1
|
Prieto-Baños S, Layton KKS. Tracing the evolution of key traits in dorid nudibranchs. PLoS One 2025; 20:e0317704. [PMID: 40173132 PMCID: PMC11964261 DOI: 10.1371/journal.pone.0317704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/03/2025] [Indexed: 04/04/2025] Open
Abstract
Reconstructing trait evolution is critically important for elucidating the processes generating biodiversity. However, this work is in its infancy in non-model clades for which we lack a basic understanding of their ecology and biology. Here, we compile information about prey preference, chemical acquisition and colour pattern in dorid nudibranchs (Nudibranchia: Doridoidei) and reconstruct their ancestral states using a multi-gene phylogeny to investigate the evolution of these key traits. Our analyses show that the most recent common ancestor (MRCA) of Doridoidei preferred sponge prey from which they sequestered metabolites, and subsequent shifts to different prey types and de novo synthesis of defensive compounds occurred multiple times independently across the phylogeny. Additionally, the MRCA likely exhibited complex colour patterns, including spots or stripes, with uniform morphotypes evolving in most families. Despite the fact that many dorid nudibranchs derive both metabolites and pigments from their prey, we found no evidence of correlated evolution amongst these traits. As part of this work, we present a multi-gene phylogeny for Doridoidei with representatives from 88 genera and 18 families, but there remain issues with poor support across the tree. Nonetheless, for the first time, we explore the evolution of key traits that contributed to the diversification of dorid nudibranchs, highlighting the need for more refined trait data and greater phylogenetic resolution for future work.
Collapse
Affiliation(s)
- Silvia Prieto-Baños
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kara K. S. Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
2
|
Xu B, Kong L, Sun J, Zhang J, Zhang Y, Song H, Li Q, Uribe JE, Halanych KM, Cai C, Dong YW, Wang S, Li Y. Molluscan systematics: historical perspectives and the way ahead. Biol Rev Camb Philos Soc 2025; 100:672-697. [PMID: 39505387 DOI: 10.1111/brv.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Mollusca, the second-most diverse animal phylum, is estimated to have over 100,000 living species with great genetic and phenotypic diversity, a rich fossil record, and a considerable evolutionary significance. Early work on molluscan systematics was grounded in morphological and anatomical studies. With the transition from oligo gene Sanger sequencing to cutting-edge genomic sequencing technologies, molecular data has been increasingly utilised, providing abundant information for reconstructing the molluscan phylogenetic tree. However, relationships among and within most major lineages of Mollusca have long been contentious, often due to limited genetic markers, insufficient taxon sampling and phylogenetic conflict. Fortunately, remarkable progress in molluscan systematics has been made in recent years, which has shed light on how major molluscan groups have evolved. In this review of molluscan systematics, we first synthesise the current understanding of the molluscan Tree of Life at higher taxonomic levels. We then discuss how micromolluscs, which have adult individuals with a body size smaller than 5 mm, offer unique insights into Mollusca's vast diversity and deep phylogeny. Despite recent advancements, our knowledge of molluscan systematics and phylogeny still needs refinement. Further advancements in molluscan systematics will arise from integrating comprehensive data sets, including genome-scale data, exceptional fossils, and digital morphological data (including internal structures). Enhanced access to these data sets, combined with increased collaboration among morphologists, palaeontologists, evolutionary developmental biologists, and molecular phylogeneticists, will significantly advance this field.
Collapse
Affiliation(s)
- Biyang Xu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institude of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junlong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laoshan Laboratory, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Marine Biological Museum, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 1111 Haibin Road, Guangzhou, 510301, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2 C. de José Gutiérrez Abascal, Madrid, 28006, Spain
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, 1000 Madison Drive NW, Washington, 20013-7012, DC, USA
| | - Kenneth M Halanych
- Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, 28409, NC, USA
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shi Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou, 511458, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| |
Collapse
|
3
|
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, Kocot KM, Arbizu PM, Moles J, Schell T, Schwabe E, Sun J, Wong NLWS, Yap-Chiongco M, Sigwart JD. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science 2025; 387:1001-1007. [PMID: 40014700 DOI: 10.1126/science.ads0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 03/01/2025]
Abstract
Extreme morphological disparity within Mollusca has long confounded efforts to reconstruct a stable backbone phylogeny for the phylum. Familiar molluscan groups-gastropods, bivalves, and cephalopods-each represent a diverse radiation with myriad morphological, ecological, and behavioral adaptations. The phylum further encompasses many more unfamiliar experiments in animal body-plan evolution. In this work, we reconstructed the phylogeny for living Mollusca on the basis of metazoan BUSCO (Benchmarking Universal Single-Copy Orthologs) genes extracted from 77 (13 new) genomes, including multiple members of all eight classes with two high-quality genome assemblies for monoplacophorans. Our analyses confirm a phylogeny proposed from morphology and show widespread genomic variation. The flexibility of the molluscan genome likely explains both historic challenges with their genomes and their evolutionary success.
Collapse
Affiliation(s)
- Zeyuan Chen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Departamento de Biologia Marina, Universidad Catolica del Norte, Coquimbo, Chile
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Maria Teresa Gonzalez
- Instituto Ciencias Naturales "Alexander von Humboldt," Universidad de Antofagasta, FACIMAR, Antofagasta, Chile
| | - Vanessa Liz González
- Informatics and Data Science Center, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Carola Greve
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, USA
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tilman Schell
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | | | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Meghan Yap-Chiongco
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Julia D Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Galià-Camps C, Schell T, Enguídanos A, Pegueroles C, Arnedo MA, Ballesteros M, Valdés Á, Greve C. Jumping through hoops: Structural rearrangements and accelerated mutation rates on Dendrodorididae (Mollusca: Nudibranchia) mitogenomes rumble their evolution. Mol Phylogenet Evol 2024; 201:108218. [PMID: 39424089 DOI: 10.1016/j.ympev.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The systematics of the family Dendrodorididae, with only three valid genera, is a challenge for integrative taxonomists. Its members lack hard structures for morphological comparisons and their mitochondrial and nuclear markers provide contradictory phylogenetic signals, making phylogenetic reconstructions difficult. This molecular discordance has been hypothesized to be the result of nuclear pseudogenes or exogenous contamination. However, these hypotheses have not been tested. Here, we assembled the first genome drafts of seven Dendrodorididae species to investigate the evolutionary processes of this family. Two of the mitogenomes displayed an identical structural rearrangement involving the translocation of three coding genes and five tRNAs, described for the first time in nudibranchs. In addition, we found particularly high dN and dN/dS values and multiple insertions and deletions on the mitochondrial genes of smooth Dendrodoris. In contrast, nuclear single-copy ortholog genes showed no such mutational differences. Models of protein structures from mitochondrial genes are conserved, suggesting conserved functionality. Phylogenies using mitogenomic and nuclear data showed that species with rearranged mitogenomes form a clade, although Dendrodorididae relationships remained unresolved. The present study provides novel evidence for accelerated mutation rates in the mitogenomes of Dendrodorididae, which presumably have implications on respiratory adaptation, and highlights the importance of using genomic data to unveil rare evolutionary processes, crucial for correctly inferring phylogenies.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, 17300 Blanes, Girona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Alba Enguídanos
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Cinta Pegueroles
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Manuel Ballesteros
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Li F, Li W, Zhang Y, Wang A, Liu C, Gu Z, Yang Y. The molecular phylogeny of Caenogastropoda (Mollusca, Gastropoda) based on mitochondrial genomes and nuclear genes. Gene 2024; 928:148790. [PMID: 39053659 DOI: 10.1016/j.gene.2024.148790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Comprising about 60 % of gastropod diversity, caenogastropods display almost all kinds of shell forms and include many commercially important marine groups. Although the monophyly of Caenogastropoda has been widely accepted, thier internal phylogenetic relationships remain unclear. In the present study, a total of 27 caenogastropods belonging to eight superfamilies were sequenced and used for phylogenetic reconstruction. All newly sequenced mitogenomes adhered to the consensus gene order of caenogastropods, except for those of Vanikoroidea, Vermetoidea and Cerithioidea, which involved protein-coding genes. The reconstructed mitogenomic phylogeny suggested the monophylies of Architaenioglossa, Sorbeoconcha, Hypsogastropoda and the siphonate clade. The present study also identified a close affinity among Cypraeoidea, Ficoidea, Tonnoidea, and Neogastropoda, supported by the presence of a pleurembolic proboscis. The monophyly of Neogastropoda was not supported, as Cancellariidae was found to be sister to the limpet-shaped group Calyptraeoidea, and (Tonooidea + Ficoidea) were sister to the remaining neogastropods. This study provides important information for better understanding the evolution of caenogastropods, as well as for the protection and utilization of these diverse and economically significant marine resources.
Collapse
Affiliation(s)
- Fengping Li
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Wanying Li
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Aimin Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Chunsheng Liu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Zhifeng Gu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yi Yang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China.
| |
Collapse
|
6
|
Galià-Camps C, Araujo AK, Carmona L, Martín-Hervás MDR, Pola M, Palero F, Cervera JL. New mitogenomes of Runcinidae and Facelinidae: two understudied heterobranch families (Mollusca: Gastropoda). Mitochondrial DNA B Resour 2024; 9:771-776. [PMID: 38919811 PMCID: PMC11198154 DOI: 10.1080/23802359.2024.2363365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Here, we present the mitochondrial sequences of two sea slugs (Heterobranchia): Runcina aurata and Facelina auriculata, the latter being the type species of the family. The mitochondrial genomes are 14,282 and 14,171bp in length, respectively, with a complete set of 13 PCGs, 2 rRNAs, and 22 tRNAs. None of the mitogenomes show gene reorganization, keeping the standard mitogenomic structure of Heterobranchia. Nucleotide composition differs significantly between them, with R. aurata showing the most AT-rich mitogenome (25.7% GC content) reported to date in Heterobranchia, and F. auriculata showing a rich GC content (35%) compared with other heterobranch mitochondrial genomes.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Ana Karla Araujo
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Leila Carmona
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - María del Rosario Martín-Hervás
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Marta Pola
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, CSIC, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), CSIC, Madrid, Spain
| | - Ferran Palero
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Juan Lucas Cervera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| |
Collapse
|
7
|
Stelbrink B, von Rintelen T, Marwoto RM, Salzburger W. Mitogenomes do not substantially improve phylogenetic resolution in a young non-model adaptive radiation of freshwater gastropods. BMC Ecol Evol 2024; 24:42. [PMID: 38589809 PMCID: PMC11000327 DOI: 10.1186/s12862-024-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Species flocks in ancient lakes, and particularly those arising from adaptive radiation, make up the bulk of overall taxonomic and morphological diversity in these insular ecosystems. For these mostly young species assemblages, classical mitochondrial barcoding markers have so far been key to disentangle interspecific relationships. However, with the rise and further development of next-generation sequencing (NGS) methods and mapping tools, genome-wide data have become an increasingly important source of information even for non-model groups. RESULTS Here, we provide, for the first time, a comprehensive mitogenome dataset of freshwater gastropods endemic to Sulawesi and thus of an ancient lake invertebrate species flock in general. We applied low-coverage whole-genome sequencing for a total of 78 individuals including 27 out of the 28 Tylomelania morphospecies from the Malili lake system as well as selected representatives from Lake Poso and adjacent catchments. Our aim was to assess whether mitogenomes considerably contribute to the phylogenetic resolution within this young species flock. Interestingly, we identified a high number of variable and parsimony-informative sites across the other 'non-traditional' mitochondrial loci. However, although the overall support was very high, the topology obtained was largely congruent with previously published single-locus phylogenies. Several clades remained unresolved and a large number of species was recovered polyphyletic, indicative of both rapid diversification and mitochondrial introgression. CONCLUSIONS This once again illustrates that, despite the higher number of characters available, mitogenomes behave like a single locus and thus can only make a limited contribution to resolving species boundaries, particularly when introgression events are involved.
Collapse
Affiliation(s)
- Björn Stelbrink
- Justus Liebig University Giessen, Giessen, Germany.
- University of Basel, Basel, Switzerland.
| | - Thomas von Rintelen
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ristiyanti M Marwoto
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, BRIN Gedung Widyasatwaloka, Cibinong, Indonesia
| | | |
Collapse
|
8
|
Struck TH, Golombek A, Hoesel C, Dimitrov D, Elgetany AH. Mitochondrial Genome Evolution in Annelida-A Systematic Study on Conservative and Variable Gene Orders and the Factors Influencing its Evolution. Syst Biol 2023; 72:925-945. [PMID: 37083277 PMCID: PMC10405356 DOI: 10.1093/sysbio/syad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
The mitochondrial genomes of Bilateria are relatively conserved in their protein-coding, rRNA, and tRNA gene complement, but the order of these genes can range from very conserved to very variable depending on the taxon. The supposedly conserved gene order of Annelida has been used to support the placement of some taxa within Annelida. Recently, authors have cast doubts on the conserved nature of the annelid gene order. Various factors may influence gene order variability including, among others, increased substitution rates, base composition differences, structure of noncoding regions, parasitism, living in extreme habitats, short generation times, and biomineralization. However, these analyses were neither done systematically nor based on well-established reference trees. Several focused on only a few of these factors and biological factors were usually explored ad-hoc without rigorous testing or correlation analyses. Herein, we investigated the variability and evolution of the annelid gene order and the factors that potentially influenced its evolution, using a comprehensive and systematic approach. The analyses were based on 170 genomes, including 33 previously unrepresented species. Our analyses included 706 different molecular properties, 20 life-history and ecological traits, and a reference tree corresponding to recent improvements concerning the annelid tree. The results showed that the gene order with and without tRNAs is generally conserved. However, individual taxa exhibit higher degrees of variability. None of the analyzed life-history and ecological traits explained the observed variability across mitochondrial gene orders. In contrast, the combination and interaction of the best-predicting factors for substitution rate and base composition explained up to 30% of the observed variability. Accordingly, correlation analyses of different molecular properties of the mitochondrial genomes showed an intricate network of direct and indirect correlations between the different molecular factors. Hence, gene order evolution seems to be driven by molecular evolutionary aspects rather than by life history or ecology. On the other hand, variability of the gene order does not predict if a taxon is difficult to place in molecular phylogenetic reconstructions using sequence data or not. We also discuss the molecular properties of annelid mitochondrial genomes considering canonical views on gene evolution and potential reasons why the canonical views do not always fit to the observed patterns without making some adjustments. [Annelida; compositional biases; ecology; gene order; life history; macroevolution; mitochondrial genomes; substitution rates.].
Collapse
Affiliation(s)
- Torsten H Struck
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Anja Golombek
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Christoph Hoesel
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Asmaa Haris Elgetany
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Central zone, 34517, Egypt
| |
Collapse
|
9
|
Ossenbrügger H, Neiber MT, Hausdorf B. Diversity of
Siphonaria
Sowerby I, 1823 (Gastropoda, Siphonariidae) in the Seychelles Bank and beyond. ZOOL SCR 2022. [DOI: 10.1111/zsc.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Holger Ossenbrügger
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg Germany
- Institute of Zoology Universität Hamburg Hamburg Germany
| | - Marco T. Neiber
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg Germany
- Department of Biodiversity Research Universität Hamburg Hamburg Germany
| | - Bernhard Hausdorf
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg Germany
- Institute of Zoology Universität Hamburg Hamburg Germany
| |
Collapse
|
10
|
Mitochondrial genomes provide insight into interfamilial relationships within Pycnogonida. Polar Biol 2022. [DOI: 10.1007/s00300-022-03085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Loker ES, DeJong RJ, Brant SV. Scratching the Itch: Updated Perspectives on the Schistosomes Responsible for Swimmer's Itch around the World. Pathogens 2022; 11:587. [PMID: 35631108 PMCID: PMC9144223 DOI: 10.3390/pathogens11050587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023] Open
Abstract
Although most studies of digenetic trematodes of the family Schistosomatidae dwell on representatives causing human schistosomiasis, the majority of the 130 identified species of schistosomes infect birds or non-human mammals. The cercariae of many of these species can cause swimmer's itch when they penetrate human skin. Recent years have witnessed a dramatic increase in our understanding of schistosome diversity, now encompassing 17 genera with eight more lineages awaiting description. Collectively, schistosomes exploit 16 families of caenogastropod or heterobranch gastropod intermediate hosts. Basal lineages today are found in marine gastropods and birds, but subsequent diversification has largely taken place in freshwater, with some reversions to marine habitats. It seems increasingly likely that schistosomes have on two separate occasions colonized mammals. Swimmer's itch is a complex zoonotic disease manifested through several different routes of transmission involving a diversity of different host species. Swimmer's itch also exemplifies the value of adopting the One Health perspective in understanding disease transmission and abundance because the schistosomes involved have complex life cycles that interface with numerous species and abiotic components of their aquatic environments. Given the progress made in revealing their diversity and biology, and the wealth of questions posed by itch-causing schistosomes, they provide excellent models for implementation of long-term interdisciplinary studies focused on issues pertinent to disease ecology, the One Health paradigm, and the impacts of climate change, biological invasions and other environmental perturbations.
Collapse
Affiliation(s)
- Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Parasites Division, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Randall J. DeJong
- Department of Biology, Calvin University, Grand Rapids, MI 49546, USA;
| | - Sara V. Brant
- Center for Evolutionary and Theoretical Immunology, Parasites Division, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| |
Collapse
|
12
|
Krug PJ, Caplins SA, Algoso K, Thomas K, Valdés ÁA, Wade R, Wong NLWS, Eernisse DJ, Kocot KM. Phylogenomic resolution of the root of Panpulmonata, a hyperdiverse radiation of gastropods: new insight into the evolution of air breathing. Proc Biol Sci 2022; 289:20211855. [PMID: 35382597 PMCID: PMC8984808 DOI: 10.1098/rspb.2021.1855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
Transitions to terrestriality have been associated with major animal radiations including land snails and slugs in Stylommatophora (>20 000 described species), the most successful lineage of 'pulmonates' (a non-monophyletic assemblage of air-breathing gastropods). However, phylogenomic studies have failed to robustly resolve relationships among traditional pulmonates and affiliated marine lineages that comprise clade Panpulmonata (Mollusca, Gastropoda), especially two key taxa: Sacoglossa, a group including photosynthetic sea slugs, and Siphonarioidea, intertidal limpet-like snails with a non-contractile pneumostome (narrow opening to a vascularized pallial cavity). To clarify the evolutionary history of the panpulmonate radiation, we performed phylogenomic analyses on datasets of up to 1160 nuclear protein-coding genes for 110 gastropods, including 40 new transcriptomes for Sacoglossa and Siphonarioidea. All 18 analyses recovered Sacoglossa as the sister group to a clade we named Pneumopulmonata, within which Siphonarioidea was sister to the remaining lineages in most analyses. Comparative modelling indicated shifts to marginal habitat (estuarine, mangrove and intertidal zones) preceded and accelerated the evolution of a pneumostome, present in the pneumopulmonate ancestor along with a one-sided plicate gill. These findings highlight key intermediate stages in the evolution of air-breathing snails, supporting the hypothesis that adaptation to marginal zones played an important role in major sea-to-land transitions.
Collapse
Affiliation(s)
- Patrick J. Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA
| | | | - Krisha Algoso
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA
| | - Kanique Thomas
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA
| | - Ángel A. Valdés
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Rachael Wade
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nur Leena W. S. Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Douglas J. Eernisse
- Department of Biological Science, California State University, Fullerton, CA 92834, USA
| | - Kevin M. Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
13
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Young MK, Smith R, Pilgrim KL, Schwartz MK. Molecular species delimitation refines the taxonomy of native and nonnative physinine snails in North America. Sci Rep 2021; 11:21739. [PMID: 34741094 PMCID: PMC8571305 DOI: 10.1038/s41598-021-01197-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
Being able to associate an organism with a scientific name is fundamental to our understanding of its conservation status, ecology, and evolutionary history. Gastropods in the subfamily Physinae have been especially troublesome to identify because morphological variation can be unrelated to interspecific differences and there have been widespread introductions of an unknown number of species, which has led to a speculative taxonomy. To resolve uncertainty about species diversity in North America, we targeted an array of single-locus species delimitation methods at publically available specimens and new specimens collected from the Snake River basin, USA to generate species hypotheses, corroborated using nuclear analyses of the newly collected specimens. A total-evidence approach delineated 18 candidate species, revealing cryptic diversity within recognized taxa and a lack of support for other named taxa. Hypotheses regarding certain local endemics were confirmed, as were widespread introductions, including of an undescribed taxon likely belonging to a separate genus in southeastern Idaho for which the closest relatives are in southeast Asia. Overall, single-locus species delimitation was an effective first step toward understanding the diversity and distribution of species in Physinae and to guiding future investigation sampling and analyses of species hypotheses.
Collapse
Affiliation(s)
- Michael K. Young
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA
| | - Rebecca Smith
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA ,grid.411461.70000 0001 2315 1184Present Address: Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996 USA
| | - Kristine L. Pilgrim
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA
| | - Michael K. Schwartz
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA
| |
Collapse
|
15
|
Brenzinger B, Schrödl M, Kano Y. Origin and significance of two pairs of head tentacles in the radiation of euthyneuran sea slugs and land snails. Sci Rep 2021; 11:21016. [PMID: 34697382 PMCID: PMC8545979 DOI: 10.1038/s41598-021-99172-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
The gastropod infraclass Euthyneura comprises at least 30,000 species of snails and slugs, including nudibranch sea slugs, sea hares and garden snails, that flourish in various environments on earth. A unique morphological feature of Euthyneura is the presence of two pairs of sensory head tentacles with different shapes and functions: the anterior labial tentacles and the posterior rhinophores or eyestalks. Here we combine molecular phylogenetic and microanatomical evidence that suggests the two pairs of head tentacles have originated by splitting of the original single tentacle pair (with two parallel nerve cords in each tentacle) as seen in many other gastropods. Minute deep-sea snails of Tjaernoeia and Parvaplustrum, which in our phylogeny belonged to the euthyneurans’ sister group (new infraclass Mesoneura), have tentacles that are split along much of their lengths but associated nerves and epidermal sense organs are not as specialized as in Euthyneura. We suggest that further elaboration of cephalic sense organs in Euthyneura closely coincided with their ecological radiation and drastic modification of body plans. The monotypic family Parvaplustridae nov., superfamily Tjaernoeioidea nov. (Tjaernoeiidae + Parvaplustridae), and new major clade Tetratentaculata nov. (Mesoneura nov. + Euthyneura) are also proposed based on their phylogenetic relationships and shared morphological traits.
Collapse
Affiliation(s)
- Bastian Brenzinger
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany. .,Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany.,Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Großhadernerstr. 2, 82152, Planegg-Martinsried, Germany.,SNSB-Bavarian State Collection of Paleontology and Geology, GeoBioCenter LMU, Richard-Wagner-Str. 10, 80333, Munich, Germany
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|