1
|
Durocher AF, Paquet VE, St-Laurent RE, Duchaine C, Charette SJ. Impact of Predation by Ciliate Tetrahymena borealis on Conjugation in Aeromonas salmonicida subsp. salmonicida. Antibiotics (Basel) 2024; 13:960. [PMID: 39452226 PMCID: PMC11504919 DOI: 10.3390/antibiotics13100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antibiotic resistance gene (ARG) spread is driven by horizontal gene transfer (HGT). Ciliated protozoa may contribute to this process, as their predation has been shown to facilitate HGT in certain bacteria. Here, this phenomenon was further investigated using A. salmonicida subsp. salmonicida. This fish pathogen bears an extensive and dynamic plasmidome, suggesting a high potential for HGT. METHODS A. salmonicida strains carrying one of three conjugative plasmids bearing ARGs (pSN254b, pRAS1b or pAsa4b) were cocultured with a recipient, either A. salmonicida, E. coli or A. hydrophila. Conjugation rates were assessed in the presence and absence of the ciliate Tetrahymena borealis. PCR genotyping confirmed the acquisition of the conjugative plasmids and was used to verify the mobilization of other plasmids. RESULTS The basal rate of conjugation observed was high. Under the conditions studied, ciliate predation did not appear to influence the conjugation rate, except at higher proportions of ciliates, which typically hampered conjugation. Microscopy revealed that most bacteria were digested in these conditions. PCR screening demonstrated that small mobilizable plasmids from A. salmonicida (pAsa1, pAsa2, pAsa3, and pAsal1) were acquired by the recipients along with the conjugative plasmids, with a slight effect of the ciliates in some donor/recipient cell combination. CONCLUSIONS These results highlight how A. salmonicida can conjugate efficiently with different species and how complex its relationship with ciliates is.
Collapse
Affiliation(s)
- Alicia F. Durocher
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC G1V 4G5, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Valérie E. Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rébecca E. St-Laurent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Duchaine
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC G1V 4G5, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Bulannga RB, Schmidt S. Two Predators, One Prey - the Interaction Between Bacteriophage, Bacterivorous Ciliates, and Escherichia coli. MICROBIAL ECOLOGY 2023; 86:1620-1631. [PMID: 36723682 DOI: 10.1007/s00248-022-02163-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Bacterivorous ciliates and lytic bacteriophages are two major predators in aquatic environments, competing for the same type of prey. This study investigated the possible interaction of these different microorganisms and their influence on the activity of each other. Therefore, two bacterivorous ciliates, Paramecium sp. RB1 and Tetrahymena sp. RB2, were used as representative ciliates; a T4-like Escherichia coli targeting lytic bacteriophage as a model virus; and E. coli ATCC 25922 as a susceptible bacterial host and prey. The growth of the two ciliates with E. coli ATCC 25922 as prey was affected by the presence of phage particles. The grazing activity of the two ciliates resulted in more than a 99% reduction of the phage titer and bacterial cell numbers. However, viable phage particles were recovered from individual washed cells of the two ciliates after membrane filtration. Therefore, ciliates such as Paramecium sp. RB1 and Tetrahymena sp. RB2 can remove bacteriophages present in natural and artificial waters by ingesting the viral particles and eliminating bacterial host cells required for viral replication. The ingestion of phage particles may marginally contribute to the nutrient supply of the ciliates. However, the interaction of phage particles with ciliate cells may contribute to the transmission of bacteriophages in aquatic environments.
Collapse
Affiliation(s)
- Rendani Bridghette Bulannga
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
3
|
Li P, Gu S, Zhu Y, Xu T, Yang Y, Wang Z, Deng X, Wang B, Li W, Mei W, Hu Q. Soil microbiota plays a key regulatory role in the outbreak of tobacco root rot. Front Microbiol 2023; 14:1214167. [PMID: 37779693 PMCID: PMC10540700 DOI: 10.3389/fmicb.2023.1214167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Root rot caused by the fungal pathogen Fusarium sp. poses significant challenges to tobacco cultivation in China, leading to major economic setbacks. The interplay between this pathogen and the wider soil microbial community remains poorly understood. Methods High-throughput sequencing technology was utilized to evaluate soil prokaryotic, fungal, and protistan communities. We compared microbial communities in infected soils to those in healthy soils from the same field. Additionally, the influence of pH on the microbial communities was assessed. Results Infected soils displayed elevated levels of soil nutrients but diminished observed richness across prokaryotic, fungal, and protistan groups. The pathogenic fungi Fusarium solani f sp. eumartii's abundance was notably increased in infected soils. Infection with F. solani significantly altered the soil's microbial community structure and interactions, manifested as a decrease in network scale and the number of keystone species. An evaluation of prokaryotes' role in F. solani's invasion revealed an increased number of connecting nodes in infected soils. Additionally, relationships between predatory protists and fungi were augmented, whereas predation on F. solani declined. Discussion The study underscores the significance of comprehending the interactions among soil microorganisms and brings to light the susceptibility of soil microbial communities to pathogen invasion. It offers insights into the multifaceted relationships and potential vulnerabilities within the soil ecosystem in the context of Fusarium sp. invasion.
Collapse
Affiliation(s)
- Pengfei Li
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanmei Zhu
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Tianyang Xu
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Yishuai Yang
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhengqiang Wang
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangdong Deng
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| | - Bin Wang
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Wei Li
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Wenqiang Mei
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Qiulong Hu
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
4
|
Koskella B, Hernandez CA, Wheatley RM. Understanding the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annu Rev Virol 2022; 9:57-78. [PMID: 35584889 DOI: 10.1146/annurev-virology-091919-075914] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses of bacteriophages (phages) have broad effects on bacterial ecology and evolution in nature that mediate microbial interactions, shape bacterial diversity, and influence nutrient cycling and ecosystem function. The unrelenting impact of phages within the microbial realm is the result, in large part, of their ability to rapidly evolve in response to bacterial host dynamics. The knowledge gained from laboratory systems, typically using pairwise interactions between single-host and single-phage systems, has made clear that phages coevolve with their bacterial hosts rapidly, somewhat predictably, and primarily by counteradapting to host resistance. Recent advancement in metagenomics approaches, as well as a shifting focus toward natural microbial communities and host-associated microbiomes, is beginning to uncover the full picture of phage evolution and ecology within more complex settings. As these data reach their full potential, it will be critical to ask when and how insights gained from studies of phage evolution in vitro can be meaningfully applied to understanding bacteria-phage interactions in nature. In this review, we explore the myriad ways that phages shape and are themselves shaped by bacterial host populations and communities, with a particular focus on observed and predicted differences between the laboratory and complex microbial communities. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California, USA;
| | - Catherine A Hernandez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
5
|
Plum K, Tarkington J, Zufall RA. Experimental Evolution in Tetrahymena. Microorganisms 2022; 10:414. [PMID: 35208869 PMCID: PMC8877770 DOI: 10.3390/microorganisms10020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Experimental evolution has provided novel insight into a wide array of biological processes. Species in the genus Tetrahymena are proving to be a highly useful system for studying a range of questions using experimental evolution. Their unusual genomic architecture, diversity of life history traits, importance as both predator and prey, and amenability to laboratory culture allow them to be studied in a variety of contexts. In this paper, we review what we are learning from experimental evolution with Tetrahymena about mutation, adaptation, and eco-evolutionary dynamics. We predict that future experimental evolution studies using Tetrahyemena will continue to shed new light on these processes.
Collapse
Affiliation(s)
- Karissa Plum
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Jason Tarkington
- Department of Genetics, Stanford University, Stanford, CA 94305, USA;
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
6
|
Freund L, Vasse M, Velicer GJ. Hidden paths to endless forms most wonderful: parasite-blind diversification of host quality. Proc Biol Sci 2021; 288:20210456. [PMID: 33906400 PMCID: PMC8080016 DOI: 10.1098/rspb.2021.0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Evolutionary diversification can occur in allopatry or sympatry, can be driven by selection or unselected, and can be phenotypically manifested immediately or remain latent until manifested in a newly encountered environment. Diversification of host-parasite interactions is frequently studied in the context of intrinsically selective coevolution, but the potential for host-parasite interaction phenotypes to diversify latently during parasite-blind host evolution is rarely considered. Here, we use a social bacterium experimentally adapted to several environments in the absence of phage to analyse allopatric diversification of host quality-the degree to which a host population supports a viral epidemic. Phage-blind evolution reduced host quality overall, with some bacteria becoming completely resistant to growth suppression by phage. Selective-environment differences generated only mild divergence in host quality. However, selective environments nonetheless played a major role in shaping evolution by determining the degree of stochastic diversification among replicate populations within treatments. Ancestral motility genotype was also found to strongly shape patterns of latent host-quality evolution and diversification. These outcomes show that (i) adaptive landscapes can differ in how they constrain stochastic diversification of a latent phenotype and (ii) major effects of selection on biological diversification can be missed by focusing on trait means. Collectively, our findings suggest that latent-phenotype evolution should inform host-parasite evolution theory and that diversification should be conceived broadly to include latent phenotypes.
Collapse
Affiliation(s)
- Lisa Freund
- Institute for Integrative Biology, ETH Zürich 8092, Zürich, Switzerland
| | - Marie Vasse
- Institute for Integrative Biology, ETH Zürich 8092, Zürich, Switzerland
| | | |
Collapse
|
7
|
Ceja-Navarro JA, Wang Y, Ning D, Arellano A, Ramanculova L, Yuan MM, Byer A, Craven KD, Saha MC, Brodie EL, Pett-Ridge J, Firestone MK. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. MICROBIOME 2021; 9:96. [PMID: 33910643 PMCID: PMC8082632 DOI: 10.1186/s40168-021-01042-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Despite their widespread distribution and ecological importance, protists remain one of the least understood components of the soil and rhizosphere microbiome. Knowledge of the roles that protists play in stimulating organic matter decomposition and shaping microbiome dynamics continues to grow, but there remains a need to understand the extent to which biological and environmental factors mediate protist community assembly and dynamics. We hypothesize that protists communities are filtered by the influence of plants on their rhizosphere biological and physicochemical environment, resulting in patterns of protist diversity and composition that mirror previously observed diversity and successional dynamics in rhizosphere bacterial communities. RESULTS We analyzed protist communities associated with the rhizosphere and bulk soil of switchgrass (SG) plants (Panicum virgatum) at different phenological stages, grown in two marginal soils as part of a large-scale field experiment. Our results reveal that the diversity of protists is lower in rhizosphere than bulk soils, and that temporal variations depend on soil properties but are less pronounced in rhizosphere soil. Patterns of significantly prevalent protists groups in the rhizosphere suggest that most protists play varied ecological roles across plant growth stages and that some plant pathogenic protists and protists with omnivorous diets reoccur over time in the rhizosphere. We found that protist co-occurrence network dynamics are more complex in the rhizosphere compared to bulk soil. A phylogenetic bin-based null model analysis showed that protists' community assembly in our study sites is mainly controlled by homogenous selection and dispersal limitation, with stronger selection in rhizosphere than bulk soil as SG grew and senesced. CONCLUSIONS We demonstrate that environmental filtering is a dominant determinant of overall protist community properties and that at the rhizosphere level, plant control on the physical and biological environment is a critical driver of protist community composition and dynamics. Since protists are key contributors to plant nutrient availability and bacterial community composition and abundance, mapping and understanding their patterns in rhizosphere soil is foundational to understanding the ecology of the root-microbe-soil system. Video Abstract.
Collapse
Affiliation(s)
- Javier A. Ceja-Navarro
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA USA
| | - Yuan Wang
- Noble Research Institute, LLC, Ardmore, OK USA
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Abelardo Arellano
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Leila Ramanculova
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Alyssa Byer
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | | | | | - Eoin L. Brodie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
- Ecology Department, Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Mary K. Firestone
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
- Ecology Department, Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
8
|
Nair RR, Vasse M, Wielgoss S, Sun L, Yu YTN, Velicer GJ. Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences. Nat Commun 2019; 10:4301. [PMID: 31541093 PMCID: PMC6754418 DOI: 10.1038/s41467-019-12140-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
Generalist bacterial predators are likely to strongly shape many important ecological and evolutionary features of microbial communities, for example by altering the character and pace of molecular evolution, but investigations of such effects are scarce. Here we report how predator-prey interactions alter the evolution of fitness, genomes and phenotypic diversity in coevolving bacterial communities composed of Myxococcus xanthus as predator and Escherichia coli as prey, relative to single-species controls. We show evidence of reciprocal adaptation and demonstrate accelerated genomic evolution specific to coevolving communities, including the rapid appearance of mutator genotypes. Strong parallel evolution unique to the predator-prey communities occurs in both parties, with predators driving adaptation at two prey traits associated with virulence in bacterial pathogens-mucoidy and the outer-membrane protease OmpT. Our results suggest that generalist predatory bacteria are important determinants of how complex microbial communities and their interaction networks evolve in natural habitats.
Collapse
Affiliation(s)
- Ramith R Nair
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland.
| | - Marie Vasse
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland.
| | - Sébastien Wielgoss
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - Lei Sun
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
- Department of Systems Biology, Harvard Medical School, 02115, Boston, MA, USA
| | - Yuen-Tsu N Yu
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| |
Collapse
|
9
|
Best A. Host-pathogen coevolution in the presence of predators: fluctuating selection and ecological feedbacks. Proc Biol Sci 2018; 285:rspb.2018.0928. [PMID: 30135155 DOI: 10.1098/rspb.2018.0928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 01/21/2023] Open
Abstract
Host-pathogen coevolution is central to shaping natural communities and is the focus of much experimental and theoretical study. For tractability, the vast majority of studies assume the host and pathogen interact in isolation, yet in reality, they will form one part of complex communities, with predation likely to be a particularly key interaction. Here, I present, to my knowledge, the first theoretical study to assess the impact of predation on the coevolution of costly host resistance and pathogen transmission. I show that fluctuating selection is most likely when predators selectively prey upon infected hosts, but that saturating predation, owing to large handling times, dramatically restricts the potential for fluctuations. I also show how host evolution may drive either enemy to extinction, and demonstrate that while predation selects for low host resistance and high pathogen infectivity, ecological feedbacks mean this results in lower infection rates when predators are present. I emphasize the importance of accounting for varying population sizes, and place the models in the context of recent experimental studies.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| |
Collapse
|
10
|
Hiltunen T, Kaitala V, Laakso J, Becks L. Evolutionary contribution to coexistence of competitors in microbial food webs. Proc Biol Sci 2018; 284:rspb.2017.0415. [PMID: 29021178 DOI: 10.1098/rspb.2017.0415] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/08/2017] [Indexed: 11/12/2022] Open
Abstract
The theory of species coexistence is a key concept in ecology that has received much attention. The role of rapid evolution for determining species coexistence is still poorly understood although evolutionary change on ecological time-scales has the potential to change almost any ecological process. The influence of evolution on coexistence can be especially pronounced in microbial communities where organisms often have large population sizes and short generation times. Previous work on coexistence has assumed that traits involved in resource use and species interactions are constant or change very slowly in terms of ecological time-scales. However, recent work suggests that these traits can evolve rapidly. Nevertheless, the importance of rapid evolution to coexistence has not been tested experimentally. Here, we show how rapid evolution alters the frequency of two bacterial competitors over time when grown together with specialist consumers (bacteriophages), a generalist consumer (protozoan) and all in combination. We find that consumers facilitate coexistence in a manner consistent with classic ecological theory. However, through disentangling the relative contributions of ecology (changes in consumer abundance) and evolution (changes in traits mediating species interactions) on the frequency of the two competitors over time, we find differences between the consumer types and combinations. Overall, our results indicate that the influence of evolution on species coexistence strongly depends on the traits and species interactions considered.
Collapse
Affiliation(s)
- Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Veijo Kaitala
- Department of Biosciences/Ecology and Evolutionary biology, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Jouni Laakso
- Department of Biosciences/Ecology and Evolutionary biology, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Lutz Becks
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Community Dynamics Group, August Thienemann Str. 2, 24306 Plön, Germany
| |
Collapse
|
11
|
Liu J, Dong Y, Wang N, Li S, Yang Y, Wang Y, Awan F, Lu C, Liu Y. Tetrahymena thermophila Predation Enhances Environmental Adaptation of the Carp Pathogenic Strain Aeromonas hydrophila NJ-35. Front Cell Infect Microbiol 2018; 8:76. [PMID: 29594069 PMCID: PMC5861188 DOI: 10.3389/fcimb.2018.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/27/2018] [Indexed: 01/21/2023] Open
Abstract
Persistence of Aeromonas hydrophila in aquatic environments is the principle cause of fish hemorrhagic septicemia. Protistan predation has been considered to be a strong driving force for the evolution of bacterial defense strategies. In this study, we investigated the adaptive traits of A. hydrophila NJ-35, a carp pathogenic strain, in response to Tetrahymena thermophila predation. After subculturing with Tetrahymena, over 70% of A. hydrophila colonies were small colony variants (SCVs). The SCVs displayed enhanced biofilm formation, adhesion, fitness, and resistance to bacteriophage infection and oxidative stress as compared to the non-Tetrahymena-exposed strains. In contrast, the SCVs exhibited decreased intracellular bacterial number in RAW264.7 macrophages and were highly attenuated for virulence in zebrafish. Considering the outer membrane proteins (OMPs) are directly involved in bacterial interaction with the external surroundings, we investigated the roles of OMPs in the antipredator fitness behaviors of A. hydrophila. A total of 38 differentially expressed proteins were identified in the SCVs by quantitative proteomics. Among them, three lipoproteins including SurA, Slp, and LpoB, and a serine/threonine protein kinase (Stpk) were evidenced to be associated with environmental adaptation of the SCVs. Also, the three lipoproteins were involved in attenuated virulence of SCVs through the proinflammatory immune response mediated by TLR2. This study provides an important contribution to the understanding of the defensive traits of A. hydrophila against protistan predators.
Collapse
Affiliation(s)
- Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nannan Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shougang Li
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Yang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, Chatzinotas A. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
13
|
Harrison E, Hall JPJ, Paterson S, Spiers AJ, Brockhurst MA. Conflicting selection alters the trajectory of molecular evolution in a tripartite bacteria-plasmid-phage interaction. Mol Ecol 2017; 26:2757-2764. [PMID: 28247474 PMCID: PMC5655702 DOI: 10.1111/mec.14080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/21/2023]
Abstract
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - James P. J. Hall
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Steve Paterson
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | | | | |
Collapse
|
14
|
Cairns J, Frickel J, Jalasvuori M, Hiltunen T, Becks L. Genomic evolution of bacterial populations under coselection by antibiotics and phage. Mol Ecol 2017; 26:1848-1859. [DOI: 10.1111/mec.13950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Johannes Cairns
- Department of Food and Environmental Sciences / Microbiology and Biotechnology; University of Helsinki; P.O. Box 65 00014 Helsinki Finland
| | - Jens Frickel
- Department of Evolutionary Ecology / Community Dynamics Group; Max Planck Institute for Evolutionary Biology; August Thienemann Street 2 24306 Plön Germany
| | - Matti Jalasvuori
- Department of Biological and Environmental Science / Centre of Excellence in Biological Interactions; University of Jyväskylä; P.O. Box 35 Jyväskylä 40014 Finland
| | - Teppo Hiltunen
- Department of Food and Environmental Sciences / Microbiology and Biotechnology; University of Helsinki; P.O. Box 65 00014 Helsinki Finland
| | - Lutz Becks
- Department of Evolutionary Ecology / Community Dynamics Group; Max Planck Institute for Evolutionary Biology; August Thienemann Street 2 24306 Plön Germany
| |
Collapse
|
15
|
Host and Parasite Evolution in a Tangled Bank. Trends Parasitol 2016; 32:863-873. [PMID: 27599631 DOI: 10.1016/j.pt.2016.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective.
Collapse
|
16
|
Bertelli C, Cissé OH, Rusconi B, Kebbi-Beghdadi C, Croxatto A, Goesmann A, Collyn F, Greub G. CRISPR System Acquisition and Evolution of an Obligate Intracellular Chlamydia-Related Bacterium. Genome Biol Evol 2016; 8:2376-86. [PMID: 27516530 PMCID: PMC5010888 DOI: 10.1093/gbe/evw138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, a new Chlamydia-related organism, Protochlamydia naegleriophila KNic, was discovered within a Naegleria amoeba. To decipher the mechanisms at play in the modeling of genomes from the Protochlamydia genus, we sequenced the full genome of Pr. naegleriophila, which includes a 2,885,090 bp chromosome and a 145,285 bp megaplasmid. For the first time within the Chlamydiales order, we describe the presence of a clustered regularly interspaced short palindromic repeats (CRISPR) system, the immune system of bacteria, located on the chromosome. It is composed of a small CRISPR locus comprising eight repeats and associated cas-cse genes of the subtype I-E. A CRISPR locus is also present within Chlamydia sp. Diamant, another Pr. naegleriophila strain, suggesting that the CRISPR system was acquired by a common ancestor of Pr. naegleriophila, after its divergence from Pr. amoebophila. Both nucleotide bias and comparative genomics approaches identified probable horizontal gene acquisitions within two and four genomic islands in Pr. naegleriophila KNic and Diamant genomes, respectively. The plasmid encodes an F-type conjugative system highly similar to 1) that found in the Pam100G genomic island of Pr. amoebophila UWE25 chromosome, as well as on the plasmid of Rubidus massiliensis and 2) to the three genes remaining in the chromosome of Parachlamydia acanthamoebae strains. Therefore, this conjugative system was likely acquired on an ancestral plasmid before the divergence of Parachlamydiaceae Overall, this new complete Pr. naegleriophila genome sequence enables further investigation of the dynamic processes shaping the genomes of the family Parachlamydiaceae and the genus Protochlamydia.
Collapse
Affiliation(s)
- Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ousmane H Cissé
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Brigida Rusconi
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Antony Croxatto
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Germany
| | - François Collyn
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| |
Collapse
|
17
|
Betts A, Gifford DR, MacLean RC, King KC. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria-phage system. Evolution 2016; 70:969-78. [PMID: 27005577 PMCID: PMC4982092 DOI: 10.1111/evo.12909] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 12/01/2022]
Abstract
Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents.
Collapse
Affiliation(s)
- Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom.
| | - Danna R Gifford
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|