1
|
Zanobio M, Nardecchia F, Cappuccio G, Onore ME, Di Letto P, Rahman SI, Terrone G, Ugga L, De Giorgi A, Cas MD, Trinchera M, Leuzzi V, Piluso G, Nigro V, Brunetti-Pierri N, Torella A. Deletion Testing of the DEGS1 Gene Should Be Part of the Diagnostic Pipeline for Hypomyelinating Leukodystrophy (HLD18). Hum Mutat 2025; 2025:3531508. [PMID: 40371095 PMCID: PMC12077970 DOI: 10.1155/humu/3531508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/21/2025] [Indexed: 05/16/2025]
Abstract
Hypomyelinating leukodystrophies are a heterogeneous group of disorders characterized by abnormal myelin formation in the central nervous system. Thanks to the increased use of NGS, a growing number of pathogenic single nucleotide variants in DEGS1 have recently been reported to be responsible for hypomyelinating leukodystrophy 18 (HLD18), a rare and severe autosomal recessive form. DEGS1 is a small gene (4 exons and 17 kb) encoding Δ4-dihydroceramide desaturase, which catalyzes the final step in ceramide biosynthesis. Here, we present two patients from unrelated families affected by severe and progressive white matter disease with developmental delay with or without regression and severe intellectual disability. Trio exome sequencing (ES) revealed in both probands two homozygous missense variants in the DEGS1 gene, p.Asp16His and p.Asn255Ser, both inherited from their heterozygous healthy mothers and with a noncarrier father. This curious finding of inconsistent segregation data raises the need for further testing. There is no MLPA test available for this gene, as no deletions have been reported. However, we tried a customized high-resolution 1 M CGH array, which was surprisingly positive in both cases: a 63-kb heterozygous deletion encompassing the entire gene in one proband and a 7-kb heterozygous deletion of Exons 2-3 in the second case. Previously reported cases of HLD18 have all been found to carry single nucleotide pathogenic variants in DEGS1, and the two patients described here are the first to carry whole or partial microdeletions involving DEGS1 that unmask pathogenic missense variants on the other allele. These two cases report the first examples of microdeletions of DEGS1 that unmask recessive allele pathogenic variants, underscoring the importance of considering whole or partial gene deletions in the diagnostic pipeline.
Collapse
Affiliation(s)
- Mariateresa Zanobio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Gerarda Cappuccio
- Child Neurology, Department of Translational Medicine, Federico II University, Naples, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pasquale Di Letto
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sarah Iffat Rahman
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gaetano Terrone
- Child Neurology, Department of Translational Medicine, Federico II University, Naples, Italy
| | - Lorenzo Ugga
- Department of Translational Medicine, University of Naples “Federico II”, Naples, Italy
| | - Agnese De Giorgi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Marco Trinchera
- Department of Medicine and Surgery (DMC), University of Insubria, Varese, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples “Federico II”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | | | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| |
Collapse
|
2
|
Bonfiglio F, Legati A, Lasorsa VA, Palombo F, De Riso G, Isidori F, Russo S, Furini S, Merla G, Coppedè F, Tartaglia M, Bruselles A, Pippucci T, Ciolfi A, Pinelli M, Capasso M. Best practices for germline variant and DNA methylation analysis of second- and third-generation sequencing data. Hum Genomics 2024; 18:120. [PMID: 39501379 PMCID: PMC11536923 DOI: 10.1186/s40246-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/09/2024] Open
Abstract
This comprehensive review provides insights and suggested strategies for the analysis of germline variants using second- and third-generation sequencing technologies (SGS and TGS). It addresses the critical stages of data processing, starting from alignment and preprocessing to quality control, variant calling, and the removal of artifacts. The document emphasized the importance of meticulous data handling, highlighting advanced methodologies for annotating variants and identifying structural variations and methylated DNA sites. Special attention is given to the inspection of problematic variants, a step that is crucial for ensuring the accuracy of the analysis, particularly in clinical settings where genetic diagnostics can inform patient care. Additionally, the document covers the use of various bioinformatics tools and software that enhance the precision and reliability of these analyses. It outlines best practices for the annotation of variants, including considerations for problematic genetic alterations such as those in the human leukocyte antigen region, runs of homozygosity, and mitochondrial DNA alterations. The document also explores the complexities associated with identifying structural variants and copy number variations, underscoring the challenges posed by these large-scale genomic alterations. The objective is to offer a comprehensive framework for researchers and clinicians, ensuring that genetic analyses conducted with SGS and TGS are both accurate and reproducible. By following these best practices, the document aims to increase the diagnostic accuracy for hereditary diseases, facilitating early diagnosis, prevention, and personalized treatment strategies. This review serves as a valuable resource for both novices and experts in the field, providing insights into the latest advancements and methodologies in genetic analysis. It also aims to encourage the adoption of these practices in diverse research and clinical contexts, promoting consistency and reliability across studies.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Andrea Legati
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Flavia Palombo
- Programma Di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Federica Isidori
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Laboratorio di Ricerca di Citogenetica Medica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20145, Milano, Italy
| | - Simone Furini
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy.
| |
Collapse
|
3
|
Torella A, Ricca I, Piluso G, Galatolo D, De Michele G, Zanobio M, Trovato R, De Michele G, Zeuli R, Pane C, Cocozza S, Saccà F, Santorelli FM, Nigro V, Filla A. A new genetic cause of spastic ataxia: the p.Glu415Lys variant in TUBA4A. J Neurol 2023; 270:5057-5063. [PMID: 37418012 PMCID: PMC10511369 DOI: 10.1007/s00415-023-11816-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Tubulinopathies encompass neurodevelopmental disorders caused by mutations in genes encoding for different isotypes of α- and β-tubulins, the structural components of microtubules. Less frequently, mutations in tubulins may underlie neurodegenerative disorders. In the present study, we report two families, one with 11 affected individuals and the other with a single patient, carrying a novel, likely pathogenic, variant (p. Glu415Lys) in the TUBA4A gene (NM_006000). The phenotype, not previously described, is that of spastic ataxia. Our findings widen the phenotypic and genetic manifestations of TUBA4A variants and add a new type of spastic ataxia to be taken into consideration in the differential diagnosis.
Collapse
Affiliation(s)
- Annalaura Torella
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Ivana Ricca
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | | | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Mariateresa Zanobio
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Roberta Zeuli
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Chiara Pane
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Sirio Cocozza
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy.
| |
Collapse
|
4
|
Fontana P, Budillon A, Simeone D, Del Vecchio Blanco F, Caiazza M, D'Amico A, Lonardo F, Nigro V, Limongelli G, Scarano G. A Novel Homozygous GPAA1 Variant in a Patient with a Glycosylphosphatidylinositol Biosynthesis Defect. Genes (Basel) 2023; 14:1444. [PMID: 37510348 PMCID: PMC10379968 DOI: 10.3390/genes14071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylphosphatidylinositol biosynthesis defect 15 is a rare autosomal recessive disorder due to biallelic loss of function of GPAA1. At the moment, less than twenty patients have been reported, usually compound heterozygous for GPAA1 variants. The main clinical features are intellectual disability, hypotonia, seizures, and cerebellar atrophy. We describe a 4-year-old male with a novel, homozygous variant. The patient presents with typical features, such as developmental delay, hypotonia, seizures, and atypical features, such as macrocephaly, preauricular, and cheek appendages. When he was 15 months, the cerebellum was normal. When he was 33 months old, after the molecular diagnosis, magnetic resonance imaging was repeated, showing cerebellar atrophy. This case extends the clinical spectrum of the GPAA1-related disorder and helps to delineate phenotypic differences with defects of other subunits of the transamidase complex.
Collapse
Affiliation(s)
- Paolo Fontana
- Medical Genetics Unit, P.O. Gaetano Rummo, A.O.R.N. San Pio, Via dell'Angelo, 1, 82100 Benevento, Italy
| | - Alberto Budillon
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Domenico Simeone
- Medical Genetics Unit, P.O. Gaetano Rummo, A.O.R.N. San Pio, Via dell'Angelo, 1, 82100 Benevento, Italy
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Alessandra D'Amico
- Department of Radiology, "Tortorella" Private Hospital, Via Nicola Aversano, 1, 84124 Salerno, Italy
| | - Fortunato Lonardo
- Medical Genetics Unit, P.O. Gaetano Rummo, A.O.R.N. San Pio, Via dell'Angelo, 1, 82100 Benevento, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
- Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, London WC1E 6DD, UK
| | - Gioacchino Scarano
- Medical Genetics Unit, P.O. Gaetano Rummo, A.O.R.N. San Pio, Via dell'Angelo, 1, 82100 Benevento, Italy
| |
Collapse
|
5
|
Sambri I, Ferniani M, Campostrini G, Testa M, Meraviglia V, de Araujo MEG, Dokládal L, Vilardo C, Monfregola J, Zampelli N, Vecchio Blanco FD, Torella A, Ruosi C, Fecarotta S, Parenti G, Staiano L, Bellin M, Huber LA, De Virgilio C, Trepiccione F, Nigro V, Ballabio A. RagD auto-activating mutations impair MiT/TFE activity in kidney tubulopathy and cardiomyopathy syndrome. Nat Commun 2023; 14:2775. [PMID: 37188688 DOI: 10.1038/s41467-023-38428-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Marco Ferniani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | | | - Marialuisa Testa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | | | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ladislav Dokládal
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Claudia Vilardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | - Nicolina Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carolina Ruosi
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Fecarotta
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Milena Bellin
- Leiden University Medical Center, 2333ZC, Leiden, the Netherlands
- Department of Biology, University of Padua, 35131, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
- Biogem Research Institute Ariano Irpino, Ariano Irpino, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
6
|
Pasquali D, Torella A, Grandone A, Luongo C, Morleo M, Peduto C, di Fraia R, Selvaggio LD, Allosso F, Accardo G, Zanobio MT, Maitz S, Mariani M, Selicorni A, Banfi S, Nigro V. Patients with DeSanto-Shinawi syndrome: Further extension of phenotype from Italy. Am J Med Genet A 2023; 191:823-830. [PMID: 36420948 DOI: 10.1002/ajmg.a.63061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
Here we describe three patients with neurodevelopmental disorders characterized by mild-to-moderate intellectual disability, mildly dysmorphic features, and hirsutism, all of which carry de novo sequence variants in the WW domain-containing adaptor of the coiled-coil (WAC) gene; two of these-c.167delA, p.(Asn56I1efs*136) and c.1746G>C, p.(Gln582His)-are novel pathogenic variants, and the third-c.1837C>T, p(Arg613*)-has been previously described. Diseases associated with WAC include DeSanto-Shinawi syndrome; to date, de novo heterozygous constitutional pathogenic WAC variants have caused a syndromic form of intellectual disability and mild dysmorphic features in 33 patients, yet potential associations with other clinical manifestations, such as oligomenorrhea and hyperandrogenism, remain unknown, because the phenotypic spectrum of the condition has not yet been delineated. The patient bearing the novel c.167delA WAC gene variant presented a normal psychomotor development, oligomenorrhea, hyperandrogenism, and hirsutism, and hirsutism was also observed in the patient with the c.1746G>C WAC gene variant. Hypertrichosis and hirsutism have been described in nine DeSanto-Shinawi patients, only in 17 of the 33 aforementioned patients thus far reported this aspect, and no hormonal-pattern data are available. In conclusion, we note that the pathogenic c.167delA WAC variant may be associated with a mild phenotype; and in addition to the neurodevelopmental problems nearly all DeSanto-Shinawi patients experience (i.e., intellectual disability and/or developmental delay), we recommend the addition of mild dysmorphic features, hirsutism, and hypertrichosis to this clinical presentation.
Collapse
Affiliation(s)
- Daniela Pasquali
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalaura Torella
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Anna Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina Luongo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Morleo
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Cristina Peduto
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa di Fraia
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Digitale Selvaggio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Allosso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giacomo Accardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Zanobio
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvia Maitz
- Pediatric Genetics Unit, MBBM Foundation, S. Gerardo Hospital, Monza, Italy.,Service of Medical Genetics, Oncologic Institute of Southern Switzerland, Lugano, Switzerland
| | - Milena Mariani
- Department of Pediatrics, S. Fermo Hospital, ASST Lariana, Como, Italy
| | - Angelo Selicorni
- Department of Pediatrics, S. Fermo Hospital, ASST Lariana, Como, Italy
| | - Sandro Banfi
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Vincenzo Nigro
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | |
Collapse
|
7
|
Van Haute L, O'Connor E, Díaz-Maldonado H, Munro B, Polavarapu K, Hock DH, Arunachal G, Athanasiou-Fragkouli A, Bardhan M, Barth M, Bonneau D, Brunetti-Pierri N, Cappuccio G, Caruana NJ, Dominik N, Goel H, Helman G, Houlden H, Lenaers G, Mention K, Murphy D, Nandeesh B, Olimpio C, Powell CA, Preethish-Kumar V, Procaccio V, Rius R, Rebelo-Guiomar P, Simons C, Vengalil S, Zaki MS, Ziegler A, Thorburn DR, Stroud DA, Maroofian R, Christodoulou J, Gustafsson C, Nalini A, Lochmüller H, Minczuk M, Horvath R. TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun 2023; 14:1009. [PMID: 36823193 PMCID: PMC9950373 DOI: 10.1038/s41467-023-36277-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.
Collapse
Affiliation(s)
- Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Héctor Díaz-Maldonado
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Benjamin Munro
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Gautham Arunachal
- Department of Human genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Alkyoni Athanasiou-Fragkouli
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Magalie Barth
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Dominique Bonneau
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Natalia Dominik
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Himanshu Goel
- Hunter Genetics, Waratah, University of Newcastle, Callaghan, NSW, 2298, Australia
| | - Guy Helman
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Henry Houlden
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Guy Lenaers
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Karine Mention
- Pediatric Inherited Metabolic Disorders, Hôpital Jeanne de Flandre, Lille, France
| | - David Murphy
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Bevinahalli Nandeesh
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Catarina Olimpio
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Vincent Procaccio
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Rocio Rius
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Cas Simons
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Alban Ziegler
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - David R Thorburn
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Reza Maroofian
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - John Christodoulou
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claes Gustafsson
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Leonardi E, Aspromonte MC, Drongitis D, Bettella E, Verrillo L, Polli R, McEntagart M, Licchetta L, Dilena R, D'Arrigo S, Ciaccio C, Esposito S, Leuzzi V, Torella A, Baldo D, Lonardo F, Bonato G, Pellegrin S, Stanzial F, Posmyk R, Kaczorowska E, Carecchio M, Gos M, Rzońca-Niewczas S, Miano MG, Murgia A. Expanding the genetics and phenotypic spectrum of Lysine-specific demethylase 5C (KDM5C): a report of 13 novel variants. Eur J Hum Genet 2023; 31:202-215. [PMID: 36434256 PMCID: PMC9905063 DOI: 10.1038/s41431-022-01233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Lysine-specific demethylase 5C (KDM5C) has been identified as an important chromatin remodeling gene, contributing to X-linked neurodevelopmental disorders (NDDs). The KDM5C gene, located in the Xp22 chromosomal region, encodes the H3K4me3-me2 eraser involved in neuronal plasticity and dendritic growth. Here we report 30 individuals carrying 13 novel and one previously identified KDM5C variants. Our cohort includes the first reported case of somatic mosaicism in a male carrying a KDM5C nucleotide substitution, and a dual molecular finding in a female carrying a homozygous truncating FUCA1 alteration together with a de novo KDM5C variant. With the use of next generation sequencing strategies, we detected 1 frameshift, 1 stop codon, 2 splice-site and 10 missense variants, which pathogenic role was carefully investigated by a thorough bioinformatic analysis. The pattern of X-chromosome inactivation was found to have an impact on KDM5C phenotypic expression in females of our cohort. The affected individuals of our case series manifested a neurodevelopmental condition characterized by psychomotor delay, intellectual disability with speech disorders, and behavioral features with particular disturbed sleep pattern; other observed clinical manifestations were short stature, obesity and hypertrichosis. Collectively, these findings expand the current knowledge about the pathogenic mechanisms leading to dysfunction of this important chromatin remodeling gene and contribute to a refinement of the KDM5C phenotypic spectrum.
Collapse
Affiliation(s)
- Emanuela Leonardi
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Cristina Aspromonte
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Denise Drongitis
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Elisa Bettella
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Roberta Polli
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Meriel McEntagart
- Medical Genetics Unit, St. George's University Hospitals, London, UK
| | - Laura Licchetta
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Robertino Dilena
- Neurophysiopathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Esposito
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Annalaura Torella
- University of Campania "Luigi Vanvitelli", Caserta, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Demetrio Baldo
- Unit of medical genetics, ULSS 2 Treviso Hospital, Treviso, Italy
| | | | - Giulia Bonato
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Serena Pellegrin
- Child Neurology and Neurorehabilitation Unit, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Ewa Kaczorowska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Miryam Carecchio
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Monika Gos
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Sylwia Rzońca-Niewczas
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Alessandra Murgia
- Department of Women's and Children's Health, University of Padova, Padova, Italy.
- Pediatric Research Institute, Città della Speranza, Padova, Italy.
| |
Collapse
|
9
|
Cappuccio G, De Bernardi ML, Morlando A, Peduto C, Scala I, Pinelli M, Bellacchio E, Gallo FG, Magli A, Plaitano C, Serrano M, Pías L, Català J, Bolasell M, Torella A, Nigro V, Zanni G, Brunetti‐Pierri N. Postnatal microcephaly and retinal involvement expand the phenotype of RPL10-related disorder. Am J Med Genet A 2022; 188:3032-3040. [PMID: 35876338 PMCID: PMC9545381 DOI: 10.1002/ajmg.a.62911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
Hemizygous missense variants in the RPL10 gene encoding a ribosomal unit are responsible for an X-linked syndrome presenting with intellectual disability (ID), autism spectrum disorder, epilepsy, dysmorphic features, and multiple congenital anomalies. Among 15 individuals with RPL10-related disorder reported so far, only one patient had retinitis pigmentosa and microcephaly was observed in approximately half of the cases. By exome sequencing, three Italian and one Spanish male children, from three independent families, were found to carry the same hemizygous novel missense variant p.(Arg32Leu) in RPL10, inherited by their unaffected mother in all cases. The variant, not reported in gnomAD, is located in the 28S rRNA binding region, affecting an evolutionary conserved residue and predicted to disrupt the salt-bridge between Arg32 and Asp28. In addition to features consistent with RPL10-related disorder, all four boys had retinal degeneration and postnatal microcephaly. Pathogenic variants in genes responsible for inherited retinal degenerations were ruled out in all the probands. A novel missense RPL10 variant was detected in four probands with a recurrent phenotype including ID, dysmorphic features, progressive postnatal microcephaly, and retinal anomalies. The presented individuals suggest that retinopathy and postnatal microcephaly are clinical clues of RPL10-related disorder, and at least the retinal defect might be more specific for the p.(Arg32Leu) RPL10 variant, suggesting a specific genotype/phenotype correlation.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly,Telethon Institute of Genetics and MedicineNaplesItaly,Present address:
Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | | | - Alessia Morlando
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly
| | - Cristina Peduto
- Department of Precision HealthUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Iris Scala
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly
| | - Michele Pinelli
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly,Department of Molecular Medicine and Medical Biotechnology (DMMBM)Federico II UniversityNaplesItaly
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research DivisionBambino Gesù Children's HospitalRomeItaly
| | | | - Adriano Magli
- Department of Pediatric OphthalmologyUniversity of SalernoFiscianoItaly
| | - Carmen Plaitano
- Department of OphthalmologyA.O.U. San Giovanni Di Dio e Ruggi d'Aragona‐Scuola Medica SalernitanaSalernoItaly
| | - Mercedes Serrano
- Department of Ophthalmology and Department of Genetic and Molecular MedicineHospital Sant Joan de DéuBarcelonaSpain,U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIMadridSpain
| | - Leticia Pías
- Department of Ophthalmology and Department of Genetic and Molecular MedicineHospital Sant Joan de DéuBarcelonaSpain
| | - Jaume Català
- Department of Ophthalmology and Department of Genetic and Molecular MedicineHospital Sant Joan de DéuBarcelonaSpain
| | - Mercè Bolasell
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIMadridSpain
| | - Annalaura Torella
- Telethon Institute of Genetics and MedicineNaplesItaly,Department of Precision HealthUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Vincenzo Nigro
- Telethon Institute of Genetics and MedicineNaplesItaly,Department of Precision HealthUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Nicola Brunetti‐Pierri
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly,Telethon Institute of Genetics and MedicineNaplesItaly
| |
Collapse
|
10
|
Jia X, Zhang S, Tan S, Du B, He M, Qin H, Chen J, Duan X, Luo J, Chen F, Ouyang L, Wang J, Chen G, Yu B, Zhang G, Zhang Z, Lyu Y, Huang Y, Jiao J, Chen JY(H, Swoboda KJ, Agolini E, Novelli A, Leoni C, Zampino G, Cappuccio G, Brunetti-Pierri N, Gerard B, Ginglinger E, Richer J, McMillan H, White-Brown A, Hoekzema K, Bernier RA, Kurtz-Nelson EC, Earl RK, Meddens C, Alders M, Fuchs M, Caumes R, Brunelle P, Smol T, Kuehl R, Day-Salvatore DL, Monaghan KG, Morrow MM, Eichler EE, Hu Z, Yuan L, Tan J, Xia K, Shen Y, Guo H. De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders. SCIENCE ADVANCES 2022; 8:eabo7112. [PMID: 35977029 PMCID: PMC9385150 DOI: 10.1126/sciadv.abo7112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 05/25/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.
Collapse
Affiliation(s)
- Xiangbin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Senwei Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bing Du
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Mei He
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China
| | - Haisong Qin
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jia Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Xinyu Duan
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Luping Ouyang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bin Yu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ge Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Zimin Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jian Jiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jin Yun (Helen) Chen
- Massachusetts General Hospital Neurogenetics Unit, Department of Neurology, Massachusetts General Brigham, Boston, MA 02114, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy
- Fondazione Policlinico Universitario Agostino Gemelli Dipartimento Scienze della Salute della Donna e del Bambino, Rome, Italy
- Università Cattolica S. Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Rome, Italy
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Benedicte Gerard
- Institut de Génétique Médicale d’Alsace (IGMA), Laboratoire de Diagnostic Génétique, Hôpitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | | | - Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Hugh McMillan
- Department of Pediatrics, Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Canada
| | - Alexandre White-Brown
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Rachel K. Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claartje Meddens
- Amsterdam University Medical Center, Department of Clinical Genetics, Amsterdam, Netherlands
- University Medical Center Utrecht, Department of Paediatrics, Utrecht, Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Roseline Caumes
- CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000 Lille, France
| | - Perrine Brunelle
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Thomas Smol
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Ryan Kuehl
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | - Debra-Lynn Day-Salvatore
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | | | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ling Yuan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200000, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan 410078, China
| |
Collapse
|
11
|
Mystery(n) Phenotypic Presentation in Europeans: Report of Three Further Novel Missense RNF213 Variants Leading to Severe Syndromic Forms of Moyamoya Angiopathy and Literature Review. Int J Mol Sci 2022; 23:ijms23168952. [PMID: 36012218 PMCID: PMC9408709 DOI: 10.3390/ijms23168952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Moyamoya angiopathy (MMA) is a rare cerebral vasculopathy in some cases occurring in children. Incidence is higher in East Asia, where the heterozygous p.Arg4810Lys variant in RNF213 (Mysterin) represents the major susceptibility factor. Rare variants in RNF213 have also been found in European MMA patients with incomplete penetrance and are today a recognized susceptibility factor for other cardiovascular disorders, from extracerebral artery stenosis to hypertension. By whole exome sequencing, we identified three rare and previously unreported missense variants of RNF213 in three children with early onset of bilateral MMA, and subsequently extended clinical and radiological investigations to their carrier relatives. Substitutions all involved highly conserved residues clustered in the C-terminal region of RNF213, mainly in the E3 ligase domain. Probands showed a de novo occurring variant, p.Phe4120Leu (family A), a maternally inherited heterozygous variant, p.Ser4118Cys (family B), and a novel heterozygous variant, p.Glu4867Lys, inherited from the mother, in whom it occurred de novo (family C). Patients from families A and C experienced transient hypertransaminasemia and stenosis of extracerebral arteries. Bilateral MMA was present in the proband’s carrier grandfather from family B. The proband from family C and her carrier mother both exhibited annular figurate erythema. Our data confirm that rare heterozygous variants in RNF213 cause MMA in Europeans as well as in East Asian populations, suggesting that substitutions close to positions 4118–4122 and 4867 of RNF213 could lead to a syndromic form of MMA showing elevated aminotransferases and extracerebral vascular involvement, with the possible association of peculiar skin manifestations.
Collapse
|
12
|
Aggregated Genomic Data as Cohort-Specific Allelic Frequencies can Boost Variants and Genes Prioritization in Non-Solved Cases of Inherited Retinal Dystrophies. Int J Mol Sci 2022; 23:ijms23158431. [PMID: 35955564 PMCID: PMC9368980 DOI: 10.3390/ijms23158431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of NGS in genetic diagnosis has increased the repertoire of variants and genes involved and the amount of genomic information produced. We built an allelic-frequency (AF) database for a heterogeneous cohort of genetic diseases to explore the aggregated genomic information and boost diagnosis in inherited retinal dystrophies (IRD). We retrospectively selected 5683 index-cases with clinical exome sequencing tests available, 1766 with IRD and the rest with diverse genetic diseases. We calculated a subcohort’s IRD-specific AF and compared it with suitable pseudocontrols. For non-solved IRD cases, we prioritized variants with a significant increment of frequencies, with eight variants that may help to explain the phenotype, and 10/11 of uncertain significance that were reclassified as probably pathogenic according to ACMG. Moreover, we developed a method to highlight genes with more frequent pathogenic variants in IRD cases than in pseudocontrols weighted by the increment of benign variants in the same comparison. We identified 18 genes for further studies that provided new insights in five cases. This resource can also help one to calculate the carrier frequency in IRD genes. A cohort-specific AF database assists with variants and genes prioritization and operates as an engine that provides a new hypothesis in non-solved cases, augmenting the diagnosis rate.
Collapse
|
13
|
Cappuccio G, Brillante S, Tammaro R, Pinelli M, De Bernardi ML, Gensini MG, Bijlsma EK, Koopmann TT, Hoffer MJV, McDonald K, Hendon LG, Douzgou S, Deshpande C, D'Arrigo S, Torella A, Nigro V, Franco B, Brunetti-Pierri N. Biallelic variants in CENPF causing a phenotype distinct from Strømme syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:102-108. [PMID: 35488810 PMCID: PMC9322429 DOI: 10.1002/ajmg.c.31973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
Biallelic loss-of-function (LoF) variants in CENPF gene are responsible for Strømme syndrome, a condition presenting with intestinal atresia, anterior ocular chamber anomalies, and microcephaly. Through an international collaboration, four individuals (three males and one female) carrying CENPF biallelic variants, including two missense variants in homozygous state and four LoF variants, were identified by exome sequencing. All individuals had variable degree of developmental delay/intellectual disability and microcephaly (ranging from -2.9 SDS to -5.6 SDS) and a recognizable pattern of dysmorphic facial features including inverted-V shaped interrupted eyebrows, epicanthal fold, depressed nasal bridge, and pointed chin. Although one of the cases had duodenal atresia, all four individuals did not have the combination of internal organ malformations of Strømme syndrome (intestinal atresia and anterior eye segment abnormalities). Immunofluorescence analysis on skin fibroblasts on one of the four cases with the antibody for ARL13B that decorates primary cilia revealed shorter primary cilia that are consistent with a ciliary defect. This case-series of individuals with biallelic CENPF variants suggests the spectrum of clinical manifestations of the disorder that may be related to CENPF variants is broad and can include phenotypes lacking the cardinal features of Strømme syndrome.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | | | - Michele Pinelli
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | - Maria Grazia Gensini
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tamara T Koopmann
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberly McDonald
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Laura G Hendon
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Brunella Franco
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy.,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy.,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy
| |
Collapse
|
14
|
Musacchia F, Karali M, Torella A, Laurie S, Policastro V, Pizzo M, Beltran S, Casari G, Nigro V, Banfi S. VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage. Genes (Basel) 2021; 12:genes12121979. [PMID: 34946927 PMCID: PMC8701221 DOI: 10.3390/genes12121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Homozygous deletions (HDs) may be the cause of rare diseases and cancer, and their discovery in targeted sequencing is a challenging task. Different tools have been developed to disentangle HD discovery but a sensitive caller is still lacking. We present VarGenius-HZD, a sensitive and scalable algorithm that leverages breadth-of-coverage for the detection of rare homozygous and hemizygous single-exon deletions (HDs). To assess its effectiveness, we detected both real and synthetic rare HDs in fifty exomes from the 1000 Genomes Project obtaining higher sensitivity in comparison with state-of-the-art algorithms that each missed at least one event. We then applied our tool on targeted sequencing data from patients with Inherited Retinal Dystrophies and solved five cases that still lacked a genetic diagnosis. We provide VarGenius-HZD either stand-alone or integrated within our recently developed software, enabling the automated selection of samples using the internal database. Hence, it could be extremely useful for both diagnostic and research purposes.
Collapse
Affiliation(s)
- Francesco Musacchia
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence:
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| | - Steve Laurie
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; (S.L.); (S.B.)
| | - Valeria Policastro
- Institute for Applied Mathematics “Mauro Picone” (IAC), National Research Council, 80131 Naples, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; (S.L.); (S.B.)
- Universitat Pompeu Fabra (UPF), 08017 Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Giorgio Casari
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Neurogenomics Unit, Center for Genomics, Bioinformatics and Biostatistics, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| |
Collapse
|
15
|
Santoro C, Gaudino G, Torella A, Piluso G, Perrotta S, Miraglia Del Giudice E, Nigro V, Grandone A. Intermittent macrothrombocytopenia in a novel patient with Takenouchi-Kosaki syndrome and review of literature. Eur J Med Genet 2021; 64:104358. [PMID: 34624555 DOI: 10.1016/j.ejmg.2021.104358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/07/2021] [Accepted: 10/03/2021] [Indexed: 11/28/2022]
Abstract
Takenouchi-Kosaki syndrome (TKS) is a recently delineated syndromic form of thrombocytopenia strictly related to an hot-spot missense variant, p.Tyr64Cys, in CDC42 (Cell Division Control protein 42). Herein we report an additional patient with the p.Tyr64Cys aminoacidic substitution who showed the well-defined phenotypical TKS features and an intermittent, very mild, macrothrombocytopenia at 10.7 years of age (93,000/mL), that was only retrospectively valorized. Outside of this value the PLT count had always been higher than 100,000/mL. We also review literature data from patients carrying this recurrent variant. Our female patient presented with prenatal onset of short stature and microcephaly, camptodactyly, heart defects, typical facial gestalt, developmental delay, and not specific brain abnormalities. After several genetic investigations (karyotype, CGH-Array, targeted NGS analysis for short stature genes), by whole exome sequencing we identified the p.Tyr64Cys in CDC42, occurring de novo. The case presented here provides further evidence that macrothrombocytopenia can be intermittent and thus it might escape attention of clinicians. Without this key feature, TKS clinical presentation can overlap other syndromic forms of short stature. Immunodeficiency, autoimmunity, and malignancies were recently reported in patients with the p.Tyr64Cys substitution, making imperative an early diagnosis of Takenouchi-Kosaki syndrome to organize the most proper follow-up of these pediatric patients. The whole exome sequencing can be a solving tool in the challenge to the rare diseases.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy; Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Naples, Italy.
| | - Giuseppina Gaudino
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silverio Perrotta
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy
| | | | | | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Anna Grandone
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy
| |
Collapse
|
16
|
Ichikawa D, Yamashita K, Okuno Y, Muramatsu H, Murakami N, Suzuki K, Kojima D, Kataoka S, Hamada M, Taniguchi R, Nishikawa E, Kawashima N, Narita A, Nishio N, Hama A, Kasai K, Mizuno S, Shimoyama Y, Nakaguro M, Okita H, Kojima S, Nakazawa A, Takahashi Y. Integrated diagnosis based on transcriptome analysis in suspected pediatric sarcomas. NPJ Genom Med 2021; 6:49. [PMID: 34131151 PMCID: PMC8206218 DOI: 10.1038/s41525-021-00210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Pediatric solid tumors are a heterogeneous group of neoplasms with over 100 subtypes. Clinical and histopathological diagnosis remains challenging due to the overlapping morphological and immunohistochemical findings and the presence of atypical cases. To evaluate the potential utility of including RNA-sequencing (RNA-seq) in the diagnostic process, we performed RNA-seq in 47 patients with suspected pediatric sarcomas. Histopathologists specialized in pediatric cancer re-evaluated pathological specimens to reach a consensus diagnosis; 42 patients were diagnosed with known subtypes of solid tumors whereas 5 patients were diagnosed with undifferentiated sarcoma. RNA-seq analysis confirmed and refined consensus diagnoses and further identified diagnostic genetic variants in four of the five patients with undifferentiated sarcoma. Genetic lesions were detected in 23 patients, including the novel SMARCA4-THOP1 fusion gene and 22 conventional or recently reported genetic events. Unsupervised clustering analysis of the RNA-seq data identified a distinct cluster defined by the overexpression of rhabdomyosarcoma-associated genes including MYOG and CHRNG. These findings suggest that RNA-seq-based genetic analysis may aid in the diagnosis of suspected pediatric sarcomas, which would be useful for the development of stratified treatment strategies.
Collapse
Affiliation(s)
- Daisuke Ichikawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyoko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiei Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Taniguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Nishikawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Advanced Medicine, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Yoshie Shimoyama
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hajime Okita
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan.,Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuko Nakazawa
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan.,Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
17
|
Di Iorio V, Karali M, Melillo P, Testa F, Brunetti-Pierri R, Musacchia F, Condroyer C, Neidhardt J, Audo I, Zeitz C, Banfi S, Simonelli F. Spectrum of Disease Severity in Patients With X-Linked Retinitis Pigmentosa Due to RPGR Mutations. Invest Ophthalmol Vis Sci 2021; 61:36. [PMID: 33372982 PMCID: PMC7774109 DOI: 10.1167/iovs.61.14.36] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The purpose of this study was to perform a detailed longitudinal phenotyping of X-linked retinitis pigmentosa (RP) caused by mutations in the RPGR gene during a long follow-up period. Methods An Italian cohort of 48 male patients (from 31 unrelated families) with RPGR-associated RP was clinically assessed at a single center (mean follow-up = 6.5 years), including measurements of best-corrected visual acuity (BCVA), Goldmann visual field (GVF), optical coherence tomography (OCT), fundus autofluorescence (FAF), microperimetry, and full-field electroretinography (ERG). Results Patients (29.6 ± 15.2 years) showed a mean BCVA of 0.6 ± 0.7 logMAR, mostly with myopic refraction (79.2%). Thirty patients (62.5%) presented a typical RP fundus, while the remaining sine pigmento RP. Over the follow-up, BCVA significantly declined at a mean rate of 0.025 logMAR/year. Typical RP and high myopia were associated with a significantly faster decline of BCVA. Blindness was driven primarily by GVF loss. ERG responses with a rod-cone pattern of dysfunction were detectable in patients (50%) that were significantly younger and more frequently presented sine pigmento RP. Thirteen patients (27.1%) had macular abnormalities without cystoid macular edema. Patients (50%) with a perimacular hyper-FAF ring were significantly younger, had a higher BCVA and a better-preserved ellipsoid zone band than those with markedly decreased FAF. Patients harboring pathogenic variants in exons 1 to 14 showed a milder phenotype compared to those with ORF15 mutations. Conclusions Our monocentric, longitudinal retrospective study revealed a spectrum disease progression in male patients with RPGR-associated RP. Slow disease progression correlated with sine pigmento RP, absence of high myopia, and mutations in RPGR exons 1 to 14.
Collapse
Affiliation(s)
- Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | | | | | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC, France.,Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
18
|
Brunetti-Pierri R, Karali M, Melillo P, Di Iorio V, De Benedictis A, Iaccarino G, Testa F, Banfi S, Simonelli F. Clinical and Molecular Characterization of Achromatopsia Patients: A Longitudinal Study. Int J Mol Sci 2021; 22:1681. [PMID: 33562422 PMCID: PMC7914547 DOI: 10.3390/ijms22041681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Achromatopsia (ACHM) is a rare genetic disorder of infantile onset affecting cone photoreceptors. To determine the extent of progressive retinal changes in achromatopsia, we performed a detailed longitudinal phenotyping and genetic characterization of an Italian cohort comprising 21 ACHM patients (17 unrelated families). Molecular genetic testing identified biallelic pathogenic mutations in known ACHM genes, including four novel variants. At baseline, the patients presented a reduced best corrected visual acuity (BCVA), reduced macular sensitivity (MS), normal dark-adapted electroretinogram (ERG) responses and undetectable or severely reduced light-adapted ERG. The longitudinal analysis of 16 patients (mean follow-up: 5.4 ± 1.0 years) showed a significant decline of BCVA (0.012 logMAR/year) and MS (-0.16 dB/year). Light-adapted and flicker ERG responses decreased below noise level in three and two patients, respectively. Only two patients (12.5%) progressed to a worst OCT grading during the follow-up. Our findings corroborate the notion that ACHM is a progressive disease in terms of BCVA, MS and ERG responses, and affects slowly the structural integrity of the retina. These observations can serve towards the development of guidelines for patient selection and intervention timing in forthcoming gene replacement therapies.
Collapse
Affiliation(s)
- Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
| | - Antonella De Benedictis
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
| | - Gennarfrancesco Iaccarino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, Italy;
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (P.M.); (V.D.I.); (A.D.B.); (G.I.); (F.T.)
| |
Collapse
|
19
|
Ciaccio C, Duga V, Pantaleoni C, Esposito S, Moroni I, Pinelli M, Castello R, Nigro V, Chiapparini L, D'Arrigo S. Milder presentation of TELO2-related syndrome in two sisters homozygous for the p.Arg609His pathogenic variant. Eur J Med Genet 2020; 64:104116. [PMID: 33307281 DOI: 10.1016/j.ejmg.2020.104116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022]
Abstract
Biallelic loss of function of TELO2 gene cause a severe syndromic disease mainly characterized by global developmental delay with poor motor and language acquisitions, microcephaly, short stature, minor facial and limbs anomalies, sleep disorder, spasticity, and balance impairment up to ataxia. TELO2-related syndrome, also known as You-Hoover-Fong Syndrome, is extremely rare and since its first description in 2016 only 8 individuals have been reported, all showing a severe disability. The causative gene is member of the big molecular family of genes responsible for cells proliferation and DNA stability. We describe the case of two sisters, carrying the homozygous p. Arg609His variant of the gene, who present a milder phenotype of TELO2-related syndrome. Such variant has been reported once in a more severely affected patient, in compound heterozygous state associated with the p. Pro260Leu variant, suggesting a possible role of the p. Arg609His variant in determining milder phenotypes. Comparing the siblings with all previously reported cases, we offer an overview on the condition and discuss TELO2 genetic interactions, in order to further explore the molecular bases of this recently described disorder.
Collapse
Affiliation(s)
- Claudia Ciaccio
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Valentina Duga
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Esposito
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Raffaele Castello
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano D'Arrigo
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
20
|
Torella A, Zanobio M, Zeuli R, del Vecchio Blanco F, Savarese M, Giugliano T, Garofalo A, Piluso G, Politano L, Nigro V. The position of nonsense mutations can predict the phenotype severity: A survey on the DMD gene. PLoS One 2020; 15:e0237803. [PMID: 32813700 PMCID: PMC7437896 DOI: 10.1371/journal.pone.0237803] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used the DMD gene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, the DMD gene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, because DMD mutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5’ nonsense mutations, if reinitiation can occur, or due to late 3’ nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.
Collapse
Affiliation(s)
- Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mariateresa Zanobio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Roberta Zeuli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | | | - Marco Savarese
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Teresa Giugliano
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Arcomaria Garofalo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Giulio Piluso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luisa Politano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- * E-mail:
| |
Collapse
|
21
|
Karali M, Testa F, Brunetti-Pierri R, Di Iorio V, Pizzo M, Melillo P, Barillari MR, Torella A, Musacchia F, D’Angelo L, Banfi S, Simonelli F. Clinical and Genetic Analysis of a European Cohort with Pericentral Retinitis Pigmentosa. Int J Mol Sci 2019; 21:ijms21010086. [PMID: 31877679 PMCID: PMC6982348 DOI: 10.3390/ijms21010086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Retinitis pigmentosa (RP) is a clinically heterogenous disease that comprises a wide range of phenotypic and genetic subtypes. Pericentral RP is an atypical form of RP characterized by bone-spicule pigmentation and/or atrophy confined in the near mid-periphery of the retina. In contrast to classic RP, the far periphery is better preserved in pericentral RP. The aim of this study was to perform the first detailed clinical and genetic analysis of a cohort of European subjects with pericentral RP to determine the phenotypic features and the genetic bases of the disease. A total of 54 subjects from 48 independent families with pericentral RP, non-syndromic and syndromic, were evaluated through a full ophthalmological examination and underwent clinical exome or retinopathy gene panel sequencing. Disease-causative variants were identified in 22 of the 35 families (63%) in 10 different genes, four of which are also responsible for syndromic RP. Thirteen of the 34 likely pathogenic variants were novel. Intra-familiar variability was also observed. The current study confirms the mild phenotype of pericentral RP and extends the spectrum of genes associated with this condition.
Collapse
Affiliation(s)
- Marianthi Karali
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Luigi De Crecchio 7, 80138 Naples, Italy; (M.K.); (A.T.)
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.P.); (F.M.)
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Pansini 5, 80131 Naples, Italy; (F.T.); (R.B.-P.); (V.D.I.); (P.M.); (M.R.B.); (L.D.A.)
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Pansini 5, 80131 Naples, Italy; (F.T.); (R.B.-P.); (V.D.I.); (P.M.); (M.R.B.); (L.D.A.)
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Pansini 5, 80131 Naples, Italy; (F.T.); (R.B.-P.); (V.D.I.); (P.M.); (M.R.B.); (L.D.A.)
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.P.); (F.M.)
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Pansini 5, 80131 Naples, Italy; (F.T.); (R.B.-P.); (V.D.I.); (P.M.); (M.R.B.); (L.D.A.)
| | - Maria Rosaria Barillari
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Pansini 5, 80131 Naples, Italy; (F.T.); (R.B.-P.); (V.D.I.); (P.M.); (M.R.B.); (L.D.A.)
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Luigi De Crecchio 7, 80138 Naples, Italy; (M.K.); (A.T.)
| | - Francesco Musacchia
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.P.); (F.M.)
| | - Luigi D’Angelo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Pansini 5, 80131 Naples, Italy; (F.T.); (R.B.-P.); (V.D.I.); (P.M.); (M.R.B.); (L.D.A.)
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Luigi De Crecchio 7, 80138 Naples, Italy; (M.K.); (A.T.)
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.P.); (F.M.)
- Correspondence: (S.B.); (F.S.); Tel.: +39-081-19230628 (S.B.); +39-081-7704501 (F.S.)
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, via Pansini 5, 80131 Naples, Italy; (F.T.); (R.B.-P.); (V.D.I.); (P.M.); (M.R.B.); (L.D.A.)
- Correspondence: (S.B.); (F.S.); Tel.: +39-081-19230628 (S.B.); +39-081-7704501 (F.S.)
| |
Collapse
|
22
|
Pollini L, Galosi S, Nardecchia F, Musacchia F, Castello R, Nigro V, Leuzzi V. Parkinsonism, Intellectual Disability, and Catatonia in a Young Male With MECP2 Variant. Mov Disord Clin Pract 2019; 7:118-119. [PMID: 31970230 DOI: 10.1002/mdc3.12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Luca Pollini
- Department of Human Neuroscience Sapienza University of Rome Rome Italy
| | - Serena Galosi
- Department of Human Neuroscience Sapienza University of Rome Rome Italy
| | | | | | | | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine Pozzuoli Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience Sapienza University of Rome Rome Italy
| |
Collapse
|
23
|
Consolidating the Role of TDP2 Mutations in Recessive Spinocerebellar Ataxia Associated with Pediatric Onset Drug Resistant Epilepsy and Intellectual Disability (SCAR23). THE CEREBELLUM 2019; 18:972-975. [DOI: 10.1007/s12311-019-01069-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|