1
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
2
|
Chikkamenahalli LL, Jessen E, Bernard CE, Ip WE, Breen-Lyles M, Cipriani G, Pullapantula SR, Li Y, AlAsfoor S, Wilson L, Koch KL, Kuo B, Shulman RJ, Chumpitazi BP, McKenzie TJ, Kellogg TA, Tonascia J, Hamilton FA, Sarosiek I, McCallum R, Parkman HP, Pasricha PJ, Abell TL, Farrugia G, Dasari S, Grover M, the NIDDK Gastroparesis Clinical Research Consortium (GpCRC). Single cell atlas of human gastric muscle immune cells and macrophage-driven changes in idiopathic gastroparesis. iScience 2024; 27:108991. [PMID: 38384852 PMCID: PMC10879712 DOI: 10.1016/j.isci.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Gastrointestinal immune cells, particularly muscularis macrophages (MM) interact with the enteric nervous system and influence gastrointestinal motility. Here we determine the human gastric muscle immunome and its changes in patients with idiopathic gastroparesis (IG). Single cell sequencing was performed on 26,000 CD45+ cells obtained from the gastric tissue of 20 subjects. We demonstrate 11 immune cell clusters with T cells being most abundant followed by myeloid cells. The proportions of cells belonging to the 11 clusters were similar between IG and controls. However, 9/11 clusters showed 578-11,429 differentially expressed genes. In IG, MM had decreased expression of tissue-protective and microglial genes and increased the expression of monocyte trafficking and stromal activating genes. Furthermore, in IG, IL12 mediated JAK-STAT signaling involved in the activation of tissue-resident macrophages and Eph-ephrin signaling involved in monocyte chemotaxis were upregulated. Patients with IG had a greater abundance of monocyte-like cells. These data further link immune dysregulation to the pathophysiology of gastroparesis.
Collapse
Affiliation(s)
| | - Erik Jessen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Cheryl E. Bernard
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - W.K. Eddie Ip
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Margaret Breen-Lyles
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Suraj R. Pullapantula
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Ying Li
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Shefaa AlAsfoor
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Laura Wilson
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Braden Kuo
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Frank A. Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Irene Sarosiek
- Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | | | | | | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - the NIDDK Gastroparesis Clinical Research Consortium (GpCRC)
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wake Forest University, Winston-Salem, NC, USA
- Massachusetts General Hospital, Boston, MA, USA
- Baylor College of Medicine, Houston, TX, USA
- Duke University, Durham, NC, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Texas Tech University Health Sciences Center, El Paso, TX, USA
- Temple University, Philadelphia, PA, USA
- Mayo Clinic, Scottsdale, AZ, USA
- University of Louisville, Louisville, KY, USA
| |
Collapse
|
3
|
Mekala S, Dugam P, Das A. Ephrin-Eph receptor tyrosine kinases for potential therapeutics against hepatic pathologies. J Cell Commun Signal 2023; 17:549-561. [PMID: 37103689 PMCID: PMC10409970 DOI: 10.1007/s12079-023-00750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Hepatic fibrosis is the common pathological change that occurs due to increased synthesis and accumulation of extracellular matrix components. Chronic insult from hepatotoxicants leads to liver cirrhosis, which if not reversed timely using appropriate therapeutics, liver transplantation remains the only effective therapy. Often the disease further progresses into hepatic carcinoma. Although there is an increased advancement in understanding the pathological phenotypes of the disease, additional knowledge of the novel molecular signaling mechanisms involved in the disease progression would enable the development of efficacious therapeutics. Ephrin-Eph molecules belong to the largest family of receptor tyrosine kinases (RTKs) which are identified to play a crucial role in cellular migratory functions, during morphological and developmental stages. Additionally, they contribute to the growth of a multicellular organism as well as in pathological conditions like cancer, and diabetes. A wide spectrum of mechanistic studies has been performed on ephrin-Eph RTKs in various hepatic tissues under both normal and diseased conditions revealing their diverse roles in hepatic pathology. This systematic review summarizes the liver-specific ephrin-Eph RTK signaling mechanisms and recognizes them as druggable targets for mitigating hepatic pathology.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201 002, India
| | - Prachi Dugam
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201 002, India.
| |
Collapse
|
4
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
5
|
Schoenmaker T, Zwaak J, Loos BG, Volckmann R, Koster J, Eekhoff EMW, de Vries TJ. Transcriptomic Differences Underlying the Activin-A Induced Large Osteoclast Formation in Both Healthy Control and Fibrodysplasia Ossificans Progressiva Osteoclasts. Int J Mol Sci 2023; 24:ijms24076822. [PMID: 37047804 PMCID: PMC10095588 DOI: 10.3390/ijms24076822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a very rare genetic disease characterized by progressive heterotopic ossification (HO) of soft tissues, leading to immobility and premature death. FOP is caused by a mutation in the Activin receptor Type 1 (ACVR1) gene, resulting in altered responsiveness to Activin-A. We recently revealed that Activin-A induces fewer, but larger and more active, osteoclasts regardless of the presence of the mutated ACVR1 receptor. The underlying mechanism of Activin-A-induced changes in osteoclastogenesis at the gene expression level remains unknown. Transcriptomic changes induced by Activin-A during osteoclast formation from healthy controls and patient-derived CD14-positive monocytes were studied using RNA sequencing. CD14-positive monocytes from six FOP patients and six age- and sex-matched healthy controls were differentiated into osteoclasts in the absence or presence of Activin-A. RNA samples were isolated after 14 days of culturing and analyzed by RNA sequencing. Non-supervised principal component analysis (PCA) showed that samples from the same culture conditions (e.g., without or with Activin-A) tended to cluster, indicating that the variability induced by Activin-A treatment was larger than the variability between the control and FOP samples. RNA sequencing analysis revealed 1480 differentially expressed genes induced by Activin-A in healthy control and FOP osteoclasts with p(adj) < 0.01 and a Log2 fold change of ≥±2. Pathway and gene ontology enrichment analysis revealed several significantly enriched pathways for genes upregulated by Activin-A that could be linked to the differentiation or function of osteoclasts, cell fusion or inflammation. Our data showed that Activin-A has a substantial effect on gene expression during osteoclast formation and that this effect occurred regardless of the presence of the mutated ACVR1 receptor causing FOP.
Collapse
Affiliation(s)
- Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Joy Zwaak
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Bruno G. Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Richard Volckmann
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - E. Marelise W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Bone Center, 1081 HV Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
6
|
Kohara S, Ogawa K. Eph/Ephrin Promotes the Adhesion of Liver Tissue-Resident Macrophages to a Mimicked Surface of Liver Sinusoidal Endothelial Cells. Biomedicines 2022; 10:biomedicines10123234. [PMID: 36551990 PMCID: PMC9775184 DOI: 10.3390/biomedicines10123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Kupffer cells are maintained via self-renewal in specific microenvironmental niches, primarily the liver sinusoidal endothelial cells (LSECs). In this study, we propagated tissue-resident macrophages (Mø) from mouse liver using mixed culture with hepatic fibroblastic cells. Propagated liver Mø express Id3, Lxra and Spic transcription factors, which are required for Kupffer cell characterization. Thus, Kupffer cell properties are likely to be maintained in liver Mø propagated using mixed culture with fibroblastic cells. We revealed (i) gene expression of certain Eph receptors and ephrin ligands including EphA2, ephrin-A1, EphB4, and ephrin-B1 in propagated liver Mø and primary LSECs, (ii) immunohistochemical localization of these Eph/ephrin member molecules indicating common expression in Kupffer cells and LSECs, and (iii) surface expression of several integrin α and β subunits, including α4β1, αLβ2, αMβ2, and αXβ2 integrin in propagated liver Mø and that of the corresponding ligands ICAM-1 and VCAM-1 in primary LSECs. Moreover, EphA/ephrin-A and EphB/ephrin-B interactions promoted liver Mø adhesion to the ICAM-1-adsorbed surface, which mimicked that of LSECs and may be implicated in the residence of Kupffer cells in the liver sinusoid. Further studies on regulating the residence and regeneration of Kupffer cells in related hepatic disorders are required to validate our findings.
Collapse
Affiliation(s)
- Sho Kohara
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
- Correspondence:
| |
Collapse
|
7
|
Yamauchi S, Yamamoto K, Ogawa K. Testicular Macrophages Produce Progesterone De Novo Promoted by cAMP and Inhibited by M1 Polarization Inducers. Biomedicines 2022; 10:biomedicines10020487. [PMID: 35203696 PMCID: PMC8962427 DOI: 10.3390/biomedicines10020487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue-resident macrophages (Mø) originating from fetal precursors are maintained via self-renewal under tissue-/organ-specific microenvironments. Herein, we developed a propagation method of testicular tissue-resident Mø in mixed primary culture with interstitial cells composed of Leydig cells from the mouse testis. We examined Mø/monocyte marker expression in propagated testicular Mø using flow cytometry; gene expression involved in testosterone production as well as spermatogenesis in testicular Mø and interstitial cells propagated by mixed culture via RT-PCR; and progesterone (P4) de novo production in propagated testicular Mø treated with cyclic adenosine monophosphate, isoproterenol, and M1 polarization inducers using ELISA. Mø marker expression patterns in the propagated Mø were identical to those in testicular interstitial Mø with a CD206-positive/major histocompatibility complex (MHC) II-negative M2 phenotype. We identified the genes involved in P4 production, transcription factors essential for steroidogenesis, and androgen receptors, and showed that P4 production de novo was upregulated by cyclic adenosine monophosphate and β2-adrenergic stimulation and was downregulated by M1 polarization stimulation in Mø. We also demonstrated the formation of gap junctions between Leydig cells and interstitial Mø. This is the first study to demonstrate de novo P4 production in tissue-resident Mø. Based on previous studies revealing inhibition of testosterone production by P4, we propose that local feedback machinery between Leydig cells and adjacent interstitial Mø regulates testosterone production. The results presented in this study can facilitate future studies on immune-endocrine interactions in gonads that are related to infertility and hormonal disorders.
Collapse
Affiliation(s)
- Sawako Yamauchi
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kousuke Yamamoto
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan
- Correspondence:
| |
Collapse
|
8
|
Tsurutani M, Horie H, Ogawa K. Cell Properties of Lung Tissue-Resident Macrophages Propagated by Co-Culture with Lung Fibroblastic Cells from C57BL/6 and BALB/c Mice. Biomedicines 2021; 9:1241. [PMID: 34572425 PMCID: PMC8468995 DOI: 10.3390/biomedicines9091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages (Mø) originating from foetal precursors are maintained by self-renewal under tissue/organ-specific microenvironments (niches). We recently developed a simple propagation method applicable to tissue-resident Mø by co-culturing. Here, we examined the properties of lung tissue-resident Mø propagated by co-culturing with lung interstitial cells. The intracardially and intratracheally perfused lung from BALB/c and C57BL/6 mice could minimise the contamination of alveolar Mø and lung monocytes. Lung tissue-resident Mø could be largely propagated under standard culture media along with the propagation of lung interstitial cells demonstrating a fibroblastic morphology. Propagated lung Mø showed characteristic expression properties for Mø/monocyte markers: high expressions of CD11b, CD64 and CD206; substantial expressions of Mertk; and negative expressions of Ly6C, MHC II and Siglec-F. These properties fit with those of lung interstitial Mø of a certain population that can undergo self-renewal. Propagated fibroblastic cells by co-culturing with lung Mø possessed niche properties such as Csf1 and Tgfb1 expression. Propagated lung Mø from both the mouse types were polarised to an M2 phenotype highly expressing arginase 1 without M2 inducer treatment, whereas the M1 inducers significantly increased the iNOS-positive cell percentages in C57BL/6 mice relative to those in BALB/c mice. This is the first study to demonstrate fundamental properties of lung tissue-resident Mø propagated by co-culturing. Propagated lung Mø showing features of lung interstitial Mø can serve as an indispensable tool for investigating SARS-CoV-2 diseases, although lung interstitial Mø have gained little attention in terms of their involvement in SARS-CoV-2 disease pathology, in contrast to alveolar and recruited Mø.
Collapse
Affiliation(s)
- Mayu Tsurutani
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Haruka Horie
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| |
Collapse
|
9
|
Zhang L, Qi Z, Li J, Li M, Du X, Wang S, Zhou G, Xu B, Liu W, Xi S, Xu Z, Deng Y. Roles and Mechanisms of Axon-Guidance Molecules in Alzheimer's Disease. Mol Neurobiol 2021; 58:3290-3307. [PMID: 33675023 DOI: 10.1007/s12035-021-02311-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by progressive memory decline and cognitive dysfunctions. Although the causes of AD have not yet been established, many mechanisms have been proposed. Axon-guidance molecules play the roles in the occurrence and development of AD by participating in different mechanisms. Therefore, what roles do axon-guidance molecules play in AD? This study aimed at elucidating how axon-guidance molecules Netrins, Slits, Semaphorins, and Ephrins regulate the levels of Aβ, hyperphosphorylation of tau protein, Reelin, and other ways through different signaling pathways, in order to show the roles of axon-guidance molecules in the occurrence and development of AD. And it is hoped that this study can provide a theoretical basis and new perspectives in the search for new therapeutic targets for AD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Guoyu Zhou
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
10
|
UniPR1331: Small Eph/Ephrin Antagonist Beneficial in Intestinal Inflammation by Interfering with Type-B Signaling. Pharmaceuticals (Basel) 2021; 14:ph14060502. [PMID: 34074058 PMCID: PMC8225182 DOI: 10.3390/ph14060502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn’s disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses.
Collapse
|
11
|
Zhang H, Bredewold EOW, Vreeken D, Duijs JMGJ, de Boer HC, Kraaijeveld AO, Jukema JW, Pijls NH, Waltenberger J, Biessen EA, van der Veer EP, van Zonneveld AJ, van Gils JM. Prediction Power on Cardiovascular Disease of Neuroimmune Guidance Cues Expression by Peripheral Blood Monocytes Determined by Machine-Learning Methods. Int J Mol Sci 2020; 21:ijms21176364. [PMID: 32887275 PMCID: PMC7503551 DOI: 10.3390/ijms21176364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is the underlying pathology in a major part of cardiovascular disease, the leading cause of mortality in developed countries. The infiltration of monocytes into the vessel walls of large arteries is a key denominator of atherogenesis, making monocytes accountable for the development of atherosclerosis. With the development of high-throughput transcriptome profiling platforms and cytometric methods for circulating cells, it is now feasible to study in-depth the predicted functional change of circulating monocytes reflected by changes of gene expression in certain pathways and correlate the changes to disease outcome. Neuroimmune guidance cues comprise a group of circulating- and cell membrane-associated signaling proteins that are progressively involved in monocyte functions. Here, we employed the CIRCULATING CELLS study cohort to classify cardiovascular disease patients and healthy individuals in relation to their expression of neuroimmune guidance cues in circulating monocytes. To cope with the complexity of human datasets featured by noisy data, nonlinearity and multidimensionality, we assessed various machine-learning methods. Of these, the linear discriminant analysis, Naïve Bayesian model and stochastic gradient boost model yielded perfect or near-perfect sensibility and specificity and revealed that expression levels of the neuroimmune guidance cues SEMA6B, SEMA6D and EPHA2 in circulating monocytes were of predictive values for cardiovascular disease outcome.
Collapse
Affiliation(s)
- Huayu Zhang
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Edwin O. W. Bredewold
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Dianne Vreeken
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Jacques. M. G. J. Duijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Hetty C. de Boer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Adriaan O. Kraaijeveld
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan, 1003584 CX Utrecht, The Netherlands;
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands;
| | - Nico H. Pijls
- Department of Cardiology, Catharina Hospital, Michelangelolaan, 25623 EJ Eindhoven, The Netherlands;
| | - Johannes Waltenberger
- Department of Cardiology, Maastricht University Medical Center, P. Debyelaan, 256202 AZ Maastricht, The Netherlands;
| | - Erik A.L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel, 506229 ER Maastricht, The Netherlands;
| | - Eric P. van der Veer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Janine M. van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
- Correspondence:
| |
Collapse
|
12
|
Menanteau-Ledouble S, Nöbauer K, Razzazi-Fazeli E, El-Matbouli M. Effects of Yersinia ruckeri invasion on the proteome of the Chinook salmon cell line CHSE-214. Sci Rep 2020; 10:11840. [PMID: 32678312 PMCID: PMC7366648 DOI: 10.1038/s41598-020-68903-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Yersinia ruckeri is an important bacterial pathogen of fish, in particular salmonids, it has been associated with systemic infections worldwide and, like many enteric bacteria, it is a facultative intracellular pathogen. However, the effect of Y. ruckeri's interactions with the host at the cellular level have received little investigation. In the present study, a culture of Chinook Salmon Embryo (CHSE) cell line was exposed to Y. ruckeri. Afterwards, the proteins were investigated and identified by mass spectrometry and compared to the content of unexposed cultures. The results of this comparison showed that 4.7% of the identified proteins were found at significantly altered concentrations following infection. Interestingly, infection with Y. ruckeri was associated with significant changes in the concentration of surface adhesion proteins, including a significantly decreased presence of β-integrins. These surface adhesion molecules are known to be the target for several adhesion molecules of Yersiniaceae. The concentration of several anti-apoptotic regulators (HSP90 and two DNAj molecules) appeared similarly downregulated. Taken together, these findings suggest that Y. ruckeri affects the proteome of infected cells in a notable manner and our results shed some light on the interaction between this important bacterial pathogen and its host.
Collapse
Affiliation(s)
- Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
13
|
Harnessing the Power of Eph/ephrin Biosemiotics for Theranostic Applications. Pharmaceuticals (Basel) 2020; 13:ph13060112. [PMID: 32492868 PMCID: PMC7345574 DOI: 10.3390/ph13060112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehensive basic biological knowledge of the Eph/ephrin system in the physiologic setting is needed to facilitate an understanding of its role and the effects of pathological processes on its activity, thereby paving the way for development of prospective therapeutic targets. To this end, this review briefly addresses what is currently known and being investigated in order to highlight the gaps and possible avenues for further investigation to capitalize on their diverse potential.
Collapse
|
14
|
Shiuan E, Inala A, Wang S, Song W, Youngblood V, Chen J, Brantley-Sieders DM. Host deficiency in ephrin-A1 inhibits breast cancer metastasis. F1000Res 2020; 9:217. [PMID: 32399207 PMCID: PMC7194498 DOI: 10.12688/f1000research.22689.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type ( Efna1+/+), heterozygous ( Efna1+/-), or knockout ( Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.
Collapse
Affiliation(s)
- Eileen Shiuan
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashwin Inala
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shan Wang
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenqiang Song
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Jin Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M. Brantley-Sieders
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
15
|
Shiuan E, Inala A, Wang S, Song W, Youngblood V, Chen J, Brantley-Sieders DM. Host deficiency in ephrin-A1 inhibits breast cancer metastasis. F1000Res 2020; 9:217. [PMID: 32399207 PMCID: PMC7194498 DOI: 10.12688/f1000research.22689.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type ( Efna1+/+), heterozygous ( Efna1+/-), or knockout ( Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.
Collapse
Affiliation(s)
- Eileen Shiuan
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashwin Inala
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shan Wang
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenqiang Song
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Jin Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M. Brantley-Sieders
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
16
|
Darling TK, Mimche PN, Bray C, Umaru B, Brady LM, Stone C, Eboumbou Moukoko CE, Lane TE, Ayong LS, Lamb TJ. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog 2020; 16:e1008261. [PMID: 31999807 PMCID: PMC6991964 DOI: 10.1371/journal.ppat.1008261] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/07/2019] [Indexed: 01/01/2023] Open
Abstract
Disruption of blood-brain barrier (BBB) function is a key feature of cerebral malaria. Increased barrier permeability occurs due to disassembly of tight and adherens junctions between endothelial cells, yet the mechanisms governing junction disassembly and vascular permeability during cerebral malaria remain poorly characterized. We found that EphA2 is a principal receptor tyrosine kinase mediating BBB breakdown during Plasmodium infection. Upregulated on brain microvascular endothelial cells in response to inflammatory cytokines, EphA2 is required for the loss of junction proteins on mouse and human brain microvascular endothelial cells. Furthermore, EphA2 is necessary for CD8+ T cell brain infiltration and subsequent BBB breakdown in a mouse model of cerebral malaria. Blocking EphA2 protects against BBB breakdown highlighting EphA2 as a potential therapeutic target for cerebral malaria.
Collapse
Affiliation(s)
- Thayer K. Darling
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Patrice N. Mimche
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christian Bray
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Banlanjo Umaru
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Lauren M. Brady
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Colleen Stone
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, University of Douala, Douala, Cameroon
| | - Thomas E. Lane
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence S. Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
17
|
Ogawa K, Tsurutani M, Hashimoto A, Soeda M. Simple propagation method for resident macrophages by co-culture and subculture, and their isolation from various organs. BMC Immunol 2019; 20:34. [PMID: 31533615 PMCID: PMC6749721 DOI: 10.1186/s12865-019-0314-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Resident macrophages (Mø) originating from yolk sac Mø and/or foetal monocytes colonise tissues/organs during embryonic development. They persist into adulthood by self-renewal at a steady state, independent of adult monocyte inputs, except for those in the intestines and dermis. Thus, many resident Mø can be propagated in vitro under optimal conditions; however, there are no specific in vitro culture methods available for the propagation of resident Mø from diverse tissues/organs. Results We provided a simple method for propagating resident Mø derived from the liver, spleen, lung, and brain of ICR male mice by co-culture and subculture along with the propagation of other stromal cells of the respective organs in standard culture media and successfully demonstrated the propagation of resident Mø colonising these organs. We also proposed a simple method for segregating Mø from stromal cells according to their adhesive property on bacteriological Petri dishes, which enabled the collection of more than 97.6% of the resident Mø from each organ. Expression analyses of conventional Mø markers by flow cytometry showed similar expression patterns among the Mø collected from the organs. Conclusion This is the first study to clearly provide a practical Mø propagation method applicable to resident Mø of diverse tissues and organs. Thus, this novel practical Mø propagation method can offer broad applications for the use of resident Mø of diverse tissues and organs.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Mayu Tsurutani
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Aya Hashimoto
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Miharu Soeda
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
18
|
Gammaherpesvirus entry and fusion: A tale how two human pathogenic viruses enter their host cells. Adv Virus Res 2019; 104:313-343. [PMID: 31439152 DOI: 10.1016/bs.aivir.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prototypical human γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi Sarcoma-associated herpesvirus (KSHV) are involved in the development of malignancies. Like all herpesviruses, they share the establishment of latency, the typical architecture, and the conserved fusion machinery to initiate infection. The fusion machinery reflects virus-specific adaptations due to the requirements of the respective herpesvirus. For example, EBV evolved a tropism switch involving either the B- or epithelial cell-tropism complexes to activate fusion driven by gB. Most of the EBV entry proteins and their cellular receptors have been crystallized providing molecular details of the initial steps of infection. For KSHV, a variety of entry and binding receptors has also been reported but the mechanism how receptor binding activates gB-driven fusion is not as well understood as that for EBV. However, the downstream signaling pathways that promote the early steps of KSHV entry are well described. This review summarizes the current knowledge of the key players involved in EBV and KSHV entry and the cell-type specific mechanisms that allow infection of a wide variety of cell types.
Collapse
|
19
|
Darling TK, Lamb TJ. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front Immunol 2019; 10:1473. [PMID: 31333644 PMCID: PMC6620610 DOI: 10.3389/fimmu.2019.01473] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and mediate a myriad of essential processes in humans from embryonic development to adult tissue homeostasis through interactions with membrane-bound ephrin ligands. The ubiquitous expression of Eph receptors and ephrin ligands among the cellular players of the immune system underscores the importance of these molecules in orchestrating an optimal immune response. This review provides an overview of the various roles of Eph receptors and ephrin ligands in immune cell development, activation, and migration. We also discuss the role of Eph receptors in disease pathogenesis as well as the implications of Eph receptors as future immunotherapy targets. Given the diverse and critical roles of Eph receptors and ephrin ligands throughout the immune system during both resting and activated states, this review aims to highlight the critical yet underappreciated roles of this family of signaling molecules in the immune system.
Collapse
Affiliation(s)
- Thayer K Darling
- Immunology and Molecular Pathogenesis Program, Emory University Laney Graduate School, Atlanta, GA, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Tracey J Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
20
|
Möser C, Lorenz JS, Sajfutdinow M, Smith DM. Pinpointed Stimulation of EphA2 Receptors via DNA-Templated Oligovalence. Int J Mol Sci 2018; 19:ijms19113482. [PMID: 30404153 PMCID: PMC6274923 DOI: 10.3390/ijms19113482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
DNA nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. Here, the efficacy of SWL, an ephrin-mimicking peptide that binds specifically to EphrinA2 (EphA2) receptors, increased by presenting up to three of these peptides on small DNA nanostructures in an oligovalent manner. Ephrin signaling pathways play crucial roles in tumor development and progression. Moreover, Eph receptors are potential targets in cancer diagnosis and treatment. Here, the quantitative impact of SWL valency on binding, phosphorylation (key player for activation) and phenotype regulation in EphA2-expressing prostate cancer cells was demonstrated. EphA2 phosphorylation was significantly increased by DNA trimers carrying three SWL peptides compared to monovalent SWL. In comparison to one of EphA2’s natural ligands ephrin-A1, which is known to bind promiscuously to multiple receptors, pinpointed targeting of EphA2 by oligovalent DNA-SWL constructs showed enhanced cell retraction. Overall, we show that DNA scaffolds can increase the potency of weak signaling peptides through oligovalent presentation and serve as potential tools for examination of complex signaling pathways.
Collapse
Affiliation(s)
- Christin Möser
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, 14476 Potsdam, Germany.
| | - Jessica S Lorenz
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, University of Leipzig, 04103 Leipzig, Germany.
| | - Martin Sajfutdinow
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Fraunhofer Project Center "Microelectronic and Optical Systems for Biomedicine" (MEOS), 99099 Erfurt, Germany.
| | - David M Smith
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|