1
|
Clark RD, Catalano KA, Fitz KS, Garcia E, Jaynes KE, Reid BN, Sawkins A, Snead AA, Whalen JC, Pinsky ML. The practice and promise of temporal genomics for measuring evolutionary responses to global change. Mol Ecol Resour 2025; 25:e13789. [PMID: 36961384 PMCID: PMC12142728 DOI: 10.1111/1755-0998.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Understanding the evolutionary consequences of anthropogenic change is imperative for estimating long-term species resilience. While contemporary genomic data can provide us with important insights into recent demographic histories, investigating past change using present genomic data alone has limitations. In comparison, temporal genomics studies, defined herein as those that incorporate time series genomic data, utilize museum collections and repeated field sampling to directly examine evolutionary change. As temporal genomics is applied to more systems, species and questions, best practices can be helpful guides to make the most efficient use of limited resources. Here, we conduct a systematic literature review to synthesize the effects of temporal genomics methodology on our ability to detect evolutionary changes. We focus on studies investigating recent change within the past 200 years, highlighting evolutionary processes that have occurred during the past two centuries of accelerated anthropogenic pressure. We first identify the most frequently studied taxa, systems, questions and drivers, before highlighting overlooked areas where further temporal genomic studies may be particularly enlightening. Then, we provide guidelines for future study and sample designs while identifying key considerations that may influence statistical and analytical power. Our aim is to provide recommendations to a broad array of researchers interested in using temporal genomics in their work.
Collapse
Affiliation(s)
- René D. Clark
- Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | - Katrina A. Catalano
- Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | - Kyra S. Fitz
- Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | - Eric Garcia
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| | - Kyle E. Jaynes
- Department of Integrative BiologyW.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Brendan N. Reid
- Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | - Allyson Sawkins
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Anthony A. Snead
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - John C. Whalen
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| |
Collapse
|
2
|
Dussex N, Jansson I, van der Valk T, Packer C, Norman A, Kissui BM, E Mjingo E, Spong G. Constraints to gene flow increase the risk of genome erosion in the Ngorongoro Crater lion population. Commun Biol 2025; 8:640. [PMID: 40258987 PMCID: PMC12012037 DOI: 10.1038/s42003-025-07986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Small, isolated populations are at greater risk of genome erosion than larger populations. Successful conservation efforts may lead to demographic recovery and mitigate the negative genetic effects of bottlenecks. However, constrained gene flow can hamper genomic recovery. Here, we use population genomic analyses and forward simulations to assess the genomic impacts of near extinction in the isolated Ngorongoro Crater lion (Panthera leo) sub-population. We show that 200 years of quasi-isolation and the recent epizootic in 1962 resulted in a two-fold increase in inbreeding and an excess in the frequency of highly deleterious mutations relative to other populations of the Greater Serengeti. There was little evidence for purging of genetic load. Furthermore, forward simulations indicate that higher gene flow from outside of the Crater is needed to prevent future genomic erosion in the population, with a minimum of one to five effective male migrants per decade required to reduce the risk of long-term inbreeding depression and reduction in genetic diversity. Our results suggest that in spite of a rapid post-epizootic demographic recovery since the 1970s, continued isolation of the population driven by habitat fragmentation and potentially male territoriality, exacerbate the effects of genome erosion.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, SE-106 91, Stockholm, Sweden.
| | - Ingela Jansson
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-106 91, Stockholm, Sweden
| | - Craig Packer
- Department of Ecology, Evolution and Behavior, University of Minnesota, MN 55108, St. Paul, MN, USA
| | - Anita Norman
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Bernard M Kissui
- School for Field Studies, Centre for Wildlife Management Studies, Karatu, Tanzania
| | - Ernest E Mjingo
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Göran Spong
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
- Luke, FI 00790, Helsinki, Finland.
| |
Collapse
|
3
|
Nolen ZJ. PopGLen-a Snakemake pipeline for performing population genomic analyses using genotype likelihood-based methods. Bioinformatics 2025; 41:btaf105. [PMID: 40067089 PMCID: PMC11932725 DOI: 10.1093/bioinformatics/btaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
SUMMARY PopGLen is a Snakemake workflow for performing population genomic analyses within a genotype-likelihood framework, integrating steps for raw sequence processing of both historical and modern DNA, quality control, multiple filtering schemes, and population genomic analysis. Currently, the population genomic analyses included allow for estimating linkage disequilibrium, kinship, genetic diversity, genetic differentiation, population structure, inbreeding, and allele frequencies. Through Snakemake, it is highly scalable, and all steps of the workflow are automated, with results compiled into an HTML report. PopGLen provides an efficient, customizable, and reproducible option for analyzing population genomic datasets across a wide variety of organisms. AVAILABILITY AND IMPLEMENTATION PopGLen is available under GPLv3 with code, documentation, and a tutorial at https://github.com/zjnolen/PopGLen. An example HTML report using the tutorial dataset is included in the Supplementary Material.
Collapse
|
4
|
Feinauer IS, Lord E, von Seth J, Xenikoudakis G, Ersmark E, Dalén L, Meleg IN. Heterochronous mitogenomes shed light on the Holocene history of the Scandinavian brown bear. Sci Rep 2024; 14:24917. [PMID: 39438503 PMCID: PMC11496541 DOI: 10.1038/s41598-024-75028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Following glacial retreat after the last ice age, brown bears (Ursus arctos) recolonised Scandinavia. Previous research based on mitochondrial markers suggests that bears recolonised from both the north and the south, with a contact zone in central Scandinavia. More recently, the Scandinavian brown bear was subjected to a strong population decline with only ca. 130 remaining individuals, due to intense human persecution approximately 100 years ago. Here, we analyse 41 ancient, historical, and modern mitochondrial genomes, to examine the number of female lineages involved in the postglacial recolonisation event and temporal changes in the Scandinavian brown bears' mitochondrial genetic diversity. Our results support the bi-directional recolonisation hypothesis, indicating multiple mitochondrial lineages from clade 1a possibly followed a southern route, while only a single lineage from clade 3a appears to have followed a northern route. Furthermore, we found that the recent bottleneck had a strong impact on the southern subpopulation, resulting in only one remaining haplotype in the contemporary brown bears. For the northern subpopulation, the impact was moderate, and most haplotypes were retained throughout the bottleneck. By exploring the postglacial recolonisation and recent population pressures, our study enhances understanding of how these factors have influenced the genetic diversity of Scandinavian brown bears.
Collapse
Affiliation(s)
- Isabelle Sofie Feinauer
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden.
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18C, 106 91, Stockholm, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden
| | - Georgios Xenikoudakis
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
- Department of Archaeology and Ancient Culture, Wallenberglaboratoriet, Lilla Frescativägen 7, Stockholm University, 106 91, Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden
| | - Ioana-Nicoleta Meleg
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden.
- Emil G. Racoviță Institute, Babeș-Bolyai University, Clinicilor 5-7, 400006, Cluj-Napoca, Romania.
- Emil Racoviță Institute of Speleology of the Romanian Academy, Calea 13 Septembrie 13, 050711, Bucharest, Romania.
| |
Collapse
|
5
|
Hasselgren M, Dussex N, von Seth J, Angerbjörn A, Dalén L, Norén K. Strongly deleterious mutations influence reproductive output and longevity in an endangered population. Nat Commun 2024; 15:8378. [PMID: 39333094 PMCID: PMC11436772 DOI: 10.1038/s41467-024-52741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Inbreeding depression has been documented in various fitness traits in a wide range of species and taxa, however, the mutational basis is not yet well understood. We investigate how putatively deleterious variation influences fitness and is shaped by individual ancestry by re-sequencing complete genomes of 37 individuals in a natural arctic fox (Vulpes lagopus) population subjected to both inbreeding depression and genetic rescue. We find that individuals with high proportion of homozygous loss of function genotypes (LoFs), which are predicted to exert a strong effect on fitness, generally have lower lifetime reproductive success and live shorter lives compared with individuals with lower proportion of LoFs. We also find that juvenile survival is negatively associated with the proportion of homozygous missense genotypes and positively associated with genome wide heterozygosity. Our results demonstrate that homozygosity of strongly and moderately deleterious mutations can be an important cause of trait specific inbreeding depression in wild populations, and mark an important step towards making more informed decisions using applied conservation genetics.
Collapse
Affiliation(s)
| | - Nicolas Dussex
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Johanna von Seth
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Love Dalén
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Dehasque M, Morales HE, Díez-Del-Molino D, Pečnerová P, Chacón-Duque JC, Kanellidou F, Muller H, Plotnikov V, Protopopov A, Tikhonov A, Nikolskiy P, Danilov GK, Giannì M, van der Sluis L, Higham T, Heintzman PD, Oskolkov N, Gilbert MTP, Götherström A, van der Valk T, Vartanyan S, Dalén L. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 2024; 187:3531-3540.e13. [PMID: 38942016 DOI: 10.1016/j.cell.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | - Hernán E Morales
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Héloïse Muller
- Master de Biologie, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon I, Universite de Lyon, 69007 Lyon, France
| | - Valerii Plotnikov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Albert Protopopov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Alexei Tikhonov
- Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Pavel Nikolskiy
- Geological Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 3 University Embankment, Box 199034, Saint-Petersburg, Russia
| | - Maddalena Giannì
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Laura van der Sluis
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Tom Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Peter D Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; SciLifeLab, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
7
|
Hogg CJ. Translating genomic advances into biodiversity conservation. Nat Rev Genet 2024; 25:362-373. [PMID: 38012268 DOI: 10.1038/s41576-023-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
A key action of the new Global Biodiversity Framework is the maintenance of genetic diversity in all species to safeguard their adaptive potential. To achieve this goal, a translational mindset, which aims to convert results of basic research into direct practical benefits, needs to be applied to biodiversity conservation. Despite much discussion on the value of genomics to conservation, a disconnect between those generating genomic resources and those applying it to biodiversity management remains. As global efforts to generate reference genomes for non-model species increase, investment into practical biodiversity applications is critically important. Applications such as understanding population and multispecies diversity and longitudinal monitoring need support alongside education for policymakers on integrating the data into evidence-based decisions. Without such investment, the opportunity to revolutionize global biodiversity conservation using genomics will not be fully realized.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Hold K, Lord E, Brealey JC, Le Moullec M, Bieker VC, Ellegaard MR, Rasmussen JA, Kellner FL, Guschanski K, Yannic G, Røed KH, Hansen BB, Dalén L, Martin MD, Dussex N. Ancient reindeer mitogenomes reveal island-hopping colonisation of the Arctic archipelagos. Sci Rep 2024; 14:4143. [PMID: 38374421 PMCID: PMC10876933 DOI: 10.1038/s41598-024-54296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
Climate warming at the end of the last glacial period had profound effects on the distribution of cold-adapted species. As their range shifted towards northern latitudes, they were able to colonise previously glaciated areas, including remote Arctic islands. However, there is still uncertainty about the routes and timing of colonisation. At the end of the last ice age, reindeer/caribou (Rangifer tarandus) expanded to the Holarctic region and colonised the archipelagos of Svalbard and Franz Josef Land. Earlier studies have proposed two possible colonisation routes, either from the Eurasian mainland or from Canada via Greenland. Here, we used 174 ancient, historical and modern mitogenomes to reconstruct the phylogeny of reindeer across its whole range and to infer the colonisation route of the Arctic islands. Our data shows a close affinity among Svalbard, Franz Josef Land and Novaya Zemlya reindeer. We also found tentative evidence for positive selection in the mitochondrial gene ND4, which is possibly associated with increased heat production. Our results thus support a colonisation of the Eurasian Arctic archipelagos from the Eurasian mainland and provide some insights into the evolutionary history and adaptation of the species to its High Arctic habitat.
Collapse
Affiliation(s)
- Katharina Hold
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405, Stockholm, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute of Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Mathilde Le Moullec
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Mammals and Birds, Greenland, Institute of Natural Resources, Kivioq 2, 3900, Nuuk, Greenland
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Martin R Ellegaard
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Jacob A Rasmussen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Fabian L Kellner
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Glenn Yannic
- Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Knut H Røed
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Brage B Hansen
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute of Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405, Stockholm, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| | - Nicolas Dussex
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| |
Collapse
|
9
|
Dussex N, Kurland S, Olsen RA, Spong G, Ericsson G, Ekblom R, Ryman N, Dalén L, Laikre L. Range-wide and temporal genomic analyses reveal the consequences of near-extinction in Swedish moose. Commun Biol 2023; 6:1035. [PMID: 37848497 PMCID: PMC10582009 DOI: 10.1038/s42003-023-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.
- Norwegian University of Science and Technology, University Museum, Trondheim, NO-7491, Norway.
| | - Sara Kurland
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21, Solna, Sweden
| | - Göran Spong
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden
| | - Nils Ryman
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Díez-Del-Molino D, Dehasque M, Chacón-Duque JC, Pečnerová P, Tikhonov A, Protopopov A, Plotnikov V, Kanellidou F, Nikolskiy P, Mortensen P, Danilov GK, Vartanyan S, Gilbert MTP, Lister AM, Heintzman PD, van der Valk T, Dalén L. Genomics of adaptive evolution in the woolly mammoth. Curr Biol 2023; 33:1753-1764.e4. [PMID: 37030294 DOI: 10.1016/j.cub.2023.03.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Ancient genomes provide a tool to investigate the genetic basis of adaptations in extinct organisms. However, the identification of species-specific fixed genetic variants requires the analysis of genomes from multiple individuals. Moreover, the long-term scale of adaptive evolution coupled with the short-term nature of traditional time series data has made it difficult to assess when different adaptations evolved. Here, we analyze 23 woolly mammoth genomes, including one of the oldest known specimens at 700,000 years old, to identify fixed derived non-synonymous mutations unique to the species and to obtain estimates of when these mutations evolved. We find that at the time of its origin, the woolly mammoth had already acquired a broad spectrum of positively selected genes, including ones associated with hair and skin development, fat storage and metabolism, and immune system function. Our results also suggest that these phenotypes continued to evolve during the last 700,000 years, but through positive selection on different sets of genes. Finally, we also identify additional genes that underwent comparatively recent positive selection, including multiple genes related to skeletal morphology and body size, as well as one gene that may have contributed to the small ear size in Late Quaternary woolly mammoths.
Collapse
Affiliation(s)
- David Díez-Del-Molino
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden.
| | - Marianne Dehasque
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexei Tikhonov
- Zoological Institute of the Russian Academy of Sciences, 190121 Saint Petersburg, Russia
| | | | | | - Foteini Kanellidou
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Facility, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia
| | - Peter Mortensen
- Department of Zoology, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A. Shilo, Far East Branch, Russian Academy of Sciences (NEISRI FEB RAS), 685000 Magadan, Russia
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway
| | | | - Peter D Heintzman
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Science for Life Laboratory, 17165 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden.
| |
Collapse
|
11
|
Comparative genome analysis of Streptococcus strains to identify virulent genes causing neonatal meningitis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105398. [PMID: 36572056 DOI: 10.1016/j.meegid.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
AIM To determine Streptococcus agalactiae genes responsible for causing neonatal meningitis. BACKGROUND Streptococcus agalactiae strain 2603 V/R is causative agent of neonatal meningitis, maternal infection and sepsis in young children. World health organisation reported high burden of new born death caused by this bacterium. Streptococcus agalactiae colonizing epithelial cells of vagina and endothelial cells have high resistance to available antibiotic drugs which makes it essential to determine new drug targets. OBJECTIVES To compare the genome of selected strain with the non-pathogenic strains of streptococcus and identify the virulent and antibiotic resistant genes for adaptation in host environment. METHOD The whole genome of human pathogen Streptococcus agalactiae strain 2603 V/R was analysed and compared with Streptococcus dysgalactiae strains using visualization and annotation tools. Genomic islands, mobile genetic elements, virulent and resistant genes were studied. RESULTS Genetically pathogenic strain is most similar to Streptococcus dysgalactiae subsp. equisimilis strain NCTC 7136. Comparative analysis revealed the importance of capsular polysaccharides and surface proteins responsible for avoiding immune system attachment to host epithelial cells and virulent behaviour. High number of genes coding for antibiotics resistance may provide a competitive advantage for survival of pathogenic Streptococcus agalactiae strain 2603 V/R in its niche. CONCLUSIONS The comparative analysis of pathogenic strain Streptococcus agalactiae with non-pathogenic strains of Streptococcus dysgalactiae provided new insights in pathogenicity that could aid in recognization for new regions and genes for development of new drug development strategies considering presence of high number of resistance genes.
Collapse
|
12
|
Smits M, Joosten H, Faye B, Burger PA. The Flourishing Camel Milk Market and Concerns about Animal Welfare and Legislation. Animals (Basel) 2022; 13:47. [PMID: 36611656 PMCID: PMC9817819 DOI: 10.3390/ani13010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The worldwide dromedary milk production has increased sharply since the beginning of this century due to prolonged shelf life, improved food-safety and perceived health benefits. Scientific confirmation of health claims will expand the market of dromedary milk further. As a result, more and more dromedaries will be bred for one purpose only: the highest possible milk production. However, intensive dromedary farming systems have consequences for animal welfare and may lead to genetic changes. Tighter regulations will be implemented to restrict commercialization of raw milk. Protocols controlling welfare of dromedaries and gene databases of milk-dromedaries will prevent negative consequences of intensive farming. In countries where dromedaries have only recently been introduced as production animal, legislators have limited expertise on this species. This is exemplified by an assessment on behalf of the Dutch government, recommending prohibiting keeping this species from 2024 onwards because the dromedary was deemed to be insufficiently domesticated. Implementation of this recommendation in Dutch law would have devastating effects on existing dromedary farms and could also pave the way for adopting similar measures in other European countries. In this paper it is shown that the Dutch assessment lacks scientific rigor. Awareness of breeders and legislators for the increasing knowledge about dromedaries and their products would strengthen the position of dromedaries as one of the most adapted and sustainable animals.
Collapse
Affiliation(s)
- Marcel Smits
- European Camel Research Society, Johanniterlaan 7, 6721 XX Bennekom, The Netherlands
| | - Han Joosten
- Emeritus Professor Microbiology, Chemin de Crocus 1, 1073 Mollie Margot, Switzerland
| | - Bernard Faye
- UMR SELMET, CIRAD-ES, Campus International de Baillarguet, 34398 Montpellier, France
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
13
|
Cockerill CA, Hasselgren M, Dussex N, Dalén L, von Seth J, Angerbjörn A, Wallén JF, Landa A, Eide NE, Flagstad Ø, Ehrich D, Sokolov A, Sokolova N, Norén K. Genomic Consequences of Fragmentation in the Endangered Fennoscandian Arctic Fox ( Vulpes lagopus). Genes (Basel) 2022; 13:2124. [PMID: 36421799 PMCID: PMC9690288 DOI: 10.3390/genes13112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Accelerating climate change is causing severe habitat fragmentation in the Arctic, threatening the persistence of many cold-adapted species. The Scandinavian arctic fox (Vulpes lagopus) is highly fragmented, with a once continuous, circumpolar distribution, it struggled to recover from a demographic bottleneck in the late 19th century. The future persistence of the entire Scandinavian population is highly dependent on the northernmost Fennoscandian subpopulations (Scandinavia and the Kola Peninsula), to provide a link to the viable Siberian population. By analyzing 43 arctic fox genomes, we quantified genomic variation and inbreeding in these populations. Signatures of genome erosion increased from Siberia to northern Sweden indicating a stepping-stone model of connectivity. In northern Fennoscandia, runs of homozygosity (ROH) were on average ~1.47-fold longer than ROH found in Siberia, stretching almost entire scaffolds. Moreover, consistent with recent inbreeding, northern Fennoscandia harbored more homozygous deleterious mutations, whereas Siberia had more in heterozygous state. This study underlines the value of documenting genome erosion following population fragmentation to identify areas requiring conservation priority. With the increasing fragmentation and isolation of Arctic habitats due to global warming, understanding the genomic and demographic consequences is vital for maintaining evolutionary potential and preventing local extinctions.
Collapse
Affiliation(s)
| | - Malin Hasselgren
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Nicolas Dussex
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 11418 Stockholm, Sweden
| | - Love Dalén
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 11418 Stockholm, Sweden
| | - Johanna von Seth
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Anders Angerbjörn
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Johan F. Wallén
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Arild Landa
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - Nina E. Eide
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | | | - Dorothee Ehrich
- Department of Arctic and Marine Biology, UiT Arctic University of Tromsø, 9037 Tromsø, Norway
| | - Aleksandr Sokolov
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Zelenaya Gorka Str. 21, 629400 Labytnangi, Russia
| | - Natalya Sokolova
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Zelenaya Gorka Str. 21, 629400 Labytnangi, Russia
| | - Karin Norén
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
14
|
von Seth J, van der Valk T, Lord E, Sigeman H, Olsen RA, Knapp M, Kardailsky O, Robertson F, Hale M, Houston D, Kennedy E, Dalén L, Norén K, Massaro M, Robertson BC, Dussex N. Genomic trajectories of a near-extinction event in the Chatham Island black robin. BMC Genomics 2022; 23:747. [PMID: 36357860 PMCID: PMC9647977 DOI: 10.1186/s12864-022-08963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.
Collapse
Affiliation(s)
- Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, 90014, Oulu, Finland
| | - Remi-André Olsen
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17121, Solna, Sweden
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, Aotearoa, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Marie Hale
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Dave Houston
- Department of Conservation, Biodiversity Group, Auckland, New Zealand
| | - Euan Kennedy
- Department of Conservation, Science and Capability, Christchurch, New Zealand
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, PO Box 789, Albury, NSW, Australia
| | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
15
|
Lord E, Marangoni A, Baca M, Popović D, Goropashnaya AV, Stewart JR, Knul MV, Noiret P, Germonpré M, Jimenez EL, Abramson NI, Vartanyan S, Prost S, Smirnov NG, Kuzmina EA, Olsen RA, Fedorov VB, Dalén L. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol Evol 2022; 22:126. [PMID: 36329382 PMCID: PMC9632076 DOI: 10.1186/s12862-022-02081-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ancient DNA studies suggest that Late Pleistocene climatic changes had a significant effect on population dynamics in Arctic species. The Eurasian collared lemming (Dicrostonyx torquatus) is a keystone species in the Arctic ecosystem. Earlier studies have indicated that past climatic fluctuations were important drivers of past population dynamics in this species. RESULTS Here, we analysed 59 ancient and 54 modern mitogenomes from across Eurasia, along with one modern nuclear genome. Our results suggest population growth and genetic diversification during the early Late Pleistocene, implying that collared lemmings may have experienced a genetic bottleneck during the warm Eemian interglacial. Furthermore, we find multiple temporally structured mitogenome clades during the Late Pleistocene, consistent with earlier results suggesting a dynamic late glacial population history. Finally, we identify a population in northeastern Siberia that maintained genetic diversity and a constant population size at the end of the Pleistocene, suggesting suitable conditions for collared lemmings in this region during the increasing temperatures associated with the onset of the Holocene. CONCLUSIONS This study highlights an influence of past warming, in particular the Eemian interglacial, on the evolutionary history of the collared lemming, along with spatiotemporal population structuring throughout the Late Pleistocene.
Collapse
Affiliation(s)
- Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| | - Aurelio Marangoni
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Anna V Goropashnaya
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - John R Stewart
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, Dorset, UK
| | - Monika V Knul
- Department of Archaeology, Anthropology and Geography, University of Winchester, Winchester, SO22 4NR, UK
| | - Pierre Noiret
- Service de Préhistoire, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Mietje Germonpré
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
| | - Elodie-Laure Jimenez
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
- School of Geosciences, University of Aberdeen, Aberdeen, Scotland
| | - Natalia I Abramson
- Department of Molecular Systematics, Zoological Institute RAS, St Petersburg, Russia
| | - Sergey Vartanyan
- Far East Branch, N.A. Shilo North-East Interdisciplinary Scientific Research Institute Russian Academy of Sciences (NEISRI FEB RAS), 685000, Magadan, Russia
| | - Stefan Prost
- Central Research Laboratories, Natural History Museum Vienna, 1010, Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090, Vienna, Austria
- Konrad Lorenz Institute of Ethology, 1160, Vienna, Austria
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
| | - Nickolay G Smirnov
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Elena A Kuzmina
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Remi-André Olsen
- Science for Life Laboratory (SciLifeLab), Dept of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Vadim B Fedorov
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| |
Collapse
|
16
|
van der Valk T, Dehasque M, Chacón-Duque JC, Oskolkov N, Vartanyan S, Heintzman PD, Pečnerová P, Díez-del-Molino D, Dalén L. Evolutionary consequences of genomic deletions and insertions in the woolly mammoth genome. iScience 2022; 25:104826. [PMID: 35992080 PMCID: PMC9382235 DOI: 10.1016/j.isci.2022.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Woolly mammoths had a set of adaptations that enabled them to thrive in the Arctic environment. Many mammoth-specific single nucleotide polymorphisms (SNPs) responsible for unique mammoth traits have been previously identified from ancient genomes. However, a multitude of other genetic variants likely contributed to woolly mammoth evolution. In this study, we sequenced two woolly mammoth genomes and combined these with previously sequenced mammoth and elephant genomes to conduct a survey of mammoth-specific deletions and indels. We find that deletions are highly enriched in non-coding regions, suggesting selection against structural variants that affect protein sequences. Nonetheless, at least 87 woolly mammoth genes contain deletions or indels that modify the coding sequence, including genes involved in skeletal morphology and hair growth. These results suggest that deletions and indels contributed to the unique phenotypic adaptations of the woolly mammoth, and were potentially critical to surviving in its natural environment. Two new high-quality woolly mammoth genomes have been generated A new method was used to identify deletions and insertions in woolly mammoths At least 87 genes have been affected by deletions or indels in the mammoth lineage Genes involved in skeletal morphology and hair growth are affected by deletions
Collapse
|