1
|
Minias P. Evolutionary variation in gene conversion at the avian MHC is explained by fluctuating selection, gene copy numbers and life history. Mol Ecol 2024; 33:e17453. [PMID: 38953291 DOI: 10.1111/mec.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Minias P. The effects of urban life on animal immunity: Adaptations and constraints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165085. [PMID: 37379938 DOI: 10.1016/j.scitotenv.2023.165085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Land transformation, including urbanization, is a dominant form of anthropogenic change to the global environment at the dawn of the Anthropocene epoch. More and more species are brought into direct contact with humans, being either required to develop broad-scale adaptations to urban environment or filtered out from urbanized areas. While behavioural or physiological adaptations are at the forefront of urban biology research, there is accumulating evidence for divergent pathogen pressure across urbanization gradients, requiring adjustments in host immune function. At the same time, host immunity may be constrained by unfavourable components of an urban environment, such as poor-quality food resources, disturbance, or pollution. Here, I reviewed existing evidence for adaptations and constrains in the immune system of urban animals, focusing on the recent implementation of metabarcoding, genomic, transcriptomic, and epigenomic approaches in urban biology research. I show that spatial variation in pathogen pressure across urban and non-urban landscapes is highly complex and may be context-dependent, but there is solid evidence for pathogen-driven immunostimulation in urban-dwelling animals. I also show that genes coding for molecules directly involved in interactions with pathogens are the prime candidates for immunogenetic adaptations to urban life. Evidence emerging from landscape genomics and transcriptomics show that immune adaptations to urban life may have a polygenic nature, but immune traits may not be among the key biological functions experiencing broad-scale microevolutionary changes in response to urbanization. Finally, I provided recommendations for future research, including i) a better integration of different 'omic' approaches to obtain a more complete picture of immune adaptations to urban life in non-model animal taxa, ii) quantification of fitness landscapes for immune phenotypes and genotypes across urbanization gradient, and iii) much broader taxonomic coverage (including invertebrates) necessary to draw more robust conclusions on how general (or taxa-specific) are immune responses of animals to urbanization.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.
| |
Collapse
|
3
|
Surviving despite reduce MHC variation: selection patterns and genetic variation of the endangered Huillín (Lontra provocax). MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Li X, Liu T, Li A, Zhang L, Dai W, Jin L, Sun K, Feng J. Genetic polymorphisms and the independent evolution of major histocompatibility complex class II‐
DRB
in sibling bat species
Rhinolophus episcopus
and
Rhinolophus siamensis. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science Jilin Agricultural University Changchun China
| |
Collapse
|
5
|
Irving AT, Ahn M, Goh G, Anderson DE, Wang LF. Lessons from the host defences of bats, a unique viral reservoir. Nature 2021; 589:363-370. [PMID: 33473223 DOI: 10.1038/s41586-020-03128-0] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/03/2020] [Indexed: 01/30/2023]
Abstract
There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)-as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats-the only flying mammal-display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind.
Collapse
Affiliation(s)
- Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China. .,Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Geraldine Goh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
6
|
Yi X, Donner DM, Marquardt PE, Palmer JM, Jusino MA, Frair J, Lindner DL, Latch EK. Major histocompatibility complex variation is similar in little brown bats before and after white-nose syndrome outbreak. Ecol Evol 2020; 10:10031-10043. [PMID: 33005361 PMCID: PMC7520216 DOI: 10.1002/ece3.6662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022] Open
Abstract
White-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti-Pd immune responses, indicating pathogen-mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre- (Wisconsin) and post- (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014-2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1-5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre- and post-WNS populations, indicating no signal of selection on MHC genes. However, post-WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions.
Collapse
Affiliation(s)
- Xueling Yi
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Deahn M. Donner
- Northern Research StationUSDA Forest ServiceRhinelanderWIUSA
| | | | | | - Michelle A. Jusino
- Northern Research StationUSDA Forest ServiceMadisonWIUSA
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
| | - Jacqueline Frair
- Roosevelt Wild Life StationSUNY College of Environmental Science and ForestrySyracuseNYUSA
| | | | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| |
Collapse
|
7
|
E GX, Chen LP, Zhou DK, Yang BG, Zhang JH, Zhao YJ, Hong QH, Ma YH, Chu MX, Zhang LP, Basang WD, Zhu YB, Han YG, Na RS, Zeng Y, Zhao ZQ, Huang YF, Han JL. Evolutionary relationship and population structure of domestic Bovidae animals based on MHC-linked and neutral autosomal microsatellite markers. Mol Immunol 2020; 124:83-90. [PMID: 32544655 DOI: 10.1016/j.molimm.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex (MHC) genes are critical for disease resistance or susceptibility responsible for host-pathogen interactions determined mainly by extensive polymorphisms in the MHC genes. Here, we examined the diversity and phylogenetic pattern of MHC haplotypes reconstructed using three MHC-linked microsatellite markers in 55 populations of five Bovidae species and compared them with those based on neutral autosomal microsatellite markers (NAMs). Three-hundred-and-forty MHC haplotypes were identified in 1453 Bovidae individuals, suggesting significantly higher polymorphism and heterozygosity compared with those based on NAMs. The ambitious boundaries in population differentiation (phylogenetic network, pairwise FST and STRUCTURE analyses) within and between species assessed using the MHC haplotypes were different from those revealed by NAMs associated closely with speciation, geographical distribution, domestication and management histories. In addition, the mean FST was significantly correlated negatively with the number of observed alleles (NA), observed (HO) and expected (HE) heterozygosity and polymorphism information content (PIC) (P < 0.05) in the MHC haplotype dataset while there was no correction of the mean FST estimates (P> 0.05) between the MHC haplotype and NAMs datasets. Analysis of molecular variance (AMOVA) revealed a lower percentage of total variance (PTV) between species/groups based on the MHC-linked microsatellites than NAMs. Therefore, it was inferred that individuals within populations accumulated as many MHC variants as possible to increase their heterozygosity and thus the survival rate of their affiliated populations and species, which eventually reduced population differentiation and thereby complicated their classification and phylogenetic relationship inference. In summary, host-pathogen coevolution and heterozygote advantage, rather than demographic history, act as key driving forces shaping the MHC diversity within the populations and determining the interspecific MHC diversity.
Collapse
Affiliation(s)
- Guang-Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Li-Peng Chen
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Dong-Ke Zhou
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu-Pei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wang-Dui Basang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Bin Zhu
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.
| |
Collapse
|
8
|
Qurkhuli T, Schwensow N, Brändel SD, Tschapka M, Sommer S. Can extreme MHC class I diversity be a feature of a wide geographic range? The example of Seba's short-tailed bat (Carollia perspicillata). Immunogenetics 2019; 71:575-587. [PMID: 31520134 PMCID: PMC7079943 DOI: 10.1007/s00251-019-01128-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most diverse genetic regions under pathogen-driven selection because of its central role in antigen binding and immunity. The highest MHC variability, both in terms of the number of individual alleles and gene copies, has so far been found in passerine birds; this is probably attributable to passerine adaptation to both a wide geographic range and a diverse array of habitats. If extraordinary high MHC variation and duplication rates are adaptive features under selection during the evolution of ecologically and taxonomically diverse species, then similarly diverse MHC architectures should be found in bats. Bats are an extremely species-rich mammalian group that is globally widely distributed. Many bat species roost in multitudinous groups and have high contact rates with pathogens, conspecifics, and allospecifics. We have characterized the MHC class I diversity in 116 Panamanian Seba's short-tailed bats (Carollia perspicillata), a widely distributed, generalist, neotropical species. We have detected a remarkable individual and population-level diversity of MHC class I genes, with between seven and 22 alleles and a unique genotype in each individual. This diversity is comparable with that reported in passerine birds and, in both taxonomic groups, further variability has evolved through length polymorphisms. Our findings support the hypothesis that, for species with a geographically broader range, high MHC class I variability is particularly adaptive. Investigation of the details of the underlying adaptive processes and the role of the high MHC diversity in pathogen resistance are important next steps for a better understanding of the role of bats in viral evolution and as carriers of several deadly zoonotic viruses.
Collapse
Affiliation(s)
- Tamar Qurkhuli
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Nina Schwensow
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Davy CM, Donaldson ME, Rico Y, Lausen CL, Dogantzis K, Ritchie K, Willis CK, Burles DW, Jung TS, McBurney S, Park A, McAlpine DF, Vanderwolf KJ, Kyle CJ. Prelude to a panzootic: Gene flow and immunogenetic variation in northern little brown myotis vulnerable to bat white-nose syndrome. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fungus that causes bat white-nose syndrome (WNS) recently leaped from eastern North America to the Pacific Coast. The pathogen’s spread is associated with the genetic population structure of a host ( Myotis lucifugus). To understand the fine-scale neutral and immunogenetic variation among northern populations of M. lucifugus, we sampled 1142 individuals across the species’ northern range. We used genotypes at 11 microsatellite loci to reveal the genetic structure of, and directional gene flow among, populations to predict the likely future spread of the pathogen in the northwest and to estimate effective population size ( Ne). We also pyrosequenced the DRB1-like exon 2 of the class II major histocompatibility complex (MHC) in 160 individuals to explore immunogenetic selection by WNS. We identified three major neutral genetic clusters: Eastern, Montane Cordillera (and adjacent sampling areas), and Haida Gwaii, with admixture at intermediate areas and significant substructure west of the prairies. Estimates of Ne were unexpectedly low (289–16 000). Haida Gwaii may provide temporary refuge from WNS, but the western mountain ranges are not barriers to its dispersal in M. lucifugus and are unlikely to slow its spread. Our major histocompatibility complex (MHC) data suggest potential selection by WNS on the MHC, but gene duplication limited the immunogenetic analyses.
Collapse
Affiliation(s)
- Christina M. Davy
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Yessica Rico
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Catedrático CONACYT, Instituto de Ecología A.C., Centro Regional del Bajío, Avenida Lázaro Cárdenas 253, Pátzcuaro, Michoacán 61600, México
| | - Cori L. Lausen
- Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC V0G 1M0, Canada
| | - Kathleen Dogantzis
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Kyle Ritchie
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Craig K.R. Willis
- Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Douglas W. Burles
- Gwaii Haanas National Park Reserve/Haida Heritage Site, P.O. Box 37, Queen Charlotte City, BC V0T 1S0, Canada
| | - Thomas S. Jung
- Yukon Department of Environment, P.O. Box 2703, Whitehorse, YT Y1A 2C6, Canada
| | - Scott McBurney
- Canadian Wildlife Health Cooperative, Atlantic Region, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Allysia Park
- Canadian Wildlife Health Cooperative, Atlantic Region, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Donald F. McAlpine
- New Brunswick Museum, 277 Douglas Avenue, Saint John, NB E2K 1E5, Canada
| | - Karen J. Vanderwolf
- New Brunswick Museum, 277 Douglas Avenue, Saint John, NB E2K 1E5, Canada
- Canadian Wildlife Federation, 350 Promenade Michael Cowpland Drive, Kanata, ON K2M 2G4, Canada
| | - Christopher J. Kyle
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
10
|
Ng JHJ, Tachedjian M, Wang LF, Baker ML. Insights into the ancestral organisation of the mammalian MHC class II region from the genome of the pteropid bat, Pteropus alecto. BMC Genomics 2017; 18:388. [PMID: 28521747 PMCID: PMC5437515 DOI: 10.1186/s12864-017-3760-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bats are an extremely successful group of mammals and possess a variety of unique characteristics, including their ability to co-exist with a diverse range of pathogens. The major histocompatibility complex (MHC) is the most gene dense and polymorphic region of the genome and MHC class II (MHC-II) molecules play a vital role in the presentation of antigens derived from extracellular pathogens and activation of the adaptive immune response. Characterisation of the MHC-II region of bats is crucial for understanding the evolution of the MHC and of the role of pathogens in shaping the immune system. RESULTS Here we describe the relatively contracted MHC-II region of the Australian black flying-fox (Pteropus alecto), providing the first detailed insight into the MHC-II region of any species of bat. Twelve MHC-II genes, including one locus (DRB2) located outside the class II region, were identified on a single scaffold in the bat genome. The presence of a class II locus outside the MHC-II region is atypical and provides evidence for an ancient class II duplication block. Two non-classical loci, DO and DM and two classical, DQ and DR loci, were identified in P. alecto. A putative classical, DPB pseudogene was also identified. The bat's antigen processing cluster, though contracted, remains highly conserved, thus supporting its importance in antigen presentation and disease resistance. CONCLUSIONS This detailed characterisation of the bat MHC-II region helps to fill a phylogenetic gap in the evolution of the mammalian class II region and is a stepping stone towards better understanding of the immune responses in bats to viral, bacterial, fungal and parasitic infections.
Collapse
Affiliation(s)
- Justin H J Ng
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
| | - Mary Tachedjian
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia.
| |
Collapse
|