1
|
Maroco D, Parreira R, dos Santos FA, Lopes Â, Simões F, Orge L, Seabra SG, Fagulha T, Brazio E, Henriques AM, Duarte A, Duarte MD, Barros SC. Tracking the Pathways of West Nile Virus: Phylogenetic and Phylogeographic Analysis of a 2024 Isolate from Portugal. Microorganisms 2025; 13:585. [PMID: 40142478 PMCID: PMC11945232 DOI: 10.3390/microorganisms13030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Birds are natural hosts for numerous zoonotic viral pathogens, including West Nile virus, which is transmitted by mosquitoes. During migration, birds can act as vectors for the geographic spread of viruses. WNV is endemic in Portugal, causing annual outbreaks, particularly in horses. Here, we report the first detection of an avian WNV strain isolated from a wild bird (Astur gentilis) collected in Portugal in mid-September 2024. Phylogenetic and phylogeographic analyses were conducted to trace the virus's origin and potential transmission routes, integrating the obtained full-length genomic sequence with a dataset of WNV strains from Africa and Europe (1951-2024). Phylogenetic analysis of 92 WNV sequences spanning lineages 1-5 positioned the 2024 isolate within lineage 1a. Results obtained using phylodynamics-based analysis showed that this isolate likely originated in Africa and reached Portugal via Spain's Cádiz coast, confirming previously described WNV dispersal patterns between Africa and Europe. The data suggest a migratory route from West Africa to Europe, extending through countries such as Senegal, Mauritania, Morocco, Portugal, Spain, Italy, and France, indicating a reciprocal flow of the virus back into Africa. These transmission routes match the migratory paths of Afro-Palearctic bird species, emphasizing the role of migratory birds in the long-distance spread of WNV.
Collapse
Affiliation(s)
- Diogo Maroco
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
- Institute of Hygiene and Tropical Medicine, NOVA University, Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards, Global Health (LA-REAL), Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (R.P.); (S.G.S.)
| | - Ricardo Parreira
- Institute of Hygiene and Tropical Medicine, NOVA University, Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards, Global Health (LA-REAL), Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (R.P.); (S.G.S.)
- Medical Microbiology Unit, Institute of Hygiene and Tropical Medicine, NOVA University, Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards, Global Health (LA-REAL), Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Fábio Abade dos Santos
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
- CECAV-Centro de Ciência Animal e Veterinária, Faculdade de Medicina Veterinária de Lisboa-Universidade Lusófona, Centro Universitário de Lisboa, 1749-024 Lisbon, Portugal
| | - Ângela Lopes
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
| | - Fernanda Simões
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
| | - Leonor Orge
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
- CECAV-Centro de Ciência Animal e Veterinária, Faculdade de Medicina Veterinária de Lisboa-Universidade Lusófona, Centro Universitário de Lisboa, 1749-024 Lisbon, Portugal
| | - Sofia G. Seabra
- Institute of Hygiene and Tropical Medicine, NOVA University, Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards, Global Health (LA-REAL), Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (R.P.); (S.G.S.)
- Global Public Health Unit, Institute of Hygiene and Tropical Medicine, NOVA University, Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards, Global Health (LA-REAL), Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Teresa Fagulha
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
| | - Erica Brazio
- Wildlife Rehabilitation Centre of Lisbon (LxCRAS), Parque Florestal de Monsanto, Monte das Perdizes, 1500-068 Lisbon, Portugal;
| | - Ana M. Henriques
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
| | - Ana Duarte
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Faculdade de Medicina Veterinária, Centre for Interdisciplinary Research in Animal Health (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Margarida D. Duarte
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Faculdade de Medicina Veterinária, Centre for Interdisciplinary Research in Animal Health (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sílvia C. Barros
- Nacional Institute of Agrarian and Veterinarian Research, Quinta do Marquês, Av. da República, 2780-157 Oeiras, Portugal; (D.M.); (F.A.d.S.); (Â.L.); (F.S.); (L.O.); (T.F.); (A.M.H.); (A.D.); (M.D.D.)
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
2
|
Vignjević G, Bušić N, Turić N, Varga Z, Zana B, Ábrahám Á, Kurucz K, Vrućina I, Merdić E. First Detection of West Nile Virus Lineage 2 in Culex pipiens Vectors in Croatia. Pathogens 2024; 13:1131. [PMID: 39770390 PMCID: PMC11676261 DOI: 10.3390/pathogens13121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection. This study aimed to quantify the prevalence of WNV infection in mosquitoes and to identify the circulating viral lineage in eastern Croatia. Mosquito traps were set up in rural and urban areas during the 2021-2023 seasons, and the collected specimens were identified morphologically. Mosquito species Culex pipiens and Aedes albopictus were tested for Flaviviruses using conventional PCR in a heminested system. The positive samples were then subjected to a specific real-time PCR designed to detect WNV. A total of 385 mosquito pools were tested, and positive pools were found in samples from Osijek-Baranja and Vukovar-Srijem, both of which contained Cx. pipiens mosquitoes. Sequencing of amplicons revealed WNV lineage 2 partial NS5 gene sequences. Phylogenetic analysis suggests the Hungarian origin of strain, which complements birds' migratory routes. These findings indicate the first detection of WNV in mosquitoes in Croatia. This suggests that human cases in this region are likely due to infections with lineage 2 transmitted by local Culex mosquitoes.
Collapse
Affiliation(s)
- Goran Vignjević
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| | - Nataša Bušić
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| | - Nataša Turić
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
- Teaching Institute of Public Health of Osijek-Baranja County, 31000 Osijek, Croatia
| | - Zsaklin Varga
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7600 Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
| | - Ágota Ábrahám
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentagothai Research Centre, University of Pécs, 7600 Pécs, Hungary; (Z.V.); (B.Z.); (Á.Á.); (K.K.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7600 Pécs, Hungary
| | - Ivana Vrućina
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| | - Enrih Merdić
- Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia; (G.V.); (I.V.); (E.M.)
| |
Collapse
|
3
|
Šolaja S, Goletić Š, Veljović L, Glišić D. Complex patterns of WNV evolution: a focus on the Western Balkans and Central Europe. Front Vet Sci 2024; 11:1494746. [PMID: 39634759 PMCID: PMC11614783 DOI: 10.3389/fvets.2024.1494746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction West Nile Virus, an emerging zoonotic pathogen, has been circulating in Serbia for over a decade, with its first detection in mosquitoes in 2010. Since then, the virus has led to increasing cases in both animals and humans, peaking in 2018 with 415 human cases and 36 fatalities. This study aimed to explore the phylogenetic relationships between previously sequenced West Nile virus strains from Serbia and those sequenced in this study, while also identifying possible virulence factors. Materials and methods Whole genome sequencing was conducted using a targeted approach on the MinION Mk1C platform, following a two-step process involving cDNA synthesis and amplification. Bioinformatics analysis included demultiplexing, primer trimming, and sequence mapping using tools such as iVar, Minimap2, and Samtools. Phylogenetic analysis was performed using MAFFT alignment and the Maximum Likelihood method with the Tamura Nei model in MEGA X software. Virulence factors were assessed in both structural and nonstructural proteins, focusing on key glycosylation motifs and specific mutations. Homology modeling of the E protein was also performed to evaluate potential structural changes due to mutations. Results Phylogenetic analysis revealed two major sublineages within the E subclade, representing the majority of strains from Western and Central Europe. These sublineages likely originated from Austria, Serbia, and Hungary between 2008 and 2012. The study also identified three distinct sublineages within the D subclade, which includes more diverse strains from Southern Europe. The E protein exhibited significant variations, particularly at the E159 site, which is crucial for virulence. The EI159T aa change has become dominant in recent years, replacing the previously prevalent EI159M. Additionally, changes in the NS1 glycoprotein and NS3 protein, both of which are involved in immune modulation and viral replication, were identified, with potential implications for the virus's virulence. Conclusion The study's findings highlight the Western Balkans and Central Europe as key regions for the mixing and dissemination of West Nile virus strains from both Western-Central and Southern Europe. These results underscore the importance of continuous surveillance and phylogenetic analysis to monitor the evolution and spread of West Nile virus, particularly in light of the frequent mutations observed in virulence-associated sites.
Collapse
Affiliation(s)
- Sofija Šolaja
- Department of Virology, Institute of Veterinary Medicine of Serbia, Belgrade, Serbia
| | - Šejla Goletić
- Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ljubiša Veljović
- Department of Virology, Institute of Veterinary Medicine of Serbia, Belgrade, Serbia
| | - Dimitrije Glišić
- Department of Virology, Institute of Veterinary Medicine of Serbia, Belgrade, Serbia
| |
Collapse
|
4
|
Rusenova N, Rusenov A, Chervenkov M, Sirakov I. Seroprevalence of West Nile Virus among Equids in Bulgaria in 2022 and Assessment of Some Risk Factors. Vet Sci 2024; 11:209. [PMID: 38787181 PMCID: PMC11126025 DOI: 10.3390/vetsci11050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this study was to analyze the seroprevalence of West Nile virus (WNV) among equids in Bulgaria, confirm the results of a competitive ELISA versus the virus neutralization test (VNT) and investigate some predisposing factors for WNV seropositivity. A total of 378 serum samples from 15 provinces in northern and southern Bulgaria were tested. The samples originated from 314 horses and 64 donkeys, 135 males and 243 females, aged from 1 to 30 years. IgG and IgM antibodies against WNV protein E were detected by ELISA. ELISA-positive samples were additionally tested via VNT for WNV and Usutu virus. Thirty-five samples were WNV-positive by ELISA (9.26% [CI = 6.45-12.88]), of which 15 were confirmed by VNT; hence, the seroprevalence was 3.97% (CI = 2.22-6.55). No virus-neutralizing antibodies to Usutu virus were detected among the 35 WNV-ELISA-positive equids in Bulgaria. When compared with VNT, ELISA showed 100.0% sensitivity and 94.5% specificity. A statistical analysis showed that the risk factors associated with WNV seropositivity were the region (p < 0.0001), altitude of the locality (p < 0.0001), type of housing (p < 0.0001) and breed (p = 0.0365). The results of the study demonstrate, albeit indirectly, that WNV circulates among equids in northern and southern Bulgaria, indicating that they could be suitable sentinel animals for predicting human cases and determining the risk in these areas or regions of the country.
Collapse
Affiliation(s)
- Nikolina Rusenova
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Anton Rusenov
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Mihail Chervenkov
- Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria;
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivo Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University-Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| |
Collapse
|
5
|
Simonin Y. Circulation of West Nile Virus and Usutu Virus in Europe: Overview and Challenges. Viruses 2024; 16:599. [PMID: 38675940 PMCID: PMC11055060 DOI: 10.3390/v16040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
6
|
Khedhiri M, Chaouch M, Ayouni K, Chouikha A, Gdoura M, Touzi H, Hogga N, Benkahla A, Fares W, Triki H. Development and evaluation of an easy to use real-time reverse-transcription loop-mediated isothermal amplification assay for clinical diagnosis of West Nile virus. J Clin Virol 2024; 170:105633. [PMID: 38103483 DOI: 10.1016/j.jcv.2023.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.
Collapse
Affiliation(s)
- Marwa Khedhiri
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Laboratory of BioInformatics, BioMathematics and BioStatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Anissa Chouikha
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Nahed Hogga
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Alia Benkahla
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Wasfi Fares
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
7
|
Lu L, Zhang F, Oude Munnink BB, Munger E, Sikkema RS, Pappa S, Tsioka K, Sinigaglia A, Dal Molin E, Shih BB, Günther A, Pohlmann A, Ziegler U, Beer M, Taylor RA, Bartumeus F, Woolhouse M, Aarestrup FM, Barzon L, Papa A, Lycett S, Koopmans MPG. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog 2024; 20:e1011880. [PMID: 38271294 PMCID: PMC10810478 DOI: 10.1371/journal.ppat.1011880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.
Collapse
Affiliation(s)
- Lu Lu
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Feifei Zhang
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bas B. Oude Munnink
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Emmanuelle Munger
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Reina S. Sikkema
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Tsioka
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Barbara B. Shih
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Günther
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, United Kingdom
| | - Frederic Bartumeus
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
- Centre for Research on Ecology and Forestry Applications (CREAF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mark Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Samantha Lycett
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marion P. G. Koopmans
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| |
Collapse
|
8
|
de Carvalho Ruthner Batista HB, Vieira LFP, Kawai JGC, de Oliveira Fahl W, Barboza CM, Achkar S, de Novaes Oliveira R, Brandão PE, Carnieli Junior P. Dispersion and diversification of Lyssavirus rabies transmitted from haematophagous bats Desmodus rotundus: a phylogeographical study. Virus Genes 2023; 59:817-822. [PMID: 37796410 DOI: 10.1007/s11262-023-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
Rabies is worldwide zoonosis caused by Lyssavirus rabies (RABV) a RNA negative sense virus with low level of fidelity during replication cycle. Nucleoprotein of RABV is the most conserved between all five proteins of the virus and is the most used gene for phylogenetic and phylogeographic studies. Despite of rabies been very important in Public Health concern, it demands continuous prophylactic care for herbivores with economic interest, such as cattle and horses. The main transmitter of RABV for these animals in Brazil is the hematophagous bats Desmodus rotundus. The aim of this study was to determine the dispersion over time and space of RABV transmitted by D. rotundus. Samples of RABV from the State of São Paulo (SP), Southeast Brazil isolated from the central nervous system (CNS) of cattle, were submitted to RNA extraction, RT-PCR, sequencing and phylogeographic analyzes with BEAST (Bayesian Evolutionary Analysis Sampling Trees) v 2.5 software. Was possible to identify high rate of diversification in starts sublineages of RABV what are correlated with a behavior of D. rotundus, the main transmitter of rabies to cattle. This study also highlights the importance of continuous monitoring of genetic lineages of RABV in Brazil.
Collapse
|
9
|
Mencattelli G, Ndione MHD, Silverj A, Diagne MM, Curini V, Teodori L, Di Domenico M, Mbaye R, Leone A, Marcacci M, Gaye A, Ndiaye E, Diallo D, Ancora M, Secondini B, Di Lollo V, Mangone I, Bucciacchio A, Polci A, Marini G, Rosà R, Segata N, Fall G, Cammà C, Monaco F, Diallo M, Rota-Stabelli O, Faye O, Rizzoli A, Savini G. Spatial and temporal dynamics of West Nile virus between Africa and Europe. Nat Commun 2023; 14:6440. [PMID: 37833275 PMCID: PMC10575862 DOI: 10.1038/s41467-023-42185-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy.
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy.
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| | | | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Rassoul Mbaye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Alioune Gaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - ElHadji Ndiaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diawo Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Bucciacchio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Mawlouth Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| |
Collapse
|
10
|
Schwarz ER, Long MT. Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance. Viruses 2023; 15:1230. [PMID: 37376530 DOI: 10.3390/v15061230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody response, and clinicopathology are similar. The goal of this review is to provide a comparison of WNV infection in humans and horses and to identify similarities that can be exploited to enhance surveillance methods for the early detection of WNV neuroinvasive disease.
Collapse
Affiliation(s)
- Erika R Schwarz
- Montana Veterinary Diagnostic Laboratory, MT Department of Livestock, Bozeman, MT 59718, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Constant O, Gil P, Barthelemy J, Bolloré K, Foulongne V, Desmetz C, Leblond A, Desjardins I, Pradier S, Joulié A, Sandoz A, Amaral R, Boisseau M, Rakotoarivony I, Baldet T, Marie A, Frances B, Reboul Salze F, Tinto B, Van de Perre P, Salinas S, Beck C, Lecollinet S, Gutierrez S, Simonin Y. One Health surveillance of West Nile and Usutu viruses: a repeated cross-sectional study exploring seroprevalence and endemicity in Southern France, 2016 to 2020. Euro Surveill 2022; 27:2200068. [PMID: 35748300 PMCID: PMC9229194 DOI: 10.2807/1560-7917.es.2022.27.25.2200068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
BackgroundWest Nile virus (WNV) and Usutu virus (USUV), two closely related flaviviruses, mainly follow an enzootic cycle involving mosquitoes and birds, but also infect humans and other mammals. Since 2010, their epidemiological situation may have shifted from irregular epidemics to endemicity in several European regions; this requires confirmation, as it could have implications for risk assessment and surveillance strategies.AimTo explore the seroprevalence in animals and humans and potential endemicity of WNV and USUV in Southern France, given a long history of WNV outbreaks and the only severe human USUV case in France in this region.MethodsWe evaluated the prevalence of WNV and USUV in a repeated cross-sectional study by serological and molecular analyses of human, dog, horse, bird and mosquito samples in the Camargue area, including the city of Montpellier, between 2016 and 2020.ResultsWe observed the active transmission of both viruses and higher USUV prevalence in humans, dogs, birds and mosquitoes, while WNV prevalence was higher in horses. In 500 human samples, 15 were positive for USUV and 6 for WNV. Genetic data showed that the same lineages, WNV lineage 1a and USUV lineage Africa 3, were found in mosquitoes in 2015, 2018 and 2020.ConclusionThese findings support existing literature suggesting endemisation in the study region and contribute to a better understanding of USUV and WNV circulation in Southern France. Our study underlines the importance of a One Health approach for the surveillance of these viruses.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Patricia Gil
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Karine Bolloré
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Montpellier University, Montpellier, France
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, Marcy l'Etoile, France
| | - Isabelle Desjardins
- University of Lyon, VetAgro Sup, GREMERES-ICE Lyon Equine Research Center, Marcy l'Etoile, France
| | | | - Aurélien Joulié
- National veterinary school of Toulouse, Université de Toulouse, Toulouse, France
| | - Alain Sandoz
- Aix Marseille Université - CNRS, UMR 7376, Laboratoire Chimie de l'Environnement, Marseille, France
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Michel Boisseau
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | | | - Thierry Baldet
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | | | | | | | - Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Sylvie Lecollinet
- CIRAD, UMR ASTRE, CRVC, Petit Bourg, France
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Serafin Gutierrez
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| |
Collapse
|