1
|
Yamaguchi TN, Houlahan KE, Zhu H, Kurganovs N, Livingstone J, Fox NS, Yuan J, Sietsma Penington J, Jung CH, Schwarz T, Jaratlerdsiri W, van Riet J, Georgeson P, Mangiola S, Taraszka K, Lesurf R, Jiang J, Chow K, Heisler LE, Shiah YJ, Ramanand SG, Clarkson MJ, Nguyen A, Espiritu SMG, Stuchbery R, Jovelin R, Huang V, Bell C, O’Connor E, McCoy PJ, Lalansingh CM, Cmero M, Salcedo A, Chan EK, Liu LY, Stricker PD, Bhandari V, Bornman RM, Sendorek DH, Lonie A, Prokopec SD, Fraser M, Peters JS, Foucal A, Mutambirwa SB, Mcintosh L, Orain M, Wakefield M, Picard V, Park DJ, Hovington H, Kerger M, Bergeron A, Sabelnykova V, Seo JH, Pomerantz MM, Zaitlen N, Waszak SM, Gusev A, Lacombe L, Fradet Y, Ryan A, Kishan AU, Lolkema MP, Weischenfeldt J, Têtu B, Costello AJ, Hayes VM, Hung RJ, He HH, McPherson JD, Pasaniuc B, van der Kwast T, Papenfuss AT, Freedman ML, Pope BJ, Bristow RG, Mani RS, Corcoran NM, Reimand J, Hovens CM, Boutros PC. The Germline and Somatic Origins of Prostate Cancer Heterogeneity. Cancer Discov 2025; 15:988-1017. [PMID: 39945744 PMCID: PMC12046336 DOI: 10.1158/2159-8290.cd-23-0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
SIGNIFICANCE This study uncovered 223 recurrently mutated driver regions using the largest cohort of prostate tumors to date. It reveals associations between germline SNPs, somatic drivers, and tumor aggression, offering significant insights into how prostate tumor evolution is shaped by germline factors and the timing of somatic mutations.
Collapse
Affiliation(s)
- Takafumi N. Yamaguchi
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Kathleen E. Houlahan
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Helen Zhu
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Natalie Kurganovs
- Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Julie Livingstone
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Natalie S. Fox
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jiapei Yuan
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Weerachai Jaratlerdsiri
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Job van Riet
- Department of Medical Oncology, Erasmus University, Rotterdam, the Netherlands
| | - Peter Georgeson
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Stefano Mangiola
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Kodi Taraszka
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
| | - Robert Lesurf
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Jue Jiang
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Ken Chow
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
| | | | - Yu-Jia Shiah
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Michael J. Clarkson
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Anne Nguyen
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Ryan Stuchbery
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Connor Bell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edward O’Connor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick J. McCoy
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Marek Cmero
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Adriana Salcedo
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Eva K.F. Chan
- St Vincent’s Clinical School, University of New South Wales, Randwick, Australia
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
| | - Lydia Y. Liu
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Phillip D. Stricker
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
| | - Vinayak Bhandari
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Riana M.S. Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Andrew Lonie
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | | | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Justin S. Peters
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Adrien Foucal
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Lachlan Mcintosh
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Michèle Orain
- Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Matthew Wakefield
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Valérie Picard
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Daniel J. Park
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Hélène Hovington
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Michael Kerger
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
| | - Alain Bergeron
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | | | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M. Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Genetics, Brigham Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Louis Lacombe
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Yves Fradet
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Andrew Ryan
- TissuPath Specialist Pathology Services, Mount Waverley, Australia
| | - Amar U. Kishan
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Martijn P. Lolkema
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Joachim Weischenfeldt
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernard Têtu
- Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Anthony J. Costello
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
| | - Vanessa M. Hayes
- St Vincent’s Clinical School, University of New South Wales, Randwick, Australia
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Central Clinical School, University of Sydney, Camperdown, Australia
- Department of Medical Sciences, University of Limpopo, Mankweng, South Africa
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - John D. McPherson
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Bogdan Pasaniuc
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Anthony T. Papenfuss
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Australia
- Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bernard J. Pope
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Medicine, Monash University, Clayton, Australia
| | - Robert G. Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Manchester Cancer Research Centre, Manchester, United Kingdom
| | - Ram S. Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
- Department of Urology, Peninsula Health, Frankston, Australia
- The Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Department of Urology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Salcedo A, Tarabichi M, Buchanan A, Espiritu SMG, Zhang H, Zhu K, Ou Yang TH, Leshchiner I, Anastassiou D, Guan Y, Jang GH, Mootor MFE, Haase K, Deshwar AG, Zou W, Umar I, Dentro S, Wintersinger JA, Chiotti K, Demeulemeester J, Jolly C, Sycza L, Ko M, Wedge DC, Morris QD, Ellrott K, Van Loo P, Boutros PC. Crowd-sourced benchmarking of single-sample tumor subclonal reconstruction. Nat Biotechnol 2025; 43:581-592. [PMID: 38862616 PMCID: PMC11994449 DOI: 10.1038/s41587-024-02250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Subclonal reconstruction algorithms use bulk DNA sequencing data to quantify parameters of tumor evolution, allowing an assessment of how cancers initiate, progress and respond to selective pressures. We launched the ICGC-TCGA (International Cancer Genome Consortium-The Cancer Genome Atlas) DREAM Somatic Mutation Calling Tumor Heterogeneity and Evolution Challenge to benchmark existing subclonal reconstruction algorithms. This 7-year community effort used cloud computing to benchmark 31 subclonal reconstruction algorithms on 51 simulated tumors. Algorithms were scored on seven independent tasks, leading to 12,061 total runs. Algorithm choice influenced performance substantially more than tumor features but purity-adjusted read depth, copy-number state and read mappability were associated with the performance of most algorithms on most tasks. No single algorithm was a top performer for all seven tasks and existing ensemble strategies were unable to outperform the best individual methods, highlighting a key research need. All containerized methods, evaluation code and datasets are available to support further assessment of the determinants of subclonal reconstruction accuracy and development of improved methods to understand tumor evolution.
Collapse
Affiliation(s)
- Adriana Salcedo
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium.
| | - Alex Buchanan
- Oregon Health and Sciences University, Portland, OR, USA
| | | | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kaiyi Zhu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Center for Cancer Systems Therapeutics, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Tai-Hsien Ou Yang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Center for Cancer Systems Therapeutics, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | - Dimitris Anastassiou
- Department of Systems Biology, Columbia University, New York, NY, USA
- Center for Cancer Systems Therapeutics, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Electronic Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mohammed F E Mootor
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | | | - Amit G Deshwar
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - William Zou
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Imaad Umar
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stefan Dentro
- The Francis Crick Institute, London, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Jeff A Wintersinger
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Kami Chiotti
- Oregon Health and Sciences University, Portland, OR, USA
| | - Jonas Demeulemeester
- The Francis Crick Institute, London, UK
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Lesia Sycza
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Minjeong Ko
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David C Wedge
- Big Data Institute, University of Oxford, Oxford, UK
- Manchester Cancer Research Center, University of Manchester, Manchester, UK
| | - Quaid D Morris
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle Ellrott
- Oregon Health and Sciences University, Portland, OR, USA.
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
- Department of Urology, University of California, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Tohi Y, Sahrmann JM, Arbet J, Kato T, Lee LS, Peacock M, Ginsburg K, Pavlovich C, Carroll P, Bangma CH, Sugimoto M, Boutros PC. De-escalation of Monitoring in Active Surveillance for Prostate Cancer: Results from the GAP3 Consortium. Eur Urol Oncol 2025; 8:347-354. [PMID: 39089946 DOI: 10.1016/j.euo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND OBJECTIVE There is no consensus on de-escalation of monitoring during active surveillance (AS) for prostate cancer (PCa). Our objective was to determine clinical criteria that can be used in decisions to reduce the intensity of AS monitoring. METHODS The global prospective AS cohort from the Global Action Plan prostate cancer AS consortium was retrospectively analyzed. The 24656 patients with complete outcome data were considered. The primary goal was to develop a model identifying a subgroup with a high ratio of other-cause mortality (OCM) to PCa-specific mortality (PCSM). Nonparametric competing-risks models were used to estimate cause-specific mortality. We hypothesized that the subgroup with the highest OCM/PCSM ratio would be good candidates for de-escalation of AS monitoring. KEY FINDINGS AND LIMITATIONS Cumulative mortality at 15 yr, accounting for censoring, was 1.3% for PCSM, 11.5% for OCM, and 18.7% for death from unknown causes. We identified body mass index (BMI) >25 kg/m2 and <11% positive cores at initial biopsy as an optimal set of criteria for discriminating OCM from PCSM. The 15-yr OCM/PCSM ratio was 34.2 times higher for patients meeting these criteria than for those not meeting the criteria. According to these criteria, 37% of the cohort would be eligible for de-escalation of monitoring. Limitations include the retrospective nature of the study and the lack of external validation. CONCLUSIONS Our study identified BMI >25 kg/m2 and <11% positive cores at initial biopsy as clinical criteria for de-escalation of AS monitoring in PCa. PATIENT SUMMARY We investigated factors that could help in deciding on when to reduce the intensity of monitoring for patients on active surveillance for prostate cancer. We found that patients with higher BMI (body mass index) and lower prostate cancer volume may be good candidates for less intensive monitoring. This model could help doctors and patients in making decisions on active surveillance for prostate cancer.
Collapse
Affiliation(s)
- Yoichiro Tohi
- Department of Urology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - John M Sahrmann
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Jaron Arbet
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Takuma Kato
- Department of Urology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Lui Shiong Lee
- Department of Urology, Sengkang General Hospital and Singapore General Hospital, Singapore
| | - Michael Peacock
- BC Cancer, University of British Columbia, Vancouver, Canada
| | - Kevin Ginsburg
- Department of Urology, Wayne State University, Detroit, MI, USA
| | - Christian Pavlovich
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peter Carroll
- Department of Urology, University California-San Francisco, San Francisco, CA, USA
| | - Chris H Bangma
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mikio Sugimoto
- Department of Urology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Zhu C, Zeltser N, Oh J, Li CH, Boutros PC. Sex Differences in the Cancer Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643396. [PMID: 40166173 PMCID: PMC11957023 DOI: 10.1101/2025.03.14.643396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteins play a central role in cancer biology, as are the most common drug targets and biomarkers. Sex influences the proteome in many diseases, ranging from neurological to cardiovascular. In cancer, sex is associated with incidence, progression and therapeutic response, as well as characteristics of the tumour genome and transcriptome. The extent to which sex differences impact the cancer proteome remains largely unknown. To fill this gap, we quantified sex differences across 1,590 proteomes from eight cancer types, identifying 39 genes with sex-differential proteins abundance in adenocarcinomas of the lung and 15 genes in hepatocellular carcinomas, clear cell cancers of the kidney and adenocarcinomas of the pancreas. A subset of these protein differences could be rationalized by sex-differential copy number aberrations. Pathway analysis showed that sex-differential proteins in lung adenocarcinoma were enriched in MYC and E2F target pathways. These findings highlight the modest impact of sex on the cancer proteome, but the very limited power of existing proteomics cohorts for these analyses.
Collapse
Affiliation(s)
- Chenghao Zhu
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Nicole Zeltser
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Jieun Oh
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Constance H. Li
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Frame G, Huang X, Haas R, Khan KA, Leong HS, Kislinger T, Boutros PC, Downes M, Liu SK. Accelerated growth and local progression of radiorecurrent prostate cancer in an orthotopic bioluminescent mouse model. Sci Rep 2024; 14:31205. [PMID: 39732766 DOI: 10.1038/s41598-024-82546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Globally, prostate cancer is the second most common malignancy in males, with over 400 thousand men dying from the disease each year. A common treatment modality for localized prostate cancer is radiotherapy. However, up to half of high-risk patients can relapse with radiorecurrent prostate cancer, the aggressive clinical progression of which remains severely understudied. To address this, we have established an orthotopic mouse model for study that recapitulates the aggressive clinical progression of radiorecurrent prostate cancer. Radiorecurrent DU145 cells which survived conventional fraction (CF) irradiation were orthotopically injected into the prostates of athymic nude mice and monitored with bioluminescent imaging. CF tumours exhibited higher take rates and grew more rapidly than treatment-naïve parental tumours (PAR). Pathohistological analysis revealed extensive seminal vesicle invasion and necrosis in CF tumours, recapitulating the aggressive progression towards locally advanced disease exhibited by radiorecurrent tumours clinically. RNA sequencing of CF and PAR tumours identified ROBO1, CAV1, and CDH1 as candidate targets of radiorecurrent progression associated with biochemical relapse clinically. Together, this study presents a clinically relevant orthotopic model of radiorecurrent prostate cancer progression that will enable discovery of targets for therapeutic intervention to improve outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Roni Haas
- University of California Los Angeles, Los Angeles, USA
| | - Kabir A Khan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Hon S Leong
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- University of California Los Angeles, Los Angeles, USA
| | - Michelle Downes
- Division of Anatomic Pathology, Precision Diagnostics & Therapeutics Program-Laboratory Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Fox NS, Tian M, Markowitz AL, Haider S, Li CH, Boutros PC. iSubGen generates integrative disease subtypes by pairwise similarity assessment. CELL REPORTS METHODS 2024; 4:100884. [PMID: 39447572 PMCID: PMC11705582 DOI: 10.1016/j.crmeth.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2023] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
There are myriad types of biomedical data-molecular, clinical images, and others. When a group of patients with the same underlying disease exhibits similarities across multiple types of data, this is called a subtype. Existing subtyping approaches struggle to handle diverse data types with missing information. To improve subtype discovery, we exploited changes in the correlation-structure between different data types to create iSubGen, an algorithm for integrative subtype generation. iSubGen can accommodate any feature that can be compared with a similarity metric to create subtypes versatilely. It can combine arbitrary data types for subtype discovery, such as merging genetic, transcriptomic, proteomic, and pathway data. iSubGen recapitulates known subtypes across multiple cancers even with substantial missing data and identifies subtypes with distinct clinical behaviors. It performs equally with or superior to other subtyping methods, offering greater stability and robustness to missing data and flexibility to new data types. It is available at https://cran.r-project.org/web/packages/iSubGen.
Collapse
Affiliation(s)
- Natalie S Fox
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Mao Tian
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Alexander L Markowitz
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Constance H Li
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA; Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Agrawal R, Al-Hiyari S, Hugh-White R, Hromas R, Patel Y, Williamson EA, Mootor MFE, Gonzalez A, Fu J, Haas R, Jordan M, Wickes BL, Mohammed G, Tian M, Doris MJ, Jobin C, Wernke KM, Pan Y, Yamaguchi TN, Herzon SB, Boutros PC, Liss MA. Colibactin Exerts Androgen-dependent and -independent Effects on Prostate Cancer. Eur Urol Oncol 2024:S2588-9311(24)00245-1. [PMID: 39547899 PMCID: PMC12075626 DOI: 10.1016/j.euo.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND OBJECTIVE The etiology of prostate cancer (PC) is multifactorial and poorly understood. It has been suggested that colibactin-producing Escherichia coli positive for the pathogenicity island pks (pks+) initiate cancers via induction of genomic instability. In PC, androgens promote oncogenic translocations. Our aim was to investigate the association of pks+E. coli with PC diagnosis and molecular architecture, and its relationship with androgens. METHODS We quantified the association of pks+E. coli with PC diagnosis in a volunteer-sampled 235-person cohort from two institutional practices (UT San Antonio). We then used colibactin 742 and DNA/RNA sequencing to evaluate the effects of colibactin 742, dihydrotestosterone (DHT), and their combination in vitro. KEY FINDINGS AND LIMITATIONS Colibactin exposure was positively associated with PC diagnosis (p = 0.04) in our clinical cohort, and significantly increased replication fork stalling and fusions in vitro (p < 0.01). Combined in vitro exposure to colibactin 742 and DHT induced more somatic mutations of all types than exposure to either alone. The combination also elicited kataegis, with a higher density of somatic point mutations. Laboratory analyses were conducted using a single cell line, which limited our ability to fully recapitulate the complexity of PC etiology. CONCLUSIONS AND CLINICAL IMPLICATIONS Our findings are consistent with synergistic induction of genome instability and kataegis by colibactin 742 and DHT in cell culture. Colibactin-producing pks+ E. coli may plausibly contribute to PC etiology. PATIENT SUMMARY We investigated whether a bacterial toxin that is linked to colon cancer can also cause prostate cancer. Our results support this idea by showing a link between the toxin and prostate cancer diagnosis in a large patient population. We also found that this toxin causes genetic dysfunction in prostate cancer cells when combined with testosterone.
Collapse
Affiliation(s)
- Raag Agrawal
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Sarah Al-Hiyari
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rupert Hugh-White
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Yash Patel
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Mohammed F E Mootor
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Alfredo Gonzalez
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Jianmin Fu
- Department of Microbiology and Immunology, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Roni Haas
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Madison Jordan
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Brian L Wickes
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas, San Antonia, TC, USA
| | - Ghouse Mohammed
- Office of Health Informatics and Analytics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Mao Tian
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Molly J Doris
- Department of Urology, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Christian Jobin
- Departments of Medicine, Infectious Diseases and Immunology, and Anatomy and Cell Physiology, University of Florida, Gainesville, FL, USA
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Yu Pan
- Office of Health Informatics and Analytics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael A Liss
- Department of Urology, University of Texas Health-San Antonio, San Antonio, TX, USA.
| |
Collapse
|
8
|
Wang NK, Wiltsie N, Winata HK, Fitz-Gibbon S, Gonzalez AE, Zeltser N, Agrawal R, Oh J, Arbet J, Patel Y, Yamaguchi TN, Boutros PC. StableLift: Optimized Germline and Somatic Variant Detection Across Genome Builds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621401. [PMID: 39554127 PMCID: PMC11565985 DOI: 10.1101/2024.10.31.621401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Reference genomes are foundational to modern genomics. Our growing understanding of genome structure leads to continual improvements in reference genomes and new genome "builds" with incompatible coordinate systems. We quantified the impact of genome build on germline and somatic variant calling by analyzing tumour-normal whole-genome pairs against the two most widely used human genome builds. The average individual had a build-discordance of 3.8% for germline SNPs, 8.6% for germline SVs, 25.9% for somatic SNVs and 49.6% for somatic SVs. Build-discordant variants are not simply false-positives: 47% were verified by targeted resequencing. Build-discordant variants were associated with specific genomic and technical features in variant- and algorithm-specific patterns. We leveraged these patterns to create StableLift, an algorithm that predicts cross-build stability with AUROCs of 0.934 ± 0.029. These results call for significant caution in cross-build analyses and for use of StableLift as a computationally efficient solution to mitigate inter-build artifacts.
Collapse
Affiliation(s)
- Nicholas K. Wang
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Nicholas Wiltsie
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Helena K. Winata
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Sorel Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Alfredo E. Gonzalez
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Nicole Zeltser
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Raag Agrawal
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Jieun Oh
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Jaron Arbet
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Takafumi N. Yamaguchi
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| |
Collapse
|
9
|
Liss MA, Zeltser N, Zheng Y, Lopez C, Liu M, Patel Y, Yamaguchi TN, Eng SE, Tian M, Semmes OJ, Lin DW, Brooks JD, Wei JT, Klein EA, Tewari AK, Mosquera JM, Khani F, Robinson BD, Aasad M, Troyer DA, Kagan J, Sanda MG, Thompson IM, Boutros PC, Leach RJ. Upgrading of Grade Group 1 Prostate Cancer at Prostatectomy: Germline Risk Factors in a Prospective Cohort. Cancer Epidemiol Biomarkers Prev 2024; 33:1500-1511. [PMID: 39158404 PMCID: PMC11528207 DOI: 10.1158/1055-9965.epi-24-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Localized prostate tumors show significant spatial heterogeneity, with regions of high-grade disease adjacent to lower grade disease. Consequently, prostate cancer biopsies are prone to sampling bias, potentially leading to underestimation of tumor grade. To study the clinical, epidemiologic, and molecular hallmarks of this phenomenon, we conducted a prospective study of grade upgrading: differences in detected prostate cancer grade between biopsy and surgery. METHODS We established a prospective, multi-institutional cohort of men with grade group 1 (GG1) prostate cancer on biopsy who underwent radical prostatectomy. Upgrading was defined as detection of GG2+ in the resected tumor. Germline DNA from 192 subjects was subjected to whole-genome sequencing to quantify ancestry, pathogenic variants in DNA damage response genes, and polygenic risk. RESULTS Of 285 men, 67% upgraded at surgery. PSA density and percent of cancer in pre-prostatectomy positive biopsy cores were significantly associated with upgrading. No assessed genetic risk factor was predictive of upgrading, including polygenic risk scores for prostate cancer diagnosis. CONCLUSIONS In a cohort of patients with low-grade prostate cancer, a majority upgraded at radical prostatectomy. PSA density and percent of cancer in pre-prostatectomy positive biopsy cores portended the presence of higher-grade disease, while germline genetics was not informative in this setting. Patients with low-risk prostate cancer, but elevated PSA density or percent cancer in positive biopsy cores, may benefit from repeat biopsy, additional imaging or other approaches to complement active surveillance. IMPACT Further risk stratification of patients with low-risk prostate cancer may provide useful context for active surveillance decision-making.
Collapse
Affiliation(s)
- Michael A. Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Nicole Zeltser
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Yingye Zheng
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Camden Lopez
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Menghan Liu
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yash Patel
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
| | - Takafumi N. Yamaguchi
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
| | - Stefan E. Eng
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Mao Tian
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
| | - Oliver J. Semmes
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Daniel W. Lin
- Division of Public Health Sciences, Department of Urology, Fred Hutchinson Cancer Center, University of Washington, Seattle, Washington
| | - James D. Brooks
- Department of Urology, Stanford University, Palo Alto, California
| | - John T. Wei
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Muhammad Aasad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Dean A. Troyer
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jacob Kagan
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | | | - Ian M. Thompson
- The Children’s Hospital of San Antonio Foundation and Christus Health, San Antonio, Texas
| | - Paul C. Boutros
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
- Department of Urology, University of California Los Angeles, Los Angeles, California
| | - Robin J. Leach
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Department of Pediatrics, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
10
|
Santos JL, Nick F, Adhitama N, Fields PD, Stillman JH, Kato Y, Watanabe H, Ebert D. Trehalose mediates salinity-stress tolerance in natural populations of a freshwater crustacean. Curr Biol 2024; 34:4160-4169.e7. [PMID: 39168123 DOI: 10.1016/j.cub.2024.07.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Salinization poses an increasing problem worldwide, threatening freshwater organisms and raising questions about their ability to adapt. We explored the mechanisms enabling a planktonic crustacean to tolerate elevated salinity. By gradually raising water salinity in clonal cultures from 185 Daphnia magna populations, we showed that salt tolerance strongly correlates with native habitat salinity, indicating local adaptation. A genome-wide association study (GWAS) further revealed a major effect of the Alpha,alpha-trehalose-phosphate synthase (TPS) gene, suggesting that trehalose production facilitates salinity tolerance. Salinity-tolerant animals showed a positive correlation between water salinity and trehalose concentrations, while intolerant animals failed to produce trehalose. Animals with a non-functional TPS gene, generated through CRISPR-Cas9, supported the trehalose role in salinity stress. Our study highlights how a keystone freshwater animal adapts to salinity stress using an evolutionary mechanism known in bacteria, plants, and arthropods.
Collapse
Affiliation(s)
- Joana L Santos
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
| | - Fabienne Nick
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Japan
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jonathon H Stillman
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building 3140, Berkeley, CA 94720, USA
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Japan
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
| |
Collapse
|
11
|
Strand SH, Houlahan KE, Branch V, Lynch T, Rivero-Guitiérrez B, Harmon B, Couch F, Gallagher K, Kilgore M, Wei S, DeMichele A, King T, McAuliffe P, Curtis C, Owzar K, Marks JR, Colditz GA, Hwang ES, West RB. Analysis of ductal carcinoma in situ by self-reported race reveals molecular differences related to outcome. Breast Cancer Res 2024; 26:127. [PMID: 39223670 PMCID: PMC11367816 DOI: 10.1186/s13058-024-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive breast cancer (IBC). Studies have indicated differences in DCIS outcome based on race or ethnicity, but molecular differences have not been investigated. METHODS We examined the molecular profile of DCIS by self-reported race (SRR) and outcome groups in Black (n = 99) and White (n = 191) women in a large DCIS case-control cohort study with longitudinal follow up. RESULTS Gene expression and pathway analyses suggested that different genes and pathways are involved in diagnosis and ipsilateral breast outcome (DCIS or IBC) after DCIS treatment in White versus Black women. We identified differences in ER and HER2 expression, tumor microenvironment composition, and copy number variations by SRR and outcome groups. CONCLUSIONS Our results suggest that different molecular mechanisms drive initiation and subsequent ipsilateral breast events in Black versus White women.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Middle Aged
- Biomarkers, Tumor/genetics
- Black or African American/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/ethnology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/ethnology
- Case-Control Studies
- DNA Copy Number Variations
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Prognosis
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/metabolism
- Self Report
- Tumor Microenvironment/genetics
- White/genetics
Collapse
Affiliation(s)
- Siri H Strand
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen E Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Genetics, Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vernal Branch
- National Breast Cancer Coalition, 2001 L Street NW, Suite 500 PMB#50111, Washington, DC, 20036, USA
| | - Thomas Lynch
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27708, USA
| | | | - Bryan Harmon
- Department of Pathology, Montefiore Medical Center, New York City, NY, USA
| | - Fergus Couch
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kristalyn Gallagher
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Kilgore
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angela DeMichele
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tari King
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Genetics, Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27708, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Graham A Colditz
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Haas R, Frame G, Khan S, Neilsen BK, Hong BH, Yeo CP, Yamaguchi TN, Ong EH, Zhao W, Carlin B, Yeo EL, Tan KM, Bugh YZ, Zhu C, Hugh-White R, Livingstone J, Poon DJ, Chu PL, Patel Y, Tao S, Ignatchenko V, Kurganovs NJ, Higgins GS, Downes MR, Loblaw A, Vesprini D, Kishan AU, Chua ML, Kislinger T, Boutros PC, Liu SK. The Proteogenomics of Prostate Cancer Radioresistance. CANCER RESEARCH COMMUNICATIONS 2024; 4:2463-2479. [PMID: 39166898 PMCID: PMC11411600 DOI: 10.1158/2767-9764.crc-24-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Prostate cancer is frequently treated with radiotherapy. Unfortunately, aggressive radioresistant relapses can arise, and the molecular underpinnings of radioresistance are unknown. Modern clinical radiotherapy is evolving to deliver higher doses of radiation in fewer fractions (hypofractionation). We therefore analyzed genomic, transcriptomic, and proteomic data to characterize prostate cancer radioresistance in cells treated with both conventionally fractionated and hypofractionated radiotherapy. Independent of fractionation schedule, resistance to radiotherapy involved massive genomic instability and abrogation of DNA mismatch repair. Specific prostate cancer driver genes were modulated at the RNA and protein levels, with distinct protein subcellular responses to radiotherapy. Conventional fractionation led to a far more aggressive biomolecular response than hypofractionation. Testing preclinical candidates identified in cell lines, we revealed POLQ (DNA Polymerase Theta) as a radiosensitizer. POLQ-modulated radioresistance in model systems and was predictive of it in large patient cohorts. The molecular response to radiation is highly multimodal and sheds light on prostate cancer lethality. SIGNIFICANCE Radiation is standard of care in prostate cancer. Yet, we have little understanding of its failure. We demonstrate a new paradigm that radioresistance is fractionation specific and identified POLQ as a radioresistance modulator.
Collapse
Affiliation(s)
- Roni Haas
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Beth K. Neilsen
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California.
| | - Boon Hao Hong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| | - Celestia P.X. Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| | - Takafumi N. Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Enya H.W. Ong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| | - Wenyan Zhao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Benjamin Carlin
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Eugenia L.L. Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| | - Kah Min Tan
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| | - Yuan Zhe Bugh
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Chenghao Zhu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Rupert Hugh-White
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Dennis J.J. Poon
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| | - Pek Lim Chu
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | - Shu Tao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
| | | | | | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
| | - Michelle R. Downes
- Division of Anatomic Pathology, Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Andrew Loblaw
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| | - Danny Vesprini
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California.
| | - Melvin L.K. Chua
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California.
- Department of Urology, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Haas R, Patel Y, Liu LY, Huang RR, Weiner A, Yamaguchi TN, Agrawal R, Boutros PC, Reiter RE. Divergent Evolution in Bilateral Prostate Cancer: a Case Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.22.24312320. [PMID: 39228741 PMCID: PMC11370525 DOI: 10.1101/2024.08.22.24312320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Multifocal prostate cancer is a prevalent phenomenon, with most cases remaining uncharacterized from a genomic perspective. A patient presented with bilateral prostate cancer. On systematic biopsy, two indistinguishable clinicopathologic lesions were detected. Whole-genome sequencing displayed somatically unrelated tumours with distinct driver CNA regions, suggesting independent origins of the two tumors. We demonstrated that similar clinicopathologic multifocal tumours, which might be interpreted as clonal disease, can in fact represent independent cancers. Genetic prognostics can prevent mischaracterization of multifocal disease to enable optimal patient management.
Collapse
Affiliation(s)
- Roni Haas
- Department of Human Genetics, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Lydia Y Liu
- Department of Human Genetics, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Rong Rong Huang
- Department of Pathology, University of California, Los Angeles, USA
| | - Adam Weiner
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Raag Agrawal
- Department of Human Genetics, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Robert E Reiter
- Department of Urology, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| |
Collapse
|
14
|
Frame G, Leong H, Haas R, Huang X, Wright J, Emmenegger U, Downes M, Boutros PC, Kislinger T, Liu SK. Targeting PLOD2 suppresses invasion and metastatic potential in radiorecurrent prostate cancer. BJC REPORTS 2024; 2:60. [PMID: 39184453 PMCID: PMC11338830 DOI: 10.1038/s44276-024-00085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024]
Abstract
Background Metastatic relapse of prostate cancer after radiotherapy is a significant cause of prostate cancer-related morbidity and mortality. PLOD2 is a mediator of invasion and metastasis that we identified as being upregulated in our highly aggressive radiorecurrent prostate cancer cell line. Methods Patient dataset analysis was conducted using a variety of prostate cancer cohorts. Prostate cancer cell lines were treated with siRNA, or the drug PX-478 prior to in vitro invasion, migration, or in vivo chick embryo (CAM) extravasation assay. Protein levels were detected by western blot. For RNA analysis, RNA sequencing was conducted on PLOD2 knockdown cells and validated by qRT-PCR. Results PLOD2 is a negative prognostic factor associated with biochemical relapse, driving invasion, migration, and extravasation in radiorecurrent prostate cancer. Mechanistically, HIF1α upregulation drives PLOD2 expression in our radiorecurrent prostate cancer cells, which is effectively inhibited by HIF1α inhibitor PX-478 to reduce invasion, migration, and extravasation. Finally, the long non-coding RNA LNCSRLR acts as a promoter of invasion downstream of PLOD2. Conclusions Together, our results demonstrate for the first time the role of PLOD2 in radiorecurrent prostate cancer invasiveness, and point towards its potential as a therapeutic target to reduce metastasis and improve survival outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Hon Leong
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Roni Haas
- University of California Los Angeles, Los Angeles, CA USA
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Jessica Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Urban Emmenegger
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Michelle Downes
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | | | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
15
|
Lalonde E, Li D, Ewens K, Shields CL, Ganguly A. Genome-Wide Methylation Patterns in Primary Uveal Melanoma: Development of MethylSig-UM, an Epigenomic Prognostic Signature to Improve Patient Stratification. Cancers (Basel) 2024; 16:2650. [PMID: 39123378 PMCID: PMC11312132 DOI: 10.3390/cancers16152650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite studies highlighting the prognostic utility of DNA methylation in primary uveal melanoma (pUM), it has not been translated into a clinically useful tool. We sought to define a methylation signature to identify newly diagnosed individuals at high risk for developing metastasis. Methylation profiling was performed on 41 patients with pUM with stage T2-T4 and at least three years of follow-up using the Illumina Infinium HumanMethylation450K BeadChip (N = 24) and the EPIC BeadChip (N = 17). Findings were validated in the TCGA cohort with known metastatic outcome (N = 69). Differentially methylated probes were identified in patients who developed metastasis. Unsupervised consensus clustering revealed three epigenomic subtypes associated with metastasis. To identify a prognostic signature, recursive feature elimination and random forest models were utilized within repeated cross-validation iterations. The 250 most commonly selected probes comprised the final signature, named MethylSig-UM. MethylSig-UM could distinguish individuals with pUM at diagnosis who develop future metastasis with an area under the curve of ~81% in the independent validation cohort, and remained significant in Cox proportional hazard models when combined with clinical features and established genomic biomarkers. Altered expression of immune-modulating genes were detected in MethylSig-UM positive tumors, providing clues for pUM resistance to immunotherapy. The MethylSig-UM model is available to enable additional validation in larger cohort sizes including T1 tumors.
Collapse
Affiliation(s)
- Emilie Lalonde
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Schulich School Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Dong Li
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn Ewens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carol L. Shields
- Oncology Services, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Arupa Ganguly
- Department of Pathology and Laboratory Medicine, Schulich School Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
16
|
Ci X, Chen S, Zhu R, Zarif M, Jain R, Guo W, Ramotar M, Gong L, Xu W, Singh O, Mansouri S, Zadeh G, Wei GH, Xu W, Bristow R, Berlin A, Koritzinsky M, van der Kwast T, He HH. Oral pimonidazole unveils clinicopathologic and epigenetic features of hypoxic tumour aggressiveness in localized prostate cancer. BMC Cancer 2024; 24:744. [PMID: 38890593 PMCID: PMC11186205 DOI: 10.1186/s12885-024-12505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.
Collapse
Affiliation(s)
- Xinpei Ci
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Present Address: West China School of Public Health, West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mojgan Zarif
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rahi Jain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wangyuan Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Matthew Ramotar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linsey Gong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Olivia Singh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sheila Mansouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie NHS Trust and CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Theodorus van der Kwast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Anatomic Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Houlahan KE, Khan A, Greenwald NF, Vivas CS, West RB, Angelo M, Curtis C. Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity. Science 2024; 384:eadh8697. [PMID: 38815010 DOI: 10.1126/science.adh8697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Tumors with the same diagnosis can have different molecular profiles and response to treatment. It remains unclear when and why these differences arise. Somatic genomic aberrations occur within the context of a highly variable germline genome. Interrogating 5870 breast cancer lesions, we demonstrated that germline-derived epitopes in recurrently amplified genes influence somatic evolution by mediating immunoediting. Individuals with a high germline-epitope burden in human epidermal growth factor receptor 2 (HER2/ERBB2) are less likely to develop HER2-positive breast cancer compared with other subtypes. The same holds true for recurrent amplicons defining three aggressive estrogen receptor (ER)-positive subgroups. Tumors that overcome such immune-mediated negative selection are more aggressive and demonstrate an "immune cold" phenotype. These data show that the germline genome plays a role in dictating somatic evolution.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Noah F Greenwald
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Nguyen HTL, Kohl E, Bade J, Eng SE, Tosevska A, Al Shihabi A, Tebon PJ, Hong JJ, Dry S, Boutros PC, Panossian A, Gosline SJC, Soragni A. A platform for rapid patient-derived cutaneous neurofibroma organoid establishment and screening. CELL REPORTS METHODS 2024; 4:100772. [PMID: 38744290 PMCID: PMC11133839 DOI: 10.1016/j.crmeth.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Localized cutaneous neurofibromas (cNFs) are benign tumors that arise in the dermis of patients affected by neurofibromatosis type 1 syndrome. cNFs are benign lesions: they do not undergo malignant transformation or metastasize. Nevertheless, they can cover a significant proportion of the body, with some individuals developing hundreds to thousands of lesions. cNFs can cause pain, itching, and disfigurement resulting in substantial socio-emotional repercussions. Currently, surgery and laser desiccation are the sole treatment options but may result in scarring and potential regrowth from incomplete removal. To identify effective systemic therapies, we introduce an approach to establish and screen cNF organoids. We optimized conditions to support the ex vivo growth of genomically diverse cNFs. Patient-derived cNF organoids closely recapitulate cellular and molecular features of parental tumors as measured by immunohistopathology, methylation, RNA sequencing, and flow cytometry. Our cNF organoid platform enables rapid screening of hundreds of compounds in a patient- and tumor-specific manner.
Collapse
Affiliation(s)
- Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Kohl
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica Bade
- Pacific Northwest National Laboratories, Seattle, WA, USA
| | - Stefan E Eng
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anela Tosevska
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jenny J Hong
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Sara J C Gosline
- Pacific Northwest National Laboratories, Seattle, WA, USA; Department of Biomedical Engineering, Oregon Health and Sciences University, Portland, OR, USA.
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Neilsen BK, Ma TM, Akingbemi WO, Neylon J, Casado MC, Sharma S, Sheng K, Ruan D, Low DA, Yang Y, Valle LF, Steinberg ML, Lamb JM, Cao M, Kishan AU. Impact of Interfractional Bladder and Trigone Displacement and Deformation on Radiation Exposure and Subsequent Acute Genitourinary Toxicity: A Post Hoc Analysis of Patients Treated with Magnetic Resonance Imaging-Guided Prostate Stereotactic Body Radiation Therapy in a Phase 3 Randomized Trial. Int J Radiat Oncol Biol Phys 2024; 118:986-997. [PMID: 37871887 DOI: 10.1016/j.ijrobp.2023.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE Emerging data suggest that trigone dosimetry may be more associated with poststereotactic body radiation therapy (SBRT) urinary toxicity than whole bladder dosimetry. We quantify the dosimetric effect of interfractional displacement and deformation of the whole bladder and trigone during prostate SBRT using on-board, pretreatment 0.35T magnetic resonance images (MRI). METHODS AND MATERIALS Seventy-seven patients treated with MRI-guided prostate SBRT (40 Gy/5 fractions) on the MRI arm of a phase 3 single-center randomized trial were included. Bladder and trigone structures were contoured on images obtained from a 0.35T simulation MRI and 5 on-board pretreatment MRIs. Dice similarity coefficient (DSC) scores and changes in volume between simulation and daily treatments were calculated. Dosimetric parameters including Dmax, D0.03 cc, Dmean, V40 Gy, V39 Gy, V38 Gy, and V20 Gy for the bladder and trigone for the simulation and daily treatments were collected. Both physician-scored (Common Terminology Criteria for Adverse Events, version 4.03 scale) as well as patient-reported (International Prostate Symptom Scores and the Expanded Prostate Cancer Index Composite-26 scores) acute genitourinary (GU) toxicity outcomes were collected and analyzed. RESULTS The average treatment bladder volume was about 30% smaller than the simulation bladder volume; however, the trigone volume remained fairly consistent despite being positively correlated with total bladder volume. Overall, the trigone accounted for <2% of the bladder volume. Median DSC for the bladder was 0.79, whereas the median DSC of the trigone was only 0.33. No statistically significant associations between our selected bladder and trigonal dosimetric parameters and grade ≥2 GU toxicity were identified, although numerically, patients with GU toxicity (grade ≥2) had higher intermediate doses to the bladder (V20 Gy and Dmean) and larger volumes exposed to higher doses in the trigone (V40 Gy, V39 Gy, and V38 Gy). CONCLUSIONS The trigone exhibits little volume change, but considerable interfractional displacement/deformation. As a result, the relative volume of the trigone receiving high doses during prostate SBRT varies substantially between fractions, which could influence GU toxicity and may not be predicted by radiation planning dosimetry.
Collapse
Affiliation(s)
- Beth K Neilsen
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Ting Martin Ma
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | | | - Jack Neylon
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Maria C Casado
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Sahil Sharma
- Department of Medicine, Georgetown University, Washington, DC
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Dan Ruan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Daniel A Low
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai, China
| | - Luca F Valle
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - James M Lamb
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Minsong Cao
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
20
|
Eng SE, Basasie B, Lam A, John Semmes O, Troyer DA, Clarke GD, Sunnapwar AG, Leach RJ, Johnson-Pais TL, Sokoll LJ, Chan DW, Tosoian JJ, Siddiqui J, Chinnaiyan AM, Thompson IM, Boutros PC, Liss MA. Prospective comparison of restriction spectrum imaging and non-invasive biomarkers to predict upgrading on active surveillance prostate biopsy. Prostate Cancer Prostatic Dis 2024; 27:65-72. [PMID: 36097168 DOI: 10.1038/s41391-022-00591-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Protocol-based active surveillance (AS) biopsies have led to poor compliance. To move to risk-based protocols, more accurate imaging biomarkers are needed to predict upgrading on AS prostate biopsy. We compared restriction spectrum imaging (RSI-MRI) generated signal maps as a biomarker to other available non-invasive biomarkers to predict upgrading or reclassification on an AS biopsy. METHODS We prospectively enrolled men on prostate cancer AS undergoing repeat biopsy from January 2016 to June 2019 to obtain an MRI and biomarkers to predict upgrading. Subjects underwent a prostate multiparametric MRI and a short duration, diffusion-weighted enhanced MRI called RSI to generate a restricted signal map along with evaluation of 30 biomarkers (14 clinico-epidemiologic features, 9 molecular biomarkers, and 7 radiologic-associated features). Our primary outcome was upgrading or reclassification on subsequent AS prostate biopsy. Statistical analysis included operating characteristic improvement using AUROC and AUPRC. RESULTS The individual biomarker with the highest area under the receiver operator characteristic curve (AUC) was RSI-MRI (AUC = 0.84; 95% CI: 0.71-0.96). The best non-imaging biomarker was prostate volume-corrected Prostate Health Index density (PHI, AUC = 0.68; 95% CI: 0.53-0.82). Non-imaging biomarkers had a negligible effect on predicting upgrading at the next biopsy but did improve predictions of overall time to progression in AS. CONCLUSIONS RSI-MRI, PIRADS, and PHI could improve the predictive ability to detect upgrading in AS. The strongest predictor of clinically significant prostate cancer on AS biopsy was RSI-MRI signal output.
Collapse
Affiliation(s)
- Stefan E Eng
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Institute for Precision Health, UCLA, Los Angeles, CA, USA
- Department of Urology, UCLA, Los Angeles, CA, USA
| | - Benjamin Basasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Alfonso Lam
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Institute for Precision Health, UCLA, Los Angeles, CA, USA
- Department of Urology, UCLA, Los Angeles, CA, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Dean A Troyer
- Department of Pathology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Geoffrey D Clarke
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Radiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Abhijit G Sunnapwar
- Department of Radiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robin J Leach
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Lori J Sokoll
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel W Chan
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
- Institute for Precision Health, UCLA, Los Angeles, CA, USA.
- Department of Urology, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA.
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
- College of Pharmacy, University of Texas Austin, Austin, TX, USA.
- Department of Urology, South Texas Veterans Healthcare System, San Antonio, TX, USA.
| |
Collapse
|
21
|
Steinberg PL, Liu LY, Neiman-Golden A, Patel Y, Boutros PC. Quantifying the seed sensitivity of cancer subclonal reconstruction algorithms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579021. [PMID: 38370678 PMCID: PMC10871259 DOI: 10.1101/2024.02.05.579021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Intra-tumoural heterogeneity complicates cancer prognosis and impairs treatment success. One of the ways subclonal reconstruction (SRC) quantifies intra-tumoural heterogeneity is by estimating the number of subclones present in bulk DNA sequencing data. SRC algorithms are probabilistic and need to be initialized by a random seed. However, the seeds used in bioinformatics algorithms are rarely reported in the literature. Thus, the impact of the initializing seed on SRC solutions has not been studied. To address this gap, we generated a set of ten random seeds to systematically benchmark the seed sensitivity of three probabilistic SRC algorithms: PyClone-VI, DPClust, and PhyloWGS. Results We characterized the seed sensitivity of three algorithms across fourteen whole-genome sequences of head and neck squamous cell carcinoma and nine SRC pipelines, each composed of a single nucleotide variant caller, a copy number aberration caller and an SRC algorithm. This led to a total of 1470 subclonal reconstructions, including 1260 single-region and 210 multi-region reconstructions. The number of subclones estimated per patient vary across SRC pipelines, but all three SRC algorithms show substantial seed sensitivity: subclone estimates vary across different seeds for the same set of input using the same SRC algorithm. No seed consistently estimated the mode number of subclones across all patients for any SRC algorithm. Conclusions These findings highlight the variability in quantifying intra-tumoural heterogeneity introduced by the seed sensitivity of probabilistic SRC algorithms. We recommend that authors, reviewers and editors adopt guidelines to both report and randomize seed choices. It may also be valuable to consider seed-sensitivity in the benchmarking of newly developed SRC algorithms. These findings may be of interest in other areas of bioinformatics where seeded probabilistic algorithms are used and suggest consideration of formal seed reporting standards to enhance reproducibility.
Collapse
Affiliation(s)
- Philippa L. Steinberg
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lydia Y. Liu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Anna Neiman-Golden
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
22
|
Ovchinnikova S, Anders S. Simple but powerful interactive data analysis in R with R/LinekdCharts. Genome Biol 2024; 25:43. [PMID: 38317238 PMCID: PMC10840235 DOI: 10.1186/s13059-024-03164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
In research involving data-rich assays, exploratory data analysis is a crucial step. Typically, this involves jumping back and forth between visualizations that provide overview of the whole data and others that dive into details. For example, it might be helpful to have one chart showing a summary statistic for all samples, while a second chart provides details for points selected in the first chart. We present R/LinkedCharts, a framework that renders this task radically simple, requiring very few lines of code to obtain complex and general visualization, which later can be polished to provide interactive data access of publication quality.
Collapse
Affiliation(s)
- Svetlana Ovchinnikova
- Center for Molecular Biology and BioQuant Center of the University of Heidelberg, Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology and BioQuant Center of the University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
23
|
Ta L, Tsai BL, Deng W, Sha J, Varuzhanyan G, Tran W, Wohlschlegel JA, Carr-Ascher JR, Witte ON. Wild-type C-Raf gene dosage and dimerization drive prostate cancer metastasis. iScience 2023; 26:108480. [PMID: 38089570 PMCID: PMC10711388 DOI: 10.1016/j.isci.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 02/01/2024] Open
Abstract
Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the Ras/Raf/MEK/ERK (mitogen-activated protein kinase [MAPK]) pathway. A role for non-mutated Raf in metastasis is also emerging, but the key mechanisms remain unclear. Elevated expression of any of the three wild-type Raf family members (C, A, or B) can drive metastasis. We utilized an in vivo model to show that wild-type C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene dosage-dependent manner. Analysis of the transcriptomic and phosphoproteomic landscape indicated that C-Raf-driven metastasis is accompanied by upregulated MAPK signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity, is essential for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf's ability to form dimers with endogenous Raf molecules is important for promoting metastasis. These data identify wild-type C-Raf heterodimer signaling as a potential target for treating metastatic disease.
Collapse
Affiliation(s)
- Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Brandon L. Tsai
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, Sacramento, CA 95817, USA
- Department of Orthopedic Surgery, University of California, Davis; Sacramento, CA 95817, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Crowell PD, Giafaglione JM, Jones AE, Nunley NM, Hashimoto T, Delcourt AML, Petcherski A, Agrawal R, Bernard MJ, Diaz JA, Heering KY, Huang RR, Low JY, Matulionis N, Navone NM, Ye H, Zoubeidi A, Christofk HR, Rettig MB, Reiter RE, Haffner MC, Boutros PC, Shirihai OS, Divakaruni AS, Goldstein AS. MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer. Cell Rep 2023; 42:113221. [PMID: 37815914 PMCID: PMC11972006 DOI: 10.1016/j.celrep.2023.113221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.
Collapse
Affiliation(s)
- Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas M Nunley
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amelie M L Delcourt
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anton Petcherski
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Raag Agrawal
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew J Bernard
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kylie Y Heering
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rong Rong Huang
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huihui Ye
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Heather R Christofk
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Rettig
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Ullah N, Khan JA, Almakdi S, Alshehri MS, Al Qathrady M, El-Rashidy N, El-Sappagh S, Ali F. An effective approach for plant leaf diseases classification based on a novel DeepPlantNet deep learning model. FRONTIERS IN PLANT SCIENCE 2023; 14:1212747. [PMID: 37900756 PMCID: PMC10600380 DOI: 10.3389/fpls.2023.1212747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
Introduction Recently, plant disease detection and diagnosis procedures have become a primary agricultural concern. Early detection of plant diseases enables farmers to take preventative action, stopping the disease's transmission to other plant sections. Plant diseases are a severe hazard to food safety, but because the essential infrastructure is missing in various places around the globe, quick disease diagnosis is still difficult. The plant may experience a variety of attacks, from minor damage to total devastation, depending on how severe the infections are. Thus, early detection of plant diseases is necessary to optimize output to prevent such destruction. The physical examination of plant diseases produced low accuracy, required a lot of time, and could not accurately anticipate the plant disease. Creating an automated method capable of accurately classifying to deal with these issues is vital. Method This research proposes an efficient, novel, and lightweight DeepPlantNet deep learning (DL)-based architecture for predicting and categorizing plant leaf diseases. The proposed DeepPlantNet model comprises 28 learned layers, i.e., 25 convolutional layers (ConV) and three fully connected (FC) layers. The framework employed Leaky RelU (LReLU), batch normalization (BN), fire modules, and a mix of 3×3 and 1×1 filters, making it a novel plant disease classification framework. The Proposed DeepPlantNet model can categorize plant disease images into many classifications. Results The proposed approach categorizes the plant diseases into the following ten groups: Apple_Black_rot (ABR), Cherry_(including_sour)_Powdery_mildew (CPM), Grape_Leaf_blight_(Isariopsis_Leaf_Spot) (GLB), Peach_Bacterial_spot (PBS), Pepper_bell_Bacterial_spot (PBBS), Potato_Early_blight (PEB), Squash_Powdery_mildew (SPM), Strawberry_Leaf_scorch (SLS), bacterial tomato spot (TBS), and maize common rust (MCR). The proposed framework achieved an average accuracy of 98.49 and 99.85in the case of eight-class and three-class classification schemes, respectively. Discussion The experimental findings demonstrated the DeepPlantNet model's superiority to the alternatives. The proposed technique can reduce financial and agricultural output losses by quickly and effectively assisting professionals and farmers in identifying plant leaf diseases.
Collapse
Affiliation(s)
- Naeem Ullah
- Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan
| | - Javed Ali Khan
- Department of Computer Science, Faculty of Physics, Engineering, and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Sultan Almakdi
- Department of Computer Science, College of Computer Science and Information System, Najran University, Najran, Saudi Arabia
| | - Mohammed S. Alshehri
- Department of Computer Science, College of Computer Science and Information System, Najran University, Najran, Saudi Arabia
| | - Mimonah Al Qathrady
- Departments of Information Systems, College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Nora El-Rashidy
- Machine Learning and Information Retrieval Department, Faculty of Artificial Intelligence, Kaferelshikh University, Kafr El-Shaikh, Egypt
| | - Shaker El-Sappagh
- Faculty of Computer Science and Engineering, Galala University, Suez, Egypt
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha, Egypt
| | - Farman Ali
- Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Zhang J, Wei J, Sun R, Sheng H, Yin K, Pan Y, Jimenez R, Chen S, Cui XL, Zou Z, Yue Z, Emch MJ, Hawse JR, Wang L, He HH, Xia S, Han B, He C, Huang H. A lncRNA from the FTO locus acts as a suppressor of the m 6A writer complex and p53 tumor suppression signaling. Mol Cell 2023; 83:2692-2708.e7. [PMID: 37478845 PMCID: PMC10427207 DOI: 10.1016/j.molcel.2023.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/23/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.
Collapse
Affiliation(s)
- Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Rui Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Haoyue Sheng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kai Yin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhiying Yue
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Michael J Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Liguo Wang
- Department of Computation Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Graspeuntner S, Lupatsii M, Dashdorj L, Rody A, Rupp J, Bossung V, Härtel C. First-Day-of-Life Rectal Swabs Fail To Represent Meconial Microbiota Composition and Underestimate the Presence of Antibiotic Resistance Genes. Microbiol Spectr 2023; 11:e0525422. [PMID: 37097170 PMCID: PMC10269712 DOI: 10.1128/spectrum.05254-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
The human gut microbiome plays a vital role in health and disease. In particular, the first days of life provide a unique window of opportunity for development and establishment of microbial community. Currently, stool samples are known to be the most widely used sampling approach for studying the gut microbiome. However, complicated sample acquisition at certain time points, challenges in transportation, and patient discomfort underline the need for development of alternative sampling approaches. One of the alternatives is rectal swabs, shown to be a reliable proxy for gut microbiome analysis when obtained from adults. Here, we compare the usability of rectal swabs and meconium paired samples collected from infants on the first days of life. Our results indicate that the two sampling approaches display significantly distinct patterns in microbial composition and alpha and beta diversity as well as detection of resistance genes. Moreover, the dissimilarity between the two collection methods was greater than the interindividual variation. Therefore, we conclude that rectal swabs are not a reliable proxy compared to stool samples for gut microbiome analysis when collected on the first days of a newborn's life. IMPORTANCE Currently, there are numerous suggestions on how to ease the notoriously complex and error-prone methodological setups to study the gut microbiota of newborns during the first days of life. Especially, meconium samples are regularly failing to yield meaningful data output and therefore have been suggested to be replaced by rectal swabs as done in adults as well. We find this development toward a simplified method to be producing dramatically erroneous results, skewing data interpretation away from the real aspects to be considered for neonatal health during the first days of life. We have put together our knowledge on this critical aspect with careful consideration and identified the failure of rectal swabs to be a replacement for sampling of meconium in term-born newborns.
Collapse
Affiliation(s)
- S. Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - M. Lupatsii
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - L. Dashdorj
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - A. Rody
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - J. Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - V. Bossung
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Lübeck, Germany
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - C. Härtel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Tebon PJ, Wang B, Markowitz AL, Davarifar A, Tsai BL, Krawczuk P, Gonzalez AE, Sartini S, Murray GF, Nguyen HTL, Tavanaie N, Nguyen TL, Boutros PC, Teitell MA, Soragni A. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun 2023; 14:3168. [PMID: 37280220 PMCID: PMC10244450 DOI: 10.1038/s41467-023-38832-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
High throughput drug screening is an established approach to investigate tumor biology and identify therapeutic leads. Traditional platforms use two-dimensional cultures which do not accurately reflect the biology of human tumors. More clinically relevant model systems such as three-dimensional tumor organoids can be difficult to scale and screen. Manually seeded organoids coupled to destructive endpoint assays allow for the characterization of treatment response, but do not capture transitory changes and intra-sample heterogeneity underlying clinically observed resistance to therapy. We present a pipeline to generate bioprinted tumor organoids linked to label-free, time-resolved imaging via high-speed live cell interferometry (HSLCI) and machine learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D structures with unaltered tumor histology and gene expression profiles. HSLCI imaging in tandem with machine learning-based segmentation and classification tools enables accurate, label-free parallel mass measurements for thousands of organoids. We demonstrate that this strategy identifies organoids transiently or persistently sensitive or resistant to specific therapies, information that could be used to guide rapid therapy selection.
Collapse
Affiliation(s)
- Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Bowen Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander L Markowitz
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Brandon L Tsai
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrycja Krawczuk
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
| | - Alfredo E Gonzalez
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara Sartini
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Graeme F Murray
- Department of Physics, Virginia Commonwealth University, Richmond, VA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thang L Nguyen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Gamallat Y, Choudhry M, Li Q, Rokne JG, Alhajj R, Abdelsalam R, Ghosh S, Arbet J, Boutros PC, Bismar TA. Serrate RNA Effector Molecule (SRRT) Is Associated with Prostate Cancer Progression and Is a Predictor of Poor Prognosis in Lethal Prostate Cancer. Cancers (Basel) 2023; 15:2867. [PMID: 37345203 DOI: 10.3390/cancers15102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Arsenite-resistance protein 2, also known as serrate RNA effector molecule (ARS2/SRRT), is known to be involved in cellular proliferation and tumorigenicity. However, its role in prostate cancer (PCa) has not yet been established. We investigated the potential role of SRRT in 496 prostate samples including benign, incidental, advanced, and castrate-resistant patients treated by androgen deprivation therapy (ADT). We also explored the association of SRRT with common genetic aberrations in lethal PCa using immunohistochemistry (IHC) and performed a detailed analysis of SRRT expression using The Cancer Genome Atlas (TCGA PRAD) by utilizing RNA-seq, clinical information (pathological T category and pathological Gleason score). Our findings indicated that high SRRT expression was significantly associated with poor overall survival (OS) and cause-specific survival (CSS). SRRT expression was also significantly associated with common genomic aberrations in lethal PCa such as PTEN loss, ERG gain, mutant TP53, or ATM. Furthermore, TCGA PRAD data revealed that high SRRT mRNA expression was significantly associated with higher Gleason scores, PSA levels, and T pathological categories. Gene set enrichment analysis (GSEA) of RNAseq data from the TCGA PRAD cohort indicated that SRRT may play a potential role in regulating the expression of genes involved in prostate cancer aggressiveness. Conclusion: The current data identify the SRRT's potential role as a prognostic for lethal PCa, and further research is required to investigate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Qiaowang Li
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jon George Rokne
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Computer Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
- Department of Health Informatics, University of Southern Denmark, 5230 Odense, Denmark
| | - Ramy Abdelsalam
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Jaron Arbet
- Departments of Human Genetics and Urology, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Paul C Boutros
- Departments of Human Genetics and Urology, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
30
|
Houlahan KE, Khan A, Greenwald NF, West RB, Angelo M, Curtis C. Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532870. [PMID: 36993286 PMCID: PMC10055121 DOI: 10.1101/2023.03.15.532870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cancer represents a broad spectrum of molecularly and morphologically diverse diseases. Individuals with the same clinical diagnosis can have tumors with drastically different molecular profiles and clinical response to treatment. It remains unclear when these differences arise during disease course and why some tumors are addicted to one oncogenic pathway over another. Somatic genomic aberrations occur within the context of an individual's germline genome, which can vary across millions of polymorphic sites. An open question is whether germline differences influence somatic tumor evolution. Interrogating 3,855 breast cancer lesions, spanning pre-invasive to metastatic disease, we demonstrate that germline variants in highly expressed and amplified genes influence somatic evolution by modulating immunoediting at early stages of tumor development. Specifically, we show that the burden of germline-derived epitopes in recurrently amplified genes selects against somatic gene amplification in breast cancer. For example, individuals with a high burden of germline-derived epitopes in ERBB2, encoding human epidermal growth factor receptor 2 (HER2), are significantly less likely to develop HER2-positive breast cancer compared to other subtypes. The same holds true for recurrent amplicons that define four subgroups of ER-positive breast cancers at high risk of distant relapse. High epitope burden in these recurrently amplified regions is associated with decreased likelihood of developing high risk ER-positive cancer. Tumors that overcome such immune-mediated negative selection are more aggressive and demonstrate an "immune cold" phenotype. These data show the germline genome plays a previously unappreciated role in dictating somatic evolution. Exploiting germline-mediated immunoediting may inform the development of biomarkers that refine risk stratification within breast cancer subtypes.
Collapse
Affiliation(s)
- Kathleen E. Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah F Greenwald
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B. West
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
31
|
Establishment of four head and neck squamous cell carcinoma cell lines: importance of reference DNA for accurate genomic characterisation. J Laryngol Otol 2023; 137:301-307. [PMID: 35317874 PMCID: PMC9975763 DOI: 10.1017/s0022215122000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE There is significant interest in developing early passage cell lines with matched normal reference DNA to facilitate a precision medicine approach in assessing drug response. This study aimed to establish early passage cell lines, and perform whole exome sequencing and short tandem repeat profiling on matched normal reference DNA, primary tumour and corresponding cell lines. METHODS A cell culture based, in vitro study was conducted of patients with primary human papillomavirus positive and human papillomavirus negative tumours. RESULTS Four early passage cell lines were established. Two cell lines were human papillomavirus positive, confirmed by sequencing and p16 immunoblotting. Short tandem repeat profiling confirmed that all cell lines were established from their index tumours. Whole exome sequencing revealed that the matched normal reference DNA was critical for accurate mutational analysis: a high rate of false positive mutation calls were excluded (87.6 per cent). CONCLUSION Early passage cell lines were successfully established. Patient-matched reference DNA is important for accurate cell line mutational calls.
Collapse
|
32
|
Strand SH, Rivero-Gutiérrez B, Houlahan KE, Seoane JA, King LM, Risom T, Simpson LA, Vennam S, Khan A, Cisneros L, Hardman T, Harmon B, Couch F, Gallagher K, Kilgore M, Wei S, DeMichele A, King T, McAuliffe PF, Nangia J, Lee J, Tseng J, Storniolo AM, Thompson AM, Gupta GP, Burns R, Veis DJ, DeSchryver K, Zhu C, Matusiak M, Wang J, Zhu SX, Tappenden J, Ding DY, Zhang D, Luo J, Jiang S, Varma S, Anderson L, Straub C, Srivastava S, Curtis C, Tibshirani R, Angelo RM, Hall A, Owzar K, Polyak K, Maley C, Marks JR, Colditz GA, Hwang ES, West RB. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: Analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell 2022; 40:1521-1536.e7. [PMID: 36400020 PMCID: PMC9772081 DOI: 10.1016/j.ccell.2022.10.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Ductal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Translational Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts. We identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classifier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include proliferation, immune response, and metabolism. Distinct stromal expression patterns and immune cell compositions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved atlas of breast precancers, where complementary modalities can be directly compared and correlated with conventional pathology findings, disease states, and clinical outcome.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Disease Progression
- Breast Neoplasms/pathology
- Biomarkers
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
Collapse
Affiliation(s)
- Siri H Strand
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Belén Rivero-Gutiérrez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen E Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose A Seoane
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Lorraine M King
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Tyler Risom
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lunden A Simpson
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Luis Cisneros
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Timothy Hardman
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Bryan Harmon
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA; TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA
| | - Fergus Couch
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Kristalyn Gallagher
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Kilgore
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shi Wei
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela DeMichele
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tari King
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Priscilla F McAuliffe
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julie Nangia
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston TX 77030, USA
| | - Joanna Lee
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer Tseng
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Anna Maria Storniolo
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Alastair M Thompson
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston TX 77030, USA; Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gaorav P Gupta
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robyn Burns
- TBCRC Loco-Regional Working Group, Baltimore, MD 21287, USA; TBCRC, The EMMES Corporation, Rockville, MD 20850, USA
| | - Deborah J Veis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA; Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Katherine DeSchryver
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Magdalena Matusiak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley X Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jen Tappenden
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daisy Yi Ding
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Dadong Zhang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shu Jiang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren Anderson
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Cody Straub
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Sucheta Srivastava
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rob Tibshirani
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Robert Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Allison Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27708, USA; Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Carlo Maley
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Graham A Colditz
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA.
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Kameda-Smith MM, Zhu H, Luo EC, Suk Y, Xella A, Yee B, Chokshi C, Xing S, Tan F, Fox RG, Adile AA, Bakhshinyan D, Brown K, Gwynne WD, Subapanditha M, Miletic P, Picard D, Burns I, Moffat J, Paruch K, Fleming A, Hope K, Provias JP, Remke M, Lu Y, Reya T, Venugopal C, Reimand J, Wechsler-Reya RJ, Yeo GW, Singh SK. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat Commun 2022; 13:7506. [PMID: 36473869 PMCID: PMC9726987 DOI: 10.1038/s41467-022-35118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.
Collapse
Affiliation(s)
- Michelle M. Kameda-Smith
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Helen Zhu
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428University Health Network, Toronto, ON Canada ,grid.494618.6Vector Institute Toronto, Toronto, ON Canada
| | - En-Ching Luo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Yujin Suk
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Agata Xella
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Brian Yee
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Chirayu Chokshi
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Sansi Xing
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Frederick Tan
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Raymond G. Fox
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Ashley A. Adile
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - David Bakhshinyan
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Kevin Brown
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - William D. Gwynne
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Minomi Subapanditha
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada
| | - Petar Miletic
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Daniel Picard
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ian Burns
- grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jason Moffat
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kamil Paruch
- grid.10267.320000 0001 2194 0956Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ,grid.483343.bInternational Clinical Research Center, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Adam Fleming
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Pediatrics, Hematology and Oncology Division, Hamilton, Canada
| | - Kristin Hope
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - John P. Provias
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Neuropathology, Hamilton, Canada
| | - Marc Remke
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yu Lu
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Tannishtha Reya
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Chitra Venugopal
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Jüri Reimand
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J. Wechsler-Reya
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Gene W. Yeo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Sheila K. Singh
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227McMaster University, Department of Pediatrics, Hamilton, Canada
| |
Collapse
|
34
|
Tatari N, Khan S, Livingstone J, Zhai K, Mckenna D, Ignatchenko V, Chokshi C, Gwynne WD, Singh M, Revill S, Mikolajewicz N, Zhu C, Chan J, Hawkins C, Lu JQ, Provias JP, Ask K, Morrissy S, Brown S, Weiss T, Weller M, Han H, Greenspoon JN, Moffat J, Venugopal C, Boutros PC, Singh SK, Kislinger T. The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol 2022; 144:1127-1142. [PMID: 36178522 PMCID: PMC10187978 DOI: 10.1007/s00401-022-02506-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/26/2023]
Abstract
Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM-rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2-5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.
Collapse
Affiliation(s)
- Nazanin Tatari
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Julie Livingstone
- Department of Human Genetics and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Kui Zhai
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Dillon Mckenna
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | | | - Chirayu Chokshi
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Manoj Singh
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Nicholas Mikolajewicz
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chenghao Zhu
- Department of Human Genetics and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Jennifer Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Jian-Qiang Lu
- Department of Pathology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John P Provias
- Department of Pathology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sorana Morrissy
- Department of Biochemistry and Molecular Biology, The University of Calgary, Calgary, AB, Canada
| | - Samuel Brown
- Department of Biochemistry and Molecular Biology, The University of Calgary, Calgary, AB, Canada
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hong Han
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jeffrey N Greenspoon
- Juravinski Cancer Center, Department of Oncology, Radiation Oncology, McMaster University, Hamilton, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Paul C Boutros
- Department of Human Genetics and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. .,Department of Surgery, McMaster University, Hamilton, ON, Canada.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Lüth T, Graspeuntner S, Neumann K, Kirchhoff L, Masuch A, Schaake S, Lupatsii M, Tse R, Griesinger G, Trinh J, Rupp J. Improving analysis of the vaginal microbiota of women undergoing assisted reproduction using nanopore sequencing. J Assist Reprod Genet 2022; 39:2659-2667. [PMID: 36223010 DOI: 10.1007/s10815-022-02628-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Subclinical alterations of the vaginal microbiome have been described to be associated with female infertility and may serve as predictors for failure of in vitro fertilization treatment. While large prospective studies to delineate the role of microbial composition are warranted, integrating microbiome information into clinical management depends on economical and practical feasibility, specifically on a short duration from sampling to final results. The currently most used method for microbiota analysis is either metagenomics sequencing or amplicon-based microbiota analysis using second-generation methods such as sequencing-by-synthesis approaches (Illumina), which is both expensive and time-consuming. Thus, additional approaches are warranted to accelerate the usability of the microbiome as a marker in clinical praxis. METHODS Herein, we used a set of ten selected vaginal swabs from women undergoing assisted reproduction, comparing and performing critical optimization of nanopore-based microbiota analysis with the results from MiSeq-based data as a quality reference. RESULTS The analyzed samples carried varying community compositions, as shown by amplicon-based analysis of the V3V4 region of the bacterial 16S rRNA gene by MiSeq sequencing. Using a stepwise procedure to optimize adaptation, we show that a close approximation of the microbial composition can be achieved within a reduced time frame and at a minimum of costs using nanopore sequencing. CONCLUSIONS Our work highlights the potential of a nanopore-based methodical setup to support the feasibility of interventional studies and contribute to the development of microbiome-based clinical decision-making in assisted reproduction.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.
| | - Kay Neumann
- Department of Gynaecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Laura Kirchhoff
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Antonia Masuch
- Department of Gynaecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Ronnie Tse
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Georg Griesinger
- Department of Gynaecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
36
|
Kuhlmann L, Govindarajan M, Mejia-Guerrero S, Ignatchenko V, Liu LY, Grünwald BT, Cruickshank J, Berman H, Khokha R, Kislinger T. Glycoproteomics Identifies Plexin-B3 as a Targetable Cell Surface Protein Required for the Growth and Invasion of Triple-Negative Breast Cancer Cells. J Proteome Res 2022; 21:2224-2236. [PMID: 35981243 PMCID: PMC9442790 DOI: 10.1021/acs.jproteome.2c00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Driven by the lack of targeted therapies, triple-negative
breast cancers
(TNBCs) have the worst overall survival of all breast cancer subtypes.
Considering that cell surface proteins are favorable drug targets
and are predominantly glycosylated, glycoproteome profiling has significant
potential to facilitate the identification of much-needed drug targets
for TNBCs. Here, we performed N-glycoproteomics on
six TNBCs and five normal control (NC) cell lines using hydrazide-based
enrichment. Quantitative proteomics and integrative data mining led
to the discovery of Plexin-B3 (PLXNB3), a previously undescribed TNBC-enriched
cell surface protein. Furthermore, siRNA knockdown and CRISPR-Cas9
editing of in vitro and in vivo models show that PLXNB3 is required
for TNBC cell line growth, invasion, and migration. Altogether, we
provide insights into N-glycoproteome remodeling
associated with TNBCs and functional evaluation of an extracted target,
which indicate the surface protein PLXNB3 as a potential therapeutic
target for TNBCs.
Collapse
Affiliation(s)
- Laura Kuhlmann
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Meinusha Govindarajan
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Salvador Mejia-Guerrero
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Lydia Y Liu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Barbara T Grünwald
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Hal Berman
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rama Khokha
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
37
|
Lalonde E, Ewens K, Richards-Yutz J, Ebrahimzedeh J, Terai M, Gonsalves CF, Sato T, Shields CL, Ganguly A. Improved Uveal Melanoma Copy Number Subtypes Including an Ultra–High-Risk Group. OPHTHALMOLOGY SCIENCE 2022; 2:100121. [PMID: 36249692 PMCID: PMC9559896 DOI: 10.1016/j.xops.2022.100121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Purpose Design Participants Methods Main Outcome Measures Results Conclusions
Collapse
|
38
|
Li CH, Haider S, Boutros PC. Age influences on the molecular presentation of tumours. Nat Commun 2022; 13:208. [PMID: 35017538 PMCID: PMC8752853 DOI: 10.1038/s41467-021-27889-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.
Collapse
Affiliation(s)
- Constance H Li
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Department of Urology, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
| |
Collapse
|
39
|
Bossung V, Lupatsii M, Dashdorj L, Tassiello O, Jonassen S, Pagel J, Demmert M, Wolf EA, Rody A, Waschina S, Graspeuntner S, Rupp J, Härtel C. Timing of antimicrobial prophylaxis for cesarean section is critical for gut microbiome development in term born infants. Gut Microbes 2022; 14:2038855. [PMID: 35184691 PMCID: PMC8865290 DOI: 10.1080/19490976.2022.2038855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Animal models imply that the perinatal exposure to antibiotics has a substantial impact on microbiome establishment of the offspring. We aimed to evaluate the effect of timing of antimicrobial prophylaxis for cesarean section before versus after cord clamping on gut microbiome composition of term born infants. We performed an exploratory, single center randomized controlled clinical trial. We included forty pregnant women with elective cesarean section at term. The intervention group received single dose intravenous cefuroxime after cord clamping (n = 19), the control group single dose intravenous cefuroxime 30 minutes before skin incision (n = 21). The primary endpoint was microbiome signature of infants and metabolic prediction in the first days of life as determined in meconium samples by 16S rRNA gene sequencing. Secondary endpoints were microbiome composition at one month and 1 year of life. In meconium samples of the intervention group, the genus Staphylococcus pre-dominated. In the control group, the placental cross-over of cefuroxime was confirmed in cord blood. A higher amino acid and nitrogen metabolism as well as increased abundance of the genera Cutibacterium, Corynebacterium and Streptophyta were noted (indicator families: Cytophagaceae, Lactobacilaceae, Oxalobacteraceae). Predictive models of metabolic function revealed higher 2'fucosyllactose utilization in control group samples. In the follow-up visits, a higher abundance of the genus Clostridium was evident in the intervention group. Our exploratory randomized controlled trial suggests that timing of antimicrobial prophylaxis is critical for early microbiome engraftment but not antimicrobial resistance emergence in term born infants.
Collapse
Affiliation(s)
- Verena Bossung
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | | | - Oronzo Tassiello
- Institute for Human Nutrition and Food Science, Nutriinformatics, University of Kiel, Kiel, Germany
| | - Sinje Jonassen
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Julia Pagel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Martin Demmert
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Ellinor Anna Wolf
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Achim Rody
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Nutriinformatics, University of Kiel, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
- Department of Pediatrics, University Hospital of Würzburg, Wurzburg, Germany
| |
Collapse
|
40
|
Liu Q, Palmgren VA, Danen EHJ, Le Dévédec SE. Acute vs. chronic vs. intermittent hypoxia in breast Cancer: a review on its application in in vitro research. Mol Biol Rep 2022; 49:10961-10973. [PMID: 36057753 PMCID: PMC9618509 DOI: 10.1007/s11033-022-07802-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Hypoxia has been linked to elevated instances of therapeutic resistance in breast cancer. The exposure of proliferating cancer cells to hypoxia has been shown to induce an aggressive phenotype conducive to invasion and metastasis. Regions of the primary tumors in the breast may be exposed to different types of hypoxia including acute, chronic or intermittent. Intermittent hypoxia (IH), also called cyclic hypoxia, is caused by exposure to cycles of hypoxia and reoxygenation (H-R cycles). Importantly, there is currently no consensus amongst the scientific community on the total duration of hypoxia, the oxygen level, and the possible presence of H-R cycles. In this review, we discuss current methods of hypoxia research, to explore how exposure regimes used in experiments are connected to signaling by different hypoxia inducible factors (HIFs) and to distinct cellular responses in the context of the hallmarks of cancer. We highlight discrepancies in the existing literature on hypoxia research within the field of breast cancer in particular and propose a clear definition of acute, chronic, and intermittent hypoxia based on HIF activation and cellular responses: (i) acute hypoxia is when the cells are exposed for no more than 24 h to an environment with 1% O2 or less; (ii) chronic hypoxia is when the cells are exposed for more than 48 h to an environment with 1% O2 or less and (iii) intermittent hypoxia is when the cells are exposed to at least two rounds of hypoxia (1% O2 or less) separated by at least one period of reoxygenation by exposure to normoxia (8.5% O2 or higher). Our review provides for the first time a guideline for definition of hypoxia related terms and a clear foundation for hypoxia related in vitro (breast) cancer research.
Collapse
Affiliation(s)
- Qiuyu Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Victoria A.C. Palmgren
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik HJ Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
41
|
Nesterenko PA, McLaughlin J, Tsai BL, Burton Sojo G, Cheng D, Zhao D, Mao Z, Bangayan NJ, Obusan MB, Su Y, Ng RH, Chour W, Xie J, Li YR, Lee D, Noguchi M, Carmona C, Phillips JW, Kim JT, Yang L, Heath JR, Boutros PC, Witte ON. HLA-A ∗02:01 restricted T cell receptors against the highly conserved SARS-CoV-2 polymerase cross-react with human coronaviruses. Cell Rep 2021; 37:110167. [PMID: 34919800 PMCID: PMC8660260 DOI: 10.1016/j.celrep.2021.110167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαβ sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαβ constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Pavlo A Nesterenko
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon L Tsai
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Zhao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathanael J Bangayan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Obusan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rachel H Ng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - William Chour
- Institute for Systems Biology, Seattle, WA 98109, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyi Xie
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Camille Carmona
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John W Phillips
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jocelyn T Kim
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Abstract
Replicative immortality is a hallmark of cancer, and can be achieved through telomere lengthening and maintenance. Although the role of telomere length in cancer has been well studied, its association to genomic features is less well known. Here, we report the telomere lengths of 392 localized prostate cancer tumours and characterize their relationship to genomic, transcriptomic and proteomic features. Shorter tumour telomere lengths are associated with elevated genomic instability, including single-nucleotide variants, indels and structural variants. Genes involved in cell proliferation and signaling are correlated with tumour telomere length at all levels of the central dogma. Telomere length is also associated with multiple clinical features of a tumour. Longer telomere lengths in non-tumour samples are associated with a lower rate of biochemical relapse. In summary, we describe the multi-level integration of telomere length, genomics, transcriptomics and proteomics in localized prostate cancer.
Collapse
|
43
|
Fraser M, Livingstone J, Wrana JL, Finelli A, He HH, van der Kwast T, Zlotta AR, Bristow RG, Boutros PC. Somatic driver mutation prevalence in 1844 prostate cancers identifies ZNRF3 loss as a predictor of metastatic relapse. Nat Commun 2021; 12:6248. [PMID: 34716314 PMCID: PMC8556363 DOI: 10.1038/s41467-021-26489-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Driver gene mutations that are more prevalent in metastatic, castration-resistant prostate cancer (mCRPC) than localized disease represent candidate prognostic biomarkers. We analyze 1,844 localized (1,289) or mCRPC (555) tumors and quantify the prevalence of 113 somatic driver single nucleotide variants (SNVs), copy number aberrations (CNAs), and structural variants (SVs) in each state. One-third are significantly more prevalent in mCRPC than expected while a quarter are less prevalent. Mutations in AR and its enhancer are more prevalent in mCRPC, as are those in TP53, MYC, ZNRF3 and PRKDC. ZNRF3 loss is associated with decreased ZNRF3 mRNA abundance, WNT, cell cycle & PRC1/2 activity, and genomic instability. ZNRF3 loss, RNA downregulation and hypermethylation are prognostic of metastasis and overall survival, independent of clinical and pathologic indices. These data demonstrate a strategy for identifying biomarkers of localized cancer aggression, with ZNRF3 loss as a predictor of metastasis in prostate cancer.
Collapse
Affiliation(s)
- Michael Fraser
- grid.17063.330000 0001 2157 2938Department of Surgery, Division of Urology, University of Toronto, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XDepartment of Surgical Oncology, Genitourinary Site Group, Princess Margaret Cancer Centre, Toronto, ON Canada ,grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Julie Livingstone
- grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Urology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Institute for Precision Health, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA USA
| | - Jeffrey L. Wrana
- grid.416166.20000 0004 0473 9881Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON Canada ,grid.492573.eMount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Antonio Finelli
- grid.17063.330000 0001 2157 2938Department of Surgery, Division of Urology, University of Toronto, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XDepartment of Surgical Oncology, Genitourinary Site Group, Princess Margaret Cancer Centre, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, Toronto, ON Canada
| | - Housheng Hansen He
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Theodorus van der Kwast
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Laboratory Medicine Program, University Health Network, Toronto, ON Canada
| | - Alexandre R. Zlotta
- grid.17063.330000 0001 2157 2938Department of Surgery, Division of Urology, University of Toronto, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XDepartment of Surgical Oncology, Genitourinary Site Group, Princess Margaret Cancer Centre, Toronto, ON Canada ,grid.416166.20000 0004 0473 9881Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON Canada ,grid.492573.eMount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Robert G. Bristow
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,Manchester Cancer Research Centre, Manchester, UK ,grid.5379.80000000121662407University of Manchester, Manchester, UK
| | - Paul C. Boutros
- grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Urology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Institute for Precision Health, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA USA ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
44
|
Abnormal B-cell development in TIMP-deficient bone marrow. Blood Adv 2021; 5:3960-3974. [PMID: 34500457 PMCID: PMC8945646 DOI: 10.1182/bloodadvances.2020004101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bone marrow (BM) is the primary site of hematopoiesis and is responsible for a lifelong supply of all blood cell lineages. The process of hematopoiesis follows key intrinsic programs that also integrate instructive signals from the BM niche. First identified as an erythropoietin-potentiating factor, the tissue inhibitor of metalloproteinase (TIMP) protein family has expanded to 4 members and has widely come to be viewed as a classical regulator of tissue homeostasis. By virtue of metalloprotease inhibition, TIMPs not only regulate extracellular matrix turnover but also control growth factor bioavailability. The 4 mammalian TIMPs possess overlapping enzyme-inhibition profiles and have never been studied for their cumulative role in hematopoiesis. Here, we show that TIMPs are critical for postnatal B lymphopoiesis in the BM. TIMP-deficient mice have defective B-cell development arising at the pro-B-cell stage. Expression analysis of TIMPless hematopoietic cell subsets pointed to an altered B-cell program in the Lineage-Sca-1+c-Kit+ (LSK) cell fraction. Serial and competitive BM transplants identified a defect in TIMP-deficient hematopoietic stem and progenitor cells for B lymphopoiesis. In parallel, reverse BM transplants uncovered the extrinsic role of stromal TIMPs in pro- and pre-B-cell development. TIMP deficiency disrupted CXCL12 localization to LepR+ cells, and increased soluble CXCL12 within the BM niche. It also compromised the number and morphology of LepR+ cells. These data provide new evidence that TIMPs control the cellular and biochemical makeup of the BM niche and influence the LSK transcriptional program required for optimal B lymphopoiesis.
Collapse
|
45
|
Sarabadani S, Baruah G, Fossat Y, Jeon J. Longitudinal changes of COVID-19 symptoms in social media: Observational study (Preprint). J Med Internet Res 2021; 24:e33959. [PMID: 35076400 PMCID: PMC8852652 DOI: 10.2196/33959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 01/29/2023] Open
Affiliation(s)
| | | | - Yan Fossat
- Applied Sciences, Klick Inc, Toronto, ON, Canada
| | - Jouhyun Jeon
- Applied Sciences, Klick Inc, Toronto, ON, Canada
| |
Collapse
|
46
|
Albawardi A, Livingstone J, Almarzooqi S, Palanisamy N, Houlahan KE, Awwad AAA, Abdelsalam RA, Boutros PC, Bismar TA. Copy Number Profiles of Prostate Cancer in Men of Middle Eastern Ancestry. Cancers (Basel) 2021; 13:cancers13102363. [PMID: 34068856 PMCID: PMC8153627 DOI: 10.3390/cancers13102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Prostate cancer is the most commonly diagnosed non-skin malignancy in men. Numerous studies have been undertaken to explore the role that genomics plays in prostate cancer initiation and progression. Most of this genomic data comes tumors arising in men with European or Asian ancestry, leaving other ancestry groups understudied. To fill this gap, we investigated the differences in copy number aberrations between prostate cancers arising in men of Middle Eastern ethnicity and those of European, African, or East Asian ethnicities in the hope of better understanding the incidence and risk of prostate cancer in different populations. We identified ancestry-specific gains and deletions, as well as differences in overall genomic instability between ancestry groups. This confirms that ancestry should be considered when investigating and characterizing biomarkers and molecular signatures relative to disease progression, prognosis, and potentially therapeutic targeting. Abstract Our knowledge of prostate cancer (PCa) genomics mainly reflects European (EUR) and Asian (ASN) populations. Our understanding of the influence of Middle Eastern (ME) and African (AFR) ancestry on the mutational profiles of prostate cancer is limited. To characterize genomic differences between ME, EUR, ASN, and AFR ancestry, fluorescent in situ hybridization (FISH) studies for NKX3-1 deletion and MYC amplification were carried out on 42 tumors arising in individuals of ME ancestry. These were supplemented by analysis of genome-wide copy number profiles of 401 tumors of all ancestries. FISH results of NKX3-1 and MYC were assessed in the ME cohort and compared to other ancestries. Gene level copy number aberrations (CNAs) for each sample were statistically compared between ancestry groups. NKX3-1 deletions by FISH were observed in 17/42 (17.5%) prostate tumors arising in men of ME ancestry, while MYC amplifications were only observed in 1/42 (2.3%). Using CNAs called from arrays, the incidence of NKX3-1 deletions was significantly lower in ME vs. other ancestries (20% vs. 52%; p = 2.3 × 10−3). Across the genome, tumors arising in men of ME ancestry had fewer CNAs than those in men of other ancestries (p = 0.014). Additionally, the somatic amplification of 21 specific genes was more frequent in tumors arising in men of ME vs. EUR ancestry (two-sided proportion test; Q < 0.05). Those included amplifications in the glutathione S-transferase family on chromosome 1 (GSTM1, GSTM2, GSTM5) and the IQ motif-containing family on chromosome 3 (IQCF1, IQCF2, IQCF13, IQCF4, IQCF5, IQCF6). Larger studies investigating ME populations are warranted to confirm these observations.
Collapse
Affiliation(s)
- Alia Albawardi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Julie Livingstone
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
| | - Saeeda Almarzooqi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System Detroit, Detroit, MI 48202, USA;
| | - Kathleen E. Houlahan
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | | | - Ramy A. Abdelsalam
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Department of Pathology, Mansoura University, Mansoura 35516, Egypt
| | - Paul C. Boutros
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Urology, University of California, Los Angeles, CA 94607, USA
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary-Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Alberta Precision Labs, Rockyview Hospital Laboratory, Department of Pathology & Laboratory Medicine, University of Calgary Cumming School of Medicine, 7007-14th Street SW, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
47
|
Weke K, Singh A, Uwugiaren N, Alfaro JA, Wang T, Hupp TR, O'Neill JR, Vojtesek B, Goodlett DR, Williams SM, Zhou M, Kelly RT, Zhu Y, Dapic I. MicroPOTS Analysis of Barrett's Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress. J Proteome Res 2021; 20:2195-2205. [PMID: 33491460 PMCID: PMC8155554 DOI: 10.1021/acs.jproteome.0c00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Moving from macroscale
preparative systems in proteomics to micro-
and nanotechnologies offers researchers the ability to deeply profile
smaller numbers of cells that are more likely to be encountered in
clinical settings. Herein a recently developed microscale proteomic
method, microdroplet processing in one pot for trace samples (microPOTS),
was employed to identify proteomic changes in ∼200 Barrett’s
esophageal cells following physiologic and radiation stress exposure.
From this small population of cells, microPOTS confidently identified
>1500 protein groups, and achieved a high reproducibility with
a Pearson’s
correlation coefficient value of R > 0.9 and over
50% protein overlap from replicates. A Barrett’s cell line
model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g.,
ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3,
S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared
to the untreated set. These results demonstrate the ability of microPOTS
to routinely identify and quantify differentially expressed proteins
from limited numbers of cells.
Collapse
Affiliation(s)
- Kenneth Weke
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Ashita Singh
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K.,Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Naomi Uwugiaren
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier A Alfaro
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - Tongjie Wang
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - Ted R Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - J Robert O'Neill
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K.,Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, U.K
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - David R Goodlett
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,University of Victoria - Genome British Columbia Proteomics Centre, Victoria, BC V8Z 7X8, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Irena Dapic
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
48
|
|
49
|
Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat Cell Biol 2021; 23:87-98. [PMID: 33420488 DOI: 10.1038/s41556-020-00613-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer shows remarkable clinical heterogeneity, which manifests in spatial and clonal genomic diversity. By contrast, the transcriptomic heterogeneity of prostate tumours is poorly understood. Here we have profiled the transcriptomes of 36,424 single cells from 13 prostate tumours and identified the epithelial cells underlying disease aggressiveness. The tumour microenvironment (TME) showed activation of multiple progression-associated transcriptomic programs. Notably, we observed promiscuous KLK3 expression and validated the ability of cancer cells in altering T-cell transcriptomes. Profiling of a primary tumour and two matched lymph nodes provided evidence that KLK3 ectopic expression is associated with micrometastases. Close cell-cell communication exists among cells. We identified an endothelial subset harbouring active communication (activated endothelial cells, aECs) with tumour cells. Together with sequencing of an additional 11 samples, we showed that aECs are enriched in castration-resistant prostate cancer and promote cancer cell invasion. Finally, we created a user-friendly web interface for users to explore the sequenced data.
Collapse
|
50
|
Liu LY, Bhandari V, Salcedo A, Espiritu SMG, Morris QD, Kislinger T, Boutros PC. Quantifying the influence of mutation detection on tumour subclonal reconstruction. Nat Commun 2020; 11:6247. [PMID: 33288765 PMCID: PMC7721877 DOI: 10.1038/s41467-020-20055-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing can be used to estimate subclonal populations in tumours and this intra-tumoural heterogeneity is linked to clinical outcomes. Many algorithms have been developed for subclonal reconstruction, but their variabilities and consistencies are largely unknown. We evaluate sixteen pipelines for reconstructing the evolutionary histories of 293 localized prostate cancers from single samples, and eighteen pipelines for the reconstruction of 10 tumours with multi-region sampling. We show that predictions of subclonal architecture and timing of somatic mutations vary extensively across pipelines. Pipelines show consistent types of biases, with those incorporating SomaticSniper and Battenberg preferentially predicting homogenous cancer cell populations and those using MuTect tending to predict multiple populations of cancer cells. Subclonal reconstructions using multi-region sampling confirm that single-sample reconstructions systematically underestimate intra-tumoural heterogeneity, predicting on average fewer than half of the cancer cell populations identified by multi-region sequencing. Overall, these biases suggest caution in interpreting specific architectures and subclonal variants.
Collapse
Affiliation(s)
- Lydia Y Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Vinayak Bhandari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Adriana Salcedo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | | | - Quaid D Morris
- Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|