1
|
Becker SL, Vague M, Ortega-Loayza AG. Insights into the Pathogenesis of Pyoderma Gangrenosum. J Invest Dermatol 2025; 145:1305-1322. [PMID: 39718519 DOI: 10.1016/j.jid.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 12/25/2024]
Abstract
Pyoderma gangrenosum (PG) is a neutrophilic dermatosis of unclear etiology. Numerous theories of its underlying pathogenesis have been proposed, including external triggers, neutrophilic dysfunction, complement activation, and autoimmunity, as well as a possible component of underlying genetic susceptibility. This review seeks to synthesize current understanding of the pathogenesis of PG and integrate interactions between the multitude of implicated host immune pathways to guide and inform future directions into the treatment of PG.
Collapse
Affiliation(s)
- Sarah L Becker
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Morgan Vague
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Alex G Ortega-Loayza
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
2
|
Shen K, Lin J. Unraveling the Molecular Landscape of Neutrophil Extracellular Traps in Severe Asthma: Identification of Biomarkers and Molecular Clusters. Mol Biotechnol 2025; 67:1852-1866. [PMID: 38801616 DOI: 10.1007/s12033-024-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
Neutrophil extracellular traps (NETs) play a central role in chronic airway diseases. However, the precise genetic basis linking NETs to the development of severe asthma remains elusive. This study aims to unravel the molecular characterization of NET-related genes (NRGs) in severe asthma and to reliably identify relevant molecular clusters and biomarkers. We analyzed RNA-seq data from the Gene Expression Omnibus database. Interaction analysis revealed fifty differentially expressed NRGs (DE-NRGs). Subsequently, the non-negative matrix factorization algorithm categorized samples from severe asthma patients. A machine learning algorithm then identified core NRGs that were highly associated with severe asthma. DE-NRGs were correlated and subjected to protein-protein interaction analysis. Unsupervised consensus clustering of the core gene expression profiles delineated two distinct clusters (C1 and C2) characterizing severe asthma. Functional enrichment highlighted immune-related pathways in the C2 cluster. Core gene selection included the Boruta algorithm, support vector machine, and least absolute contraction and selection operator algorithms. Diagnostic performance was assessed by receiver operating characteristic curves. This study addresses the molecular characterization of NRGs in adult severe asthma, revealing distinct clusters based on DE-NRGs. Potential biomarkers (TIMP1 and NFIL3) were identified that may be important for early diagnosis and treatment of severe asthma.
Collapse
Affiliation(s)
- Kunlu Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangtao Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Miroshnichenko MI, Kolpakov FA, Akberdin IR. A Modular Mathematical Model of the Immune Response for Investigating the Pathogenesis of Infectious Diseases. Viruses 2025; 17:589. [PMID: 40431602 DOI: 10.3390/v17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic highlighted the importance of mathematical modeling for understanding viral infection dynamics and accelerated its application into immunological research. Collaborative efforts among international research groups yielded a wealth of experimental data, which facilitated model development and validation. This study focuses on developing a modular mathematical model of the immune response, capturing the interactions between innate and adaptive immunity, with an application to SARS-CoV-2 infection. The model was validated using experimental data from middle-aged individuals with moderate COVID-19 progression, including measurements of viral load in the upper and lower airways, serum antibodies, CD4+ and CD8+ T cells, and interleukin-6 levels. Parameter optimization and sensitivity analysis were performed to improve the model accuracy. Additionally, identifiability analysis was conducted to assess whether the data were sufficient for reliable parameter estimation. The verified model simulates the dynamics of moderate, severe, and critical COVID-19 progressions using measured data on lung epithelium damage, viral load, and IL-6 levels as key indicators of disease severity. We also performed a series of validation scenarios to assess whether the model correctly reproduces biologically relevant behaviors under various conditions, such as immunity hyperactivation, co-infection with HIV, and interferon administration as a therapeutic strategy. The model was developed as a component of the Digital Twin project and represents a general immune module that integrates both innate and adaptive immunity. It can be utilized for further COVID-19 research or serve as a foundation for studying other infectious diseases, provided sufficient data are available.
Collapse
Affiliation(s)
- Maxim I Miroshnichenko
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
4
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
5
|
Hou M, Wu J, Li J, Zhang M, Yin H, Chen J, Jin Z, Dong R. Immunothrombosis: A bibliometric analysis from 2003 to 2023. Medicine (Baltimore) 2024; 103:e39566. [PMID: 39287275 PMCID: PMC11404911 DOI: 10.1097/md.0000000000039566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Immunothrombosis is a physiological process that constitutes an intravascular innate immune response. Abnormal immunothrombosis can lead to thrombotic disorders. With the outbreak of COVID-19, there is increasing attention to the mechanisms of immunothrombosis and its critical role in thrombotic events, and a growing number of relevant research papers are emerging. This article employs bibliometrics to discuss the current status, hotspots, and trends in research of this field. METHODS Research papers relevant to immunothrombosis published from January 1, 2003, to May 29, 2023, were collected from the Web of Science Core Collection database. VOSviewer and the R package "Bibliometrix" were employed to analyze publication metrics, including the number of publications, authors, countries, institutions, journals, and keywords. The analysis generated visual results, and trends in research topics and hotspots were examined. RESULTS A total of 495 target papers were identified, originating from 58 countries and involving 3287 authors from 1011 research institutions. Eighty high-frequency keywords were classified into 5 clusters. The current key research topics in the field of immunothrombosis include platelets, inflammation, neutrophil extracellular traps, Von Willebrand factor, and the complement system. Research hotspots focus on the mechanisms and manifestations of immunothrombosis in COVID-19, as well as the discovery of novel treatment strategies targeting immunothrombosis in cardiovascular and cerebrovascular diseases. CONCLUSION Bibliometric analysis summarizes the main achievements and development trends in research on immunothrombosis, offering readers a comprehensive understanding of the field and guiding future research directions.
Collapse
Affiliation(s)
- Mengyu Hou
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingxuan Wu
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiangshuo Li
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meijuan Zhang
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hang Yin
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingcheng Chen
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhili Jin
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruihua Dong
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Borczuk AC. Pathology of COVID-19 Lung Disease. Surg Pathol Clin 2024; 17:203-214. [PMID: 38692805 DOI: 10.1016/j.path.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The pathology of severe COVID-19 lung injury is predominantly diffuse alveolar damage, with other reported patterns including acute fibrinous organizing pneumonia, organizing pneumonia, and bronchiolitis. Lung injury was caused by primary viral injury, exaggerated immune responses, and superinfection with bacteria and fungi. Although fatality rates have decreased from the early phases of the pandemic, persistent pulmonary dysfunction occurs and its pathogenesis remains to be fully elucidated.
Collapse
Affiliation(s)
- Alain C Borczuk
- Department of Pathology, Northwell Health, 2200 Northern Boulevard Suite 104, Greenvale, NY 11548, USA.
| |
Collapse
|
7
|
Nunez JH, Juan C, Sun Y, Hong J, Bancroft AC, Hwang C, Medrano JM, Huber AK, Tower RJ, Levi B. Neutrophil and NETosis Modulation in Traumatic Heterotopic Ossification. Ann Surg 2023; 278:e1289-e1298. [PMID: 37325925 PMCID: PMC10724380 DOI: 10.1097/sla.0000000000005940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To characterize the role of neutrophil extracellular traps (NETs) in heterotopic ossification (HO) formation and progression and to use mechanical and pharmacological methods to decrease NETosis and mitigate HO formation. BACKGROUND Traumatic HO is the aberrant osteochondral differentiation of mesenchymal progenitor cells after traumatic injury, burns, or surgery. While the innate immune response has been shown to be necessary for HO formation, the specific immune cell phenotype and function remain unknown. Neutrophils, one of the earliest immune cells to respond after HO-inducing injuries, can extrude DNA, forming highly inflammatory NETs. We hypothesized that neutrophils and NETs would be diagnostic biomarkers and therapeutic targets for the detection and mitigation of HO. METHODS C57BL6J mice underwent burn/tenotomy (a well-established mouse model of HO) or a non-HO-forming sham injury. These mice were either (1) ambulated ad libitum, (2) ambulated ad libitum with daily intraperitoneal hydroxychloroquine, ODN-2088 (both known to affect NETosis pathways), or control injections, or (3) had the injured hind limb immobilized. Single-cell analysis was performed to analyze neutrophils, NETosis, and downstream signaling after the HO-forming injury. Immunofluorescence microscopy was used to visualize NETosis at the HO site and neutrophils were identified using flow cytometry. Serum and cell lysates from HO sites were analyzed using enzyme-linked immunosorbent assay for myeloperoxidase-DNA and ELA2-DNA complexes to identify NETosis. Micro-computerized tomography was performed on all groups to analyze the HO volume. RESULTS Molecular and transcriptional analyses revealed the presence of NETs within the HO injury site, which peaked in the early phases after injury. These NETs were highly restricted to the HO site, with gene signatures derived from both in vitro NET induction and clinical neutrophil characterizations showing a high degree of NET "priming" at the site of injury, but not in neutrophils in the blood or bone marrow. Cell-cell communication analyses revealed that this localized NET formation coincided with high levels of toll-like receptor signaling specific to neutrophils at the injury site. Reducing the overall neutrophil abundance within the injury site, either pharmacologically through treatment with hydroxychloroquine, the toll-like receptor 9 inhibitor OPN-2088, or mechanical treatment with limb offloading, results in the mitigation of HO formation. CONCLUSIONS These data provide a further understanding of the ability of neutrophils to form NETs at the injury site, clarify the role of neutrophils in HO, and identify potential diagnostic and therapeutic targets for HO mitigation.
Collapse
Affiliation(s)
- Johanna H Nunez
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Conan Juan
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Yuxiao Sun
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Jonathan Hong
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Alec C Bancroft
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Charles Hwang
- Department of Plastic Surgery, Harvard University, Cambridge, MA
| | - Jessica Marie Medrano
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Amanda K Huber
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Robert J Tower
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| |
Collapse
|
8
|
Huang MYY, Lippuner C, Schiff M, Book M, Stueber F. Neutrophil extracellular trap formation during surgical procedures: a pilot study. Sci Rep 2023; 13:15217. [PMID: 37709941 PMCID: PMC10502064 DOI: 10.1038/s41598-023-42565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Neutrophils can release neutrophil extracellular traps (NETs) containing DNA fibres and antimicrobial peptides to immobilize invading pathogens. NET formation (NETosis) plays a vital role in inflammation and immune responses. In this study we investigated the impact of surgical trauma on NETosis of neutrophils. Nine patients undergoing "Transcatheter/percutaneous aortic valve implantation" (TAVI/PAVI, mild surgical trauma), and ten undergoing "Aortocoronary bypass" (ACB, severe surgical trauma) were included in our pilot study. Peripheral blood was collected before, end of, and after surgery (24 h and 48 h). Neutrophilic granulocytes were isolated and stimulated in vitro with Phorbol-12-myristate-13-acetate (PMA). NETosis rate was examined by microscopy. In addition, HLA-DR surface expression on circulating monocytes was analysed by flow-cytometry as a prognostic marker of the immune status. Both surgical procedures led to significant down regulation of monocytic HLA-DR surface expression, albeit more pronounced in ACB patients, and there was a similar trend in NETosis regulation over the surgical 24H course. Upon PMA stimulation, no significant difference in NETosis was observed over time in TAVI/PAVI group; however, a decreasing NETosis trend with a significant drop upon ACB surgery was evident. The reduced PMA-induced NETosis in ACB group suggests that the inducibility of neutrophils to form NETs following severe surgical trauma may be compromised. Moreover, the decreased monocytic HLA-DR expression suggests a post-operative immunosuppressed status in all patients, with a bigger impact by ACB, which might be attributed to the extracorporeal circulation or tissue damage occurring during surgery.
Collapse
Affiliation(s)
- Melody Ying-Yu Huang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| | - Christoph Lippuner
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marcel Schiff
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Universitätsklinikum Freiburg, Freiburg, Germany
| | - Malte Book
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Universitätsklinik für Anästhesiologie/Intensiv-/Notfallmedizin/Schmerztherapie, Oldenburg, Germany
| | - Frank Stueber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Formosa A, Acton E, Lee A, Turgeon P, Izhar S, Plant P, Tsoporis JN, Soussi S, Trahtemberg U, Baker A, dos Santos CC. Validation of reference gene stability for miRNA quantification by reverse transcription quantitative PCR in the peripheral blood of patients with COVID-19 critical illness. PLoS One 2023; 18:e0286871. [PMID: 37643172 PMCID: PMC10464995 DOI: 10.1371/journal.pone.0286871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/25/2023] [Indexed: 08/31/2023] Open
Abstract
The COVID-19 pandemic has created an urgency to study the host gene response that leads to variable clinical presentations of the disease, particularly the critical illness response. miRNAs have been implicated in the mechanism of host immune dysregulation and thus hold potential as biomarkers and/or therapeutic agents with clinical application. Hence, further analyses of their altered expression in COVID-19 is warranted. An important basis for this is identifying appropriate reference genes for high quality expression analysis studies. In the current report, NanoString technology was used to study the expression of 798 miRNAs in the peripheral blood of 24 critically ill patients, 12 had COVID-19 and 12 were COVID-19 negative. A list of potentially stable candidate reference genes was generated that included ten miRNAs. The top six were analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a total of 41 patients so as to apply standard computational algorithms for validating reference genes, namely geNorm, NormFinder, BestKeeper and RefFinder. There was general agreement among all four algorithms in the ranking of four stable miRNAs: miR-186-5p, miR-148b-3p, miR-194-5p and miR-448. A detailed analysis of their output rankings led to the conclusion that miR-186-5p and miR-148b-3p are appropriate reference genes for miRNA expression studies using PaxGene tubes in the peripheral blood of patients critically ill with COVID-19 disease.
Collapse
Affiliation(s)
- Amanda Formosa
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Erica Acton
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Molecular Biology & Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amy Lee
- Molecular Biology & Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paul Turgeon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shehla Izhar
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Pamela Plant
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Jim N. Tsoporis
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Sabri Soussi
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Uriel Trahtemberg
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Critical Care Department, Galilee Medical Center, Nahariya, Israel
| | - Andrew Baker
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Critical Care, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Claudia C. dos Santos
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Critical Care, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Green RM, Thompson PR. Current insights into the role of citrullination in thrombosis. Curr Opin Chem Biol 2023; 75:102313. [PMID: 37148643 PMCID: PMC10523988 DOI: 10.1016/j.cbpa.2023.102313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023]
Abstract
Protein citrullination is a post-translational modification of arginine that controls a diverse array of cellular processes, including gene regulation, protein stability, and neutrophil extracellular trap (NET) formation. Histone citrullination promotes chromatin decondensation and NET formation, a pro-inflammatory form of cell death that is aberrantly increased in numerous immune disorders. This review will provide insights into NETosis and how this novel form of cell death contributes to inflammatory diseases, with a particular emphasis on its role in thrombosis. We will also discuss recent efforts to develop PAD-specific inhibitors.
Collapse
Affiliation(s)
- R Madison Green
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Thakur A. Shedding Lights on the Extracellular Vesicles as Functional Mediator and Therapeutic Decoy for COVID-19. Life (Basel) 2023; 13:life13030840. [PMID: 36983995 PMCID: PMC10052528 DOI: 10.3390/life13030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 is an infectious disease caused by the novel coronavirus (SARS-CoV-2) that first appeared in late 2019 and has since spread across the world. It is characterized by symptoms such as fever, cough, and shortness of breath and can lead to death in severe cases. To help contain the virus, measures such as social distancing, handwashing, and other public health measures have been implemented. Vaccine and drug candidates, such as those developed by Pfizer/BioNTech, AstraZeneca, Moderna, Novavax, and Johnson & Johnson, have been developed and are being distributed worldwide. Clinical trials for drug treatments such as remdesivir, dexamethasone, and monoclonal antibodies are underway and have shown promising results. Recently, exosomes have gained attention as a possible mediator of the COVID-19 infection. Exosomes, small vesicles with a size of around 30-200 nm, released from cells, contain viral particles and other molecules that can activate the immune system and/or facilitate viral entry into target cells. Apparently, the role of exosomes in eliciting various immune responses and causing tissue injury in COVID-19 pathogenesis has been discussed. In addition, the potential of exosomes as theranostic and therapeutic agents for the treatment of COVID-19 has been elaborated.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Lim EHT, van Amstel RBE, de Boer VV, van Vught LA, de Bruin S, Brouwer MC, Vlaar APJ, van de Beek D. Complement activation in COVID-19 and targeted therapeutic options: A scoping review. Blood Rev 2023; 57:100995. [PMID: 35934552 PMCID: PMC9338830 DOI: 10.1016/j.blre.2022.100995] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Increasing evidence suggests that activation of the complement system plays a key role in the pathogenesis and disease severity of Coronavirus disease 2019 (COVID-19). We used a systematic approach to create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical interventional studies. A total of 1801 articles from PubMed, EMBASE and Cochrane was screened of which 157 articles were included in this scoping review. Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways and a correlation with disease severity and mortality. The complement system was targeted at different levels in COVID-19, of which C5 and C5a inhibition seem most promising. Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.
Collapse
Affiliation(s)
- Endry Hartono Taslim Lim
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rombout Benjamin Ezra van Amstel
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Vieve Victoria de Boer
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lonneke Alette van Vught
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Sanne de Bruin
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Matthijs Christian Brouwer
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alexander Petrus Johannes Vlaar
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands.
| | - Diederik van de Beek
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Kumar S, Ahmad A, Kushwaha N, Shokeen N, Negi S, Gautam K, Singh A, Tiwari P, Garg R, Agarwal R, Mohan A, Trikha A, Thakar A, Saini V. Selection of Ideal Reference Genes for Gene Expression Analysis in COVID-19 and Mucormycosis. Microbiol Spectr 2022; 10:e0165622. [PMID: 36377893 PMCID: PMC9769637 DOI: 10.1128/spectrum.01656-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Selection of reference genes during real-time quantitative PCR (qRT-PCR) is critical to determine accurate and reliable mRNA expression. Nonetheless, not a single study has investigated the expression stability of candidate reference genes to determine their suitability as internal controls in SARS-CoV-2 infection or COVID-19-associated mucormycosis (CAM). Using qRT-PCR, we determined expression stability of the nine most commonly used housekeeping genes, namely, TATA-box binding protein (TBP), cyclophilin (CypA), β-2-microglobulin (B2M), 18S rRNA (18S), peroxisome proliferator-activated receptor gamma (PPARG) coactivator 1 alpha (PGC-1α), glucuronidase beta (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT-1), β-ACTIN, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in patients with COVID-19 of various severities (asymptomatic, mild, moderate, and severe) and those with CAM. We used statistical algorithms (delta-CT [threshold cycle], NormFinder, BestKeeper, GeNorm, and RefFinder) to select the most appropriate reference gene and observed that clinical severity profoundly influences expression stability of reference genes. CypA demonstrated the most consistent expression irrespective of disease severity and emerged as the most suitable reference gene in COVID-19 and CAM. Incidentally, GAPDH, the most commonly used reference gene, showed the maximum variations in expression and emerged as the least suitable. Next, we determined expression of nuclear factor erythroid 2-related factor 2 (NRF2), interleukin-6 (IL-6), and IL-15 using CypA and GAPDH as internal controls and show that CypA-normalized expression matches well with the RNA sequencing-based expression of these genes. Further, IL-6 expression correlated well with the plasma levels of IL-6 and C-reactive protein, a marker of inflammation. In conclusion, GAPDH emerged as the least suitable and CypA as the most suitable reference gene in COVID-19 and CAM. The results highlight the expression variability of housekeeping genes due to disease severity and provide a strong rationale for identification of appropriate reference genes in other chronic conditions as well. IMPORTANCE Gene expression studies are critical to develop new diagnostics, therapeutics, and prognostic modalities. However, accurate determination of expression requires data normalization with a reference gene, whose expression does not vary across different disease stages. Misidentification of a reference gene can produce inaccurate results. Unfortunately, despite the global impact of COVID-19 and an urgent unmet need for better treatment, not a single study has investigated the expression stability of housekeeping genes across the disease spectrum to determine their suitability as internal controls. Our study identifies CypA and then TBP as the two most suitable reference genes for COVID-19 and CAM. Further, GAPDH, the most commonly used reference gene in COVID-19 studies, turned out to be the least suitable. This work fills an important gap in the field and promises to facilitate determination of an accurate expression of genes to catalyze development of novel molecular diagnostics and therapeutics for improved patient care.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Ayaan Ahmad
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Kushwaha
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Niti Shokeen
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Kamini Gautam
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anup Singh
- Department of Otorhinolaryngology-Head & Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pavan Tiwari
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rakesh Garg
- Department of Onco-Anesthesiology, Intensive Care, Pain and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Richa Agarwal
- Department of Onco-Anesthesiology, Intensive Care, Pain and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anjan Trikha
- Department of Onco-Anesthesiology, Intensive Care, Pain and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alok Thakar
- Department of Otorhinolaryngology-Head & Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- Biosafety Laboratory-3, Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
14
|
Aksakal A, Kerget B. Review of Medical Studies on COVID-19 During the Pandemic Period. Eurasian J Med 2022; 54:154-158. [PMID: 36655460 PMCID: PMC11163338 DOI: 10.5152/eurasianjmed.2022.22336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023] Open
Abstract
Due to the COVID-19 pandemic, both the university hospital and the city hospital have faced a significant patient load in our city. During this period, academic articles were written that contributed significantly to the literature on both hospitals struggling with patient density. In our study, we aimed to compile medical articles about COVID-19 in our city using the Web of Science and PubMed database.
Collapse
Affiliation(s)
- Alperen Aksakal
- Department of Pulmonary Diseases, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Buğra Kerget
- Department of Pulmonary Diseases, Atatürk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
15
|
Borczuk AC, Yantiss RK. The pathogenesis of coronavirus-19 disease. J Biomed Sci 2022; 29:87. [PMID: 36289507 PMCID: PMC9597981 DOI: 10.1186/s12929-022-00872-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/20/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) is the causal agent of coronavirus disease-2019 (COVID-19), a systemic illness characterized by variably severe pulmonary symptoms, cardiac conduction abnormalities, diarrhea, and gastrointestinal bleeding, as well as neurologic deficits, renal insufficiency, myalgias, endocrine abnormalities, and other perturbations that reflect widespread microvascular injury and a pro-inflammatory state. The mechanisms underlying the various manifestations of viral infection are incompletely understood but most data suggest that severe COVID-19 results from virus-driven perturbations in the immune system and resultant tissue injury. Aberrant interferon-related responses lead to alterations in cytokine elaboration that deplete resident immune cells while simultaneously recruiting hyperactive macrophages and functionally altered neutrophils, thereby tipping the balance from adaptive immunity to innate immunity. Disproportionate activation of these macrophages and neutrophils further depletes normal activity of B-cells, T-cells, and natural killer (NK) cells. In addition, this pro-inflammatory state stimulates uncontrolled complement activation and development of neutrophil extracellular traps (NETS), both of which promote the coagulation cascade and induce a state of “thrombo-inflammation”. These perturbations have similar manifestations in multiple organ systems, which frequently show pathologic findings related to microvascular injury and thrombosis of large and small vessels. However, the pulmonary findings in patients with severe COVID-19 are generally more pronounced than those of other organs. Not only do they feature inflammatory thromboses and endothelial injury, but much of the parenchymal damage stems from failed maturation of alveolar pneumocytes, interactions between type 2 pneumocytes and non-resident macrophages, and a greater degree of NET formation. The purpose of this review is to discuss the pathogenesis underlying organ damage that can occur in patients with SARS-CoV-2 infection. Understanding these mechanisms of injury is important to development of future therapies for patients with COVID-19, many of which will likely target specific components of the immune system, particularly NET induction, pro-inflammatory cytokines, and subpopulations of immune cells.
Collapse
Affiliation(s)
- Alain C. Borczuk
- grid.512756.20000 0004 0370 4759Department of Pathology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Greenvale, NY USA
| | - Rhonda K. Yantiss
- grid.5386.8000000041936877XDepartment of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, NY 10065 USA
| |
Collapse
|
16
|
LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, Manakongtreecheep K, Tantivit J, Rojas-Lopez M, Russo BC, Sharma N, Thomas MF, Lavin-Parsons KM, Lilly BM, Mckaig BN, Charland NC, Khanna HK, Lodenstein CL, Margolin JD, Blaum EM, Lirofonis PB, Revach OY, Mehta A, Sonny A, Bhattacharyya RP, Parry BA, Goldberg MB, Alter G, Filbin MR, Villani AC, Hacohen N, Sade-Feldman M. Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients. Cell Rep Med 2022; 3:100779. [PMID: 36208629 PMCID: PMC9510054 DOI: 10.1016/j.xcrm.2022.100779] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023]
Abstract
Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.
Collapse
Affiliation(s)
- Thomas J LaSalle
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
| | - Anna L K Gonye
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel S Freeman
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Irena Gushterova
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyle R Kays
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kasidet Manakongtreecheep
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Tantivit
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Brian C Russo
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Nihaarika Sharma
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F Thomas
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Brendan M Lilly
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brenna N Mckaig
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole C Charland
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hargun K Khanna
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carl L Lodenstein
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin D Margolin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Blaum
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paola B Lirofonis
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Or-Yam Revach
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Arnav Mehta
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abraham Sonny
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roby P Bhattacharyya
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Blair Alden Parry
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marcia B Goldberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael R Filbin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Moshe Sade-Feldman
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Wang M, Chang W, Zhang L, Zhang Y. Pyroptotic cell death in SARS-CoV-2 infection: revealing its roles during the immunopathogenesis of COVID-19. Int J Biol Sci 2022; 18:5827-5848. [PMID: 36263178 PMCID: PMC9576507 DOI: 10.7150/ijbs.77561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023] Open
Abstract
The rapid dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a global public health emergency. The host immune response to SARS-CoV-2 plays a key role in COVID-19 pathogenesis. SARS-CoV-2 can induce aberrant and excessive immune responses, leading to cytokine storm syndrome, autoimmunity, lymphopenia, neutrophilia and dysfunction of monocytes and macrophages. Pyroptosis, a proinflammatory form of programmed cell death, acts as a host defense mechanism against infections. Pyroptosis deprives the replicative niche of SARS-CoV-2 by inducing the lysis of infected cells and exposing the virus to extracellular immune attack. Notably, SARS-CoV-2 has evolved sophisticated mechanisms to hijack this cell death mode for its own survival, propagation and shedding. SARS-CoV-2-encoded viral products act to modulate various key components in the pyroptosis pathways, including inflammasomes, caspases and gasdermins. SARS-CoV-2-induced pyroptosis contriubtes to the development of COVID-19-associated immunopathologies through leakage of intracellular contents, disruption of immune system homeostasis or exacerbation of inflammation. Therefore, pyroptosis has emerged as an important mechanism involved in COVID-19 immunopathogenesis. However, the entangled links between pyroptosis and SARS-CoV-2 pathogenesis lack systematic clarification. In this review, we briefly summarize the characteristics of SARS-CoV-2 and COVID-19-related immunopathologies. Moreover, we present an overview of the interplay between SARS-CoV-2 infection and pyroptosis and highlight recent research advances in the understanding of the mechanisms responsible for the implication of the pyroptosis pathways in COVID-19 pathogenesis, which will provide informative inspirations and new directions for further investigation and clinical practice. Finally, we discuss the potential value of pyroptosis as a therapeutic target in COVID-19. An in-depth discussion of the underlying mechanisms of COVID-19 pathogenesis will be conducive to the identification of potential therapeutic targets and the exploration of effective treatment measures aimed at conquering SARS-CoV-2-induced COVID-19.
Collapse
Affiliation(s)
- Man Wang
- ✉ Corresponding author: Man Wang, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China. Tel.: +86-532-82991791; E-mail address:
| | | | | | | |
Collapse
|
18
|
Romano A, Parrinello NL, Barchitta M, Manuele R, Puglisi F, Maugeri A, Barbato A, Triolo AM, Giallongo C, Tibullo D, La Ferla L, Botta C, Siragusa S, Iacobello C, Montineri A, Volti GL, Agodi A, Palumbo GA, Di Raimondo F. In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection. Sci Rep 2022; 12:7237. [PMID: 35508575 PMCID: PMC9065667 DOI: 10.1038/s41598-022-11157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Since neutrophil extracellular traps formation (NET-osis) can be assessed indirectly by treating healthy neutrophils with blood-derived fluids from patients and then measuring the NETs response, we designed a pilot study to convey high-dimensional cytometry of peripheral blood immune cells and cytokines, combined with clinical features, to understand if NET-osis assessment could be included in the immune risk profiling to early prediction of clinical patterns, disease severity, and viral clearance at 28 days in COVID-19 patients. Immune cells composition of peripheral blood, cytokines concentration and in-vitro NETosis were detected in peripheral blood of 41 consecutive COVID-19 inpatients, including 21 mild breakthrough infections compared to 20 healthy donors, matched for sex and age. Major immune dysregulation in peripheral blood in not-vaccinated COVID-19 patients compared to healthy subjects included: a significant reduction of percentage of unswitched memory B-cells and transitional B-cells; loss of naïve CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+ cells, increase of IL-1β, IL-17A and IFN-γ. Myeloid compartment was affected as well, due to the increase of classical (CD14++CD16−) and intermediate (CD14++CD16+) monocytes, overexpressing the activation marker CD64, negatively associated to the absolute counts of CD8+ CD45R0+ cells, IFN-γ and IL-6, and expansion of monocytic-like myeloid derived suppressor cells. In not-vaccinated patients who achieved viral clearance by 28 days we found at hospital admission lower absolute counts of effector cells, namely CD8+T cells, CD4+ T-cells and CD4+CD45RO+ T cells. Percentage of in-vitro NET-osis induced by patients’ sera and NET-osis density were progressively higher in moderate and severe COVID-19 patients than in mild disease and controls. The percentage of in-vitro induced NET-osis was positively associated to circulating cytokines IL-1β, IFN-γ and IL-6. In breakthrough COVID-19 infections, characterized by mild clinical course, we observed increased percentage of in-vitro NET-osis, higher CD4+ CD45RO+ and CD8+ CD45RO+ T cells healthy or mild-COVID-19 not-vaccinated patients, reduced by 24 h of treatment with ACE inhibitor ramipril. Taken together our data highlight the role of NETs in orchestrating the complex immune response to SARS-COV-2, that should be considered in a multi-target approach for COVID-19 treatment.
Collapse
Affiliation(s)
- Alessandra Romano
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy. .,Dipartimento di Chirurgia Generale e Specialità Medico Chirurgiche, University of Catania, Catania, Italy.
| | | | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Rosy Manuele
- U.O.C. di Malattie Infettive, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Fabrizio Puglisi
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Alessandro Barbato
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Anna Maria Triolo
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, Catania, Italy
| | - Lucia La Ferla
- U.O.C. di Malattie Infettive, Azienda Cannizzaro, Catania, Italy
| | - Ciro Botta
- Division of Hematology, Università degli Studi di Palermo, Palermo, Italy
| | - Sergio Siragusa
- Division of Hematology, Università degli Studi di Palermo, Palermo, Italy
| | | | - Arturo Montineri
- U.O.C. di Malattie Infettive, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Giovanni Li Volti
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Francesco Di Raimondo
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy.,Dipartimento di Chirurgia Generale e Specialità Medico Chirurgiche, University of Catania, Catania, Italy
| |
Collapse
|