1
|
Nguyen A, Ondrus AE. In Silico Tools to Score and Predict Cholesterol-Protein Interactions. J Med Chem 2024; 67:20765-20775. [PMID: 39616623 DOI: 10.1021/acs.jmedchem.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cholesterol is structurally distinct from other lipids, which confers it with singular roles in membrane organization and protein function. As a signaling molecule, cholesterol engages in discrete interactions with transmembrane, peripheral, and certain soluble proteins to control cellular responses. Accordingly, the cholesterol-protein interface is central to cholesterol-related diseases and is an essential consideration in drug design. However, cholesterol's hydrophobic, un-drug-like nature presents a unique challenge to traditional in silico analyses. In this Perspective, we survey a collection of tools designed to predict and evaluate cholesterol binding sites in proteins, including classical sequence motifs, molecular docking, template-based strategies, molecular dynamics simulations, and recent artificial intelligence approaches. We then comment on contemporary tools to evaluate ligand-protein interactions, their applicability to cholesterol, and the yet-untapped potential of cholesterol-protein interactions in human health and disease.
Collapse
Affiliation(s)
- Anna Nguyen
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Alison E Ondrus
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Comajuncosa-Creus A, Jorba G, Barril X, Aloy P. Comprehensive detection and characterization of human druggable pockets through binding site descriptors. Nat Commun 2024; 15:7917. [PMID: 39256431 PMCID: PMC11387482 DOI: 10.1038/s41467-024-52146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Druggable pockets are protein regions that have the ability to bind organic small molecules, and their characterization is essential in target-based drug discovery. However, deriving pocket descriptors is challenging and existing strategies are often limited in applicability. We introduce PocketVec, an approach to generate pocket descriptors via inverse virtual screening of lead-like molecules. PocketVec performs comparably to leading methodologies while addressing key limitations. Additionally, we systematically search for druggable pockets in the human proteome, using experimentally determined structures and AlphaFold2 models, identifying over 32,000 binding sites across 20,000 protein domains. We then generate PocketVec descriptors for each site and conduct an extensive similarity search, exploring over 1.2 billion pairwise comparisons. Our results reveal druggable pocket similarities not detected by structure- or sequence-based methods, uncovering clusters of similar pockets in proteins lacking crystallized inhibitors and opening the door to strategies for prioritizing chemical probe development to explore the druggable space.
Collapse
Affiliation(s)
- Arnau Comajuncosa-Creus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Guillem Jorba
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Xavier Barril
- Facultat de Farmàcia and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Smith Z, Strobel M, Vani BP, Tiwary P. Graph Attention Site Prediction (GrASP): Identifying Druggable Binding Sites Using Graph Neural Networks with Attention. J Chem Inf Model 2024; 64:2637-2644. [PMID: 38453912 PMCID: PMC11182664 DOI: 10.1021/acs.jcim.3c01698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Identifying and discovering druggable protein binding sites is an important early step in computer-aided drug discovery, but it remains a difficult task where most campaigns rely on a priori knowledge of binding sites from experiments. Here, we present a binding site prediction method called Graph Attention Site Prediction (GrASP) and re-evaluate assumptions in nearly every step in the site prediction workflow from data set preparation to model evaluation. GrASP is able to achieve state-of-the-art performance at recovering binding sites in PDB structures while maintaining a high degree of precision which will minimize wasted computation in downstream tasks such as docking and free energy perturbation.
Collapse
Affiliation(s)
- Zachary Smith
- Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- Biophysics Program, University of Maryland, College Park 20742, USA
| | - Michael Strobel
- Department of Computer Science, University of Maryland, College Park 20742, USA
| | - Bodhi P. Vani
- Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA
| |
Collapse
|
4
|
Shaikh N, Linthoi RK, Swamy KV, Karthikeyan M, Vyas R. Comprehensive molecular docking and dynamic simulations for drug repurposing of clinical drugs against multiple cancer kinase targets. J Biomol Struct Dyn 2023; 41:7735-7743. [PMID: 36134605 DOI: 10.1080/07391102.2022.2124453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Drug repurposing is a method to identify novel therapeutic agents from the existing drugs and clinical compounds. In the present comprehensive work, molecular docking, virtual screening and dynamics simulations were carried out for ten cancer types viz breast, colon, central nervous system, leukaemia, melanoma, ovarian, prostate, renal and lung (non-small and small cell) against validated eighteen kinase targets. The study aims to understand the action of chemotherapy drugs mechanism through binding interactions against selected targets via comparative docking simulations with the state-art molecular modelling suits such as MOE, Cresset-Flare, AutoDock Vina, GOLD and GLIDE. Chemotherapeutic drugs (n = 112) were shortlisted from standard drug databases with appropriate chemoinformatic filters. Based on docking studies it was revealed that leucovorin, nilotinib, ellence, thalomid and carfilzomib drugs possessed potential against other cancer targets. A library was built to enumerate novel molecules based on the scaffold and functional groups extracted from known drugs and clinical compounds. Twenty novel molecules were prioritised further based on drug-like attributes. These were cross docked against 1MQ4 Aurora-A Protein Kinase for prostate cancer and 4UYA Mitogen-activated protein kinase for renal cancer. All docking programs yielded similar results but interestingly AutoDock Vina yielded the lowest RMSD with the native ligand. To further validate the final docking results at atomistic level, molecular dynamics simulations were performed to ascertain the stability of the protein-ligand complex. The study enables repurposing of drugs and lead identification by employing a host of structure and ligand based virtual screening tools and techniques.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nilofer Shaikh
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - R K Linthoi
- CEPD CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - K V Swamy
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | | | - Renu Vyas
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| |
Collapse
|
5
|
Joseph BP, Weber V, Knüpfer L, Giorgetti A, Alfonso-Prieto M, Krauß S, Carloni P, Rossetti G. Low Molecular Weight Inhibitors Targeting the RNA-Binding Protein HuR. Int J Mol Sci 2023; 24:13127. [PMID: 37685931 PMCID: PMC10488267 DOI: 10.3390/ijms241713127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The RNA-binding protein human antigen R (HuR) regulates stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. This protein has been progressively recognized as a relevant therapeutic target for several pathologies, like cancer, neurodegeneration, as well as inflammation. Inhibitors of mRNA binding to HuR might thus be beneficial against a variety of diseases. Here, we present the rational identification of structurally novel HuR inhibitors. In particular, by combining chemoinformatic approaches, high-throughput virtual screening, and RNA-protein pulldown assays, we demonstrate that the 4-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)benzoate ligand exhibits a dose-dependent HuR inhibition effect in binding experiments. Importantly, the chemical scaffold is new with respect to the currently known HuR inhibitors, opening up a new avenue for the design of pharmaceutical agents targeting this important protein.
Collapse
Affiliation(s)
- Benjamin Philipp Joseph
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Verena Weber
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Lisa Knüpfer
- Institute of Biology, University of Siegen, 57076 Siegen, Germany;
| | - Alejandro Giorgetti
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mercedes Alfonso-Prieto
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
| | - Sybille Krauß
- Institute of Biology, University of Siegen, 57076 Siegen, Germany;
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH Aachen University, 44517 Aachen, Germany
| |
Collapse
|
6
|
Bhujbal SP, Hah JM. An Intriguing Purview on the Design of Macrocyclic Inhibitors for Unexplored Protein Kinases through Their Binding Site Comparison. Pharmaceuticals (Basel) 2023; 16:1009. [PMID: 37513921 PMCID: PMC10386424 DOI: 10.3390/ph16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Kinases play an important role in regulating various intracellular signaling pathways that control cell proliferation, differentiation, survival, and other cellular processes, and their deregulation causes more than 400 diseases. Consequently, macrocyclization can be considered a noteworthy approach to developing new therapeutic agents for human diseases. Macrocyclization has emerged as an effective drug discovery strategy over the past decade to improve target selectivity and potency of small molecules. Small compounds with linear structures upon macrocyclization can lead to changes in their physicochemical and biological properties by firmly reducing conformational flexibility. A number of distinct protein kinases exhibit similar binding sites. Comparison of protein binding sites provides crucial insights for drug discovery and development. Binding site similarities are helpful in understanding polypharmacology, identifying potential off-targets, and repurposing known drugs. In this review, we focused on comparing the binding sites of those kinases for which macrocyclic inhibitors are available/studied so far. Furthermore, we calculated the volume of the binding site pocket for each targeted kinase and then compared it with the binding site pocket of the kinase for which only acyclic inhibitors were designed to date. Our review and analysis of several explored kinases might be useful in targeting new protein kinases for macrocyclic drug discovery.
Collapse
Affiliation(s)
- Swapnil P Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Jung-Mi Hah
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| |
Collapse
|
7
|
PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity. J Cheminform 2023; 15:31. [PMID: 36864534 PMCID: PMC9983232 DOI: 10.1186/s13321-023-00701-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Protein mutations, especially those which occur in the binding site, play an important role in inter-individual drug response and may alter binding affinity and thus impact the drug's efficacy and side effects. Unfortunately, large-scale experimental screening of ligand-binding against protein variants is still time-consuming and expensive. Alternatively, in silico approaches can play a role in guiding those experiments. Methods ranging from computationally cheaper machine learning (ML) to the more expensive molecular dynamics have been applied to accurately predict the mutation effects. However, these effects have been mostly studied on limited and small datasets, while ideally a large dataset of binding affinity changes due to binding site mutations is needed. In this work, we used the PSnpBind database with six hundred thousand docking experiments to train a machine learning model predicting protein-ligand binding affinity for both wild-type proteins and their variants with a single-point mutation in the binding site. A numerical representation of the protein, binding site, mutation, and ligand information was encoded using 256 features, half of them were manually selected based on domain knowledge. A machine learning approach composed of two regression models is proposed, the first predicting wild-type protein-ligand binding affinity while the second predicting the mutated protein-ligand binding affinity. The best performing models reported an RMSE value within 0.5 [Formula: see text] 0.6 kcal/mol-1 on an independent test set with an R2 value of 0.87 [Formula: see text] 0.90. We report an improvement in the prediction performance compared to several reported models developed for protein-ligand binding affinity prediction. The obtained models can be used as a complementary method in early-stage drug discovery. They can be applied to rapidly obtain a better overview of the ligand binding affinity changes across protein variants carried by people in the population and narrow down the search space where more time-demanding methods can be used to identify potential leads that achieve a better affinity for all protein variants.
Collapse
|
8
|
Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. Quantitative comparison of protein-protein interaction interface using physicochemical feature-based descriptors of surface patches. Front Mol Biosci 2023; 10:1110567. [PMID: 36814641 PMCID: PMC9939524 DOI: 10.3389/fmolb.2023.1110567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Driving mechanisms of many biological functions in a cell include physical interactions of proteins. As protein-protein interactions (PPIs) are also important in disease development, protein-protein interactions are highlighted in the pharmaceutical industry as possible therapeutic targets in recent years. To understand the variety of protein-protein interactions in a proteome, it is essential to establish a method that can identify similarity and dissimilarity between protein-protein interactions for inferring the binding of similar molecules, including drugs and other proteins. In this study, we developed a novel method, protein-protein interaction-Surfer, which compares and quantifies similarity of local surface regions of protein-protein interactions. protein-protein interaction-Surfer represents a protein-protein interaction surface with overlapping surface patches, each of which is described with a three-dimensional Zernike descriptor (3DZD), a compact mathematical representation of 3D function. 3DZD captures both the 3D shape and physicochemical properties of the protein surface. The performance of protein-protein interaction-Surfer was benchmarked on datasets of protein-protein interactions, where we were able to show that protein-protein interaction-Surfer finds similar potential drug binding regions that do not share sequence and structure similarity. protein-protein interaction-Surfer is available at https://kiharalab.org/ppi-surfer.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Chemistry Education, Sunchon National University, Suncheon, South Korea,Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon, South Korea
| | - Keiko Kumazawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States,Department of Computer Science, Purdue University, West Lafayette, IN, United States,Center for Cancer Research, Purdue University, West Lafayette, IN, United States,*Correspondence: Daisuke Kihara,
| |
Collapse
|
9
|
TWN-RENCOD: A novel method for protein binding site comparison. Comput Struct Biotechnol J 2022; 21:425-431. [PMID: 36618985 PMCID: PMC9798139 DOI: 10.1016/j.csbj.2022.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Several diverse proteins possess similar binding sites. Protein binding site comparison provides valuable insights for the drug discovery and development. Binding site similarities are useful in understanding polypharmacology, identifying potential off-targets and repurposing of known drugs. Many binding site analysis and comparison methods are available today, however, these methods may not be adequate to explain variation in the activity of a drug or a small molecule against a number of similar proteins. Water molecules surrounding the protein surface contribute to structure and function of proteins. Water molecules form diverse types of hydrogen-bonded cyclic water-ring networks known as topological water networks (TWNs). Analysis of TWNs in binding site of proteins may improve understanding of the characteristics of binding sites. We propose TWN-based residue encoding (TWN-RENCOD), a novel binding site comparison method which compares the aqueous environment in binding sites of similar proteins. As compared to other existing methods, results obtained using our method correlated better with differences in wide range of activity of a known drug (Sunitinib) against nine different protein kinases (KIT, PDGFRA, VEGFR2, PHKG2, ITK, HPK1, MST3, PAK6 and CDK2).
Collapse
|
10
|
Scott O, Gu J, Chan AE. Classification of Protein-Binding Sites Using a Spherical Convolutional Neural Network. J Chem Inf Model 2022; 62:5383-5396. [PMID: 36341715 PMCID: PMC9709917 DOI: 10.1021/acs.jcim.2c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis and comparison of protein-binding sites aid various applications in the drug discovery process, e.g., hit finding, drug repurposing, and polypharmacology. Classification of binding sites has been a hot topic for the past 30 years, and many different methods have been published. The rapid development of machine learning computational algorithms, coupled with the large volume of publicly available protein-ligand 3D structures, makes it possible to apply deep learning techniques in binding site comparison. Our method uses a cutting-edge spherical convolutional neural network based on the DeepSphere architecture to learn global representations of protein-binding sites. The model was trained on TOUGH-C1 and TOUGH-M1 data and validated with the ProSPECCTs datasets. Our results show that our model can (1) perform well in protein-binding site similarity and classification tasks and (2) learn and separate the physicochemical properties of binding sites. Lastly, we tested the model on a set of kinases, where the results show that it is able to cluster the different kinase subfamilies effectively. This example demonstrates the method's promise for lead hopping within or outside a protein target, directly based on binding site information.
Collapse
|
11
|
Eguida M, Rognan D. Estimating the Similarity between Protein Pockets. Int J Mol Sci 2022; 23:12462. [PMID: 36293316 PMCID: PMC9604425 DOI: 10.3390/ijms232012462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 10/28/2023] Open
Abstract
With the exponential increase in publicly available protein structures, the comparison of protein binding sites naturally emerged as a scientific topic to explain observations or generate hypotheses for ligand design, notably to predict ligand selectivity for on- and off-targets, explain polypharmacology, and design target-focused libraries. The current review summarizes the state-of-the-art computational methods applied to pocket detection and comparison as well as structural druggability estimates. The major strengths and weaknesses of current pocket descriptors, alignment methods, and similarity search algorithms are presented. Lastly, an exhaustive survey of both retrospective and prospective applications in diverse medicinal chemistry scenarios illustrates the capability of the existing methods and the hurdle that still needs to be overcome for more accurate predictions.
Collapse
Affiliation(s)
| | - Didier Rognan
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
12
|
Zemla AT, Allen JE, Kirshner D, Lightstone FC. PDBspheres: a method for finding 3D similarities in local regions in proteins. NAR Genom Bioinform 2022; 4:lqac078. [PMID: 36225529 PMCID: PMC9549786 DOI: 10.1093/nargab/lqac078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
We present a structure-based method for finding and evaluating structural similarities in protein regions relevant to ligand binding. PDBspheres comprises an exhaustive library of protein structure regions ('spheres') adjacent to complexed ligands derived from the Protein Data Bank (PDB), along with methods to find and evaluate structural matches between a protein of interest and spheres in the library. PDBspheres uses the LGA (Local-Global Alignment) structure alignment algorithm as the main engine for detecting structural similarities between the protein of interest and template spheres from the library, which currently contains >2 million spheres. To assess confidence in structural matches, an all-atom-based similarity metric takes side chain placement into account. Here, we describe the PDBspheres method, demonstrate its ability to detect and characterize binding sites in protein structures, show how PDBspheres-a strictly structure-based method-performs on a curated dataset of 2528 ligand-bound and ligand-free crystal structures, and use PDBspheres to cluster pockets and assess structural similarities among protein binding sites of 4876 structures in the 'refined set' of the PDBbind 2019 dataset.
Collapse
Affiliation(s)
- Adam T Zemla
- To whom correspondence should be addressed. Tel: +1 925 423 5571; Fax: +1 925 423 6437;
| | - Jonathan E Allen
- Global Security Computing Applications, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dan Kirshner
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
13
|
Krasoulis A, Antonopoulos N, Pitsikalis V, Theodorakis S. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features. J Chem Inf Model 2022; 62:4642-4659. [PMID: 36154119 DOI: 10.1021/acs.jcim.2c01057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computational methods for virtual screening can dramatically accelerate early-stage drug discovery by identifying potential hits for a specified target. Docking algorithms traditionally use physics-based simulations to address this challenge by estimating the binding orientation of a query protein-ligand pair and a corresponding binding affinity score. Over the recent years, classical and modern machine learning architectures have shown potential for outperforming traditional docking algorithms. Nevertheless, most learning-based algorithms still rely on the availability of the protein-ligand complex binding pose, typically estimated via docking simulations, which leads to a severe slowdown of the overall virtual screening process. A family of algorithms processing target information at the amino acid sequence level avoid this requirement, however, at the cost of processing protein data at a higher representation level. We introduce deep neural virtual screening (DENVIS), an end-to-end pipeline for virtual screening using graph neural networks (GNNs). By performing experiments on two benchmark databases, we show that our method performs competitively to several docking-based, machine learning-based, and hybrid docking/machine learning-based algorithms. By avoiding the intermediate docking step, DENVIS exhibits several orders of magnitude faster screening times (i.e., higher throughput) than both docking-based and hybrid models. When compared to an amino acid sequence-based machine learning model with comparable screening times, DENVIS achieves dramatically better performance. Some key elements of our approach include protein pocket modeling using a combination of atomic and surface features, the use of model ensembles, and data augmentation via artificial negative sampling during model training. In summary, DENVIS achieves competitive to state-of-the-art virtual screening performance, while offering the potential to scale to billions of molecules using minimal computational resources.
Collapse
|
14
|
Dankwah KO, Mohl JE, Begum K, Leung MY. What Makes GPCRs from Different Families Bind to the Same Ligand? Biomolecules 2022; 12:863. [PMID: 35883418 PMCID: PMC9313020 DOI: 10.3390/biom12070863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, computational prediction of GPCR ligand binding becomes a convincing option to high throughput screening and other experimental approaches during the beginning phases of ligand discovery. In this work, we set out to computationally uncover and understand the binding of a single ligand to GPCRs from several different families. Three-dimensional structural comparisons of the GPCRs that bind to the same ligand revealed local 3D structural similarities and often these regions overlap with locations of binding pockets. These pockets were found to be similar (based on backbone geometry and side-chain orientation using APoc), and they correlate positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the more likely a ligand binding to the pockets will interact with similar residues, have similar conformations, and produce similar binding affinities across the pockets. These findings can be exploited to improve protein function inference, drug repurposing and drug toxicity prediction, and accelerate the development of new drugs.
Collapse
Affiliation(s)
- Kwabena Owusu Dankwah
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Jonathon E. Mohl
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Bioinformatics Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Khodeza Begum
- Bioinformatics Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Bioinformatics Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
15
|
Shi W, Singha M, Srivastava G, Pu L, Ramanujam J, Brylinski M. Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design. Front Pharmacol 2022; 13:837715. [PMID: 35359869 PMCID: PMC8962739 DOI: 10.3389/fphar.2022.837715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Computational modeling is an essential component of modern drug discovery. One of its most important applications is to select promising drug candidates for pharmacologically relevant target proteins. Because of continuing advances in structural biology, putative binding sites for small organic molecules are being discovered in numerous proteins linked to various diseases. These valuable data offer new opportunities to build efficient computational models predicting binding molecules for target sites through the application of data mining and machine learning. In particular, deep neural networks are powerful techniques capable of learning from complex data in order to make informed drug binding predictions. In this communication, we describe Pocket2Drug, a deep graph neural network model to predict binding molecules for a given a ligand binding site. This approach first learns the conditional probability distribution of small molecules from a large dataset of pocket structures with supervised training, followed by the sampling of drug candidates from the trained model. Comprehensive benchmarking simulations show that using Pocket2Drug significantly improves the chances of finding molecules binding to target pockets compared to traditional drug selection procedures. Specifically, known binders are generated for as many as 80.5% of targets present in the testing set consisting of dissimilar data from that used to train the deep graph neural network model. Overall, Pocket2Drug is a promising computational approach to inform the discovery of novel biopharmaceuticals.
Collapse
Affiliation(s)
- Wentao Shi
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Manali Singha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, United States
| | - J. Ramanujam
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, United States
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, United States
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Michal Brylinski,
| |
Collapse
|
16
|
Fernández-Torras A, Comajuncosa-Creus A, Duran-Frigola M, Aloy P. Connecting chemistry and biology through molecular descriptors. Curr Opin Chem Biol 2021; 66:102090. [PMID: 34626922 DOI: 10.1016/j.cbpa.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Through the representation of small molecule structures as numerical descriptors and the exploitation of the similarity principle, chemoinformatics has made paramount contributions to drug discovery, from unveiling mechanisms of action and repurposing approved drugs to de novo crafting of molecules with desired properties and tailored targets. Yet, the inherent complexity of biological systems has fostered the implementation of large-scale experimental screenings seeking a deeper understanding of the targeted proteins, the disrupted biological processes and the systemic responses of cells to chemical perturbations. After this wealth of data, a new generation of data-driven descriptors has arisen providing a rich portrait of small molecule characteristics that goes beyond chemical properties. Here, we give an overview of biologically relevant descriptors, covering chemical compounds, proteins and other biological entities, such as diseases and cell lines, while aligning them to the major contributions in the field from disciplines, such as natural language processing or computer vision. We now envision a new scenario for chemical and biological entities where they both are translated into a common numerical format. In this computational framework, complex connections between entities can be unveiled by means of simple arithmetic operations, such as distance measures, additions, and subtractions.
Collapse
Affiliation(s)
- Adrià Fernández-Torras
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Arnau Comajuncosa-Creus
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; Ersilia Open Source Initiative, Cambridge, United Kingdom
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
Kim J, Park S, Min D, Kim W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int J Mol Sci 2021; 22:9983. [PMID: 34576146 PMCID: PMC8470987 DOI: 10.3390/ijms22189983] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug-target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.
Collapse
Affiliation(s)
- Jintae Kim
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
| | - Sera Park
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
| | - Dongbo Min
- Computer Vision Lab, Department of Computer Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Wankyu Kim
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
- System Pharmacology Lab, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Guterres H, Park SJ, Zhang H, Im W. CHARMM-GUI LBS Finder & Refiner for Ligand Binding Site Prediction and Refinement. J Chem Inf Model 2021; 61:3744-3751. [PMID: 34296608 DOI: 10.1021/acs.jcim.1c00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A protein performs its task by binding a variety of ligands in its local region that is also known as the ligand-binding-site (LBS). Therefore, accurate prediction, characterization, and refinement of LBS can facilitate protein functional annotations and structure-based drug design. In this work, we present CHARMM-GUI LBS Finder & Refiner (https://www.charmm-gui.org/input/lbsfinder) that predicts potential LBS, offers interactive features for local LBS structure analysis, and prepares various molecular dynamics (MD) systems and inputs by setting up distance restraint potentials for LBS structure refinement. LBS Finder & Refiner supports 5 different commonly used simulation programs, such as NAMD, AMBER, GROMACS, GENESIS, and OpenMM, for LBS structure refinement together with hydrogen mass repartitioning. The capability of LBS Finder & Refiner is illustrated through LBS structure predictions and refinements of 48 modeled and 20 apo benchmark target proteins. Overall, successful LBS structure predictions and refinements are seen in our benchmark tests. We hope that LBS Finder & Refiner is useful to predict, characterize, and refine potential LBS on any given protein of interest.
Collapse
Affiliation(s)
- Hugo Guterres
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Han Zhang
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
19
|
Li S, Cai C, Gong J, Liu X, Li H. A fast protein binding site comparison algorithm for proteome-wide protein function prediction and drug repurposing. Proteins 2021; 89:1541-1556. [PMID: 34245187 DOI: 10.1002/prot.26176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023]
Abstract
The expansion of three-dimensional protein structures and enhanced computing power have significantly facilitated our understanding of protein sequence/structure/function relationships. A challenge in structural genomics is to predict the function of uncharacterized proteins. Protein function deconvolution based on global sequence or structural homology is impracticable when a protein relates to no other proteins with known function, and in such cases, functional relationships can be established by detecting their local ligand binding site similarity. Here, we introduce a sequence order-independent comparison algorithm, PocketShape, for structural proteome-wide exploration of protein functional site by fully considering the geometry of the backbones, orientation of the sidechains, and physiochemical properties of the pocket-lining residues. PocketShape is efficient in distinguishing similar from dissimilar ligand binding site pairs by retrieving 99.3% of the similar pairs while rejecting 100% of the dissimilar pairs on a dataset containing 1538 binding site pairs. This method successfully classifies 83 enzyme structures with diverse functions into 12 clusters, which is highly in accordance with the actual structural classification of proteins classification. PocketShape also achieves superior performances than other methods in protein profiling based on experimental data. Potential new applications for representative SARS-CoV-2 drugs Remdesivir and 11a are predicted. The high accuracy and time-efficient characteristics of PocketShape will undoubtedly make it a promising complementary tool for proteome-wide protein function inference and drug repurposing study.
Collapse
Affiliation(s)
- Shiliang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chaoqian Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayu Gong
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaofeng Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Honglin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.,Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| |
Collapse
|
20
|
Hassan S, Töpel M, Aronsson H. Ligand Binding Site Comparison - LiBiSCo - a web-based tool for analyzing interactions between proteins and ligands to explore amino acid specificity within active sites. Proteins 2021; 89:1530-1540. [PMID: 34240464 DOI: 10.1002/prot.26175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022]
Abstract
Interaction between protein and ligands are ubiquitous in a biological cell, and understanding these interactions at the atom level in protein-ligand complexes is crucial for structural bioinformatics and drug discovery. Here, we present a web-based protein-ligand interaction application named Ligand Binding Site Comparison (LiBiSCo) for comparing the amino acid residues interacting with atoms of a ligand molecule between different protein-ligand complexes available in the Protein Data Bank (PDB) database. The comparison is performed at the ligand atom level irrespectively of having binding site similarity or not between the protein structures of interest. The input used in LiBiSCo is one or several PDB IDs of protein-ligand complex(es) and the tool returns a list of identified interactions at ligand atom level including both bonded and non-bonded interactions. A sequence profile for the interaction for each ligand atoms is provided as a WebLogo. The LiBiSco is useful in understanding ligand binding specificity and structural promiscuity among families that are structurally unrelated. The LiBiSCo tool can be accessed through https://albiorix.bioenv.gu.se/LiBiSCo/HomePage.py.
Collapse
Affiliation(s)
- Sameer Hassan
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Karolinska Institutet, Division of Neurogeriatrics, Stockholm, Sweden
| | - Mats Töpel
- Department of Marine Science, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2021; 21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease associated with several clinical manifestations, including cutaneous, mucocutaneous, and visceral forms. As currently available drugs have some limitations (toxicity, resistance, among others), the target-based identification has been an important approach to develop new leads against leishmaniasis. The present study aims to identify targets involved in the pharmacological action of potent antileishmanial compounds. METHODS The literature information regarding molecular interactions of antileishmanial compounds studied over the past half-decade is discussed. The information was obtained from databases such as Wiley, SciFinder, Science Direct, National Library of Medicine, American Chemical Society, Scientific Electronic Library Online, Scopus, Springer, Google Scholar, Web of Science, etc. Results: Numerous in vitro antileishmanial compounds showed affinity and selective interactions with enzymes such as arginase, pteridine reductase 1, trypanothione reductase, pyruvate kinase, among others, which are crucial for the survival and virulence of the Leishmania parasite. CONCLUSION The in-silico activity of small molecules (enzymes, proteins, among others) might be used as pharmacological tools to develop candidate compounds for the treatment of leishmaniasis. As some pharmacologically active compounds may act on more than one target, additional studies of the mechanism (s) of action of potent antileishmanial compounds might help to better understand their pharmacological action. Also, the optimization of promising antileishmanial compounds might improve their biological activity.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cinthya M Sano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Kabir ER, Mustafa N, Nausheen N, Sharif Siam MK, Syed EU. Exploring existing drugs: proposing potential compounds in the treatment of COVID-19. Heliyon 2021; 7:e06284. [PMID: 33655082 PMCID: PMC7906017 DOI: 10.1016/j.heliyon.2021.e06284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 situation had escalated into an unprecedented global crisis in just a few weeks. On the 30th of January 2020, World Health Organization officially declared the COVID-19 epidemic as a public health emergency of international concern. The confirmed cases were reported to exceed 105,856,046 globally, with the death toll of above 2,311,048, according to the dashboard from Johns Hopkins University on the 7th of February, 2021, though the actual figures may be much higher. Conserved regions of the South Asian strains were used to construct a phylogenetic tree to find evolutionary relationships among the novel virus. Off target similarities were searched with other microorganisms that have been previously reported using Basic Local Alignment Search Tool (BLAST). The conserved regions did not match with any previously reported microorganisms or viruses, which confirmed the novelty of SARS-CoV-2. Currently there is no approved drug for the prevention and treatment of COVID-19, but researchers globally are attempting to come up with one or more soon. Therapeutic strategies need to be addressed urgently to combat COVID-19. Successful drug repurposing is a tool that uses old and safe drugs, is time effective and requires lower development costs, and was thus considered for the study. Molecular docking was used for repurposing drugs from our own comprehensive database of approximately 300 highly characterized, existing drugs with known safety profile, to identify compounds that will inhibit the chosen molecular targets - SARS-CoV-2, ACE2, and TMPRSS2. The study has identified and proposed twenty seven candidates for further in vitro and in vivo studies for the treatment of SARS-CoV-2 infection.
Collapse
|
23
|
Rognan D. Modeling Protein-Ligand Interactions: Are We Ready for Deep Learning? SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Guterres H, Park SJ, Jiang W, Im W. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures. J Chem Inf Model 2020; 61:535-546. [PMID: 33337877 DOI: 10.1021/acs.jcim.0c01354] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first important step in a structure-based virtual screening is the judicious selection of a receptor protein. In cases where the holo protein receptor structure is unavailable, significant reduction in virtual screening performance has been reported. In this work, we present a robust method to generate reliable holo protein structure conformations from apo structures using molecular dynamics (MD) simulation with restraints derived from holo structure binding-site templates. We perform benchmark tests on two different datasets: 40 structures from a directory of useful decoy-enhanced (DUD-E) and 84 structures from the Gunasekaran dataset. Our results show successful refinement of apo binding-site structures toward holo conformations in 82% of the test cases. In addition, virtual screening performance of 40 DUD-E structures is significantly improved using our MD-refined structures as receptors with an average enrichment factor (EF), an EF1% value of 6.2 compared to apo structures with 3.5. Docking of native ligands to the refined structures shows an average ligand root mean square deviation (RMSD) of 1.97 Å (DUD-E dataset and Gunasekaran dataset) relative to ligands in the holo crystal structures, which is comparable to the self-docking (i.e., docking of the native ligand back to its crystal structure receptor) average, 1.34 Å (DUD-E dataset) and 1.36 Å (Gunasekaran dataset). On the other hand, docking to the apo structures yields an average ligand RMSD of 3.65 Å (DUD-E) and 2.90 Å (Gunasekaran). These results indicate that our method is robust and can be useful to improve virtual screening performance of apo structures.
Collapse
Affiliation(s)
- Hugo Guterres
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wei Jiang
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
25
|
Predicting binding sites from unbound versus bound protein structures. Sci Rep 2020; 10:15856. [PMID: 32985584 PMCID: PMC7522209 DOI: 10.1038/s41598-020-72906-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022] Open
Abstract
We present the application of seven binding-site prediction algorithms to a meticulously curated dataset of ligand-bound and ligand-free crystal structures for 304 unique protein sequences (2528 crystal structures). We probe the influence of starting protein structures on the results of binding-site prediction, so the dataset contains a minimum of two ligand-bound and two ligand-free structures for each protein. We use this dataset in a brief survey of five geometry-based, one energy-based, and one machine-learning-based methods: Surfnet, Ghecom, LIGSITEcsc, Fpocket, Depth, AutoSite, and Kalasanty. Distributions of the F scores and Matthew’s correlation coefficients for ligand-bound versus ligand-free structure performance show no statistically significant difference in structure type versus performance for most methods. Only Fpocket showed a statistically significant but low magnitude enhancement in performance for holo structures. Lastly, we found that most methods will succeed on some crystal structures and fail on others within the same protein family, despite all structures being relatively high-quality structures with low structural variation. We expected better consistency across varying protein conformations of the same sequence. Interestingly, the success or failure of a given structure cannot be predicted by quality metrics such as resolution, Cruickshank Diffraction Precision index, or unresolved residues. Cryptic sites were also examined.
Collapse
|
26
|
Rey J, Rasolohery I, Tufféry P, Guyon F, Moroy G. PatchSearch: a web server for off-target protein identification. Nucleic Acids Res 2020; 47:W365-W372. [PMID: 31131411 PMCID: PMC6602448 DOI: 10.1093/nar/gkz478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 01/17/2023] Open
Abstract
The large number of proteins found in the human body implies that a drug may interact with many proteins, called off-target proteins, besides its intended target. The PatchSearch web server provides an automated workflow that allows users to identify structurally conserved binding sites at the protein surfaces in a set of user-supplied protein structures. Thus, this web server may help to detect potential off-target protein. It takes as input a protein complexed with a ligand and identifies within user-defined or predefined collections of protein structures, those having a binding site compatible with this ligand in terms of geometry and physicochemical properties. It is based on a non-sequential local alignment of the patch over the entire protein surface. Then the PatchSearch web server proposes a ligand binding mode for the potential off-target, as well as an estimated affinity calculated by the Vinardo scoring function. This novel tool is able to efficiently detects potential interactions of ligands with distant off-target proteins. Furthermore, by facilitating the discovery of unexpected off-targets, PatchSearch could contribute to the repurposing of existing drugs. The server is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/services/PatchSearch.
Collapse
Affiliation(s)
- Julien Rey
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS-973, Molécules Thérapeutiques in silico (MTi), F-75205 Paris, France.,Ressource Parisienne en Bioinformatique Structurale (RPBS), Paris, France
| | - Inès Rasolohery
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS-973, Molécules Thérapeutiques in silico (MTi), F-75205 Paris, France
| | - Pierre Tufféry
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS-973, Molécules Thérapeutiques in silico (MTi), F-75205 Paris, France.,Ressource Parisienne en Bioinformatique Structurale (RPBS), Paris, France
| | - Frédéric Guyon
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS-973, Molécules Thérapeutiques in silico (MTi), F-75205 Paris, France
| | - Gautier Moroy
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS-973, Molécules Thérapeutiques in silico (MTi), F-75205 Paris, France
| |
Collapse
|
27
|
Shi W, Lemoine JM, Shawky AEMA, Singha M, Pu L, Yang S, Ramanujam J, Brylinski M. BionoiNet: ligand-binding site classification with off-the-shelf deep neural network. Bioinformatics 2020; 36:3077-3083. [PMID: 32053156 DOI: 10.1093/bioinformatics/btaa094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION Fast and accurate classification of ligand-binding sites in proteins with respect to the class of binding molecules is invaluable not only to the automatic functional annotation of large datasets of protein structures but also to projects in protein evolution, protein engineering and drug development. Deep learning techniques, which have already been successfully applied to address challenging problems across various fields, are inherently suitable to classify ligand-binding pockets. Our goal is to demonstrate that off-the-shelf deep learning models can be employed with minimum development effort to recognize nucleotide- and heme-binding sites with a comparable accuracy to highly specialized, voxel-based methods. RESULTS We developed BionoiNet, a new deep learning-based framework implementing a popular ResNet model for image classification. BionoiNet first transforms the molecular structures of ligand-binding sites to 2D Voronoi diagrams, which are then used as the input to a pretrained convolutional neural network classifier. The ResNet model generalizes well to unseen data achieving the accuracy of 85.6% for nucleotide- and 91.3% for heme-binding pockets. BionoiNet also computes significance scores of pocket atoms, called BionoiScores, to provide meaningful insights into their interactions with ligand molecules. BionoiNet is a lightweight alternative to computationally expensive 3D architectures. AVAILABILITY AND IMPLEMENTATION BionoiNet is implemented in Python with the source code freely available at: https://github.com/CSBG-LSU/BionoiNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wentao Shi
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jeffrey M Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Abd-El-Monsif A Shawky
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,Department of Cell Biology, National Research Centre, 12622 Giza, Egypt
| | - Manali Singha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Limeng Pu
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shuangyan Yang
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - J Ramanujam
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Simonovsky M, Meyers J. DeeplyTough: Learning Structural Comparison of Protein Binding Sites. J Chem Inf Model 2020; 60:2356-2366. [DOI: 10.1021/acs.jcim.9b00554] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Simonovsky
- BenevolentAI, London W1T 5HD, U.K
- École des Ponts ParisTech, Champs sur Marne 77455, France
- Université Paris-Est, Champs sur Marne 77455, France
| | | |
Collapse
|
29
|
Naderi M, Lemoine JM, Govindaraj RG, Kana OZ, Feinstein WP, Brylinski M. Binding site matching in rational drug design: algorithms and applications. Brief Bioinform 2019; 20:2167-2184. [PMID: 30169563 PMCID: PMC6954434 DOI: 10.1093/bib/bby078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions between proteins and small molecules are critical for biological functions. These interactions often occur in small cavities within protein structures, known as ligand-binding pockets. Understanding the physicochemical qualities of binding pockets is essential to improve not only our basic knowledge of biological systems, but also drug development procedures. In order to quantify similarities among pockets in terms of their geometries and chemical properties, either bound ligands can be compared to one another or binding sites can be matched directly. Both perspectives routinely take advantage of computational methods including various techniques to represent and compare small molecules as well as local protein structures. In this review, we survey 12 tools widely used to match pockets. These methods are divided into five categories based on the algorithm implemented to construct binding-site alignments. In addition to the comprehensive analysis of their algorithms, test sets and the performance of each method are described. We also discuss general pharmacological applications of computational pocket matching in drug repurposing, polypharmacology and side effects. Reflecting on the importance of these techniques in drug discovery, in the end, we elaborate on the development of more accurate meta-predictors, the incorporation of protein flexibility and the integration of powerful artificial intelligence technologies such as deep learning.
Collapse
Affiliation(s)
- Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jeffrey Mitchell Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Omar Zade Kana
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wei Pan Feinstein
- High-Performance Computing, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
30
|
Guterres H, Lee HS, Im W. Ligand-Binding-Site Structure Refinement Using Molecular Dynamics with Restraints Derived from Predicted Binding Site Templates. J Chem Theory Comput 2019; 15:6524-6535. [PMID: 31557013 DOI: 10.1021/acs.jctc.9b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accurate modeling of ligand-binding-site structures plays a critical role in structure-based virtual screening. However, the structures of the ligand-binding site in most predicted protein models are generally of low quality and need refinements. In this work, we present a ligand-binding-site structure refinement protocol using molecular dynamics simulation with restraints derived from predicted binding site templates. Our benchmark validation shows great performance for 40 diverse sets of proteins from the Astex list. The ligand-binding sites on modeled protein structures are consistently refined using our method with an average Cα RMSD improvement of 0.90 Å. Comparison of ligand binding modes from ligand docking to initial unrefined and refined structures shows an average of 1.97 Å RMSD improvement in the refined structures. These results demonstrate a promising new method of structure refinement for protein ligand-binding-site structures.
Collapse
Affiliation(s)
- Hugo Guterres
- Department of Biological Sciences , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Hui Sun Lee
- Department of Biological Sciences , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Wonpil Im
- Department of Biological Sciences , Lehigh University , Bethlehem , Pennsylvania 18015 , United States.,School of Computational Sciences , Korea Institute for Advanced Study , Seoul 02455 , Republic of Korea
| |
Collapse
|
31
|
Thaljeh LF, Rothschild JA, Naderi M, Coghill LM, Brown JM, Brylinski M. Hinge Region in DNA Packaging Terminase pUL15 of Herpes Simplex Virus: A Potential Allosteric Target for Antiviral Drugs. Biomolecules 2019; 9:biom9100603. [PMID: 31614784 PMCID: PMC6843332 DOI: 10.3390/biom9100603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022] Open
Abstract
Approximately 80% of adults are infected with a member of the herpesviridae family. Herpesviruses establish life-long latent infections within neurons, which may reactivate into lytic infections due to stress or immune suppression. There are nine human herpesviruses (HHV) posing health concerns from benign conditions to life threatening encephalitis, including cancers associated with viral infections. The current treatment options for most HHV conditions mainly include several nucleoside and nucleotide analogs targeting viral DNA polymerase. Although these drugs help manage infections, their common mechanism of action may lead to the development of drug resistance, which is particularly devastating in immunocompromised patients. Therefore, new classes of drugs directed against novel targets in HHVs are necessary to alleviate this issue. We analyzed the conservation rates of all proteins in herpes simplex virus 1 (HHV-1), a representative of the HHV family and one of the most common viruses infecting the human population. Furthermore, we generated a full-length structure model of the most conserved HHV-1 protein, the DNA packaging terminase pUL15. A series of computational analyses were performed on the model to identify ATP and DNA binding sites and characterize the dynamics of the protein. Our study indicates that proteins involved in HHV-1 DNA packaging and cleavage are amongst the most conserved gene products of HHVs. Since the packaging protein pUL15 is the most conserved among all HHV-1 gene products, the virus will have a lower chance of developing resistance to small molecules targeting pUL15. A subsequent analysis of the structure of pUL15 revealed distinct ATP and DNA binding domains and the elastic network model identifies a functionally important hinge region between the two domains of pUL15. The atomic information on the active and allosteric sites in the ATP- and DNA-bound model of pUL15 presented in this study can inform the structure-based drug discovery of a new class of drugs to treat a wide range of HHVs.
Collapse
Affiliation(s)
- Lana F Thaljeh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - J Ainsley Rothschild
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Lyndon M Coghill
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jeremy M Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
32
|
Cerisier N, Petitjean M, Regad L, Bayard Q, Réau M, Badel A, Camproux AC. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology. Molecules 2019; 24:molecules24142529. [PMID: 31295958 PMCID: PMC6680532 DOI: 10.3390/molecules24142529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The literature focuses on drug promiscuity, which is a drug’s ability to bind to several targets, because it plays an essential role in polypharmacology. However, little work has been completed regarding binding site promiscuity, even though its properties are now recognized among the key factors that impact drug promiscuity. Here, we quantified and characterized the promiscuity of druggable binding sites from protein-ligand complexes in the high quality Mother Of All Databases while using statistical methods. Most of the sites (80%) exhibited promiscuity, irrespective of the protein class. Nearly half were highly promiscuous and able to interact with various types of ligands. The corresponding pockets were rather large and hydrophobic, with high sulfur atom and aliphatic residue frequencies, but few side chain atoms. Consequently, their interacting ligands can be large, rigid, and weakly hydrophilic. The selective sites that interacted with one ligand type presented less favorable pocket properties for establishing ligand contacts. Thus, their ligands were highly adaptable, small, and hydrophilic. In the dataset, the promiscuity of the site rather than the drug mainly explains the multiple interactions between the drug and target, as most ligand types are dedicated to one site. This underlines the essential contribution of binding site promiscuity to drug promiscuity between different protein classes.
Collapse
Affiliation(s)
- Natacha Cerisier
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Michel Petitjean
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Leslie Regad
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Universités, INSERM, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, F-75006 Paris, France
| | - Manon Réau
- Laboratoire Génomique Bioinformatique et Chimie Moléculaire, EA 7528, Conservatoire National des Arts et Métiers, F-75003 Paris, France
| | - Anne Badel
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France.
| |
Collapse
|
33
|
Lee HS, Im W. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design. J Comput Chem 2019; 40:1622-1632. [PMID: 30829435 DOI: 10.1002/jcc.25813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
Proteins interact with small molecules through specific molecular recognition, which is central to essential biological functions in living systems. Therefore, understanding such interactions is crucial for basic sciences and drug discovery. Here, we present Structure template-based ab initio ligand design solution (Stalis), a knowledge-based approach that uses structure templates from the Protein Data Bank libraries of whole ligands and their fragments and generates a set of molecules (virtual ligands) whose structures represent the pocket shape and chemical features of a given target binding site. Our benchmark performance evaluation shows that ligand structure-based virtual screening using virtual ligands from Stalis outperforms a receptor structure-based virtual screening using AutoDock Vina, demonstrating reliable overall screening performance applicable to computational high-throughput screening. However, virtual ligands from Stalis are worse in recognizing active compounds at the small fraction of a rank-ordered list of screened library compounds than crystal ligands, due to the low resolution of the virtual ligand structures. In conclusion, Stalis can facilitate drug discovery research by designing virtual ligands that can be used for fast ligand structure-based virtual screening. Moreover, Stalis provides actual three-dimensional ligand structures that likely bind to a target protein, enabling to gain structural insight into potential ligands. Stalis can be an efficient computational platform for high-throughput ligand design for fundamental biological study and drug discovery research at the proteomic level. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015
| |
Collapse
|
34
|
Pu L, Govindaraj RG, Lemoine JM, Wu HC, Brylinski M. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network. PLoS Comput Biol 2019; 15:e1006718. [PMID: 30716081 PMCID: PMC6375647 DOI: 10.1371/journal.pcbi.1006718] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/14/2019] [Accepted: 12/16/2018] [Indexed: 01/19/2023] Open
Abstract
Comprehensive characterization of ligand-binding sites is invaluable to infer molecular functions of hypothetical proteins, trace evolutionary relationships between proteins, engineer enzymes to achieve a desired substrate specificity, and develop drugs with improved selectivity profiles. These research efforts pose significant challenges owing to the fact that similar pockets are commonly observed across different folds, leading to the high degree of promiscuity of ligand-protein interactions at the system-level. On that account, novel algorithms to accurately classify binding sites are needed. Deep learning is attracting a significant attention due to its successful applications in a wide range of disciplines. In this communication, we present DeepDrug3D, a new approach to characterize and classify binding pockets in proteins with deep learning. It employs a state-of-the-art convolutional neural network in which biomolecular structures are represented as voxels assigned interaction energy-based attributes. The current implementation of DeepDrug3D, trained to detect and classify nucleotide- and heme-binding sites, not only achieves a high accuracy of 95%, but also has the ability to generalize to unseen data as demonstrated for steroid-binding proteins and peptidase enzymes. Interestingly, the analysis of strongly discriminative regions of binding pockets reveals that this high classification accuracy arises from learning the patterns of specific molecular interactions, such as hydrogen bonds, aromatic and hydrophobic contacts. DeepDrug3D is available as an open-source program at https://github.com/pulimeng/DeepDrug3D with the accompanying TOUGH-C1 benchmarking dataset accessible from https://osf.io/enz69/.
Collapse
Affiliation(s)
- Limeng Pu
- Division of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Rajiv Gandhi Govindaraj
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Jeffrey Mitchell Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Hsiao-Chun Wu
- Division of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Lee JY, Cho H, Thangapandian S, Lim C, Chun YJ, Lee Y, Choi S, Kim S. Adaptable Small Ligand of CYP1 Enzymes for Use in Understanding the Structural Features Determining Isoform Selectivity. ACS Med Chem Lett 2018; 9:1247-1252. [PMID: 30613334 DOI: 10.1021/acsmedchemlett.8b00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Although several families of compounds have been identified as scaffolds for inhibitors of the CYP1 family, the isoform selectivity determining structural features has not been fully clarified at the molecular interaction level. We studied the CYP1 isoform selectivity for stilbenoid inhibitors using integrated induced fit docking and molecular dynamics simulations. The hydrophobic interactions with the specific phenylalanine residues in the F helix are correlated with inhibitory potency in the CYP1 family. Through this study, we found that the adaptable, small, and semirigid ligand is a promising starting point for the development of isoform-selective inhibitors and investigation of selectivity-determining features.
Collapse
Affiliation(s)
- Joo-Youn Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| | - Hyunkyung Cho
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | | | - Chaemin Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Yoonji Lee
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Sun Choi
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
36
|
Large-scale computational drug repositioning to find treatments for rare diseases. NPJ Syst Biol Appl 2018; 4:13. [PMID: 29560273 PMCID: PMC5847522 DOI: 10.1038/s41540-018-0050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Accepted: 02/03/2018] [Indexed: 11/08/2022] Open
Abstract
Rare, or orphan, diseases are conditions afflicting a small subset of people in a population. Although these disorders collectively pose significant health care problems, drug companies require government incentives to develop drugs for rare diseases due to extremely limited individual markets. Computer-aided drug repositioning, i.e., finding new indications for existing drugs, is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Structure-based matching of drug-binding pockets is among the most promising computational techniques to inform drug repositioning. In order to find new targets for known drugs ultimately leading to drug repositioning, we recently developed eMatchSite, a new computer program to compare drug-binding sites. In this study, eMatchSite is combined with virtual screening to systematically explore opportunities to reposition known drugs to proteins associated with rare diseases. The effectiveness of this integrated approach is demonstrated for a kinase inhibitor, which is a confirmed candidate for repositioning to synapsin Ia. The resulting dataset comprises 31,142 putative drug-target complexes linked to 980 orphan diseases. The modeling accuracy is evaluated against the structural data recently released for tyrosine-protein kinase HCK. To illustrate how potential therapeutics for rare diseases can be identified, we discuss a possibility to repurpose a steroidal aromatase inhibitor to treat Niemann-Pick disease type C. Overall, the exhaustive exploration of the drug repositioning space exposes new opportunities to combat orphan diseases with existing drugs. DrugBank/Orphanet repositioning data are freely available to research community at https://osf.io/qdjup/.
Collapse
|