci and SMM. Four replicated signals were related to genes with potential muscle functions, suggesting that the methylome of whole blood may be informative of SMM variation.
Collapse
|
24
|
Nonneman DJ, Schneider JF, Lents CA, Wiedmann RT, Vallet JL, Rohrer GA. Genome-wide association and identification of candidate genes for age at puberty in swine. BMC Genet 2016; 17:50. [PMID: 26923368 PMCID: PMC4770536 DOI: 10.1186/s12863-016-0352-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/12/2016] [Indexed: 12/29/2022] Open
Abstract
Background Reproductive efficiency has a great impact on the economic success of pork production. Gilts comprise a significant portion of breeding females and gilts that reach puberty earlier tend to stay in the herd longer and be more productive. About 10 to 30 % of gilts never farrow a litter and the most common reasons for removal are anestrus and failure to conceive. Puberty in pigs is usually defined as the female’s first estrus in the presence of boar stimulation. Genetic markers associated with age at puberty will allow for selection on age at puberty and traits correlated with sow lifetime productivity. Results Gilts (n = 759) with estrus detection measurements ranging from 140–240 days were genotyped using the Illumina PorcineSNP60 BeadChip and SNP were tested for significant effects with a Bayesian approach using GenSel software. Of the available 8111 five-marker windows, 27 were found to be statistically significant with a comparison-wise error of P < 0.01. Ten QTL were highly significant at P < 0.005 level. Two QTL, one on SSC12 at 15 Mb and the other on SSC7 at 75 Mb, explained 16.87 % of the total genetic variance. The most compelling candidate genes in these two regions included the growth hormone gene (GH1) on SSC12 and PRKD1 on SSC7. Several loci confirmed associations previously identified for age at puberty in the pig and loci for age at menarche in humans. Conclusions Several of the loci identified in this study have a physiological role for the onset of puberty and a genetic basis for sexual maturation in humans. Understanding the genes involved in regulation of the onset of puberty would allow for the improvement of reproductive efficiency in swine. Because age at puberty is a predictive factor for sow longevity and lifetime productivity, but not routinely measured or selected for in commercial herds, it would be beneficial to be able to use genomic or marker-assisted selection to improve these traits. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0352-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan J Nonneman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - James F Schneider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Clay A Lents
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Ralph T Wiedmann
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Jeffrey L Vallet
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Gary A Rohrer
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| |
Collapse
|
25
|
Kalinkovich A, Livshits G. Sarcopenia--The search for emerging biomarkers. Ageing Res Rev 2015; 22:58-71. [PMID: 25962896 DOI: 10.1016/j.arr.2015.05.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the life quality of elder people. In view of increasing life expectancy, sarcopenia renders a heavy burden on the health care system. However, although there is a consensus that sarcopenia is a multifactorial syndrome, its etiology, underlying mechanisms, and even definition remain poorly delineated, thus, preventing development of a precise treatment strategy. The main aim of our review is to critically analyze potential sarcopenia biomarkers in light of the molecular mechanisms of their involvement in sarcopenia pathogenesis. Normal muscle mass and function maintenance are proposed to be dependent on the dynamic balance between the positive regulators of muscle growth such as bone morphogenetic proteins (BMPs), brain-derived neurotrophic factor (BDNF), follistatin (FST) and irisin, and negative regulators including TGFβ, myostatin, activins A and B, and growth and differentiation factor-15 (GDF-15). We hypothesize that the shift in this balance to muscle growth inhibitors, along with increased expression of the C- terminal agrin fragment (CAF) associated with age-dependent neuromuscular junction (NMJ) dysfunction, as well as skeletal muscle-specific troponin T (sTnT), a key component of contractile machinery, is a main mechanism underlying sarcopenia pathogenesis. Thus, this review proposes and emphasizes that these molecules are the emerging sarcopenia biomarkers.
Collapse
|
26
|
Scholz AM, Bünger L, Kongsro J, Baulain U, Mitchell AD. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review. Animal 2015; 9:1250-64. [PMID: 25743562 PMCID: PMC4492221 DOI: 10.1017/s1751731115000336] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 02/08/2015] [Indexed: 12/24/2022] Open
Abstract
The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.
Collapse
Affiliation(s)
- A. M. Scholz
- Livestock Center Oberschleißheim,
Ludwig-Maximilians-University Munich,
Sankt-Hubertusstrasse 12, 85764
Oberschleißheim, Germany
| | - L. Bünger
- SRUC, Animal and Veterinary Sciences,
Roslin Institute Building, Easter Bush,
Midlothian, Scotland EH25 9RG,
UK
| | - J. Kongsro
- Norsvin, Department of Animal and Aquacultural
Sciences, c/o Norwegian University of Life Sciences,
PO Box 5003, N-1432 Ås,
Norway
| | - U. Baulain
- Institute of Farm Animal Genetics,
Friedrich-Loeffler-Institut, Hoeltystr.10,
31535 Neustadt, Germany
| | - A. D. Mitchell
- Agricultural Research Service (Retired), US Department of
Agriculture, 10300 Baltimore Avenue, BARC-West,
Beltsville, MD 20705, USA
| |
Collapse
|