1
|
Wang G, Xie B, Yang X, Wang R, Zhong G, Gao L, Chen X, Lin M, Huang Q, Zhang C, Huang H, Li T, Xu J, Deng W. The "crosstalk" between gut microbiota, metabolites and genes in diet-induced hepatic steatosis mice intervened with Cordyceps guangdongensis polysaccharides. Int J Biol Macromol 2024; 277:134607. [PMID: 39127294 DOI: 10.1016/j.ijbiomac.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Bojun Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinyu Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ruijuan Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guorui Zhong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangnv Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Min Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiuju Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hao Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Ismaiel L, Fanesi B, Kuhalskaya A, Barp L, Moret S, Pacetti D, Lucci P. The Determination of Triacylglycerols and Tocopherols Using UHPLC-CAD/FLD Methods for Assessing the Authenticity of Coffee Beans. Foods 2023; 12:4197. [PMID: 38231645 DOI: 10.3390/foods12234197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The authenticity of coffee beans was addressed in this study using an analytical method with minimal sample preparation to achieve simple oil extraction and through the implementation of cost-effective equipment. For this purpose, methods using UHPLC with CAD and FLD detectors were applied to detect triglycerides and tocopherols in coffee, respectively. The coffee samples included two main varieties: Arabica from Brazil, Colombia, Ethiopia, and Uganda, as well as the Robusta variety from Cambodia, Guatemala, India, and Vietnam. The samples were either in their green state or subjected to different roasting levels. The used methods successfully distinguished the Arabica and Robusta variants targeted in this study based on their tocopherols and TAG profiles, with the latter being particularly effective for discriminating the origins of the Arabica coffee, while tocopherols excelled at differentiating the origin of the Robusta coffee. TAGs and tocopherols were not affected by the type of roasting, from medium to very dark, suggesting it is possible to distinguish between coffee varieties independently from their degree of roasting. The obtained results hold valuable implications for future research regarding coffee fraud and authenticity.
Collapse
Affiliation(s)
- Lama Ismaiel
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Benedetta Fanesi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Anastasiya Kuhalskaya
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Laura Barp
- Department of Agri-Food, Animal and Environmental Science, Università degli Studi di Udine, 33100 Udine, Italy
| | - Sabrina Moret
- Department of Agri-Food, Animal and Environmental Science, Università degli Studi di Udine, 33100 Udine, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|