1
|
Megli CJ, Carlin SM, Giacobe EJ, Hillebrand GH, Hooven TA. Virulence and pathogenicity of group B Streptococcus: Virulence factors and their roles in perinatal infection. Virulence 2025; 16:2451173. [PMID: 39844743 PMCID: PMC11758947 DOI: 10.1080/21505594.2025.2451173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
This review summarizes key virulence factors associated with group B Streptococcus (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion. The paper also examines the molecular structures and functions of key GBS surface proteins, such as pili, serine-rich repeat proteins, and fibrinogen-binding proteins, which facilitate colonization and disease. Additionally, the review discusses the significance of environmental sensing and response systems, like the two-component systems, in adapting GBS to different host environments. We conclude by addressing current efforts in vaccine development, underscoring the need for effective prevention strategies against this pervasive pathogen.
Collapse
Affiliation(s)
- Christina J. Megli
- Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, UPMC Medical Center, Pittsburgh, USA
| | - Sophia M. Carlin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Elizabeth J. Giacobe
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Gideon H. Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
- R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
2
|
Taheri Ghahfarokhi S, Peña-Castillo L. BacTermFinder: a comprehensive and general bacterial terminator finder using a CNN ensemble. NAR Genom Bioinform 2025; 7:lqaf016. [PMID: 40060369 PMCID: PMC11890068 DOI: 10.1093/nargab/lqaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 04/16/2025] Open
Abstract
A terminator is a DNA region that ends the transcription process. Currently, multiple computational tools are available for predicting bacterial terminators. However, these methods are specialized for certain bacteria or terminator type (i.e. intrinsic or factor-dependent). In this work, we developed BacTermFinder using an ensemble of convolutional neural networks (CNNs) receiving as input four different representations of terminator sequences. To develop BacTermFinder, we collected roughly 41 000 bacterial terminators (intrinsic and factor-dependent) of 22 species with varying GC-content (from 28% to 71%) from published studies that used RNA-seq technologies. We evaluated BacTermFinder's performance on terminators of five bacterial species (not used for training BacTermFinder) and two archaeal species. BacTermFinder's performance was compared with that of four other bacterial terminator prediction tools. Based on our results, BacTermFinder outperforms all other four approaches in terms of average recall without increasing the number of false positives. Moreover, BacTermFinder identifies both types of terminators (intrinsic and factor-dependent) and generalizes to archaeal terminators. Additionally, we visualized the saliency map of the CNNs to gain insights on terminator motif per species. BacTermFinder is publicly available at https://github.com/BioinformaticsLabAtMUN/BacTermFinder.
Collapse
Affiliation(s)
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X5, Canada
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| |
Collapse
|
3
|
Furumo Q, Meyer MM. PIPETS: a statistically informed, gene-annotation agnostic analysis method to study bacterial termination using 3'-end sequencing. BMC Bioinformatics 2024; 25:363. [PMID: 39580611 PMCID: PMC11585934 DOI: 10.1186/s12859-024-05982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Over the last decade the drop in short-read sequencing costs has allowed experimental techniques utilizing sequencing to address specific biological questions to proliferate, oftentimes outpacing standardized or effective analysis approaches for the data generated. There are growing amounts of bacterial 3'-end sequencing data, yet there is currently no commonly accepted analysis methodology for this datatype. Most data analysis approaches are somewhat ad hoc and, despite the presence of substantial signal within annotated genes, focus on genomic regions outside the annotated genes (e.g. 3' or 5' UTRs). Furthermore, the lack of consistent systematic analysis approaches, as well as the absence of genome-wide ground truth data, make it impossible to compare conclusions generated by different labs, using different organisms. RESULTS We present PIPETS, (Poisson Identification of PEaks from Term-Seq data), an R package available on Bioconductor that provides a novel analysis method for 3'-end sequencing data. PIPETS is a statistically informed, gene-annotation agnostic methodology. Across two different datasets from two different organisms, PIPETS identified significant 3'-end termination signal across a wider range of annotated genomic contexts than existing analysis approaches, suggesting that existing approaches may miss biologically relevant signal. Furthermore, assessment of the previously called 3'-end positions not captured by PIPETS showed that they were uniformly very low coverage. CONCLUSIONS PIPETS provides a broadly applicable platform to explore and analyze 3'-end sequencing data sets from across different organisms. It requires only the 3'-end sequencing data, and is broadly accessible to non-expert users.
Collapse
Affiliation(s)
- Quinlan Furumo
- Department of Biology, Boston College, Chestnut Hill, MA, 02167, USA
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02167, USA.
| |
Collapse
|
4
|
Furumo Q, Meyer M. PIPETS: A statistically informed, gene-annotation agnostic analysis method to study bacterial termination using 3'-end sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585559. [PMID: 38562853 PMCID: PMC10983905 DOI: 10.1101/2024.03.18.585559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Over the last decade the drop in short-read sequencing costs has allowed experimental techniques utilizing sequencing to address specific biological questions to proliferate, oVentimes outpacing standardized or effective analysis approaches for the data generated. There are growing amounts of bacterial 3'-end sequencing data, yet there is currently no commonly accepted analysis methodology for this datatype. Most data analysis approaches are somewhat ad hoc and, despite the presence of substantial signal within annotated genes, focus on genomic regions outside the annotated genes (e.g. 3' or 5' UTRs). Furthermore, the lack of consistent systematic analysis approaches, as well as the absence of genome-wide ground truth data, make it impossible to compare conclusions generated by different labs, using different organisms. Results We present PIPETS, (Poisson Identification of PEaks from Term-Seq data), an R package available on Bioconductor that provides a novel analysis method for 3'-end sequencing data. PIPETS is a statistically informed, gene-annotation agnostic methodology. Across two different datasets from two different organisms, PIPETS identified significant 3'-end termination signal across a wider range of annotated genomic contexts than existing analysis approaches, suggesting that existing approaches may miss biologically relevant signal. Furthermore, assessment of the previously called 3'-end positions not captured by PIPETS showed that they were uniformly very low coverage. Conclusions PIPETS provides a broadly applicable placorm to explore and analyze 3'-end sequencing data sets from across different organisms. It requires only the 3'-end sequencing data, and is broadly accessible to non-expert users.
Collapse
Affiliation(s)
- Quinlan Furumo
- Department of Biology, Boston College, Chestnut Hill, MA, 02135, United States
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02135, United States
| |
Collapse
|
5
|
Moreira S, Chyou TY, Wade J, Brown C. Diversification of the Rho transcription termination factor in bacteria. Nucleic Acids Res 2024; 52:8979-8997. [PMID: 38966992 PMCID: PMC11347177 DOI: 10.1093/nar/gkae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Correct termination of transcription is essential for gene expression. In bacteria, factor-dependent termination relies on the Rho factor, that classically has three conserved domains. Some bacteria also have a functional insertion region. However, the variation in Rho structure among bacteria has not been analyzed in detail. This study determines the distribution, sequence conservation, and predicted features of Rho factors with diverse domain architectures by analyzing 2730 bacterial genomes. About half (49.8%) of the species analyzed have the typical Escherichia coli like Rho while most of the other species (39.8%) have diverse, atypical forms of Rho. Besides conservation of the main domains, we describe a duplicated RNA-binding domain present in specific species and novel variations in the bicyclomycin binding pocket. The additional regions observed in Rho proteins exhibit remarkable diversity. Commonly, however, they have exceptional amino acid compositions and are predicted to be intrinsically disordered, to undergo phase separation, or have prion-like behavior. Phase separation has recently been shown to play roles in Rho function and bacterial fitness during harsh conditions in one species and this study suggests a more widespread role. In conclusion, diverse atypical Rho factors are broadly distributed among bacteria, suggesting additional cellular roles.
Collapse
Affiliation(s)
- Sofia M Moreira
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Te-yuan Chyou
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12222, USA
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, Otago 9054, New Zealand
| |
Collapse
|
6
|
A Copper-Responsive Two-Component System Governs Lipoprotein Remodeling in Listeria monocytogenes. J Bacteriol 2023; 205:e0039022. [PMID: 36622228 PMCID: PMC9879112 DOI: 10.1128/jb.00390-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bacterial lipoproteins are membrane-associated proteins with a characteristic acylated N-terminal cysteine residue anchoring C-terminal globular domains to the membrane surface. While all lipoproteins are modified with acyl chains, the number, length, and position can vary depending on host. The acylation pattern also alters ligand recognition by the Toll-like receptor 2 (TLR2) protein family, a signaling system that is central to bacterial surveillance and innate immunity. In select Listeria monocytogenes isolates carrying certain plasmids, copper exposure converts the lipoprotein chemotype into a weak TLR2 ligand through expression of the enzyme lipoprotein intramolecular acyltransferase (Lit). In this study, we identify the response regulator (CopR) from a heavy metal-sensing two-component system as the transcription factor that integrates external copper levels with lipoprotein structural modifications. We show that phosphorylated CopR controls the expression of three distinct transcripts within the plasmid cassette encoding Lit2, prolipoprotein diacylglyceryl transferase (Lgt2), putative copper resistance determinants, and itself (the CopRS two-component system). CopR recognizes a direct repeat half-site consensus motif (TCTACACA) separated by 3 bp that overlaps the -35 promoter element. Target gene expression and lipoprotein conversion were not observed in the absence of the response regulator, indicating that CopR phosphorylation is the dominant mechanism of regulation. IMPORTANCE Copper is a frontline antimicrobial used to limit bacterial growth in multiple settings. Here, we demonstrate how the response regulator CopR from a plasmid-borne two-component system in the opportunistic pathogen L. monocytogenes directly induces lipoprotein remodeling in tandem with copper resistance genes due to extracellular copper stress. Activation of CopR by phosphorylation converts the lipoprotein chemotype from a high- to low-immunostimulatory TLR2 ligand. The two-component system-mediated coregulation of copper resistance determinants, in tandem with lipoprotein biosynthesis demonstrated here in L. monocytogenes, may be a common feature of transmissible copper resistance cassettes found in other Firmicutes.
Collapse
|
7
|
Roux AE, Robert S, Bastat M, Rosinski-Chupin I, Rong V, Holbert S, Mereghetti L, Camiade E. The Role of Regulator Catabolite Control Protein A (CcpA) in Streptococcus agalactiae Physiology and Stress Response. Microbiol Spectr 2022; 10:e0208022. [PMID: 36264242 PMCID: PMC9784791 DOI: 10.1128/spectrum.02080-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus agalactiae is a leading cause of infections in neonates. This opportunistic pathogen colonizes the vagina, where it has to cope with acidic pH and hydrogen peroxide produced by lactobacilli. Thus, in the host, this bacterium possesses numerous adaptation mechanisms in which the pleiotropic regulators play a major role. The transcriptional regulator CcpA (catabolite control protein A) has previously been shown to be the major regulator involved in carbon catabolite repression in Gram-positive bacteria but is also involved in other functions. By transcriptomic analysis, we characterized the CcpA-dependent gene regulation in S. agalactiae. Approximately 13.5% of the genome of S. agalactiae depends on CcpA for regulation and comprises genes involved in sugar uptake and fermentation, confirming the role of CcpA in carbon metabolism. We confirmed by electrophoretic mobility shift assays (EMSAs) that the DNA binding site called cis-acting catabolite responsive element (cre) determined for other streptococci was effective in S. agalactiae. We also showed that CcpA is of capital importance for survival under acidic and oxidative stresses and is implicated in macrophage survival by regulating several genes putatively or already described as involved in stress response. Among them, we focused our study on SAK_1689, which codes a putative UspA protein. We demonstrated that SAK_1689, highly downregulated by CcpA, is overexpressed under oxidative stress conditions, this overexpression being harmful for the bacterium in a ΔccpA mutant. IMPORTANCE Streptococcus agalactiae is a major cause of disease burden leading to morbidity and mortality in neonates worldwide. Deciphering its adaptation mechanisms is essential to understand how this bacterium manages to colonize its host. Here, we determined the regulon of the pleiotropic regulator CcpA in S. agalactiae. Our findings reveal that CcpA is not only involved in carbon catabolite repression, but is also important for acidic and oxidative stress resistance and survival in macrophages.
Collapse
Affiliation(s)
| | | | | | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | | | | | - Laurent Mereghetti
- ISP, Université de Tours, INRAE, Tours, France
- CHRU Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | | |
Collapse
|
8
|
Biofilm Formation in Streptococcus agalactiae Is Inhibited by a Small Regulatory RNA Regulated by the Two-Component System CiaRH. Microbiol Spectr 2022; 10:e0063522. [PMID: 35980045 PMCID: PMC9603419 DOI: 10.1128/spectrum.00635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regulatory small RNAs (sRNAs) are involved in the adaptation of bacteria to their environment. CiaR-dependent sRNAs (csRNAs) are controlled by the regulatory two-component system (TCS) CiaRH, which is widely conserved in streptococci. Except for Streptococcus pneumoniae and Streptococcus sanguinis, the targets of these csRNAs have not yet been investigated. Streptococcus agalactiae, the leading cause of neonatal infections, has four conserved csRNA genes, namely, srn015, srn024, srn070, and srn085. Here, we demonstrate the importance of the direct repeat TTTAAG-N5-TTTAAG in the regulation of these csRNAs by CiaRH. A 24-nucleotide Srn024-sap RNA base-pairing region is predicted in silico. The sap gene encodes a LPXTG-cell wall-anchored pullulanase. This protein cleaves α-glucan polysaccharides such as pullulan and glycogen present in the environment to release glucose and is involved in adhesion to human cervical epithelial cells. Inactivation of S. agalactiae pullulanase (SAP) leads to no bacterial growth in a medium with only pullulan as a carbon source and reduced biofilm formation, while deletion of ciaRH and srn024 genes significantly increases bacterial growth and biofilm formation. Using a new translational fusion vector, we demonstrated that Srn024 is involved in the posttranscriptional regulation of sap expression. Complementary base pair exchanges in S. agalactiae suggest that Srn024 interacts directly with sap mRNA and that disruption of this RNA pairing is sufficient to yield the biofilm phenotype of Srn024 deletion. These results suggest the involvement of Srn024 in the adaptation of S. agalactiae to environmental changes and biofilm formation, likely through the regulation of the sap gene. IMPORTANCE Although Streptococcus agalactiae is a commensal bacterium of the human digestive and genitourinary tracts, it is also an opportunistic pathogen for humans and other animals. As the main cause of neonatal infections, it is responsible for pneumonia, bacteremia, and meningitis. However, its adaptation to these different ecological niches is not fully understood. Bacterial regulatory networks are involved in this adaptation, and the regulatory TCSs (e.g., CiaRH), as well as the regulatory sRNAs, are part of it. This study is the first step to understand the role of csRNAs in the adaptation of S. agalactiae. This bacterium does not currently exhibit extensive antibiotic resistance. However, it is crucial to find alternatives before multidrug resistance emerges. Therefore, we propose that drugs targeting regulatory RNAs with Srn024-like activities would affect pathogens by reducing their abilities to form biofilm and to adapt to host niches.
Collapse
|
9
|
Khazaal S, Al Safadi R, Osman D, Hiron A, Gilot P. Investigation of the polyamine biosynthetic and transport capability of Streptococcus agalactiae: the non-essential PotABCD transporter. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910617 PMCID: PMC8744998 DOI: 10.1099/mic.0.001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyamines constitute a group of organic polycations positively charged at physiological pH. They are involved in a large variety of biological processes, including the protection against physiological stress. In this study, we show that the genome of Streptococcus agalactiae, a commensal bacterium of the intestine and the vagina and one of the most common agents responsible of neonate infections, does not encode proteins homologous to the specific enzymes involved in the known polyamine synthetic pathways. This lack of biosynthetic capability was verified experimentally by TLC analysis of the intracellular content of S. agalactiae grown in the absence of polyamines. However, similar analyses showed that the polyamines spermidine, spermine and putrescine can be imported from the growth media into the bacteria. We found that all strains of S. agalactiae possess the genes encoding the polyamine ABC transporter PotABCD. We demonstrated that these genes form an operon with folK, a gene involved in folate biosynthesis, murB, a gene involved in peptidoglycan biosynthesis, and with clc, a gene encoding a Cl−/H+ antiporter involved in resistance to acid stress in Escherichia coli. Transcription of the potABCD operon is induced by peroxide-induced oxidative stress but not by acidic stress. Spermidine and spermine were found to be inducers of potABCD transcription at pH 7.4 whereas putrescine induces this expression only during peroxide-induced oxidative stress. Using a deletion mutant of potABCD, we were nevertheless unable to associate phenotypic traits to the PotABCD transporter, probably due to the existence of one or more as yet identified transporters with a redundant action.
Collapse
Affiliation(s)
- Sarah Khazaal
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France.,Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Rim Al Safadi
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Dani Osman
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Aurélia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| |
Collapse
|
10
|
Zhang X, Garrett S, Graveley BR, Terns MP. Unique properties of spacer acquisition by the type III-A CRISPR-Cas system. Nucleic Acids Res 2021; 50:1562-1582. [PMID: 34893878 PMCID: PMC8860593 DOI: 10.1093/nar/gkab1193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Type III CRISPR-Cas systems have a unique mode of interference, involving crRNA-guided recognition of nascent RNA and leading to DNA and RNA degradation. How type III systems acquire new CRISPR spacers is currently not well understood. Here, we characterize CRISPR spacer uptake by a type III-A system within its native host, Streptococcus thermophilus. Adaptation by the type II-A system in the same host provided a basis for comparison. Cas1 and Cas2 proteins were critical for type III adaptation but deletion of genes responsible for crRNA biogenesis or interference did not detectably change spacer uptake patterns, except those related to host counter-selection. Unlike the type II-A system, type III spacers are acquired in a PAM- and orientation-independent manner. Interestingly, certain regions of plasmids and the host genome were particularly well-sampled during type III-A, but not type II-A, spacer uptake. These regions included the single-stranded origins of rolling-circle replicating plasmids, rRNA and tRNA encoding gene clusters, promoter regions of expressed genes and 5′ UTR regions involved in transcription attenuation. These features share the potential to form DNA secondary structures, suggesting a preferred substrate for type III adaptation. Lastly, the type III-A system adapted to and protected host cells from lytic phage infection.
Collapse
Affiliation(s)
- Xinfu Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Abstract
Small, noncoding RNAs (sRNAs) are being increasingly identified as important regulatory molecules in prokaryotes. Due to the prevalence of next-generation sequencing-based techniques, such as RNA sequencing (RNA-seq), there is potential for increased discovery of sRNAs within bacterial genomes; however, these elements are rarely included in annotation files. Consequently, expression values for sRNAs are omitted from most transcriptomic analyses, and mechanistic studies have lagged behind those of protein regulators in numerous bacteria. Two previous studies have identified sRNAs in the human pathogen group B Streptococcus (GBS). Here, we utilize the data from these studies to create updated genome annotation files for the model GBS strains NEM316 and COH1. Using the updated COH1 annotation file, we reanalyze publicly available GBS RNA-seq whole-transcriptome data from GenBank to monitor GBS sRNA expression under a variety of conditions and genetic backgrounds. This analysis generated expression values for 232 putative sRNAs that were overlooked in previous transcriptomic analyses in 21 unique comparisons. To demonstrate the utility of these data, we identify an sRNA that is upregulated during vaginal colonization and demonstrate that overexpression of this sRNA leads to increased bacterial invasion into host epithelial cells. Finally, to monitor RNA degradation, we perform a transcript stability assay to identify highly stable sRNAs and compare stability profiles of sRNA- and protein-coding genes. Collectively, these data provide a wealth of transcriptomic data for putative sRNAs in GBS and a platform for future mechanistic studies.
Collapse
|
12
|
Cho H, Masters T, Greenwood‐Quaintance KE, Johnson S, Jeraldo PR, Chia N, Pu M, Abdel MP, Patel R. Transcriptomic analysis of Streptococcus agalactiae periprosthetic joint infection. Microbiologyopen 2021; 10:e1256. [PMID: 34964296 PMCID: PMC8678771 DOI: 10.1002/mbo3.1256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
Although Streptococcus agalactiae periprosthetic joint infection (PJI) is not as prevalent as staphylococcal PJI, invasive S. agalactiae infection is not uncommon. Here, RNA-seq was used to perform transcriptomic analysis of S. agalactiae PJI using fluid derived from sonication of explanted arthroplasties of subjects with S. agalactiae PJI, with results compared to those of S. agalactiae strain NEM316 grown in vitro. A total of 227 genes with outlier expression were found (164 upregulated and 63 downregulated) between PJI sonicate fluid and in vitro conditions. Functional enrichment analysis showed genes involved in mobilome and inorganic ion transport and metabolism to be most enriched. Genes involved in nickel, copper, and zinc transport, were upregulated. Among known virulence factors, cyl operon genes, encoding β-hemolysin/cytolysin, were consistently highly expressed in PJI versus in vitro. The data presented provide insight into S. agalactiae PJI pathogenesis and may be a resource for identification of novel PJI therapeutics or vaccines against invasive S. agalactiae infections.
Collapse
Affiliation(s)
- Hye‐Kyung Cho
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Thao Masters
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Stephen Johnson
- Department of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Patricio R. Jeraldo
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Nicholas Chia
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Meng Pu
- Department of Medicine, Division of Gastroenterology and HepatologyMayo ClinicRochesterMinnesotaUSA
| | - Matthew P. Abdel
- Department of Orthopedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Division of Infectious Diseases, Department of MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
13
|
Mazzuoli MV, Daunesse M, Varet H, Rosinski-Chupin I, Legendre R, Sismeiro O, Gominet M, Kaminski PA, Glaser P, Chica C, Trieu-Cuot P, Firon A. The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genet 2021; 17:e1009761. [PMID: 34491998 PMCID: PMC8448333 DOI: 10.1371/journal.pgen.1009761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023] Open
Abstract
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases. Streptococcus agalactiae, commonly known as the Group B Streptococcus (GBS), is a commensal bacterium of the intestinal and vaginal tracts found in approximately 30% of healthy adults. However, GBS is also an opportunistic pathogen and the leading cause of neonatal invasive infections. Epidemiologic data have identified a particular GBS clone, designated the CC-17 hypervirulent clonal complex, as responsible for the overwhelming majority of neonatal meningitis. The hypervirulence of CC-17 has been linked to the expression of two specific surface proteins increasing their abilities to cross epithelial and endothelial barriers. In this study, we characterized the role of the major regulator of virulence gene expression, the CovR response regulator, in a representative hypervirulent strain. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR signaling network characterized by the direct repression of a large array of virulence-associated genes, including the specific hypervirulent adhesins. Comparative analysis in a non-CC-17 wild type strain demonstrates a high level of plasticity of the regulatory network, allowing to globally reshape pathogen-host interaction. Overall, our results suggest that the intra-species evolution of the regulatory network is an important factor in the emergence of GBS clones associated with specific pathologies.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maëlle Daunesse
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Philippe Glaser
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Claudia Chica
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Park J, Wang HH. Systematic dissection of σ 70 sequence diversity and function in bacteria. Cell Rep 2021; 36:109590. [PMID: 34433066 PMCID: PMC8716302 DOI: 10.1016/j.celrep.2021.109590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 10/29/2022] Open
Abstract
Primary σ70 factors are key conserved bacterial regulatory proteins that interact with regulatory DNA to control gene expression. It is, however, poorly understood whether σ70 sequence diversity in different bacteria reflects functional differences. Here, we employ comparative and functional genomics to explore the sequence and function relationship of primary σ70. Using multiplex automated genome engineering and deep sequencing (MAGE-seq), we generate a saturation mutagenesis library and high-resolution fitness map of E. coli σ70 in domains 2-4. Mapping natural σ70 sequence diversity to the E. coli σ70 fitness landscape reveals significant predicted fitness deficits across σ70 orthologs. Interestingly, these predicted deficits are larger than observed fitness changes for 15 σ70 orthologs introduced into E. coli. Finally, we use a multiplexed transcriptional reporter assay and RNA sequencing (RNA-seq) to explore functional differences of several σ70 orthologs. This work provides an in-depth analysis of σ70 sequence and function to improve efforts to understand the evolution and engineering potential of this global regulator.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA.
| | - Harris H Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Jabbour N, Lartigue MF. An Inventory of CiaR-Dependent Small Regulatory RNAs in Streptococci. Front Microbiol 2021; 12:669396. [PMID: 34113330 PMCID: PMC8186281 DOI: 10.3389/fmicb.2021.669396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteria adapt to the different environments encountered by rapid and tightly controlled regulations involving complex networks. A first line of control is transcriptional with regulators such as two-component systems (TCSs) that respond to physical and chemical perturbations. It is followed by posttranscriptional regulations in which small regulatory RNAs (sRNAs) may affect RNA translation. Streptococci are opportunistic pathogens for humans and farm animals. The TCS CiaRH is highly conserved among this genus and crucial in bacterial survival under stressful conditions. In several streptococcal species, some sRNAs belong to the CiaRH regulon and are called csRNAs for cia-dependent sRNAs. In this review, we start by focusing on the Streptococcus species harboring a CiaRH TCS. Then the role of CiaRH in streptococcal pathogenesis is discussed in the context of recent studies. Finally, we give an overview of csRNAs and their functions in Streptococci with a focus on their importance in bacterial adaptation and virulence.
Collapse
Affiliation(s)
| | - Marie-Frédérique Lartigue
- Université de Tours, INRAE, ISP, Tours, France.,Centre Hospitalier Universitaire de Tours, Service de Bactériologie, Virologie, et Hygiène Hospitalière, Tours, France
| |
Collapse
|
16
|
Pastuszka A, Beauruelle C, Camiade E, Rousseau GM, Moineau S, Mereghetti L, Horvath P, Lanotte P. Functional Study of the Type II-A CRISPR-Cas System of Streptococcus agalactiae Hypervirulent Strains. CRISPR J 2021; 4:233-242. [PMID: 33876956 DOI: 10.1089/crispr.2020.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nearly all strains of Streptococcus agalactiae, the leading cause of invasive infections in neonates, encode a type II-A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system. Interestingly, S. agalactiae strains belonging to the hypervirulent Sequence Type 17 (ST17) contain significantly fewer spacers in their CRISPR locus than other lineages, which could be the result of a less functional CRISPR-Cas system. Here, we revealed one large deletion in the ST17 cas promoter region and we evaluated its impact on the transcription of cas genes as well as the functionalities of the CRISPR-Cas system. We demonstrated that Cas9 interference is functional and that the CRISPR-Cas system of ST17 strains can still acquire new spacers, despite the absence of a regular cas promoter. We demonstrated that a promoter sequence upstream of srn036, a small RNA partially overlapping the antisense tracrRNA, is responsible for the ST17 CRISPR-Cas adaptation and interference activities.
Collapse
Affiliation(s)
- Adeline Pastuszka
- ISP, Université de Tours, INRAE, Tours, France; Dangé-Saint-Romain, France.,Service de Bactériologie-Virologie-Hygiène Hospitalière, CHRU de Tours, Tours, France; Dangé-Saint-Romain, France
| | - Clémence Beauruelle
- Département de Bactériologie-Virologie, Hygiène Hospitalière et Parasitologie-Mycologie, Centre Hospitalier Régional Universitaire (CHRU) de Brest, Brest, France; Dangé-Saint-Romain, France.,Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France; Dangé-Saint-Romain, France
| | - Emilie Camiade
- ISP, Université de Tours, INRAE, Tours, France; Dangé-Saint-Romain, France
| | - Geneviève M Rousseau
- Département de Biochimie, de Microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Canada; Dangé-Saint-Romain, France
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Canada; Dangé-Saint-Romain, France.,Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Canada; and Dangé-Saint-Romain, France
| | - Laurent Mereghetti
- ISP, Université de Tours, INRAE, Tours, France; Dangé-Saint-Romain, France.,Service de Bactériologie-Virologie-Hygiène Hospitalière, CHRU de Tours, Tours, France; Dangé-Saint-Romain, France
| | | | - Philippe Lanotte
- ISP, Université de Tours, INRAE, Tours, France; Dangé-Saint-Romain, France.,Service de Bactériologie-Virologie-Hygiène Hospitalière, CHRU de Tours, Tours, France; Dangé-Saint-Romain, France
| |
Collapse
|
17
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
18
|
Soutourina O, Dubois T, Monot M, Shelyakin PV, Saujet L, Boudry P, Gelfand MS, Dupuy B, Martin-Verstraete I. Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen Clostridioides difficile. Front Microbiol 2020; 11:1939. [PMID: 32903654 PMCID: PMC7438776 DOI: 10.3389/fmicb.2020.01939] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging human enteropathogen Clostridioides difficile is the main cause of diarrhea associated with antibiotherapy. Regulatory pathways underlying the adaptive responses remain understudied and the global view of C. difficile promoter structure is still missing. In the genome of C. difficile 630, 22 genes encoding sigma factors are present suggesting a complex pattern of transcription in this bacterium. We present here the first transcriptional map of the C. difficile genome resulting from the identification of transcriptional start sites (TSS), promoter motifs and operon structures. By 5′-end RNA-seq approach, we mapped more than 1000 TSS upstream of genes. In addition to these primary TSS, this analysis revealed complex structure of transcriptional units such as alternative and internal promoters, potential RNA processing events and 5′ untranslated regions. By following an in silico iterative strategy that used as an input previously published consensus sequences and transcriptomic analysis, we identified candidate promoters upstream of most of protein-coding and non-coding RNAs genes. This strategy also led to refine consensus sequences of promoters recognized by major sigma factors of C. difficile. Detailed analysis focuses on the transcription in the pathogenicity locus and regulatory genes, as well as regulons of transition phase and sporulation sigma factors as important components of C. difficile regulatory network governing toxin gene expression and spore formation. Among the still uncharacterized regulons of the major sigma factors of C. difficile, we defined the SigL regulon by combining transcriptome and in silico analyses. We showed that the SigL regulon is largely involved in amino-acid degradation, a metabolism crucial for C. difficile gut colonization. Finally, we combined our TSS mapping, in silico identification of promoters and RNA-seq data to improve gene annotation and to suggest operon organization in C. difficile. These data will considerably improve our knowledge of global regulatory circuits controlling gene expression in C. difficile and will serve as a useful rich resource for scientific community both for the detailed analysis of specific genes and systems biology studies.
Collapse
Affiliation(s)
- Olga Soutourina
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Thomas Dubois
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | | | - Laure Saujet
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
20
|
Aprianto R, Slager J, Holsappel S, Veening JW. High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions. Nucleic Acids Res 2019; 46:9990-10006. [PMID: 30165663 PMCID: PMC6212715 DOI: 10.1093/nar/gky750] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that typically colonizes the nasopharyngeal passage and causes lethal disease in other host niches, such as the lung or the meninges. The expression and regulation of pneumococcal genes at different life-cycle stages, such as commensal or pathogenic, are not entirely understood. To chart the transcriptional responses of S. pneumoniae, we used RNA-seq to quantify the relative abundance of the transcriptome under 22 different infection-relevant conditions. The data demonstrated a high level of dynamic expression and, strikingly, all annotated pneumococcal genomic features were expressed in at least one of the studied conditions. By computing the correlation values of every pair of genes across all studied conditions, we created a co-expression matrix that provides valuable information on both operon structure and regulatory processes. The co-expression data are highly consistent with well-characterized operons and regulons, such as the PyrR, ComE and ComX regulons, and have allowed us to identify a new member of the competence regulon. Lastly, we created an interactive data center named PneumoExpress (https://veeninglab.com/pneumoexpress) that enables users to access the expression data as well as the co-expression matrix in an intuitive and efficient manner, providing a valuable resource to the pneumococcal research community.
Collapse
Affiliation(s)
- Rieza Aprianto
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siger Holsappel
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Refining the Pneumococcal Competence Regulon by RNA Sequencing. J Bacteriol 2019; 201:JB.00780-18. [PMID: 30885934 PMCID: PMC6560143 DOI: 10.1128/jb.00780-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen responsible for over a million deaths every year. Although both vaccination programs and antibiotic therapies have been effective in prevention and treatment of pneumococcal infections, respectively, the sustainability of these solutions is uncertain. The pneumococcal genome is highly flexible, leading to vaccine escape and antibiotic resistance. This flexibility is predominantly facilitated by competence, a state allowing the cell to take up and integrate exogenous DNA. Thus, it is essential to obtain a detailed overview of gene expression during competence. This is stressed by the fact that administration of several classes of antibiotics can lead to competence. Previous studies on the competence regulon were performed with microarray technology and were limited to an incomplete set of known genes. Using RNA sequencing combined with an up-to-date genome annotation, we provide an updated overview of competence-regulated genes. Competence for genetic transformation allows the opportunistic human pathogen Streptococcus pneumoniae to take up exogenous DNA for incorporation into its own genome. This ability may account for the extraordinary genomic plasticity of this bacterium, leading to antigenic variation, vaccine escape, and the spread of antibiotic resistance. The competence system has been thoroughly studied, and its regulation is well understood. Additionally, over the last decade, several stress factors have been shown to trigger the competent state, leading to the activation of several stress response regulons. The arrival of next-generation sequencing techniques allowed us to update the competence regulon, the latest report on which still depended on DNA microarray technology. Enabled by the availability of an up-to-date genome annotation, including transcript boundaries, we assayed time-dependent expression of all annotated features in response to competence induction, were able to identify the affected promoters, and produced a more complete overview of the various regulons activated during the competence state. We show that 4% of all annotated genes are under direct control of competence regulators ComE and ComX, while the expression of a total of up to 17% of all genes is affected, either directly or indirectly. Among the affected genes are various small RNAs with an as-yet-unknown function. Besides the ComE and ComX regulons, we were also able to refine the CiaR, VraR (LiaR), and BlpR regulons, underlining the strength of combining transcriptome sequencing (RNA-seq) with a well-annotated genome. IMPORTANCEStreptococcus pneumoniae is an opportunistic human pathogen responsible for over a million deaths every year. Although both vaccination programs and antibiotic therapies have been effective in prevention and treatment of pneumococcal infections, respectively, the sustainability of these solutions is uncertain. The pneumococcal genome is highly flexible, leading to vaccine escape and antibiotic resistance. This flexibility is predominantly facilitated by competence, a state allowing the cell to take up and integrate exogenous DNA. Thus, it is essential to obtain a detailed overview of gene expression during competence. This is stressed by the fact that administration of several classes of antibiotics can lead to competence. Previous studies on the competence regulon were performed with microarray technology and were limited to an incomplete set of known genes. Using RNA sequencing combined with an up-to-date genome annotation, we provide an updated overview of competence-regulated genes.
Collapse
|
22
|
Copper-Induced Expression of a Transmissible Lipoprotein Intramolecular Transacylase Alters Lipoprotein Acylation and the Toll-Like Receptor 2 Response to Listeria monocytogenes. J Bacteriol 2019; 201:JB.00195-19. [PMID: 30988036 DOI: 10.1128/jb.00195-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
Bacterial lipoproteins are globular proteins anchored to the extracytoplasmic surfaces of cell membranes through lipidation at a conserved N-terminal cysteine. Lipoproteins contribute to an array of important cellular functions for bacteria, as well as being a focal point for innate immune system recognition through binding to Toll-like receptor 2 (TLR2) heterodimer complexes. Although lipoproteins are conserved among nearly all classes of bacteria, the presence and type of α-amino-linked acyl chain are highly variable and even strain specific within a given bacterial species. The reason for lyso-lipoprotein formation and N-acylation variability in general is presently not fully understood. In Enterococcus faecalis, lipoproteins are anchored by an N-acyl-S-monoacyl-glyceryl cysteine (lyso form) moiety installed by a chromosomally encoded lipoprotein intramolecular transacylase (Lit). Here, we describe a mobile genetic element common to environmental isolates of Listeria monocytogenes and Enterococcus spp. encoding a functional Lit ortholog (Lit2) that is cotranscribed with several well-established copper resistance determinants. Expression of Lit2 is tightly regulated, and induction by copper converts lipoproteins from the diacylglycerol-modified form characteristic of L. monocytogenes type strains to the α-amino-modified lyso form observed in E. faecalis Conversion to the lyso form through either copper addition to media or constitutive expression of lit2 decreases TLR2 recognition when using an activated NF-κB secreted embryonic alkaline phosphatase reporter assay. While lyso formation significantly diminishes TLR2 recognition, lyso-modified lipoprotein is still predominantly recognized by the TLR2/TLR6 heterodimer.IMPORTANCE The induction of lipoprotein N-terminal remodeling in response to environmental copper in Gram-positive bacteria suggests a more general role in bacterial cell envelope physiology. N-terminal modification by lyso formation, in particular, simultaneously modulates the TLR2 response in direct comparison to their diacylglycerol-modified precursors. Thus, use of copper as a frontline antimicrobial control agent and ensuing selection raises the potential of diminished innate immune sensing and enhanced bacterial virulence.
Collapse
|
23
|
Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. 5'-End sequencing in Saccharomyces cerevisiae offers new insights into 5'-ends of tRNA H is and snoRNAs. FEBS Lett 2019; 593:971-981. [PMID: 30908619 DOI: 10.1002/1873-3468.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023]
Abstract
tRNAH is guanylyltransferase (Thg1) specifies eukaryotic tRNAH is identity by catalysing a 3'-5' non-Watson-Crick (WC) addition of guanosine to the 5'-end of tRNAH is . Thg1 family enzymes in Archaea and Bacteria, called Thg1-like proteins (TLPs), catalyse a similar but distinct 3'-5' addition in an exclusively WC-dependent manner. Here, a genetic system in Saccharomyces cerevisiae was employed to further assess the biochemical differences between Thg1 and TLPs. Utilizing a novel 5'-end sequencing pipeline, we find that a Bacillus thuringiensis TLP sustains the growth of a thg1Δ strain by maintaining a WC-dependent addition of U-1 across from A73 . Additionally, we observe 5'-end heterogeneity in S. cerevisiae small nucleolar RNAs (snoRNAs), an observation that may inform methods of annotation and mechanisms of snoRNA processing.
Collapse
Affiliation(s)
- Samantha Dodbele
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Blythe Moreland
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Spencer M Gardner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Chen Z, Raghavan R, Qi F, Merritt J, Kreth J. Genome-wide screening of potential RNase Y-processed mRNAs in the M49 serotype Streptococcus pyogenes NZ131. Microbiologyopen 2019; 8:e00671. [PMID: 29900693 PMCID: PMC6460267 DOI: 10.1002/mbo3.671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/28/2023] Open
Abstract
RNase Y is a major endoribonuclease in Group A streptococcus (GAS) and other Gram-positive bacteria. Our previous study showed that RNase Y was involved in mRNA degradation and processing in GAS. We hypothesized that mRNA processing regulated the expression of important GAS virulence factors via altering their mRNA stabilities and that RNase Y mediated at least some of the mRNA-processing events. The aims of this study were to (1) identify mRNAs that were processed by RNase Y and (2) confirm the mRNA-processing events. The transcriptomes of Streptococcus pyogenes NZ131 wild type and its RNase Y mutant (Δrny) were examined with RNA-seq. The data were further analyzed to define GAS operons. The mRNA stabilities of the wild type and Δrny at subgene level were determined with tiling array analysis. Operons displaying segmental stability in the wild type but not in the Δrny were predicted to be RNase Y processed. Overall 865 operons were defined and their boundaries predicted. Further analysis narrowed down 15 mRNAs potentially processed by RNase Y. A selection of four candidates including folC1 (folylpolyglutamate synthetase), prtF (fibronectin-binding protein), speG (streptococcal exotoxin G), ropB (transcriptional regulator of speB), and ypaA (riboflavin transporter) mRNAs was examined with Northern blot analysis. However, only folC1 was confirmed to be processed, but it is unlikely that RNase Y is responsible. We conclude that GAS use RNase Y to selectively process mRNA, but the overall impact is confined to selected virulence factors.
Collapse
Affiliation(s)
- Zhiyun Chen
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme EnvironmentsPortland State UniversityPortlandOregon
| | - Fengxia Qi
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma
| | - Justin Merritt
- Department of Restorative DentistryOregon Health and Science UniversityPortlandOregon
- Department of Molecular Microbiology and ImmunologyOregon Health and Science UniversityPortlandOregon
| | - Jens Kreth
- Department of Restorative DentistryOregon Health and Science UniversityPortlandOregon
| |
Collapse
|
25
|
Rosinski-Chupin I, Sauvage E, Fouet A, Poyart C, Glaser P. Conserved and specific features of Streptococcus pyogenes and Streptococcus agalactiae transcriptional landscapes. BMC Genomics 2019; 20:236. [PMID: 30902048 PMCID: PMC6431027 DOI: 10.1186/s12864-019-5613-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human pathogen Streptococcus pyogenes, or group A Streptococcus, is responsible for mild infections to life-threatening diseases. To facilitate the characterization of regulatory networks involved in the adaptation of this pathogen to its different environments and their evolution, we have determined the primary transcriptome of a serotype M1 S. pyogenes strain at single-nucleotide resolution and compared it with that of Streptococcus agalactiae, also from the pyogenic group of streptococci. RESULTS By using a combination of differential RNA-sequencing and oriented RNA-sequencing we have identified 892 transcription start sites (TSS) and 885 promoters in the S. pyogenes M1 strain S119. 8.6% of S. pyogenes mRNAs were leaderless, among which 81% were also classified as leaderless in S. agalactiae. 26% of S. pyogenes transcript 5' untranslated regions (UTRs) were longer than 60 nt. Conservation of long 5' UTRs with S. agalactiae allowed us to predict new potential regulatory sequences. In addition, based on the mapping of 643 transcript ends in the S. pyogenes strain S119, we constructed an operon map of 401 monocistrons and 349 operons covering 81.5% of the genome. One hundred fifty-six operons and 254 monocistrons retained the same organization, despite multiple genomic reorganizations between S. pyogenes and S. agalactiae. Genomic reorganization was found to more often go along with variable promoter sequences and 5' UTR lengths. Finally, we identified 117 putative regulatory RNAs, among which nine were regulated in response to magnesium concentration. CONCLUSIONS Our data provide insights into transcriptome evolution in pyogenic streptococci and will facilitate the analysis of genetic polymorphisms identified by comparative genomics in S. pyogenes.
Collapse
Affiliation(s)
- Isabelle Rosinski-Chupin
- Ecology and Evolution of Resistance to Antibiotics, Institut Pasteur-APHP-Université Paris Saclay, UMR3525 CNRS, Paris, France
| | - Elisabeth Sauvage
- Ecology and Evolution of Resistance to Antibiotics, Institut Pasteur-APHP-Université Paris Saclay, UMR3525 CNRS, Paris, France
| | - Agnès Fouet
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Université Paris Descartes (UMR-S1016), Paris, France
- Centre Nationale de Référence des Streptocoques, Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Université Paris Descartes (UMR-S1016), Paris, France
- Centre Nationale de Référence des Streptocoques, Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Resistance to Antibiotics, Institut Pasteur-APHP-Université Paris Saclay, UMR3525 CNRS, Paris, France
| |
Collapse
|
26
|
Abstract
In bacteria and archaea, small RNAs (sRNAs) regulate complex networks through antisense interactions with target mRNAs in trans, and riboswitches regulate gene expression in cis based on the ability to bind small-molecule ligands. Although our understanding and characterization of these two important regulatory RNA classes is far from complete, these RNA-based mechanisms have proven useful for a wide variety of synthetic biology applications. Besides classic and contemporary applications in the realm of metabolic engineering and orthogonal gene control, this review also covers newer applications of regulatory RNAs as biosensors, logic gates, and tools to determine RNA-RNA interactions. A separate section focuses on critical insights gained and challenges posed by fundamental studies of sRNAs and riboswitches that should aid future development of synthetic regulatory RNAs.
Collapse
|
27
|
Warrier I, Ram-Mohan N, Zhu Z, Hazery A, Echlin H, Rosch J, Meyer MM, van Opijnen T. The Transcriptional landscape of Streptococcus pneumoniae TIGR4 reveals a complex operon architecture and abundant riboregulation critical for growth and virulence. PLoS Pathog 2018; 14:e1007461. [PMID: 30517198 PMCID: PMC6296669 DOI: 10.1371/journal.ppat.1007461] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/17/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022] Open
Abstract
Efficient and highly organized regulation of transcription is fundamental to an organism’s ability to survive, proliferate, and quickly respond to its environment. Therefore, precise mapping of transcriptional units and understanding their regulation is crucial to determining how pathogenic bacteria cause disease and how they may be inhibited. In this study, we map the transcriptional landscape of the bacterial pathogen Streptococcus pneumoniae TIGR4 by applying a combination of high-throughput RNA-sequencing techniques. We successfully map 1864 high confidence transcription termination sites (TTSs), 790 high confidence transcription start sites (TSSs) (742 primary, and 48 secondary), and 1360 low confidence TSSs (74 secondary and 1286 primary) to yield a total of 2150 TSSs. Furthermore, our study reveals a complex transcriptome wherein environment-respondent alternate transcriptional units are observed within operons stemming from internal TSSs and TTSs. Additionally, we identify many putative cis-regulatory RNA elements and riboswitches within 5’-untranslated regions (5’-UTR). By integrating TSSs and TTSs with independently collected RNA-Seq datasets from a variety of conditions, we establish the response of these regulators to changes in growth conditions and validate several of them. Furthermore, to demonstrate the importance of ribo-regulation by 5’-UTR elements for in vivo virulence, we show that the pyrR regulatory element is essential for survival, successful colonization and infection in mice suggesting that such RNA elements are potential drug targets. Importantly, we show that our approach of combining high-throughput sequencing with in vivo experiments can reconstruct a global understanding of regulation, but also pave the way for discovery of compounds that target (ribo-)regulators to mitigate virulence and antibiotic resistance. The canonical relationship between a bacterial operon and the mRNA transcript produced from the operon has become significantly more complex as numerous regulatory mechanisms that impact the stability, translational efficiency, and early termination rates for mRNA transcripts have been described. With the rise of antibiotic resistance, these mechanisms offer new potential targets for antibiotic development. In this study we used a combination of high-throughput sequencing technologies to assess genome-wide transcription start and stop sites, as well as determine condition specific global transcription patterns in the human pathogen Streptococcus pneumoniae. We find that the majority of multi-gene operons have alternative start and stop sites enabling condition specific regulation of genes within the same operon. Furthermore, we identified many putative RNA regulators that are widespread in the S. pneumoniae pan-genome. Finally, we show that separately collected RNA-Seq data enables identification of conditional triggers for regulatory RNAs, and experimentally demonstrate that our approach may be used to identify drug-able RNA targets by establishing that pyrR RNA functionality is critical for successful S. pneumoniae mouse colonization and infection. Thus, our study not only uses genome-wide high-throughput approaches to identify putative RNA regulators, but also establishes the importance of such regulators in S. pneumoniae virulence.
Collapse
Affiliation(s)
- Indu Warrier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Nikhil Ram-Mohan
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Zeyu Zhu
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Ariana Hazery
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Haley Echlin
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle M. Meyer
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail: (MMM); (TvO)
| | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail: (MMM); (TvO)
| |
Collapse
|
28
|
Jousset AB, Rosinski-Chupin I, Takissian J, Glaser P, Bonnin RA, Naas T. Transcriptional Landscape of a bla KPC-2 Plasmid and Response to Imipenem Exposure in Escherichia coli TOP10. Front Microbiol 2018; 9:2929. [PMID: 30559731 PMCID: PMC6286996 DOI: 10.3389/fmicb.2018.02929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
The diffusion of KPC-2 carbapenemase is closely related to the spread of Klebsiella pneumoniae of the clonal-group 258 and linked to IncFIIK plasmids. Little is known about the biology of multi-drug resistant plasmids and the reasons of their successful dissemination. Using E. coli TOP10 strain harboring a multi-replicon IncFIIK-IncFIB blaKPC−2-gene carrying plasmid pBIC1a from K. pneumoniae ST-258 clinical isolate BIC-1, we aimed to identify basal gene expression and the effects of imipenem exposure using whole transcriptome approach by RNA sequencing (RNA-Seq). Independently of the antibiotic pressure, most of the plasmid-backbone genes were expressed at low levels. The most expressed pBIC1a genes were involved in antibiotic resistance (blaKPC−2, blaTEM and aph(3′)-I), in plasmid replication and conjugation, or associated to mobile elements. After antibiotic exposure, 34% of E. coli (pBIC1a) genome was differentially expressed. Induction of oxidative stress response was evidenced, with numerous upregulated genes of the SoxRS/OxyR oxydative stress regulons, the Fur regulon (for iron uptake machinery), and IscR regulon (for iron sulfur cluster synthesis). Nine genes carried by pBIC1a were up-regulated, including the murein DD-endopeptidase mepM and the copper resistance operon. Despite the presence of a carbapenemase, we observed a major impact on E. coli (pBIC1a) whole transcriptome after imipenem exposure, but no effect on the level of transcription of antimicrobial resistance genes. We describe adaptive responses of E. coli to imipenem-induced stress, and identified plasmid-encoded genes that could be involved in resistance to stressful environments.
Collapse
Affiliation(s)
- Agnès B Jousset
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Isabelle Rosinski-Chupin
- Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France.,CNRS, UMRS 3525, Paris, France
| | - Julie Takissian
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Philippe Glaser
- Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France.,CNRS, UMRS 3525, Paris, France
| | - Rémy A Bonnin
- Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Thierry Naas
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| |
Collapse
|
29
|
The plasminogen binding protein PbsP is required for brain invasion by hypervirulent CC17 Group B streptococci. Sci Rep 2018; 8:14322. [PMID: 30254272 PMCID: PMC6156580 DOI: 10.1038/s41598-018-32774-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus or GBS) is a frequent cause of serious disease in newborns and adults. Epidemiological evidence indicates a strong association between GBS strains belonging to the hypervirulent CC17 clonal complex and the occurrence of meningitis in neonates. We investigate here the role of PbsP, a cell wall plasminogen binding protein, in colonization of the central nervous system by CC17 GBS. Deletion of pbsP selectively impaired the ability of the CC17 strain BM110 to colonize the mouse brain after intravenous challenge, despite its unchanged capacity to persist at high levels in the blood and to invade the kidneys. Moreover, immunization with a recombinant form of PbsP considerably reduced brain infection and lethality. In vitro, pbsP deletion markedly decreased plasmin-dependent transmigration of BM110 through brain microvascular endothelial cells. Although PbsP was modestly expressed in bacteria grown under standard laboratory conditions, pbsP expression was markedly upregulated during in vivo infection or upon contact with cultured brain endothelial cells. Collectively, our studies indicate that PbsP is a highly conserved Plg binding adhesin, which is functionally important for invasion of the central nervous system by the hypervirulent CC17 GBS. Moreover, this antigen is a promising candidate for inclusion in a universal GBS vaccine.
Collapse
|
30
|
Wolf IR, Paschoal AR, Quiroga C, Domingues DS, de Souza RF, Pretto-Giordano LG, Vilas-Boas LA. Functional annotation and distribution overview of RNA families in 27 Streptococcus agalactiae genomes. BMC Genomics 2018; 19:556. [PMID: 30055586 PMCID: PMC6064168 DOI: 10.1186/s12864-018-4951-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/22/2018] [Indexed: 01/08/2023] Open
Abstract
Background Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a Gram-positive bacterium that colonizes the gastrointestinal and genitourinary tract of humans. This bacterium has also been isolated from various animals, such as fish and cattle. Non-coding RNAs (ncRNAs) can act as regulators of gene expression in bacteria, such as Streptococcus pneumoniae and Streptococcus pyogenes. However, little is known about the genomic distribution of ncRNAs and RNA families in S. agalactiae. Results Comparative genome analysis of 27 S. agalactiae strains showed more than 5 thousand genomic regions identified and classified as Core, Exclusive, and Shared genome sequences. We identified 27 to 89 RNA families per genome distributed over these regions, from these, 25 were in Core regions while Shared and Exclusive regions showed variations amongst strains. We propose that the amount and type of ncRNA present in each genome can provide a pattern to contribute in the identification of the clonal types. Conclusions The identification of RNA families provides an insight over ncRNAs, sRNAs and ribozymes function, that can be further explored as targets for antibiotic development or studied in gene regulation of cellular processes. RNA families could be considered as markers to determine infection capabilities of different strains. Lastly, pan-genome analysis of GBS including the full range of functional transcripts provides a broader approach in the understanding of this pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-4951-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan Rodrigo Wolf
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Alexandre Rossi Paschoal
- Universidade Tecnológica Federal do Paraná, Campus Cornélio Procópio, Cornélio Procópio, Paraná, Brazil.
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - Rogério Fernandes de Souza
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Laurival Antonio Vilas-Boas
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
31
|
Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski PA, Firon A. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet 2018; 14:e1007342. [PMID: 29659565 PMCID: PMC5919688 DOI: 10.1371/journal.pgen.1007342] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP) is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment. Nucleotide-based second messengers play central functions in bacterial physiology and host-pathogen interactions. Among these signalling nucleotides, cyclic-di-AMP (c-di-AMP) synthesis was originally assumed to be essential for bacterial growth. In this study, we confirmed that the only di-adenylate cyclase enzyme in the opportunistic pathogen Streptococcus agalactiae is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable by accumulating spontaneous mutations in genes involved in osmotic regulation. We identified that c-di-AMP binds directly to four proteins necessary to maintain osmotic homeostasis, including three osmolyte transporters and the BusR transcriptional factor. We demonstrated that BusR negatively controls the expression of the busAB operon and that it is the main component leading to growth inhibition in the absence of c-di-AMP synthesis if osmoprotectants are present in the environment. Overall, c-di-AMP is essential to maintain osmotic homeostasis by coordinating osmolyte uptake and thus bacteria have developed specific mechanisms to keep c-di-AMP as the central regulator of osmotic homeostasis.
Collapse
Affiliation(s)
- Laura Devaux
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dona Sleiman
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Myriam Gominet
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Philippe Lanotte
- Université de Tours, Infectiologie et Santé Publique, Bactéries et Risque Materno-Fœtal, INRA UMR1282, Tours France
- Hôpital Bretonneau, Centre Hospitalier Régional et Universitaire de Tours, Service de Bactériologie-Virologie, Tours France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- * E-mail:
| |
Collapse
|
32
|
Parallel Evolution of Group B Streptococcus Hypervirulent Clonal Complex 17 Unveils New Pathoadaptive Mutations. mSystems 2017; 2:mSystems00074-17. [PMID: 28904998 PMCID: PMC5585690 DOI: 10.1128/msystems.00074-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection ability. We show that crucial functions involved in different steps of the colonization or infection process of GBS are distinctly mutated during the adaptation of CC17 to the human host. In particular, our results implicate the CovRS two-component regulator of virulence in the differentiation between carriage- and disease-associated isolates. Not only does this work raise important implications for the ongoing development of a vaccine against GBS but might also drive the discovery of key functions for GBS adaptation and pathogenesis that have been overlooked until now. Group B Streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts, while a prevailing cause of neonatal disease worldwide. Of the various clonal complexes (CCs), CC17 is overrepresented in GBS-infected newborns for reasons that are still largely unknown. Here, we report a comprehensive genomic analysis of 626 CC17 isolates collected worldwide, identifying the genetic traits behind their successful adaptation to humans and the underlying differences between carriage and clinical strains. Comparative analysis with 923 GBS genomes belonging to CC1, CC19, and CC23 revealed that the evolution of CC17 is distinct from that of other human-adapted lineages and recurrently targets functions related to nucleotide and amino acid metabolism, cell adhesion, regulation, and immune evasion. We show that the most distinctive features of disease-specific CC17 isolates were frequent mutations in the virulence-associated CovS and Stk1 kinases, underscoring the crucial role of the entire CovRS regulatory pathway in modulating the pathogenicity of GBS. Importantly, parallel and convergent evolution of major components of the bacterial cell envelope, such as the capsule biosynthesis operon, the pilus, and Rib, reflects adaptation to host immune pressures and should be taken into account in the ongoing development of a GBS vaccine. The presence of recurrent targets of evolution not previously implicated in virulence also opens the way for uncovering new functions involved in host colonization and GBS pathogenesis. IMPORTANCE The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection ability. We show that crucial functions involved in different steps of the colonization or infection process of GBS are distinctly mutated during the adaptation of CC17 to the human host. In particular, our results implicate the CovRS two-component regulator of virulence in the differentiation between carriage- and disease-associated isolates. Not only does this work raise important implications for the ongoing development of a vaccine against GBS but might also drive the discovery of key functions for GBS adaptation and pathogenesis that have been overlooked until now. Author Video: An author video summary of this article is available.
Collapse
|
33
|
Adams PP, Flores Avile C, Popitsch N, Bilusic I, Schroeder R, Lybecker M, Jewett MW. In vivo expression technology and 5' end mapping of the Borrelia burgdorferi transcriptome identify novel RNAs expressed during mammalian infection. Nucleic Acids Res 2017; 45:775-792. [PMID: 27913725 PMCID: PMC5314773 DOI: 10.1093/nar/gkw1180] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Borrelia burgdorferi, the bacterial pathogen responsible for Lyme disease, modulates its gene expression profile in response to the environments encountered throughout its tick-mammal infectious cycle. To begin to characterize the B. burgdorferi transcriptome during murine infection, we previously employed an in vivo expression technology-based approach (BbIVET). This identified 233 putative promoters, many of which mapped to un-annotated regions of the complex, segmented genome. Herein, we globally identify the 5' end transcriptome of B. burgdorferi grown in culture as a means to validate non-ORF associated promoters discovered through BbIVET. We demonstrate that 119 BbIVET promoters are associated with transcription start sites (TSSs) and validate novel RNA transcripts using Northern blots and luciferase promoter fusions. Strikingly, 49% of BbIVET promoters were not found to associate with TSSs. This finding suggests that these sequences may be primarily active in the mammalian host. Furthermore, characterization of the 6042 B. burgdorferi TSSs reveals a variety of RNAs including numerous antisense and intragenic transcripts, leaderless RNAs, long untranslated regions and a unique nucleotide frequency for initiating intragenic transcription. Collectively, this is the first comprehensive map of TSSs in B. burgdorferi and characterization of previously un-annotated RNA transcripts expressed by the spirochete during murine infection.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Niko Popitsch
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Ivana Bilusic
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Renée Schroeder
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| |
Collapse
|
34
|
Périchon B, Szili N, du Merle L, Rosinski-Chupin I, Gominet M, Bellais S, Poyart C, Trieu-Cuot P, Dramsi S. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110. PLoS One 2017; 12:e0169840. [PMID: 28107386 PMCID: PMC5249243 DOI: 10.1371/journal.pone.0169840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
Abstract
The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) “hypervirulent” ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5’ promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect. Collectively, our results indicate that PI-2b expression is regulated in GBS ST17 strains, which may confer a selective advantage in the human host either by reducing host immune responses and/or increasing their dissemination potential.
Collapse
Affiliation(s)
- Bruno Périchon
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Noémi Szili
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Laurence du Merle
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | | | - Myriam Gominet
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Samuel Bellais
- Équipe Barrières et Pathogènes, Institut Cochin, Inserm 1016, CNRS UMR, Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre-Site Cochin, France
| | - Claire Poyart
- Équipe Barrières et Pathogènes, Institut Cochin, Inserm 1016, CNRS UMR, Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre-Site Cochin, France
- CNR Streptocoques, Hôpitaux Universitaires Paris Centre, site Cochin, AP-HP
- DHU Risques et Grossesse, AP-HP, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Zorgani MA, Camiade E, Quentin R, Lartigue MF. Editorial: Small Non-coding RNAs in Streptococci. Front Genet 2016; 7:192. [PMID: 27853466 PMCID: PMC5089985 DOI: 10.3389/fgene.2016.00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohamed A Zorgani
- ISP, Institut National De La Recherche Agronomique, Université Tours, Equipe Bactéries et Risque Materno-Foetal, UMR 1282 Tours, France
| | - Emilie Camiade
- ISP, Institut National De La Recherche Agronomique, Université Tours, Equipe Bactéries et Risque Materno-Foetal, UMR 1282 Tours, France
| | - Roland Quentin
- ISP, Institut National De La Recherche Agronomique, Université Tours, Equipe Bactéries et Risque Materno-Foetal, UMR 1282Tours, France; Centre Hospitalier Régional Universitaire de Tours, Service de Bactériologie Virologie et Hygiène HospitalièreTours, France
| | - Marie-Frédérique Lartigue
- ISP, Institut National De La Recherche Agronomique, Université Tours, Equipe Bactéries et Risque Materno-Foetal, UMR 1282Tours, France; Centre Hospitalier Régional Universitaire de Tours, Service de Bactériologie Virologie et Hygiène HospitalièreTours, France
| |
Collapse
|
36
|
Almeida A, Alves-Barroco C, Sauvage E, Bexiga R, Albuquerque P, Tavares F, Santos-Sanches I, Glaser P. Persistence of a dominant bovine lineage of group B Streptococcus reveals genomic signatures of host adaptation. Environ Microbiol 2016; 18:4216-4229. [PMID: 27696631 DOI: 10.1111/1462-2920.13550] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/28/2022]
Abstract
Group B Streptococcus (GBS) is a host-generalist species, most notably causing disease in humans and cattle. However, the differential adaptation of GBS to its two main hosts, and the risk of animal to human infection remain poorly understood. Despite improvements in control measures across Europe, GBS is still one of the main causative agents of bovine mastitis in Portugal. Here, by whole-genome analysis of 150 bovine GBS isolates we discovered that a single CC61 clone is spreading throughout Portuguese herds since at least the early 1990s, having virtually replaced the previous GBS population. Mutations within an iron/manganese transporter were independently acquired by all of the CC61 isolates, underlining a key adaptive strategy to persist in the bovine host. Lateral transfer of bacteriocin production and antibiotic resistance genes also underscored the contribution of the microbial ecology and genetic pool within the bovine udder environment to the success of this clone. Compared to strains of human origin, GBS evolves twice as fast in bovines and undergoes recurrent pseudogenizations of human-adapted traits. Our work provides new insights into the potentially irreversible adaptation of GBS to the bovine environment.
Collapse
Affiliation(s)
- Alexandre Almeida
- Institut Pasteur, Unité Evolution et Ecologie de la Résistance aux Antibiotiques, Paris, France.,CNRS UMR 3525, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Cinthia Alves-Barroco
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, UCIBIO - Unidade de Ciências Biomoleculares Aplicadas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Elisabeth Sauvage
- Institut Pasteur, Unité Evolution et Ecologie de la Résistance aux Antibiotiques, Paris, France.,CNRS UMR 3525, Paris, France
| | - Ricardo Bexiga
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Albuquerque
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Fernando Tavares
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.,Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| | - Ilda Santos-Sanches
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, UCIBIO - Unidade de Ciências Biomoleculares Aplicadas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Philippe Glaser
- Institut Pasteur, Unité Evolution et Ecologie de la Résistance aux Antibiotiques, Paris, France.,CNRS UMR 3525, Paris, France
| |
Collapse
|
37
|
Zorgani MA, Quentin R, Lartigue MF. Regulatory RNAs in the Less Studied Streptococcal Species: From Nomenclature to Identification. Front Microbiol 2016; 7:1161. [PMID: 27507970 PMCID: PMC4960207 DOI: 10.3389/fmicb.2016.01161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022] Open
Abstract
Streptococcal species are Gram-positive bacteria involved in severe and invasive diseases in humans and animals. Although, this group includes different pathogenic species involved in life-threatening infections for humans, it also includes beneficial species, such as Streptococcus thermophilus, which is used in yogurt production. In bacteria virulence factors are controlled by various regulatory networks including regulatory RNAs. For clearness and to develop logical thinking, we start this review with a revision of regulatory RNAs nomenclature. Previous reviews are mostly dealing with Streptococcus pyogenes and Streptococcus pneumoniae regulatory RNAs. We especially focused our analysis on regulatory RNAs in Streptococcus agalactiae, Streptococcus mutans, Streptococcus thermophilus and other less studied Streptococcus species. Although, S. agalactiae RNome remains largely unknown, sRNAs (small RNAs) are supposed to mediate regulation during environmental adaptation and host infection. In the case of S. mutans, sRNAs are suggested to be involved in competence regulation, carbohydrate metabolism, and Toxin–Antitoxin systems. A new category of miRNA-size small RNAs (msRNAs) was also identified for the first time in this species. The analysis of S. thermophilus sRNome shows that many sRNAs are associated to the bacterial immune system known as CRISPR-Cas system. Only few of the other different Streptococcus species have been the subject of studies pointed toward the characterization of regulatory RNAs. Finally, understanding bacterial sRNome can constitute one step forward to the elaboration of new strategies in therapy such as substitution of antibiotics in the management of S. agalactiae neonatal infections, prevention of S. mutans dental caries or use of S. thermophilus CRISPR-Cas system in genome editing applications.
Collapse
Affiliation(s)
- Mohamed A Zorgani
- ISP, INRA, Equipe 5 "Bactéries et Risque Materno-foetal", Faculté de Médecine, UMR 1282, Université François Rabelais de Tours, Tours France
| | - Roland Quentin
- ISP, INRA, Equipe 5 "Bactéries et Risque Materno-foetal", Faculté de Médecine, UMR 1282, Université François Rabelais de Tours, ToursFrance; Service de Bactériologie Virologie et Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Tours, ToursFrance
| | - Marie-Frédérique Lartigue
- ISP, INRA, Equipe 5 "Bactéries et Risque Materno-foetal", Faculté de Médecine, UMR 1282, Université François Rabelais de Tours, ToursFrance; Service de Bactériologie Virologie et Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Tours, ToursFrance
| |
Collapse
|
38
|
Spontaneous mutations in Streptococcus pyogenes isolates from streptococcal toxic shock syndrome patients play roles in virulence. Sci Rep 2016; 6:28761. [PMID: 27349341 PMCID: PMC4923885 DOI: 10.1038/srep28761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is a widespread human pathogen and causes streptococcal toxic shock syndrome (STSS). STSS isolates have been previously shown to have high frequency mutations in the csrS/csrR (covS/covR) and/or rgg (ropB) genes, which are negative regulators of virulence. However, these mutations were found at somewhat low frequencies in emm1-genotyped isolates, the most prevalent STSS genotype. In this study, we sought to detect causal mutations of enhanced virulence in emm1 isolates lacking mutation(s) in the csrS/csrR and rgg genes. Three mutations associated with elevated virulence were found in the sic (a virulence gene) promoter, the csrR promoter, and the rocA gene (a csrR positive regulator). In vivo contribution of the sic promoter and rocA mutations to pathogenicity and lethality was confirmed in a GAS mouse model. Frequency of the sic promoter mutation was significantly higher in STSS emm1 isolates than in non-invasive STSS isolates; the rocA gene mutation frequency was not significantly different among STSS and non-STSS isolates. STSS emm1 isolates possessed a high frequency mutation in the sic promoter. Thus, this mutation may play a role in the dynamics of virulence and STSS pathogenesis.
Collapse
|
39
|
Buscetta M, Firon A, Pietrocola G, Biondo C, Mancuso G, Midiri A, Romeo L, Galbo R, Venza M, Venza I, Kaminski PA, Gominet M, Teti G, Speziale P, Trieu-Cuot P, Beninati C. PbsP, a cell wall-anchored protein that binds plasminogen to promote hematogenous dissemination of group B Streptococcus. Mol Microbiol 2016; 101:27-41. [PMID: 26888569 DOI: 10.1111/mmi.13357] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus or GBS) is a leading cause of invasive infections in neonates whose virulence is dependent on its ability to interact with cells and host components. We here characterized a surface protein with a critical function in GBS pathophysiology. This adhesin, designated PbsP, possesses two Streptococcal Surface Repeat domains, a methionine and lysine-rich region, and a LPXTG cell wall-anchoring motif. PbsP mediates plasminogen (Plg) binding both in vitro and in vivo and we showed that cell surface-bound Plg can be activated into plasmin by tissue plasminogen activator to increase the bacterial extracellular proteolytic activity. Absence of PbsP results in a decreased bacterial transmigration across brain endothelial cells and impaired virulence in a murine model of infection. PbsP is conserved among the main GBS lineages and is a major plasminogen adhesin in non-CC17 GBS strains. Importantly, immunization of mice with recombinant PbsP confers protective immunity. Our results indicate that GBS have evolved different strategies to recruit Plg which indicates that the ability to acquire cell surface proteolytic activity is essential for the invasiveness of this bacterium.
Collapse
Affiliation(s)
- Marco Buscetta
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy.,Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Carmelo Biondo
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Angelina Midiri
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Letizia Romeo
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Roberta Galbo
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Mario Venza
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Isabella Venza
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Myriam Gominet
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Giuseppe Teti
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Concetta Beninati
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
40
|
Ellis MJ, Haniford DB. Riboregulation of bacterial and archaeal transposition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:382-98. [DOI: 10.1002/wrna.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Michael J. Ellis
- Department of Biochemistry; University of Western Ontario; London Canada
| | - David B. Haniford
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
41
|
Whole-Genome Comparison Uncovers Genomic Mutations between Group B Streptococci Sampled from Infected Newborns and Their Mothers. J Bacteriol 2015; 197:3354-66. [PMID: 26283765 DOI: 10.1128/jb.00429-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Streptococcus agalactiae (group B Streptococcus or GBS), a commensal of the human gut and genitourinary tract, is a leading cause of neonatal infections, in which vertical transmission from mother to child remains the most frequent route of contamination. Here, we investigated whether the progression of GBS from carriage to disease is associated with genomic adaptation. Whole-genome comparison of 47 GBS samples from 19 mother-child pairs uncovered 21 single nucleotide polymorphisms (SNPs) and seven insertions/deletions. Of the SNPs detected, 16 appear to have been fixed in the population sampled whereas five mutations were found to be polymorphic. In the infant strains, 14 mutations were detected, including two independently fixed variants affecting the covRS locus, which is known to encode a major regulatory system of virulence. A one-nucleotide insertion was also identified in the promoter region of the highly immunogenic surface protein Rib gene. Gene expression analysis after incubation in human blood showed that these mutations influenced the expression of virulence-associated genes. Additional identification of three mutated strains in the mothers' milk raised the possibility of the newborns also being a source of contamination for their mothers. Overall, our work showed that GBS strains in carriage and disease scenarios might undergo adaptive changes following colonization. The types and locations of the mutations found, together with the experimental results showing their phenotypic impact, suggest that those in a context of infection were positively selected during the transition of GBS from commensal to pathogen, contributing to an increased capacity to cause disease. IMPORTANCE Group B Streptococcus (GBS) is a major pathogen responsible for neonatal infections. Considering that its colonization of healthy adults is mostly asymptomatic, the mechanisms behind its switch from a commensal to an invasive state are largely unknown. In this work, we compared the genomic profile of GBS samples causing infections in newborns with that of the GBS colonizing their mothers. Multiple mutations were detected, namely, within key virulence factors, including the response regulator CovR and surface protein Rib, potentially affecting the pathogenesis of GBS. Their overall impact was supported by differences in the expression of virulence-associated genes in human blood. Our results suggest that during GBS's progression to disease, particular variants are positively selected, contributing to the ability of this bacterium to infect its host.
Collapse
|