1
|
Beklemisheva VR, Tishakova KV, Romanenko SA, Andreushkova DA, Yudkin VA, Interesova EА, Yang F, Ferguson-Smith MA, Graphodatsky AS, Proskuryakova AA. Detailed cytogenetic analysis of three duck species (the northern pintail, mallard, and common goldeneye) and karyotype evolution in the family Anatidae (Anseriformes, Aves). Vavilovskii Zhurnal Genet Selektsii 2024; 28:759-769. [PMID: 39722672 PMCID: PMC11667572 DOI: 10.18699/vjgb-24-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 12/28/2024] Open
Abstract
Galliformes and Anseriformes are two branches of the Galloanserae group, basal to other Neognathae. In contrast to Galliformes, Anseriformes have not been thoroughly researched by cytogenetic methods. This report is focused on representatives of Anseriformes and the evolution of their chromosome sets. Detailed cytogenetic analysis (G-banding, C- banding, and fluorescence in situ hybridization) was performed on three duck species: the northern pintail (Anas acuta, 2n = 80), the mallard (A. platyrhynchos, 2n = 80), and the common goldeneye (Bucephala clangula, 2n = 80). Using stone curlew (Burhinus oedicnemus, 2n = 42, Charadriiformes) chromosome painting probes, we created homology maps covering macrochromosomes and some microchromosomes. The results indicated a high level of syntenic group conservation among the duck genomes. The two Anas species share their macrochromosome number, whereas in B. clangula, this number is increased due to fissions of two ancestral elements. Additionally, in this species, the presence of massive heterochromatic blocks in most macroautosomes and sex chromosomes was discovered. Localization of clusters of ribosomal DNA and telomere repeats revealed that the duck karyotypes contain some microchromosomes that bear ribosomal RNA genes and/or are enriched for telomere repeats and constitutive heterochromatin. Dot plot (D-GENIES) analysis confirmed the established view about the high level of syntenic group conservation among Anatidae genomes. The new data about the three Anatidae species add knowledge about the transformation of macro- and sex chromosomes of Anseriformes during evolution.
Collapse
Affiliation(s)
- V R Beklemisheva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K V Tishakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Romanenko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Andreushkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Yudkin
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E А Interesova
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Tomsk State University, Tomsk, Russia
| | - F Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - M A Ferguson-Smith
- Cambridge Resource Center for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - A S Graphodatsky
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Proskuryakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Canesin LEC, Vilaça ST, Oliveira RRM, Al-Ajli F, Tracey A, Sims Y, Formenti G, Fedrigo O, Banhos A, Sanaiotti TM, Farias IP, Jarvis ED, Oliveira G, Hrbek T, Solferini V, Aleixo A. A reference genome for the Harpy Eagle reveals steady demographic decline and chromosomal rearrangements in the origin of Accipitriformes. Sci Rep 2024; 14:19925. [PMID: 39261501 PMCID: PMC11390914 DOI: 10.1038/s41598-024-70305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle.
Collapse
Affiliation(s)
| | - Sibelle T Vilaça
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Renato R M Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Farooq Al-Ajli
- Rockefeller University, New York, USA
- Katara Biodiversity Genomics Program, Katara Cultural Village Foundation, Doha, Qatar
| | | | - Ying Sims
- Rockefeller University, New York, USA
| | | | | | - Aureo Banhos
- Universidade Federal do Espírito Santo (UFES), Alegre, Brazil
| | | | | | - Erich D Jarvis
- Rockefeller University, New York, USA
- Howard Hughes Medical Institute (HHMI), New York, USA
| | - Guilherme Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Trinity University, San Antonio, USA
| | - Vera Solferini
- Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Alexandre Aleixo
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil.
| |
Collapse
|
3
|
O’Connor RE, Kretschmer R, Romanov MN, Griffin DK. A Bird's-Eye View of Chromosomic Evolution in the Class Aves. Cells 2024; 13:310. [PMID: 38391923 PMCID: PMC10886771 DOI: 10.3390/cells13040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.
Collapse
Affiliation(s)
- Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| |
Collapse
|
4
|
Wang J, Su W, Hu Y, Li S, O'Brien PCM, Ferguson-Smith MA, Yang F, Nie W. Comparative chromosome maps between the stone curlew and three ciconiiform species (the grey heron, little egret and crested ibis). BMC Ecol Evol 2022; 22:23. [PMID: 35240987 PMCID: PMC8892796 DOI: 10.1186/s12862-022-01979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Previous cytogenetic studies show that the karyotypes of species in Ciconiiformes vary considerably, from 2n = 52 to 78. Their karyotypes include different numbers of small to minute bi-armed chromosomes that have evolved probably by fusions of two ancestral microchromosomes, besides macrochromosomes and dot-like microchromosomes. However, it is impossible to define the inter-species homologies of such small-sized bi-armed chromosomes based on chromosome morphology and banding characteristics. Although painting probes from the chicken (Gallus gallus, GGA) chromosomes 1–9 and Z have been widely used to investigate avian chromosome homologies, GGA microchromosome probes are rarely used in these studies because most GGA microchromosome probes generated by flow sorting often contain multiple GGA microchromosomes. In contrast, the stone curlew (Burhinus oedicnemus, BOE, Charadriiformes) has an atypical low diploid chromosome number (42) karyotype and only 4 pairs of dot-like microchromosomes; a set of chromosome-specific painting probes that cover all BOE chromosomes has been generated. To get a genome-wide view of evolutionary chromosomal rearrangements in different lineages of Ciconiiformes, we used BOE painting probes instead of GGA painting probes to analyze the karyotypes of three ciconiiform species belonging to two different families: the eastern grey heron (Ardea cinerea, ACI, 2n = 64, Ardeidae), the little egret (Egretta garzetta, EGA, 2n = 64, Ardeidae) and the crested ibis (Nipponia nippon, NNI, 2n = 68, Threskiornithidae). Results BOE painting probes display the same hybridization pattern on chromosomes of ACI and EGA, while a different hybridization pattern is observed on chromosomes of NNI. BOE autosome probes detected 21 conserved homologous segments and 5 fusions on the sixteen pairs of recognizable chromosomes of ACI and EGA, while 16 conserved homologous segments and 4 fusions were found on the twelve pairs of recognizable chromosomes of NNI. Only a portion of smaller bi-armed chromosomes in the karyotypes of the ciconiiform species could have evolved from fusions of ancestral microchromosomes. In particular BOE 5, which is the result of a fusion between two segments homologous to GGA 7 and 8 respectively, was retained also as either a single chromosome in ACI (ACI 5) and EGA (EGA 5) or had fused with a part of the BOE 10 equivalent in NNI (NNI 5). Conclusion Our painting results indicate that different chromosome rearrangements occur in different ciconiiform lineages. Some of the small-sized bi-armed chromosomes in ACI, EGA and NNI are derived from the fusions of two microchromosomes, indicating that microchromosome fusions play an important role in ciconiiform chromosome evolution. The fusion segment homologous to GGA 7 and 8 is a potential cytogenetic signature that unites Ardeidae and Threskiornithidae.
Collapse
Affiliation(s)
- Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China
| | - Weiting Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China
| | - Yi Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China
| | - Shengbin Li
- Key Laboratory of Forensic Sciences, Ministry of Health, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China.
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China.
| |
Collapse
|
5
|
Zawadzki LC, Hallgrimsson GT, Veit RR, Rasmussen LM, Boertmann D, Gillies N, Guilford T. Predicting Source Populations of Vagrants Using Breeding Population Data: A Case Study of the Lesser Black-Backed Gull (Larus fuscus). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.637452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vagrancy is critical in facilitating range expansion and colonization through exploration and occupation of potentially suitable habitat. Uncovering origins of vagrants will help us better understand not only species-specific vagrant movements, but how the dynamics of a naturally growing population influence vagrancy, and potentially lead to range expansion. Under the premise that occurrence of vagrants is linked to increasing population growth in the core of the breeding range, we assessed the utility of breeding population survey data to predict source populations of vagrants. Lesser Black-backed Gulls (LBBG) (Larus fuscus) served as our focal species due to their dramatic and well-documented history of vagrancy to North America in the last 30 years. We related annual occurrence of vagrants to indices of breeding population size and growth rate of breeding populations. We propose that the fastest growing population is the most likely source of recent vagrants to North America. Our study shows that it is possible to predict potential source populations of vagrants with breeding population data, but breeding surveys require increased standardization across years to improve models. For the Lesser Black-backed Gull, Iceland’s breeding population likely influenced vagrancy during the early years of colonization, but the major increase in vagrants occurred during a period of growth of Greenland’s population, suggesting that Greenland is the source population of the most recent pulse of vagrant LBBG to North America.
Collapse
|
6
|
Carvalho CA, Furo IO, O’Brien PCM, Pereira J, O’Connor RE, Griffin D, Ferguson-Smith M, de Oliveira EHC. Comparative chromosome painting in Spizaetus tyrannus and Gallus gallus with the use of macro- and microchromosome probes. PLoS One 2021; 16:e0259905. [PMID: 34793511 PMCID: PMC8601422 DOI: 10.1371/journal.pone.0259905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Although most birds show karyotypes with diploid number (2n) around 80, with few macrochromosomes and many microchromosomes pairs, some groups, such as the Accipitriformes, are characterized by a large karyotypic reorganization, which resulted in complements with low diploid numbers, and a smaller number of microchromosomal pairs when compared to other birds. Among Accipitriformes, the Accipitridae family is the most diverse and includes, among other subfamilies, the subfamily Aquilinae, composed of medium to large sized species. The Black-Hawk-Eagle (Spizaetus tyrannus-STY), found in South America, is a member of this subfamily. Available chromosome data for this species includes only conventional staining. Hence, in order to provide additional information on karyotype evolution process within this group, we performed comparative chromosome painting between S. tyrannus and Gallus gallus (GGA). Our results revealed that at least 29 fission-fusion events occurred in the STY karyotype, based on homology with GGA. Fissions occurred mainly in syntenic groups homologous to GGA1-GGA5. On the other hand, the majority of the microchromosomes were found fused to other chromosomal elements in STY, indicating these rearrangements played an important role in the reduction of the 2n to 68. Comparison with hybridization pattern of the Japanese-Mountain-Eagle (Nisaetus nipalensis orientalis), the only Aquilinae analyzed by comparative chromosome painting previously, did not reveal any synapomorphy that could represent a chromosome signature to this subfamily. Therefore, conclusions about karyotype evolution in Aquilinae require additional painting studies.
Collapse
Affiliation(s)
- Carlos A. Carvalho
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Ivanete O. Furo
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, Pará, Brazil
| | | | - Jorge Pereira
- Animal and Veterinary Research Center, Universidade de Trá-os-Montes e Alto douro, Vila Real, Portugal
| | | | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
7
|
Ribas TFA, Pieczarka JC, Griffin DK, Kiazim LG, Nagamachi CY, O Brien PCM, Ferguson-Smith MA, Yang F, Aleixo A, O'Connor RE. Analysis of multiple chromosomal rearrangements in the genome of Willisornis vidua using BAC-FISH and chromosome painting on a supposed conserved karyotype. BMC Ecol Evol 2021; 21:34. [PMID: 33653261 PMCID: PMC7927240 DOI: 10.1186/s12862-021-01768-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1-8, and 38 from microchromosomes 9-28. RESULTS The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. CONCLUSIONS Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.
Collapse
Affiliation(s)
- Talita Fernanda Augusto Ribas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- School of Biosciences, University of Kent, Canterbury, UK
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Lucas G Kiazim
- School of Biosciences, University of Kent, Canterbury, UK
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Patricia Caroline Mary O Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Fengtang Yang
- Cytogenetics Facility, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
8
|
Furo IDO, Kretschmer R, O'Brien PCM, Pereira JCDC, Gunski RJ, Garnero ADV, O'Connor RE, Griffin DK, Ferguson-Smith MA, Oliveira EHCD. Cytotaxonomy of Gallinula melanops (Gruiformes, Rallidae): Karyotype evolution and phylogenetic inference. Genet Mol Biol 2021; 44:e20200241. [PMID: 33821875 PMCID: PMC8022357 DOI: 10.1590/1678-4685-gmb-2020-0241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/29/2021] [Indexed: 11/22/2022] Open
Abstract
Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, PA, Brazil
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, RS, Brazil
- University of Kent, School of Biosciences, Canterbury, United Kingdom
| | - Patricia C M O'Brien
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Jorge Claudio da Costa Pereira
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
- University of Trás-os-Montes and Alto Douro (UTAD), Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Ricardo José Gunski
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas (PPGCB), São Gabriel, RS, Brazil
| | - Analía Del Valle Garnero
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas (PPGCB), São Gabriel, RS, Brazil
| | | | | | - Malcolm A Ferguson-Smith
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Edivaldo Herculano Corrêa de Oliveira
- Instituto Evandro Chagas, Laboratório de Cultura de Tecidos e Citogenética (SAMAM), Ananindeua, PA, Brazil
- Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Belém, PA, Brazil
| |
Collapse
|
9
|
del Priore L, Pigozzi MI. MLH1 focus mapping in the guinea fowl (Numida meleagris) give insights into the crossover landscapes in birds. PLoS One 2020; 15:e0240245. [PMID: 33017431 PMCID: PMC7535058 DOI: 10.1371/journal.pone.0240245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Crossover rates and localization are not homogeneous throughout the genomes. Along the chromosomes of almost all species, domains with high crossover rates alternate with domains where crossover rates are significantly lower than the genome-wide average. The distribution of crossovers along chromosomes constitutes the recombination landscape of a given species and can be analyzed at broadscale using immunostaining of the MLH1 protein, a component of mature recombination nodules found on synaptonemal complexes during pachytene. We scored the MLH1 foci in oocytes of the chicken and the guinea fowl and compared their frequencies in the largest bivalents. The average autosomal number of foci is 62 in the chicken and 44 in the guinea fowl. The lower number in the guinea fowl responds to the occurrence of fewer crossovers in the six largest bivalents, where most MLH1 foci occur within one-fifth of the chromosome length with high polarization towards opposite ends. The skewed distribution of foci in the guinea fowl contrast with the more uniform distribution of numerous foci in the chicken, especially in the four largest bivalents. The crossover distribution observed in the guinea fowl is unusual among Galloanserae and also differs from other, more distantly related birds. We discussed the current evidence showing that the shift towards crossover localization, as observed in the guinea fowl, was not a unique event but also occurred at different moments of bird evolution. A comparative analysis of genome-wide average recombination rates in birds shows variations within narrower limits compared to mammals and the absence of a phylogenetic trend.
Collapse
Affiliation(s)
- Lucía del Priore
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Inés Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Furo IDO, Kretschmer R, O'Brien PC, Pereira JC, Garnero ADV, Gunski RJ, O'Connor RE, Griffin DK, Gomes AJB, Ferguson-Smith MA, de Oliveira EHC. Chromosomal Evolution in the Phylogenetic Context: A Remarkable Karyotype Reorganization in Neotropical Parrot Myiopsitta monachus (Psittacidae). Front Genet 2020; 11:721. [PMID: 32754200 PMCID: PMC7366516 DOI: 10.3389/fgene.2020.00721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Myiopsitta monachus is a small Neotropical parrot (Psittaciformes: Arini Tribe) from subtropical and temperate regions of South America. It has a diploid chromosome number 2n = 48, different from other members of the Arini Tribe that have usually 70 chromosomes. The species has the lowest 2n within the Arini Tribe. In this study, we combined comparative chromosome painting with probes generated from chromosomes of Gallus gallus and Leucopternis albicollis, and FISH with bacterial artificial chromosomes (BACs) selected from the genome library of G. gallus with the aim to shed light on the dynamics of genome reorganization in M. monachus in the phylogenetic context. The homology maps showed a great number of fissions in macrochromosomes, and many fusions between microchromosomes and fragments of macrochromosomes. Our phylogenetic analysis by Maximum Parsimony agree with molecular data, placing M. monachus in a basal position within the Arini Tribe, together with Amazona aestiva (short tailed species). In M. monachus many chromosome rearrangements were found to represent autopomorphic characters, indicating that after this species split as an independent branch, an intensive karyotype reorganization took place. In addition, our results show that M. monachus probes generated by flow cytometry provide novel cytogenetic tools for the detection of avian chromosome rearrangements, since this species presents breakpoints that have not been described in other species.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Patricia Caroline O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge C Pereira
- Animal and Veterinary Research Centre (CEVAV), University of Tràs-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | | | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | | | | | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Edivaldo Herculano Correa de Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
11
|
Kretschmer R, Furo IDO, Gomes AJB, Kiazim LG, Gunski RJ, Garnero ADV, Pereira JC, Ferguson-Smith MA, de Oliveira EHC, Griffin DK, de Freitas TRO, O’Connor RE. A Comprehensive Cytogenetic Analysis of Several Members of the Family Columbidae (Aves, Columbiformes). Genes (Basel) 2020; 11:genes11060632. [PMID: 32521831 PMCID: PMC7349364 DOI: 10.3390/genes11060632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022] Open
Abstract
The Columbidae species (Aves, Columbiformes) show considerable variation in their diploid numbers (2n = 68-86), but there is limited understanding of the events that shaped the extant karyotypes. Hence, we performed whole chromosome painting (wcp) for paints GGA1-10 and bacterial artificial chromosome (BAC) probes for chromosomes GGA11-28 for Columbina passerina, Columbina talpacoti, Patagioenas cayennensis, Geotrygon violacea and Geotrygon montana. Streptopelia decaocto was only investigated with paints because BACs for GGA10-28 had been previously analyzed. We also performed phylogenetic analyses in order to trace the evolutionary history of this family in light of chromosomal changes using our wcp data with chicken probes and from Zenaida auriculata, Columbina picui, Columba livia and Leptotila verreauxi, previously published. G-banding was performed on all these species. Comparative chromosome paint and G-banding results suggested that at least one interchromosomal and many intrachromosomal rearrangements had occurred in the diversification of Columbidae species. On the other hand, a high degree of conservation of microchromosome organization was observed in these species. Our cladistic analysis, considering all the chromosome rearrangements detected, provided strong support for L. verreauxi and P. cayennensis, G. montana and G. violacea, C. passerina and C. talpacoti having sister taxa relationships, as well as for all Columbidae species analyzed herein. Additionally, the chromosome characters were mapped in a consensus phylogenetic topology previously proposed, revealing a pericentric inversion in the chromosome homologous to GGA4 in a chromosomal signature unique to small New World ground doves.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil;
- Correspondence:
| | - Ivanete de Oliveira Furo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
| | | | - Lucas G. Kiazim
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (R.J.G.); (A.d.V.G.)
| | - Analía del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (R.J.G.); (A.d.V.G.)
| | - Jorge C. Pereira
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge CB3 0ES, UK;
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
| | | | - Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
| |
Collapse
|
12
|
Degrandi TM, Barcellos SA, Costa AL, Garnero ADV, Hass I, Gunski RJ. Introducing the Bird Chromosome Database: An Overview of Cytogenetic Studies in Birds. Cytogenet Genome Res 2020; 160:199-205. [PMID: 32369809 DOI: 10.1159/000507768] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Bird chromosomes, which have been investigated scientifically for more than a century, present a number of unique features. In general, bird karyotypes have a high diploid number (2n) of typically around 80 chromosomes that are divided into macro- and microchromosomes. In recent decades, FISH studies using whole chromosome painting probes have shown that the macrochromosomes evolved through both inter- and intrachromosomal rearrangements. However, chromosome painting data are available for only a few bird species, which hinders a more systematic approach to the understanding of the evolutionary history of the enigmatic bird karyotype. Thus, we decided to create an innovative database through compilation of the cytogenetic data available for birds, including chromosome numbers and the results of chromosome painting with chicken (Gallus gallus) probes. The data were obtained through an extensive literature review, which focused on cytogenetic studies published up to 2019. In the first version of the "Bird Chromosome Database (BCD)" (https://sites.unipampa.edu.br/birdchromosomedatabase) we have compiled data on the chromosome numbers of 1,067 bird species and chromosome painting data on 96 species. We found considerable variation in the diploid numbers, which ranged from 40 to 142, although most (around 50%) of the species studied up to now have between 78 and 82 chromosomes. Despite its importance for cytogenetic research, chromosome painting has been applied to less than 1% of all bird species. The BCD will enable researchers to identify the main knowledge gaps in bird cytogenetics, including the most under-sampled groups, and make inferences on chromosomal homologies in phylogenetic studies.
Collapse
|
13
|
Gerbault-Seureau M, Fuchs J, Dutrillaux B. High BrdU Sensitivity of Passeriformes Chromosomes: Conservation of BrdU-Sensitive Fragile Sites on Their Z Chromosomes during Evolution. Cytogenet Genome Res 2019; 157:158-165. [PMID: 30974432 DOI: 10.1159/000499590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 12/29/2022] Open
Abstract
Amongst 15 bird species, representative of 7 orders, recurrent breakages evocating the presence of fragile sites were detected in the chromosomes of the 5 species belonging to Passeriformes. These breaks appeared when 5-bromodeoxyuridine (BrdU) was added to the cell culture medium at a dose inefficient for inducing chromosome structure alterations in other birds and mammals. They involved, similarly in male and female, 3 loci on the Z chromosome of 3 Turdus species (Turdidae). Labeling by BrdU antibody confirmed the correlation between BrdU incorporation into DNA and breakage, especially around and in the sites of breakage. Thus, 3 BrdU-sensitive fragile sites were present in the Z chromosomes of these birds. Three fragile sites were also detected at different locations in the Z chromosomes of the European robin (Erithacus rubecula, Muscicapidae), suggesting that a structural rearrangement occurred during the evolution of Turdidae and Muscicapidae. Chromosome banding confirmed this interpretation. Finally, in the more distantly related species Parus major (Paridae), the almost acrocentric Z chromosome displayed a single BrdU-sensitive fragile site in its short arm, and the W appeared to be pulverized by BrdU incorporation. Although it cannot be excluded that the BrdU-sensitive fragile sites may be involved in rearrangements, their conservation in many species, and possibly all Passeriformes, provides evidence that they do not constitute a pejorative character during evolution.
Collapse
|
14
|
Dos Santos MS, Furo IO, Tagliarini MM, Kretschmer R, O''Brien PCM, Ferguson-Smith MA, de Oliveira EHC. The Karyotype of the Hoatzin (Opisthocomus hoazin) - A Phylogenetic Enigma of the Neornithes. Cytogenet Genome Res 2018; 156:158-164. [PMID: 30472715 DOI: 10.1159/000494707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
The hoatzin (Opisthocomus hoazin Müller, 1776) is a folivorous bird, endemic to the Amazonian region. It presents some unique characteristics, including wing claws and foregut fermentation, which make its phylogenetic relationship to other birds difficult to determine. There have been various attempts to place it among the Galliformes, Gruiformes, Musophagiformes, Cuculiformes, and Charadriiformes, but phylogenetic analyses always show low supporting values. Nowadays, the hoatzin is included in the monotypic order Opisthocomiformes, but the relationship of this order to other groups of birds is still unclear. Although its karyotype resembles the typical avian model, fissions of the syntenic groups corresponding to chicken chromosomes 1 and 2 and 2 fusions were found. The presence of 18S rDNA clusters in 2 pairs of microchromosomes is another derived character. Hence, different rearrangements were detected in the karyotype of the hoatzin, indicating it has been derived from the putative ancestral karyotype by the occurrence of fissions and fusions. However, as these rearrangements are not exclusive to O. hoazin, they do not clarify the phylogenetic position of this enigmatic species.
Collapse
|
15
|
Chromosome Level Genome Assembly and Comparative Genomics between Three Falcon Species Reveals an Unusual Pattern of Genome Organisation. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10040113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Whole genome assemblies are crucial for understanding a wide range of aspects of falcon biology, including morphology, ecology, and physiology, and are thus essential for their care and conservation. A key aspect of the genome of any species is its karyotype, which can then be linked to the whole genome sequence to generate a so-called chromosome-level assembly. Chromosome-level assemblies are essential for marker assisted selection and genotype-phenotype correlations in breeding regimes, as well as determining patterns of gross genomic evolution. To date, only two falcon species have been sequenced and neither initially were assembled to the chromosome level. Falcons have atypical avian karyotypes with fewer chromosomes than other birds, presumably brought about by wholesale fusion. To date, however, published chromosome preparations are of poor quality, few chromosomes have been distinguished and standard ideograms have not been made. The purposes of this study were to generate analyzable karyotypes and ideograms of peregrine, saker, and gyr falcons, report on our recent generation of chromosome level sequence assemblies of peregrine and saker falcons, and for the first time, sequence the gyr falcon genome. Finally, we aimed to generate comparative genomic data between all three species and the reference chicken genome. Results revealed a diploid number of 2n = 50 for peregrine falcon and 2n = 52 for saker and gyr through high quality banded chromosomes. Standard ideograms that are generated here helped to map predicted chromosomal fragments (PCFs) from the genome sequences directly to chromosomes and thus generate chromosome level sequence assemblies for peregrine and saker falcons. Whole genome sequencing was successful in gyr falcon, but read depth and coverage was not sufficient to generate a chromosome level assembly. Nonetheless, comparative genomics revealed no differences in genome organization between gyr and saker falcons. When compared to peregrine falcon, saker/gyr differed by one interchromosomal and seven intrachromosomal rearrangements (a fusion plus seven inversions), whereas peregrine and saker/gyr differ from the reference chicken genome by 14/13 fusions (11 microchromosomal) and six fissions. The chromosomal differences between the species could potentially provide the basis of a screening test for hybrid animals.
Collapse
|
16
|
Ribas TFA, Nagamachi CY, Aleixo A, Pinheiro MLS, O´Brien PCM, Ferguson-Smith MA, Yang F, Suarez P, Pieczarka JC. Chromosome painting in Glyphorynchus spirurus (Vieillot, 1819) detects a new fission in Passeriformes. PLoS One 2018; 13:e0202040. [PMID: 30138388 PMCID: PMC6107148 DOI: 10.1371/journal.pone.0202040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/26/2018] [Indexed: 11/18/2022] Open
Abstract
Glyphorynchus spirurus (GSP), also called the Wedge-billed Woodcreeper (Furnariidae) has an extensive distribution in the Americas, including the Atlantic coast of Brazil. Nevertheless, there is no information about its karyotype or genome organization. To contribute to the knowledge of chromosomal evolution in Passeriformes we analysed the karyotype of Glyphorynchus spirurus by classic and molecular cytogenetics methods. We show that Glyphorynchus spirurus has a 2n = 80 karyotype with a fundamental number (FN) of 84, similar to the avian putative ancestral karyotype (PAK). Glyphorynchus spirurus pair 1 was heteromorphic in the Tapajós population whereby the short arms varied in sizes, possibly due to a pericentric inversion, as described in other Furnariidae birds. FISH with the Histone H5 probe revealed a signal in the pericentromeric region of G. spirurus chromosome 5 and rDNA 18S showed interstitial signal in GSP-1. Chromosome painting with Gallus gallus (GGA) macrochromosomes 1-9 probes showed disruption of chromosome syntenies of GGA-1, 2 and 4 by fission in Glyphorynchus spirurus. Our results confirm that the GGA1 centric fission is a synapomorphic character for the phylogenetic branch composed of Strigiformes, Passeriformes, Columbiformes and Falconiformes. On the other hand, the GGA-2 fission is reported here for the first time in Passeriformes. Chromosome painting with BOE whole chromosome probes confirmed these rearrangements in Glyphorynchus spirurus revealed by Gallus gallus 1-9 probes, in addition to enabling the establishment of genome-wide homology map.
Collapse
Affiliation(s)
- Talita Fernanda Augusto Ribas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- CNPq Researcher, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasilia, Brazil
| | - Alexandre Aleixo
- Department of Zoology, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - Melquizedec Luiz Silva Pinheiro
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Patricia Caroline Mary O´Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Pablo Suarez
- Instituto de Biología Subtropical (IBS), CONICET-UNaM, Puerto Iguazú, Misiones, Argentina
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- CNPq Researcher, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasilia, Brazil
| |
Collapse
|
17
|
Comparative chromosome painting in Columbidae (Columbiformes) reinforces divergence in Passerea and Columbea. Chromosome Res 2018; 26:211-223. [PMID: 29882066 DOI: 10.1007/s10577-018-9580-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
Abstract
Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the karyotype evolution within Columbiformes remains unclear. To delineate the synteny-conserved segments and karyotypic differences among four Columbidae species, we used chromosome painting from Gallus gallus (GGA, 2n = 78) and Leucopternis albicollis (LAL, 2n = 68). Besides that, a set of painting probes for the eared dove, Zenaida auriculata (ZAU, 2n = 76), was generated from flow-sorted chromosomes. Chromosome painting with GGA and ZAU probes showed conservation of the first ten ancestral pairs in Z. auriculata, Columba livia, and Columbina picui, while in Leptotila verreauxi, fusion of the ancestral chromosomes 6 and 7 was observed. However, LAL probes revealed a complex reorganization of ancestral chromosome 1, involving paracentric and pericentric inversions. Because of the presence of similar intrachromosomal rearrangements in the chromosomes corresponding to GGA1q in the Columbidae and Passeriformes species but without a common origin, these results are consistent with the recent proposal of divergence within Neoaves (Passerea and Columbea). In addition, inversions in chromosome 2 were identified in C. picui and L. verreauxi. Thus, in four species of distinct genera of the Columbidae family, unique chromosomal rearrangements have occurred during karyotype evolution, confirming that despite conservation of the ancestral syntenic groups, these chromosomes have been modified by the occurrence of intrachromosomal rearrangements.
Collapse
|
18
|
Ouchia-Benissad S, Ladjali-Mohammedi K. Banding cytogenetics of the Barbary partridge Alectoris barbara and the Chukar partridge Alectoris chukar (Phasianidae): a large conservation with Domestic fowl Gallus domesticus revealed by high resolution chromosomes. COMPARATIVE CYTOGENETICS 2018; 12:171-199. [PMID: 29896323 PMCID: PMC5995975 DOI: 10.3897/compcytogen.v12i2.23743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The development of avian cytogenetics is significantly behind that of mammals. In fact, since the advent of cytogenetic techniques, fewer than 1500 karyotypes have been established. The Barbary partridge Alectoris barbara Bonnaterre, 1790 is a bird of economic interest but its genome has not been studied so far. This species is endemic to North Africa and globally declining. The Chukar partridge Alectoris chukar Gray, 1830 is an introduced species which shares the same habitat area as the Barbary partridge and so there could be introgressive hybridisation. A cytogenetic study has been initiated in order to contribute to the Barbary partridge and the Chukar partridge genome analyses. The GTG, RBG and RHG-banded karyotypes of these species have been described. Primary fibroblast cell lines obtained from embryos were harvested after simple and double thymidine synchronisation. The first eight autosomal pairs and Z sex chromosome have been described at high resolution and compared to those of the domestic fowl Gallus domesticus Linnaeus, 1758. The diploid number was established as 2n = 78 for both partridges, as well as for most species belonging to the Galliformes order, underlying the stability of chromosome number in avian karyotypes. Wide homologies were observed for macrochromosomes and gonosome except for chromosome 4, 7, 8 and Z which present differences in morphology and/or banding pattern. Neocentromere occurrence was suggested for both partridges chromosome 4 with an assumed paracentric inversion in the Chukar partridge chromosome 4. Terminal inversion in the long arm of the Barbary partridge chromosome Z was also found. These rearrangements confirm that the avian karyotypes structure is conserved interchromosomally, but not at the intrachromosomal scale.
Collapse
Affiliation(s)
- Siham Ouchia-Benissad
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, LBCM lab., Team: Genetics of Development. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, Algeria
| | - Kafia Ladjali-Mohammedi
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, LBCM lab., Team: Genetics of Development. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, Algeria
| |
Collapse
|
19
|
Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting. Genes (Basel) 2018; 9:genes9040181. [PMID: 29584697 PMCID: PMC5924523 DOI: 10.3390/genes9040181] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus, which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds.
Collapse
|
20
|
Kapusta A, Suh A. Evolution of bird genomes-a transposon's-eye view. Ann N Y Acad Sci 2016; 1389:164-185. [DOI: 10.1111/nyas.13295] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City Utah
| | - Alexander Suh
- Department of Evolutionary Biology (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|