1
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
2
|
Guo Y, Li J, Zhang S, Song Y, Chen G, He L, Wang L, Liang C. Significant Enhancement Catalytic Activity of Nitrile Hydratase by Balancing the Subunits Expression. Chembiochem 2024; 25:e202400526. [PMID: 39617726 DOI: 10.1002/cbic.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Escherichia coli (E. coli) is the most commonly used bacterial recombinant protein production system due to its easy genetic modification properties. In our previous study, a recombinant plasmid expressing the Fe-type nitrile hydratase derived from Rhodococcus erythropolis CCM2595 (ReNHase) was successfully constructed and the recombinant ReNHase exerted an excellent catalytic effect on dinitrile compounds. Nevertheless, the ReNHases were confronted with imbalanced subunit expression during heterologous expression, which restricted the enzymes assemble functionally. In this study, the secondary structure of mRNA in the ribosome binding sequence region of the β-subunit was optimized to elevate the translation efficiency of the β-subunit gene and balance the expression of α- and β-subunits in ReNHase. The optimized ReNHase showed a 12-fold increase in specific enzyme activity over wild-type ReNHase. To further enhance the soluble expression of ReNHase, the ReNHase was labeled using three different fusion tags, resulting in three new recombinant ReNHases. In these recombinant ReNHases, some of the fusion tags promoted the soluble expression of ReNHase, but also affected the balance of α-/β-subunit expression and the secondary structure of the ReNHase, and reduced the enzyme activity. In conclusion, our results provide an optimized strategy for the heterologous expression of multi-subunit proteins.
Collapse
Affiliation(s)
- Yi Guo
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Jiaxin Li
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Song Zhang
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Yingjie Song
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Guobing Chen
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Leiyu He
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Li Wang
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Changhai Liang
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| |
Collapse
|
3
|
Gao Y, Zhong Z, Zhang D, Zhang J, Li YX. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. MICROBIOME 2024; 12:94. [PMID: 38790030 PMCID: PMC11118758 DOI: 10.1186/s40168-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.
Collapse
Affiliation(s)
- Ying Gao
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Zheng Zhong
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Dengwei Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Jian Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Yong-Xin Li
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
4
|
Gonzalez-de-Miguel J, Montero-Blay A, Ciampi L, Rodriguez-Arce I, Serrano L. Developing a platform for secretion of biomolecules in Mycoplasma feriruminatoris. Microb Cell Fact 2024; 23:124. [PMID: 38689251 PMCID: PMC11059754 DOI: 10.1186/s12934-024-02392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Having a simple and fast dividing organism capable of producing and exposing at its surface or secreting functional complex biomolecules with disulphide bridges is of great interest. The mycoplasma bacterial genus offers a set of relevant properties that make it an interesting chassis for such purposes, the main one being the absence of a cell wall. However, due to their slow growth, they have rarely been considered as a potential platform in this respect. This notion may be challenged with the recent discovery of Mycoplasma feriruminatoris, a species with a dividing time close to that of common microbial workhorses. So far, no tools for heterologous protein expression nor secretion have been described for it. RESULTS The work presented here develops the fast-dividing M. feriruminatoris as a tool for secreting functional biomolecules of therapeutic interest that could be used for screening functional mutants as well as potentially for protein-protein interactions. Based on RNAseq, quantitative proteomics and promoter sequence comparison we have rationally designed optimal promoter sequences. Then, using in silico analysis, we have identified putative secretion signals that we validated using a luminescent reporter. The potential of the resulting secretion cassette has been shown with set of active clinically relevant proteins (interleukins and nanobodies). CONCLUSIONS We have engineered Mycoplasma feriruminatoris for producing and secreting functional proteins of medical interest.
Collapse
Affiliation(s)
- Javier Gonzalez-de-Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Ariadna Montero-Blay
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
- Orikine Bio, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
5
|
Miravet-Verde S, Mazzolini R, Segura-Morales C, Broto A, Lluch-Senar M, Serrano L. ProTInSeq: transposon insertion tracking by ultra-deep DNA sequencing to identify translated large and small ORFs. Nat Commun 2024; 15:2091. [PMID: 38453908 PMCID: PMC10920889 DOI: 10.1038/s41467-024-46112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
Identifying open reading frames (ORFs) being translated is not a trivial task. ProTInSeq is a technique designed to characterize proteomes by sequencing transposon insertions engineered to express a selection marker when they occur in-frame within a protein-coding gene. In the bacterium Mycoplasma pneumoniae, ProTInSeq identifies 83% of its annotated proteins, along with 5 proteins and 153 small ORF-encoded proteins (SEPs; ≤100 aa) that were not previously annotated. Moreover, ProTInSeq can be utilized for detecting translational noise, as well as for relative quantification and transmembrane topology estimation of fitness and non-essential proteins. By integrating various identification approaches, the number of initially annotated SEPs in this bacterium increases from 27 to 329, with a quarter of them predicted to possess antimicrobial potential. Herein, we describe a methodology complementary to Ribo-Seq and mass spectroscopy that can identify SEPs while providing other insights in a proteome with a flexible and cost-effective DNA ultra-deep sequencing approach.
Collapse
Affiliation(s)
- Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain.
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland.
| | | | - Carolina Segura-Morales
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Alicia Broto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Maria Lluch-Senar
- Pulmobiotics, Dr Aiguader 88, 08003, Barcelona, Spain.
- Institute of Biotechnology and Biomedicine "Vicent Villar Palasi" (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
6
|
Olenginski LT, Spradlin SF, Batey RT. Flipping the script: Understanding riboswitches from an alternative perspective. J Biol Chem 2024; 300:105730. [PMID: 38336293 PMCID: PMC10907184 DOI: 10.1016/j.jbc.2024.105730] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
Collapse
Affiliation(s)
| | | | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
7
|
Jin X, Chai Q, Liu C, Niu X, Li W, Shang X, Gu A, Zhang D, Guo W. Cotton GhNAC4 promotes drought tolerance by regulating secondary cell wall biosynthesis and ribosomal protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1052-1068. [PMID: 37934782 DOI: 10.1111/tpj.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.
Collapse
Affiliation(s)
- Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qichao Chai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aixing Gu
- Engineering Research Center of Ministry of Education for Cotton, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Goicoechea Serrano E, Blázquez-Bondia C, Jaramillo A. T7 phage-assisted evolution of riboswitches using error-prone replication and dual selection. Sci Rep 2024; 14:2377. [PMID: 38287027 PMCID: PMC10824729 DOI: 10.1038/s41598-024-52049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Leveraging riboswitches, non-coding mRNA fragments pivotal to gene regulation, poses a challenge in effectively selecting and enriching these functional genetic sensors, which can toggle between ON and OFF states in response to their cognate inducers. Here, we show our engineered phage T7, enabling the evolution of a theophylline riboswitch. We have replaced T7's DNA polymerase with a transcription factor controlled by a theophylline riboswitch and have created two types of host environments to propagate the engineered phage. Both types host an error-prone T7 DNA polymerase regulated by a T7 promoter along with another critical gene-either cmk or pifA, depending on the host type. The cmk gene is necessary for T7 replication and is used in the first host type for selection in the riboswitch's ON state. Conversely, the second host type incorporates the pifA gene, leading to abortive T7 infections and used for selection in the riboswitch's OFF state. This dual-selection system, termed T7AE, was then applied to a library of 65,536 engineered T7 phages, each carrying randomized riboswitch variants. Through successive passage in both host types with and without theophylline, we observed an enrichment of phages encoding functional riboswitches that conferred a fitness advantage to the phage in both hosts. The T7AE technique thereby opens new pathways for the evolution and advancement of gene switches, including non-coding RNA-based switches, setting the stage for significant strides in synthetic biology.
Collapse
Affiliation(s)
- Eduardo Goicoechea Serrano
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- London BioFoundry, Imperial College Translation & Innovation Hub, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Carlos Blázquez-Bondia
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- De novo Synthetic Biology Lab, i2sysbio, CSIC-University of Valencia, Parc Científic Universitat de València, Calle Catedrático Agustín Escardino, 9, 46980, Paterna, Spain.
| |
Collapse
|
9
|
Connor A, Zha RH, Koffas M. Production and secretion of recombinant spider silk in Bacillus megaterium. Microb Cell Fact 2024; 23:35. [PMID: 38279170 PMCID: PMC10821235 DOI: 10.1186/s12934-024-02304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Silk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. RESULTS In this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in the Bacillus genus. Using an industrially relevant B. megaterium host, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. CONCLUSION It is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for an E. coli host producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in the Bacillus host system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
10
|
Estrada K, Garciarrubio A, Merino E. Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence. PLoS One 2024; 19:e0289914. [PMID: 38206950 PMCID: PMC10783764 DOI: 10.1371/journal.pone.0289914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/28/2023] [Indexed: 01/13/2024] Open
Abstract
Translation initiation in prokaryotes is mainly defined, although not exclusively, by the interaction between the anti-Shine-Dalgarno sequence (antiSD), located at the 3'-terminus of the 16S ribosomal RNA, and a complementary sequence, the ribosome binding site, or Shine-Dalgarno (SD), located upstream of the start codon in prokaryotic mRNAs. The antiSD has a conserved 5'-CCUCC-3' core, but inter-species variations have been found regarding the participation of flanking bases in binding. These variations have been described for certain bacteria and, to a lesser extent, for some archaea. To further analyze these variations, we conducted binding-energy prediction analyses on over 6,400 genomic sequences from both domains. We identified 15 groups of antiSD variants that could be associated with the organisms' phylogenetic origin. Additionally, our findings revealed that certain organisms exhibit variations in the core itself. Importantly, an unaltered core is not necessarily required for the interaction between the 3'-terminus of the rRNA and the region preceding the AUG of the mRNA. In our study, we classified organisms into four distinct categories: i) those possessing a conserved core and demonstrating binding; ii) those with a conserved core but lacking evidence of binding; iii) those exhibiting binding in the absence of a conserved core; and iv) those lacking both a conserved core and evidence of binding. Our results demonstrate the flexibility of organisms in evolving different sequences involved in translation initiation beyond the traditional Shine-Dalgarno sequence. These findings are discussed in terms of the evolution of translation initiation in prokaryotic organisms.
Collapse
Affiliation(s)
- Karel Estrada
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México
- Massive Sequencing and Bioinformatics Unit, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro Garciarrubio
- Department of Cell Engineering and Biocatalysis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
11
|
Hizume T, Sato Y, Iwaki H, Honda K, Okano K. Subtractive modification of bacterial consortium using antisense peptide nucleic acids. Front Microbiol 2024; 14:1321428. [PMID: 38260881 PMCID: PMC10800778 DOI: 10.3389/fmicb.2023.1321428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Microbiome engineering is an emerging research field that aims to design an artificial microbiome and modulate its function. In particular, subtractive modification of the microbiome allows us to create an artificial microbiome without the microorganism of interest and to evaluate its functions and interactions with other constituent bacteria. However, few techniques that can specifically remove only a single species from a large number of microorganisms and can be applied universally to a variety of microorganisms have been developed. Antisense peptide nucleic acid (PNA) is a potent designable antimicrobial agent that can be delivered into microbial cells by conjugating with a cell-penetrating peptide (CPP). Here, we tested the efficacy of the conjugate of CPP and PNA (CPP-PNA) as microbiome modifiers. The addition of CPP-PNA specifically inhibited the growth of Escherichia coli and Pseudomonas putida in an artificial bacterial consortium comprising E. coli, P. putida, Pseudomonas fluorescens, and Lactiplantibacillus plantarum. Moreover, the growth inhibition of P. putida promoted the growth of P. fluorescens and inhibited the growth of L. plantarum. These results indicate that CPP-PNA can be used not only for precise microbiome engineering but also for analyzing the growth relationships among constituent microorganisms in the microbiome.
Collapse
Affiliation(s)
- Tatsuya Hizume
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yu Sato
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kenji Okano
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Rao X, Li D, Su Z, Nomura CT, Chen S, Wang Q. A smart RBS library and its prediction model for robust and accurate fine-tuning of gene expression in Bacillus species. Metab Eng 2024; 81:1-9. [PMID: 37951459 DOI: 10.1016/j.ymben.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Bacillus species, such as Bacillus subtilis and Bacillus licheniformis, are important industrial bacteria. However, there is a lack of standardized and predictable genetic tools for convenient and reproducible assembly of genetic modules in Bacillus species to realize their full potential. In this study, we constructed a Ribosome Binding Site (RBS) library in B. licheniformis, which provides incremental regulation of expression levels over a 104-fold range. Additionally, we developed a model to quantify the resulting translation rates. We successfully demonstrated the robust expression of various target genes using the RBS library and showed that the model accurately predicts the translation rates of arbitrary coding genes. Importantly, we also extended the use of the RBS library and prediction model to B. subtilis, B. thuringiensis, and B. amyloliquefacie. The versatility of the RBS library and its prediction model enables quantification of biological behavior, facilitating reliable forward engineering of gene expression.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Dian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Zhaowei Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | | | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China.
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
13
|
Loot C, Millot GA, Richard E, Littner E, Vit C, Lemoine F, Néron B, Cury J, Darracq B, Niault T, Lapaillerie D, Parissi V, Rocha EPC, Mazel D. Integron cassettes integrate into bacterial genomes via widespread non-classical attG sites. Nat Microbiol 2024; 9:228-240. [PMID: 38172619 DOI: 10.1038/s41564-023-01548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
Integrons are genetic elements involved in bacterial adaptation which capture, shuffle and express genes encoding adaptive functions embedded in cassettes. These events are governed by the integron integrase through site-specific recombination between attC and attI integron sites. Using computational and molecular genetic approaches, here we demonstrate that the integrase also catalyses cassette integration into bacterial genomes outside of its known att sites. Once integrated, these cassettes can be expressed if located near bacterial promoters and can be excised at the integration point or outside, inducing chromosomal modifications in the latter case. Analysis of more than 5 × 105 independent integration events revealed a very large genomic integration landscape. We identified consensus recombination sequences, named attG sites, which differ greatly in sequence and structure from classical att sites. These results unveil an alternative route for dissemination of adaptive functions in bacteria and expand the role of integrons in bacterial evolution.
Collapse
Affiliation(s)
- Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France.
| | - Gael A Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Egill Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Eloi Littner
- Sorbonne Université, Collège Doctoral, Paris, France
- DGA CBRN Defence, Vert-le-Petit, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Claire Vit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bertrand Néron
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Jean Cury
- Université Paris-Saclay, Inria, Laboratoire de Recherche en Informatique, CNRS UMR 8623, Orsay, France
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Delphine Lapaillerie
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Vincent Parissi
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
14
|
Weber M, Sogues A, Yus E, Burgos R, Gallo C, Martínez S, Lluch‐Senar M, Serrano L. Comprehensive quantitative modeling of translation efficiency in a genome-reduced bacterium. Mol Syst Biol 2023; 19:e11301. [PMID: 37642167 PMCID: PMC10568206 DOI: 10.15252/msb.202211301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Translation efficiency has been mainly studied by ribosome profiling, which only provides an incomplete picture of translation kinetics. Here, we integrated the absolute quantifications of tRNAs, mRNAs, RNA half-lives, proteins, and protein half-lives with ribosome densities and derived the initiation and elongation rates for 475 genes (67% of all genes), 73 with high precision, in the bacterium Mycoplasma pneumoniae (Mpn). We found that, although the initiation rate varied over 160-fold among genes, most of the known factors had little impact on translation efficiency. Local codon elongation rates could not be fully explained by the adaptation to tRNA abundances, which varied over 100-fold among tRNA isoacceptors. We provide a comprehensive quantitative view of translation efficiency, which suggests the existence of unidentified mechanisms of translational regulation in Mpn.
Collapse
Affiliation(s)
- Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Adrià Sogues
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Yus
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sira Martínez
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
15
|
Aggarwal S, Huang E, Do H, Makthal N, Li Y, Bapteste E, Lopez P, Bernard C, Kumaraswami M. The leaderless communication peptide (LCP) class of quorum-sensing peptides is broadly distributed among Firmicutes. Nat Commun 2023; 14:5947. [PMID: 37741855 PMCID: PMC10518010 DOI: 10.1038/s41467-023-41719-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
The human pathogen Streptococcus pyogenes secretes a short peptide (leaderless communication peptide, LCP) that mediates intercellular communication and controls bacterial virulence through interaction with its receptor, RopB. Here, we show that LCP and RopB homologues are present in other Firmicutes. We experimentally validate that LCPs with distinct peptide communication codes act as bacterial intercellular signals and regulate gene expression in Streptococcus salivarius, Streptococcus porcinus, Enterococcus malodoratus and Limosilactobacillus reuteri. Our results indicate that LCPs are more widespread than previously thought, and their characterization may uncover new signaling mechanisms and roles in coordinating diverse bacterial traits.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Elaine Huang
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Yanyan Li
- Communication Molecules and Adaptation of Microorganisms (MCAM), CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Charles Bernard
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Kashnikov AY, Epifanova NV, Novikova NA. On the nature of picobirnaviruses. Vavilovskii Zhurnal Genet Selektsii 2023; 27:264-275. [PMID: 37293447 PMCID: PMC10244588 DOI: 10.18699/vjgb-23-32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/10/2023] Open
Abstract
The picobirnaviruses (Picobirnaviridae, Picobirnavirus, PBVs) are currently thought to be animal viruses, as they are usually found in animal stool samples. However, no animal model or cell culture for their propagation has yet been found. In 2018, a hypothetical assumption about PBVs belonging to prokaryotic viruses was put forward and experimentally substantiated. This hypothesis is based on the presence of Shine-Dalgarno sequences in the genome of all PBVs before three reading frames (ORF) at the ribosomal binding site, with which the prokaryotic genome is saturated, while in the eukaryotic genome such regions occur with low frequency. The genome saturation with the Shine-Dalgarno sequences, as well as the preservation of this saturation in the progeny, according to scientists, allows us to attribute PBVs to prokaryotic viruses. On the other hand, there is a possibility that PBVs belong to viruses of eukaryotic hosts - fungi or invertebrates, since PBV-like sequences similar to the genome of fungal viruses from the families of mitoviruses and partitiviruses have been identified. In this regard, the idea arose that, in terms of reproduction mode, PBVs resemble fungal viruses. The divergence of views on the true PBV host(s) has sparked discussions among scientists and required further research to elucidate their nature. The review highlights the results of the search for a PBV host. The reasons for the occurrence of atypical sequences among the PBV genome sequences that use an alternative mitochondrial code of lower eukaryotes (fungi and invertebrates) for the translation of viral RNA-dependent RNA polymerase (RdRp) instead of the standard genetic code are analyzed. The purpose of the review was to collect arguments in support of the hypothesis about the phage nature of PBVs and to find the most realistic explanation of the reasons for identifying non-standard genomic sequences for PBVs. Based on the hypothesis about the genealogical relationship of PBVs with RNA viruses from other families with similar segmented genomes, such as Reoviridae, Cystoviridae, Totiviridae and Partitiviridae, virologists support the assumption of a decisive role in the origin of atypical PBV-like reassortment strains between PBVs and viruses of the listed families. The collected arguments given in this review indicate a high probability of a phage nature of PBVs. The data presented in the review show that the belonging of PBV-like progeny to prokaryotic or eukaryotic viruses is determined not only by its genome saturation level with a prokaryotic motif, standard or mitochondrial genetic code. The primary structure of the gene encoding the viral capsid protein responsible for the presence or absence of specific proteolytic properties of the virus that determine its ability for independent horizontal transmission into new cells may also be a decisive factor.
Collapse
Affiliation(s)
- A Yu Kashnikov
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N V Epifanova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N A Novikova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| |
Collapse
|
17
|
Malhotra H, Saha BK, Phale PS. Development of efficient modules for recombinant protein expression and periplasmic localiszation in Pseudomonas bharatica CSV86 T. Protein Expr Purif 2023; 210:106310. [PMID: 37211150 DOI: 10.1016/j.pep.2023.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Escherichia coli has been widely employed as a host for heterologous protein expression. However, due to certain limitations, alternative hosts like Pseudomonas, Lactococcus and Bacillus are being explored. Pseudomonas bharatica CSV86T, a novel soil isolate, preferentially degrades wide range of aromatics over simple carbon sources like glucose and glycerol. Strain also possesses advantageous eco-physiological traits, making it an ideal host for engineering xenobiotic degradation pathways, which necessitates the development of heterologous expression systems. Based on the efficient growth, short lag-phase and rapid metabolism of naphthalene, Pnah and Psal promoters (regulated by NahR) were selected for expression. Pnah was found to be strong and leaky as compared to Psal, using 1-naphthol 2-hydroxylase (1NH, ∼66 kDa) as reporter gene in strain CSV86T. The Carbaryl hydrolase (CH, ∼72kDa) from Pseudomonas sp. C5pp was expressed under Pnah in strain CSV86T and could successfully be translocated to the periplasm due to the presence of the Tmd + Sp sequence. The recombinant CH was purified from the periplasmic fraction and the kinetic characteristics were found to be similar to the native protein from strain C5pp. These results potentiate the suitability of P. bharatica CSV86T as a desirable host, while Pnah and the Tmd + Sp can be employed for overexpression and periplasmic localisation, respectively. Such tools find application in heterologous protein expression and metabolic engineering applications.
Collapse
Affiliation(s)
- Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Braja Kishor Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
18
|
Iyengar BR, Bornberg-Bauer E. Neutral Models of De Novo Gene Emergence Suggest that Gene Evolution has a Preferred Trajectory. Mol Biol Evol 2023; 40:msad079. [PMID: 37011142 PMCID: PMC10118301 DOI: 10.1093/molbev/msad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
New protein coding genes can emerge from genomic regions that previously did not contain any genes, via a process called de novo gene emergence. To synthesize a protein, DNA must be transcribed as well as translated. Both processes need certain DNA sequence features. Stable transcription requires promoters and a polyadenylation signal, while translation requires at least an open reading frame. We develop mathematical models based on mutation probabilities, and the assumption of neutral evolution, to find out how quickly genes emerge and are lost. We also investigate the effect of the order by which DNA features evolve, and if sequence composition is biased by mutation rate. We rationalize how genes are lost much more rapidly than they emerge, and how they preferentially arise in regions that are already transcribed. Our study not only answers some fundamental questions on the topic of de novo emergence but also provides a modeling framework for future studies.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Mass Spectral Analyses of Salmonella Myovirus SPN3US Reveal Conserved and Divergent Themes in Proteolytic Maturation of Large Icosahedral Capsids. Viruses 2023; 15:v15030723. [PMID: 36992431 PMCID: PMC10052503 DOI: 10.3390/v15030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Salmonella myovirus SPN3US has a T = 27 capsid composed of >50 different gene products, including many that are packaged along with the 240 kb genome and ejected into the host cell. Recently, we showed that an essential phage-encoded prohead protease gp245 is responsible for cleavage of proteins during SPN3US head assembly. This proteolytic maturation step induces major changes in precursor head particles, enabling them to expand and undergo genome packaging. To comprehensively define the composition of the mature SPN3US head and elucidate how it is modified by proteolysis during assembly, we conducted tandem mass spectrometry analysis of purified virions and tailless heads. Fourteen protease cleavage sites were identified in nine proteins, including eight sites not previously identified in head proteins in vivo. Among these was the maturation cleavage site of gp245 which was identical to the autocleavage site we had previously identified in purified recombinant gp245. Our findings underscore the value of employing multiple mass spectrometry-based experimental strategies as a way to enhance the detection of head protein cleavage sites in tailed phages. In addition, our results have identified a conserved set of head proteins in related giant phages that are similarly cleaved by their respective prohead proteases, suggesting that these proteins have important roles in governing the formation and function of large icosahedral capsids.
Collapse
|
20
|
Beura PK, Sen P, Aziz R, Satapathy SS, Ray SK. Transcribed intergenic regions exhibit a lower frequency of nucleotide polymorphism than the untranscribed intergenic regions in the genomes of Escherichia coli and Salmonella enterica. J Genet 2023. [DOI: 10.1007/s12041-023-01418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
21
|
Shah BA, Kasarlawar ST, Phale PS. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86 T. Microbiol Spectr 2022; 10:e0381822. [PMID: 36354357 PMCID: PMC9769727 DOI: 10.1128/spectrum.03818-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (Zwf) is an important enzyme in glucose metabolism via the Entner-Doudoroff pathway and the first enzyme in the oxidative pentose-phosphate pathway. It generates NAD(P)H during the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, thus aiding in anabolic processes, energy yield, and oxidative stress responses. Pseudomonas bharatica CSV86T preferentially utilized aromatic compounds over glucose and exhibited a significantly lower growth rate on glucose (0.24 h-1) with a prolonged lag phase (~10 h). In strain CSV86T, glucose was metabolized via the intracellular phosphorylative route only because it lacked an oxidative (gluconate and 2-ketogluconate) route. The genome harbored three genes zwfA, zwfB, and zwfC encoding three Zwf isozymes. The present study aimed to understand gene arrangement, gene expression profiling, and molecular and kinetic properties of the purified enzymes to unveil their physiological significance in the strain CSV86T. The zwfA was found to be a part of the zwfA-pgl-eda operon, which was proximal to other glucose transport and metabolic clusters. The zwfB was found to be arranged as a gnd-zwfB operon, while zwfC was present independently. Among the three, zwfA was transcribed maximally, and the purified ZwfA displayed the highest catalytic efficiency, cooperativity with respect to G6P, and dual cofactor specificity. Isozymes ZwfB and ZwfC were NADP+-preferring and NADP+-specific, respectively. Among other functionally characterized Zwfs, ZwfA from strain CSV86T displayed poor catalytic efficiency and the further absence of oxidative routes of glucose metabolism reflected its lower growth rate on glucose compared to P. putida KT2440 and could be probable reasons for the unique carbon source utilization hierarchy. IMPORTANCE Pseudomonas bharatica CSV86T metabolizes glucose exclusively via the intracellular phosphorylative Entner-Doudoroff pathway leading the entire glucose flux through Zwf as the strain lacks oxidative routes. This may lead to limiting the concentration of downstream metabolic intermediates. The strain CSV86T possesses three isoforms of glucose-6-phosphate dehydrogenase, ZwfA, ZwfB, and ZwfC. The expression profile and kinetic properties of purified enzymes will help to understand glucose metabolism. Isozyme ZwfA dominated in terms of expression and displayed cooperativity with dual cofactor specificity. ZwfB preferred NADP+, and ZwfC was NADP+ specific, which may aid in redox cofactor balance. Such beneficial metabolic flexibility facilitated the regulation of metabolic pathways giving survival/fitness advantages in dynamic environments. Additionally, multiple genes allowed the distribution of function among these isoforms where the primary function was allocated to one of the isoforms.
Collapse
Affiliation(s)
- Bhavik A. Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Sravanti T. Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| |
Collapse
|
22
|
Zhang M, Song J, Xiao J, Jin J, Nomura CT, Chen S, Wang Q. Engineered multiple translation initiation sites: a novel tool to enhance protein production in Bacillus licheniformis and other industrially relevant bacteria. Nucleic Acids Res 2022; 50:11979-11990. [PMID: 36382403 PMCID: PMC9723656 DOI: 10.1093/nar/gkac1039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gram-positive bacteria are a nascent platform for synthetic biology and metabolic engineering that can provide new opportunities for the production of biomolecules. However, the lack of standardized methods and genetic parts is a major obstacle towards attaining the acceptance and widespread use of Gram-positive bacterial chassis for industrial bioproduction. In this study, we have engineered a novel mRNA leader sequence containing more than one ribosomal binding site (RBS) which could initiate translation from multiple sites, vastly enhancing the translation efficiency of the Gram-positive industrial strain Bacillus licheniformis. This is the first report elucidating the impact of more than one RBS to initiate translation and enhance protein output in B. licheniformis. We also explored the application of more than one RBS for both intracellular and extracellular protein production in B. licheniformis to demonstrate its efficiency, consistency and potential for biotechnological applications. Moreover, we applied these concepts for use in other industrially relevant Gram-positive bacteria, such as Bacillus subtilis and Corynebacterium glutamicum. In all, a highly efficient and robust broad-host expression element has been designed to strengthen and fine-tune the protein outputs for the use of bioproduction in microbial cell factories.
Collapse
Affiliation(s)
- Manyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | | | - Jun Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jingjie Jin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Christopher T Nomura
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Shouwen Chen
- Correspondence may also be addressed to Shouwen Chen.
| | - Qin Wang
- To whom correspondence should be addressed. Tel: +86 18507140137;
| |
Collapse
|
23
|
Wu Y, Zhu L, Li S, Chu H, Wang X, Xu W. High content design of riboswitch biosensors: All-around rational module-by-module design. Biosens Bioelectron 2022; 220:114887. [DOI: 10.1016/j.bios.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
24
|
Ray S, Dandpat SS, Chatterjee S, Walter NG. Precise tuning of bacterial translation initiation by non-equilibrium 5'-UTR unfolding observed in single mRNAs. Nucleic Acids Res 2022; 50:8818-8833. [PMID: 35892287 PMCID: PMC9410914 DOI: 10.1093/nar/gkac635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Noncoding, structured 5′-untranslated regions (5′-UTRs) of bacterial messenger RNAs (mRNAs) can control translation efficiency by forming structures that either recruit or repel the ribosome. Here we exploit a 5′-UTR embedded preQ1-sensing, pseudoknotted translational riboswitch to probe how binding of a small ligand controls recruitment of the bacterial ribosome to the partially overlapping Shine-Dalgarno (SD) sequence. Combining single-molecule fluorescence microscopy with mutational analyses, we find that the stability of 30S ribosomal subunit binding is inversely correlated with the free energy needed to unfold the 5′-UTR during mRNA accommodation into the mRNA binding cleft. Ligand binding to the riboswitch stabilizes the structure to both antagonize 30S recruitment and accelerate 30S dissociation. Proximity of the 5′-UTR and stability of the SD:anti-SD interaction both play important roles in modulating the initial 30S-mRNA interaction. Finally, depletion of small ribosomal subunit protein S1, known to help resolve structured 5′-UTRs, further increases the energetic penalty for mRNA accommodation. The resulting model of rapid standby site exploration followed by gated non-equilibrium unfolding of the 5′-UTR during accommodation provides a mechanistic understanding of how translation efficiency is governed by riboswitches and other dynamic structure motifs embedded upstream of the translation initiation site of bacterial mRNAs.
Collapse
Affiliation(s)
- Sujay Ray
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiba S Dandpat
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Surajit Chatterjee
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Sikolenko MA, Valentovich LN. RiboGrove: a database of full-length prokaryotic 16S rRNA genes derived from completely assembled genomes. Res Microbiol 2022; 173:103936. [PMID: 35217168 DOI: 10.1016/j.resmic.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022]
Abstract
16S rRNA gene is frequently used for the identification of prokaryotic organisms and for phylogeny inference. Several specialized public databases exist that contain complete and partial sequences of 16S rRNA genes. In this paper, we present RiboGrove: the first publicly available database that comprises only full-length sequences of 16S rRNA genes originating from completely assembled prokaryotic genomes deposited in RefSeq. Despite being strongly biased towards frequently sequenced genomes, RiboGrove is a useful complement to existing 16S rRNA resources and allows for analyses that would not be possible using amplicon-derived gene sequences. For instance, the absence of partial gene sequences in RiboGrove allowed us to make a summary of prokaryotic organisms, which lack core anti-Shine-Dalgarno sequence in their 16S rRNA genes. In this study, we describe the collected sequence data and present the results of exploratory data analysis of 16S rRNA gene sequences.
Collapse
Affiliation(s)
- Maxim A Sikolenko
- Center of Analytical and Genetic Engineering Research, Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Str., 2, 220141, Minsk, Belarus; Department of System Analysis and Computer Modelling, Faculty of Radio Physics and Computer Technologies, Belarusian State University, Nezalezhnasci Ave., 4, 220030, Minsk, Belarus.
| | - Leonid N Valentovich
- Center of Analytical and Genetic Engineering Research, Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Str., 2, 220141, Minsk, Belarus; Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezalezhnasci Ave., 4, 220030, Minsk, Belarus.
| |
Collapse
|
26
|
Zhang G, Yang X, Zhao Z, Xu T, Jia X. Artificial Consortium of Three E. coli BL21 Strains with Synergistic Functional Modules for Complete Phenanthrene Degradation. ACS Synth Biol 2022; 11:162-175. [PMID: 34914358 DOI: 10.1021/acssynbio.1c00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic and persistent organic pollutions that can accumulate in the environment. In this study, an aromatic ring cleavage module, a salicylic acid synthesis module, and a catechol metabolism module were respectively constructed in three Escherichia coli BL21 strains. Subsequently, the engineered strains were cocultured as an artificial consortium for the biodegradation of phenanthrene, a typical PHA. Single factor experiments and response surface methodology were used to identify the optimal degradation conditions, including an inoculation interval of 6 h, inoculation ratio of 1:1:1, and IPTG concentration of 2 mM. Under these conditions, the 7-day degradation ratio of 100 mg/L phenanthrene reached 72.67%. Moreover, the engineered Escherichia coli BL21 strains showed good phenanthrene degradation ability at substrate concentrations 10 mg/L up to 500 mg/L. Enzyme activity assays combined with gas chromatography-mass spectrometry measurements confirmed that the three engineered strains behaved as a synergistic consortium in the phenanthrene degradation process. Based on the analysis of the key metabolites, the engineered bacteria were supplemented at 7-day intervals in batches so that each engineered strain maintained its optimal degradation ability. The 21-day degradation ratio finally reached 90.66%, which was much higher than what was observed with simultaneous inoculation. These findings suggest that the three engineered strains with separate modules constructed in this study offer an attractive solution for removing PAHs from the environment.
Collapse
Affiliation(s)
- Guangbao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohui Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenhua Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
27
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|
28
|
Chakraborty P, Ghosh S. Emergent correlations in gene expression dynamics as footprints of resource competition. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:131. [PMID: 34694511 DOI: 10.1140/epje/s10189-021-00122-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Genetic circuits need a cellular environment to operate in, which naturally couples the circuit function with the overall functionality of gene regulatory network. To execute their functions, all gene circuits draw resources in the form of RNA polymerases, ribosomes, and tRNAs. Recent experiments pointed out that the role of resource competition on synthetic circuit outputs could be immense. However, the effect of complexity of the circuit architecture on resource sharing dynamics is yet unexplored. In this paper, we employ mathematical modelling and in-silico experiments to identify the sources of resource trade-off and to quantify its impact on the function of a genetic circuit, keeping our focus on regulation of immediate downstream proteins, which are often used as protein read-outs. We show that estimating gene expression dynamics from readings of downstream protein data might be unreliable when the resource is limited and ribosome affinities are asymmetric. We focus on the impact of mRNA copy number and ribosome binding site (RBS) strength on the nonlinear isocline that emerges with two regimes, prominently separated by a tipping point, and study how correlation and competition dominate each other depending on various circuit parameters. Focusing further on genetic toggle circuit, we have identified major effects of resource competition in this model motif and quantified the observations. The observations are testable in wet-lab experiments, as all the parameters chosen are experimentally relevant.
Collapse
Affiliation(s)
- Priya Chakraborty
- Department of Physics, National Institute of Technology, Durgapur, 713209, India
| | - Sayantari Ghosh
- Department of Physics, National Institute of Technology, Durgapur, 713209, India.
| |
Collapse
|
29
|
Zhao J, Wei H, Chen J, Li L, Li K, Liu J. Efficient biosynthesis of D-allulose in Bacillus subtilis through D-psicose 3-epimerase translation modification. Int J Biol Macromol 2021; 187:1-8. [PMID: 34293357 DOI: 10.1016/j.ijbiomac.2021.07.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The combined catalysis of glucose isomerase (GI) and D-psicose 3-epimerase (DPEase) provided a convenient route for the direct synthesis of D-allulose from d-glucose, whose cost is lower than d-fructose. In the present research, the weak activity of DPEase was the key rate-limiting step and resulted in the accumulation of d-fructose in engineered Bacillus subtilis. Then, the 5'-untranslated region (5'-UTR) structure of the mRNA translational initiation region was optimized for the precise control of DPEase expression. The manipulation of the 5'-UTR region promoted the accessibility to ribosome binding and the stability of mRNA, resulting in a maximum of 1.73- and 1.98-fold increase in DPEase activity and intracellular mRNA amount, respectively. Under the optimal catalytic conditions of 75 °C, pH 6.5, 110 g/L d-glucose, and 1 mmol/L Co2+, the reaction equilibrium time was reduced from 7.6 h to 6.1 h. We hope that our results could provide a facilitated strategy for large-scale production of D-allulose at low-cost.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Hongbei Wei
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jing Chen
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Lihong Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| |
Collapse
|
30
|
Wilson EH, Groom JD, Sarfatis MC, Ford SM, Lidstrom ME, Beck DAC. A Computational Framework for Identifying Promoter Sequences in Nonmodel Organisms Using RNA-seq Data Sets. ACS Synth Biol 2021; 10:1394-1405. [PMID: 33988977 DOI: 10.1021/acssynbio.1c00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Engineering microorganisms into biological factories that convert renewable feedstocks into valuable materials is a major goal of synthetic biology; however, for many nonmodel organisms, we do not yet have the genetic tools, such as suites of strong promoters, necessary to effectively engineer them. In this work, we developed a computational framework that can leverage standard RNA-seq data sets to identify sets of constitutive, strongly expressed genes and predict strong promoter signals within their upstream regions. The framework was applied to a diverse collection of RNA-seq data measured for the methanotroph Methylotuvimicrobium buryatense 5GB1 and identified 25 genes that were constitutively, strongly expressed across 12 experimental conditions. For each gene, the framework predicted short (27-30 nucleotide) sequences as candidate promoters and derived -35 and -10 consensus promoter motifs (TTGACA and TATAAT, respectively) for strong expression in M. buryatense. This consensus closely matches the canonical E. coli sigma-70 motif and was found to be enriched in promoter regions of the genome. A subset of promoter predictions was experimentally validated in a XylE reporter assay, including the consensus promoter, which showed high expression. The pmoC, pqqA, and ssrA promoter predictions were additionally screened in an experiment that scrambled the -35 and -10 signal sequences, confirming that transcription initiation was disrupted when these specific regions of the predicted sequence were altered. These results indicate that the computational framework can make biologically meaningful promoter predictions and identify key pieces of regulatory systems that can serve as foundational tools for engineering diverse microorganisms for biomolecule production.
Collapse
Affiliation(s)
- Erin H. Wilson
- The Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Joseph D. Groom
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - M. Claire Sarfatis
- Department of Microbiology, University of Washington, Seattle, Washington 98195, United States
| | - Stephanie M. Ford
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mary E. Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Microbiology, University of Washington, Seattle, Washington 98195, United States
| | - David A. C. Beck
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- eScience Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
31
|
Zrimec J, Buric F, Kokina M, Garcia V, Zelezniak A. Learning the Regulatory Code of Gene Expression. Front Mol Biosci 2021; 8:673363. [PMID: 34179082 PMCID: PMC8223075 DOI: 10.3389/fmolb.2021.673363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology.
Collapse
Affiliation(s)
- Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Filip Buric
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mariia Kokina
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Victor Garcia
- School of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Aleksej Zelezniak
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
32
|
Jeong Y, Hong SJ, Cho SH, Yoon S, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Multi-Omic Analyses Reveal Habitat Adaptation of Marine Cyanobacterium Synechocystis sp. PCC 7338. Front Microbiol 2021; 12:667450. [PMID: 34054774 PMCID: PMC8155712 DOI: 10.3389/fmicb.2021.667450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are considered as promising microbial cell factories producing a wide array of bio-products. Among them, Synechocystis sp. PCC 7338 has the advantage of growing in seawater, rather than requiring arable land or freshwater. Nonetheless, how this marine cyanobacterium grows under the high salt stress condition remains unknown. Here, we determined its complete genome sequence with the embedded regulatory elements and analyzed the transcriptional changes in response to a high-salt environment. Complete genome sequencing revealed a 3.70 mega base pair genome and three plasmids with a total of 3,589 genes annotated. Differential RNA-seq and Term-seq data aligned to the complete genome provided genome-wide information on genetic regulatory elements, including promoters, ribosome-binding sites, 5'- and 3'-untranslated regions, and terminators. Comparison with freshwater Synechocystis species revealed Synechocystis sp. PCC 7338 genome encodes additional genes, whose functions are related to ion channels to facilitate the adaptation to high salt and high osmotic pressure. Furthermore, a ferric uptake regulator binding motif was found in regulatory regions of various genes including SigF and the genes involved in energy metabolism, suggesting the iron-regulatory network is connected to not only the iron acquisition, but also response to high salt stress and photosynthesis. In addition, the transcriptomics analysis demonstrated a cyclic electron transport through photosystem I was actively used by the strain to satisfy the demand for ATP under high-salt environment. Our comprehensive analyses provide pivotal information to elucidate the genomic functions and regulations in Synechocystis sp. PCC 7338.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seonghoon Yoon
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon, South Korea
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
33
|
Callens M, Pradier L, Finnegan M, Rose C, Bedhomme S. Read between the lines: Diversity of non-translational selection pressures on local codon usage. Genome Biol Evol 2021; 13:6263832. [PMID: 33944930 PMCID: PMC8410138 DOI: 10.1093/gbe/evab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Protein coding genes can contain specific motifs within their nucleotide sequence that function as a signal for various biological pathways. The presence of such sequence motifs within a gene can have beneficial or detrimental effects on the phenotype and fitness of an organism, and this can lead to the enrichment or avoidance of this sequence motif. The degeneracy of the genetic code allows for the existence of alternative synonymous sequences that exclude or include these motifs, while keeping the encoded amino acid sequence intact. This implies that locally, there can be a selective pressure for preferentially using a codon over its synonymous alternative in order to avoid or enrich a specific sequence motif. This selective pressure could -in addition to mutation, drift and selection for translation efficiency and accuracy- contribute to shape the codon usage bias. In this review, we discuss patterns of avoidance of (or enrichment for) the various biological signals contained in specific nucleotide sequence motifs: transcription and translation initiation and termination signals, mRNA maturation signals, and antiviral immune system targets. Experimental data on the phenotypic or fitness effects of synonymous mutations in these sequence motifs confirm that they can be targets of local selection pressures on codon usage. We also formulate the hypothesis that transposable elements could have a similar impact on codon usage through their preferred integration sequences. Overall, selection on codon usage appears to be a combination of a global selection pressure imposed by the translation machinery, and a patchwork of local selection pressures related to biological signals contained in specific sequence motifs.
Collapse
Affiliation(s)
- Martijn Callens
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Léa Pradier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Michael Finnegan
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Caroline Rose
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Stéphanie Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| |
Collapse
|
34
|
Droste J, Rückert C, Kalinowski J, Hamed MB, Anné J, Simoens K, Bernaerts K, Economou A, Busche T. Extensive Reannotation of the Genome of the Model Streptomycete Streptomyces lividans TK24 Based on Transcriptome and Proteome Information. Front Microbiol 2021; 12:604034. [PMID: 33935985 PMCID: PMC8079986 DOI: 10.3389/fmicb.2021.604034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Streptomyces lividans TK24 is a relevant Gram-positive soil inhabiting bacterium and one of the model organisms of the genus Streptomyces. It is known for its potential to produce secondary metabolites, antibiotics, and other industrially relevant products. S. lividans TK24 is the plasmid-free derivative of S. lividans 66 and a close genetic relative of the strain Streptomyces coelicolor A3(2). In this study, we used transcriptome and proteome data to improve the annotation of the S. lividans TK24 genome. The RNA-seq data of primary 5'-ends of transcripts were used to determine transcription start sites (TSS) in the genome. We identified 5,424 TSS, of which 4,664 were assigned to annotated CDS and ncRNAs, 687 to antisense transcripts distributed between 606 CDS and their UTRs, 67 to tRNAs, and 108 to novel transcripts and CDS. Using the TSS data, the promoter regions and their motifs were analyzed in detail, revealing a conserved -10 (TAnnnT) and a weakly conserved -35 region (nTGACn). The analysis of the 5' untranslated region (UTRs) of S. lividans TK24 revealed 17% leaderless transcripts. Several cis-regulatory elements, like riboswitches or attenuator structures could be detected in the 5'-UTRs. The S. lividans TK24 transcriptome contains at least 929 operons. The genome harbors 27 secondary metabolite gene clusters of which 26 could be shown to be transcribed under at least one of the applied conditions. Comparison of the reannotated genome with that of the strain Streptomyces coelicolor A3(2) revealed a high degree of similarity. This study presents an extensive reannotation of the S. lividans TK24 genome based on transcriptome and proteome analyses. The analysis of TSS data revealed insights into the promoter structure, 5'-UTRs, cis-regulatory elements, attenuator structures and novel transcripts, like small RNAs. Finally, the repertoire of secondary metabolite gene clusters was examined. These data provide a basis for future studies regarding gene characterization, transcriptional regulatory networks, and usage as a secondary metabolite producing strain.
Collapse
Affiliation(s)
- Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Mohamed Belal Hamed
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium.,Molecular Biology Department, National Research Centre, Dokii, Egypt
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium
| | - Kenneth Simoens
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Section, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Section, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
35
|
Panchapakesan SSS, Breaker RR. The case of the missing allosteric ribozymes. Nat Chem Biol 2021; 17:375-382. [PMID: 33495645 PMCID: PMC8880209 DOI: 10.1038/s41589-020-00713-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/13/2020] [Indexed: 01/28/2023]
Abstract
The RNA World theory encompasses the hypothesis that sophisticated ribozymes and riboswitches were the primary drivers of metabolic processes in ancient organisms. Several types of catalytic RNAs and many classes of ligand-sensing RNA switches still exist in modern cells. Curiously, allosteric ribozymes formed by the merger of RNA enzyme and RNA switch components are largely absent in today's biological systems. This is true despite the striking abundances of various classes of both self-cleaving ribozymes and riboswitch aptamers. Here we present the known types of ligand-controlled ribozymes and riboswitches and discuss the possible reasons why fused ribozyme-aptamer constructs have been disfavored through evolution.
Collapse
Affiliation(s)
- Shanker S. S. Panchapakesan
- Department of Molecular, Cellular and Developmental
Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental
Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA.,Howard Hughes Medical Institute, Yale University, P.O. Box
208103, New Haven, CT 06520-8103, USA.,Department of Molecular Biophysics and Biochemistry, Yale
University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
36
|
Wen JD, Kuo ST, Chou HHD. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation. RNA Biol 2020; 18:1489-1500. [PMID: 33349119 DOI: 10.1080/15476286.2020.1861406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shine-Dalgarno (SD) sequences, the core element of prokaryotic ribosome-binding sites, facilitate mRNA translation by base-pair interaction with the anti-SD (aSD) sequence of 16S rRNA. In contrast to this paradigm, an inspection of thousands of prokaryotic species unravels tremendous SD sequence diversity both within and between genomes, whereas aSD sequences remain largely static. The pattern has led many to suggest unidentified mechanisms for translation initiation. Here we review known translation-initiation pathways in prokaryotes. Moreover, we seek to understand the cause and consequence of SD diversity through surveying recent advances in biochemistry, genomics, and high-throughput genetics. These findings collectively show: (1) SD:aSD base pairing is beneficial but nonessential to translation initiation. (2) The 5' untranslated region of mRNA evolves dynamically and correlates with organismal phylogeny and ecological niches. (3) Ribosomes have evolved distinct usage of translation-initiation pathways in different species. We propose a model portraying the SD diversity shaped by optimization of gene expression, adaptation to environments and growth demands, and the species-specific prerequisite of ribosomes to initiate translation. The model highlights the coevolution of ribosomes and mRNA features, leading to functional customization of the translation apparatus in each organism.
Collapse
Affiliation(s)
- Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Syue-Ting Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung David Chou
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Kashnikov AY, Epifanova NV, Novikova NA. Picobirnaviruses: prevalence, genetic diversity, detection methods. Vavilovskii Zhurnal Genet Selektsii 2020; 24:661-672. [PMID: 33659852 PMCID: PMC7716564 DOI: 10.18699/vj20.660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article presents a general overview of the prevalence, genetic diversity and detection methods of picobirnaviruses (PBVs), which are small, non-enveloped icosahedral viruses with a segmented double-stranded RNA genome consisting of two segments taxonomically related to the genus Picobirnavirus of the family Picobirnaviridae. This review of scientific papers published in 1988-2019 provides data on the PBV distribution in the nature and a broad host range. PBV infection is characterized as opportunistic, the lack of understanding of the etiological role of PBVs in diarrhea is emphasized, since these viruses are detected both in symptomatic and asymptomatic cases. The concept of PBV infection as a chronic disease caused by a long-lasting persistence of the virus in the host is considered. Such factors as stress syndrome, physiological conditions, immune status and host age at the time of primary PBV infection influence the virus detection rate in humans and animals. The possible zoonotic nature of human PBV infection is noted due to the capacity for interspecies PBV transmission acquired during evolution as a result of the reassortment of the genome segments of different viruses infecting the same host. Data providing evidence that PBVs belong to eukaryotes and a challenging hypothesis stating that PBVs are bacterial viruses are presented. The need to intensify work on PBV detection because of their wide distribution, despite the complexity due to the lack of the cultivation system, is emphasized. Two strategies of RT-PCR as main PBV detection methods are considered. The genomes of individual representatives of the genus isolated from different hosts are characterized. Emphasis is placed on the feasibility of developing primers with broader specificity for expanding the range of identifiable representatives of the genus PBV due to a huge variety of their genotypes. The importance of effective monitoring of PBV prevalence for studying the zoonotic and anthroponotic potential using metagenomic analysis is highlighted, and so is the possibility of using PBV as a marker for environmental monitoring.
Collapse
Affiliation(s)
- A Yu Kashnikov
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N V Epifanova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N A Novikova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| |
Collapse
|
38
|
Kuo ST, Jahn RL, Cheng YJ, Chen YL, Lee YJ, Hollfelder F, Wen JD, Chou HHD. Global fitness landscapes of the Shine-Dalgarno sequence. Genome Res 2020; 30:711-723. [PMID: 32424071 PMCID: PMC7263185 DOI: 10.1101/gr.260182.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/21/2020] [Indexed: 01/06/2023]
Abstract
Shine-Dalgarno sequences (SD) in prokaryotic mRNA facilitate protein translation by pairing with rRNA in ribosomes. Although conventionally defined as AG-rich motifs, recent genomic surveys reveal great sequence diversity, questioning how SD functions. Here, we determined the molecular fitness (i.e., translation efficiency) of 49 synthetic 9-nt SD genotypes in three distinct mRNA contexts in Escherichia coli. We uncovered generic principles governing the SD fitness landscapes: (1) Guanine contents, rather than canonical SD motifs, best predict the fitness of both synthetic and endogenous SD; (2) the genotype-fitness correlation of SD promotes its evolvability by steadily supplying beneficial mutations across fitness landscapes; and (3) the frequency and magnitude of deleterious mutations increase with background fitness, and adjacent nucleotides in SD show stronger epistasis. Epistasis results from disruption of the continuous base pairing between SD and rRNA. This “chain-breaking” epistasis creates sinkholes in SD fitness landscapes and may profoundly impact the evolution and function of prokaryotic translation initiation and other RNA-mediated processes. Collectively, our work yields functional insights into the SD sequence variation in prokaryotic genomes, identifies a simple design principle to guide bioengineering and bioinformatic analysis of SD, and illuminates the fundamentals of fitness landscapes and molecular evolution.
Collapse
Affiliation(s)
- Syue-Ting Kuo
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Lin Jahn
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yuan-Ju Cheng
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Lan Chen
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Ju Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Jin-Der Wen
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan.,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Hung David Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
39
|
Ho J, Zhao M, Wojcik S, Taiaroa G, Butler M, Poulter R. The application of the CRISPR–Cas9 system in Pseudomonas syringae pv. actinidiae. J Med Microbiol 2020; 69:478-486. [DOI: 10.1099/jmm.0.001124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction.Pseudomonas syringaepv. actinidiae (Psa) has emerged as a major bacterial pathogen of kiwifruit cultivation throughout the world.Aim.We aim to introduce a CRISPR–Cas9 system, a commonly used genome editing tool, into Psa. The protocols may also be useful in otherPseudomonasspecies.Methodology.Using standard molecular biology techniques, we modified plasmid pCas9, which carries the CRISPR–Cas9 sequences fromStreptococcus pyogenes,for use in Psa. The final plasmid, pJH1, was produced in a series of steps and is maintained with selection in bothEscherichia coliand Psa.Results.We have constructed plasmids carrying a CRISPR–Cas9 system based on that ofS. pyogenes, which can be maintained, under selection, in Psa. We have shown that the gene targeting capacity of the CRISPR–Cas9 system is active and that the Cas9 protein is able to cleave the targeted sites. The Cas9 was directed to several different sites in theP. syringaegenome. Using Cas9 we have generated Psa transformants that no longer carry the native plasmid present in Psa, and other transformants that lack the integrative, conjugative element, Pac_ICE1. Targeting of a specific gene, a chromosomal non-ribosomal peptide synthetase, led to gene knockouts with the transformants having deletions encompassing the target site.Conclusion.We have constructed shuttle plasmids carrying a CRISPR–Cas9 system that are maintained in bothE. coliandP. syringaepv. actinidiae. We have used this gene editing system to eliminate features of the accessory genome (plasmids or ICEs) from Psa and to target a single chromosomal gene.
Collapse
Affiliation(s)
- Joycelyn Ho
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Min Zhao
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Samuel Wojcik
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - George Taiaroa
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Margi Butler
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Russell Poulter
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
D'Agostino PM, Al-Sinawi B, Mazmouz R, Muenchhoff J, Neilan BA, Moffitt MC. Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression. BMC Microbiol 2020; 20:35. [PMID: 32070286 PMCID: PMC7027233 DOI: 10.1186/s12866-020-1720-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 01/06/2023] Open
Abstract
Background Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. Results In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5′ RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. Conclusions Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes.
Collapse
Affiliation(s)
- Paul M D'Agostino
- School of Science, Western Sydney University, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Biosystems Chemistry, Department of Chemistry, Technische Universität München, Garching, Germany.,Technical Biochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Bakir Al-Sinawi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rabia Mazmouz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Julia Muenchhoff
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia. .,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.
| | | |
Collapse
|
41
|
Ren J, Lee J, Na D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol 2020; 58:1-10. [PMID: 31898252 DOI: 10.1007/s12275-020-9334-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
Genome-scale engineering is a crucial methodology to rationally regulate microbiological system operations, leading to expected biological behaviors or enhanced bioproduct yields. Over the past decade, innovative genome modification technologies have been developed for effectively regulating and manipulating genes at the genome level. Here, we discuss the current genome-scale engineering technologies used for microbial engineering. Recently developed strategies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, multiplex automated genome engineering (MAGE), promoter engineering, CRISPR-based regulations, and synthetic small regulatory RNA (sRNA)-based knockdown, are considered as powerful tools for genome-scale engineering in microbiological systems. MAGE, which modifies specific nucleotides of the genome sequence, is utilized as a genome-editing tool. Contrastingly, synthetic sRNA, CRISPRi, and CRISPRa are mainly used to regulate gene expression without modifying the genome sequence. This review introduces the recent genome-scale editing and regulating technologies and their applications in metabolic engineering.
Collapse
Affiliation(s)
- Jun Ren
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jingyu Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
42
|
Lenzini L, Di Patti F, Livi R, Fondi M, Fani R, Mengoni A. A Method for the Structure-Based, Genome-Wide Analysis of Bacterial Intergenic Sequences Identifies Shared Compositional and Functional Features. Genes (Basel) 2019; 10:genes10100834. [PMID: 31652625 PMCID: PMC6826451 DOI: 10.3390/genes10100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, we propose a computational strategy for performing genome-wide analyses of intergenic sequences in bacterial genomes. Following similar directions of a previous paper, where a method for genome-wide analysis of eucaryotic Intergenic sequences was proposed, here we developed a tool for implementing similar concepts in bacteria genomes. This allows us to (i) classify intergenic sequences into clusters, characterized by specific global structural features and (ii) draw possible relations with their functional features.
Collapse
Affiliation(s)
- Leonardo Lenzini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
- Istituto Nazionale di Fisica Nucleare, Sesto Fiorentino, 50019, Italy.
| | - Francesca Di Patti
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, Sesto Fiorentino, 50019, Italy.
| | - Roberto Livi
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
- Istituto Nazionale di Fisica Nucleare, Sesto Fiorentino, 50019, Italy.
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, Sesto Fiorentino, 50019, Italy.
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019, Italy.
| | - Marco Fondi
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
| | - Renato Fani
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019, Italy.
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
| | - Alessio Mengoni
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
43
|
Wells KN, Videau P, Nelson D, Eiting JE, Philmus B. The influence of sigma factors and ribosomal recognition elements on heterologous expression of cyanobacterial gene clusters in Escherichia coli. FEMS Microbiol Lett 2019; 365:5047307. [PMID: 29982530 DOI: 10.1093/femsle/fny164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial natural products offer new possibilities for drugs and lead compounds but many factors can inhibit the production of sufficient yields for pharmaceutical processes. While Escherichia coli and Streptomyces sp. have been used as heterologous expression hosts to produce cyanobacterial natural products, they have not met with resounding success largely due to their inability to recognize cyanobacterial promoter regions. Recent work has shown that the filamentous freshwater cyanobacterium Anabaena sp. strain PCC 7120 recognizes various cyanobacterial promoter regions and can produce lyngbyatoxin A from the native promoter. Introduction of Anabaena sigma factors into E. coli might allow the native transcriptional machinery to recognize cyanobacterial promoters. Here, all 12 Anabaena sigma factors were expressed in E. coli and subsets were found to initiate transcription from several cyanobacterial promoters based on transcriptional fusions to the chloramphenicol acetyltransferase (CAT) reporter. Expression of individual Anabaena sigma factors in E. coli did not result in lyngbyatoxin A production from its native cyanobacterial gene cluster, possibly hindered by deficiencies in recognition of cyanobacterial ribosomal binding sites by native E. coli translational machinery. This represents an important step toward engineering E. coli into a general heterologous expression host for cyanobacterial biosynthetic gene cluster expression.
Collapse
Affiliation(s)
- Kaitlyn N Wells
- Undergraduate Honors College, 450 Learning Innovation Center, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Jessie E Eiting
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
44
|
Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, Pavlopoulos GA, Kyrpides NC, Bhatt AS. Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell 2019; 178:1245-1259.e14. [PMID: 31402174 PMCID: PMC6764417 DOI: 10.1016/j.cell.2019.07.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.
Collapse
Affiliation(s)
- Hila Sberro
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Brayon J Fremin
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Soumaya Zlitni
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Fredrik Edfors
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | - Georgios A Pavlopoulos
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ami S Bhatt
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Montero-Blay A, Miravet-Verde S, Lluch-Senar M, Piñero-Lambea C, Serrano L. SynMyco transposon: engineering transposon vectors for efficient transformation of minimal genomes. DNA Res 2019; 26:327-339. [PMID: 31257417 PMCID: PMC6704405 DOI: 10.1093/dnares/dsz012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
Mycoplasmas are important model organisms for Systems and Synthetic Biology, and are pathogenic to a wide variety of species. Despite their relevance, many of the tools established for genome editing in other microorganisms are not available for Mycoplasmas. The Tn4001 transposon is the reference tool to work with these bacteria, but the transformation efficiencies (TEs) reported for the different species vary substantially. Here, we explore the mechanisms underlying these differences in four Mycoplasma species, Mycoplasma agalactiae, Mycoplasma feriruminatoris, Mycoplasma gallisepticum and Mycoplasma pneumoniae, selected for being representative members of each cluster of the Mycoplasma genus. We found that regulatory regions (RRs) driving the expression of the transposase and the antibiotic resistance marker have a major impact on the TEs. We then designed a synthetic RR termed SynMyco RR to control the expression of the key transposon vector elements. Using this synthetic RR, we were able to increase the TE for M. gallisepticum, M. feriruminatoris and M. agalactiae by 30-, 980- and 1036-fold, respectively. Finally, to illustrate the potential of this new transposon, we performed the first essentiality study in M. agalactiae, basing our study on more than 199,000 genome insertions.
Collapse
Affiliation(s)
- Ariadna Montero-Blay
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| |
Collapse
|
46
|
Śmiga M, Bielecki M, Olczak M, Olczak T. Porphyromonas gingivalis PgFur Is a Member of a Novel Fur Subfamily With Non-canonical Function. Front Cell Infect Microbiol 2019; 9:233. [PMID: 31312617 PMCID: PMC6613475 DOI: 10.3389/fcimb.2019.00233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen of chronic periodontitis, uses ferric uptake regulator homolog (PgFur) to regulate production of virulence factors. This study aimed to characterize PgFur protein in regard to its structure-function relationship. We experimentally identified the 5′ mRNA sequence encoding the 171-amino-acid-long PgFur protein in the A7436 strain and examined this PgFur version as a full-length protein. PgFur protein did not bind to the canonical Escherichia coli Fur box, but the wild-type phenotype of the mutant Δpgfur strain was restored partially when expression of the ecfur gene was induced from the native pgfur promoter. The full-length PgFur protein contained one zinc atom per protein monomer, but did not bind iron, manganese, or heme. Single cysteine substitutions of CXXC motifs resulted in phenotypes similar to the mutant Δpgfur strain. The modified proteins were produced in E. coli at significantly lower levels, were highly unstable, and did not bind zinc. The pgfur gene was expressed at the highest levels in bacteria cultured for 24 h in the absence of iron and heme or at higher levels in bacteria cultured for 10 h in the presence of protoporphyrin IX source. No influence of high availability of Fe2+, Zn2+, or Mn2+ on pgfur gene expression was observed. Two chromosomal mutant strains producing protein lacking 4 (pgfurΔ4aa) or 13 (pgfurΔ13aa) C-terminal amino acid residues were examined in regard to importance of the C-terminal lysine-rich region. The pgfurΔ13aa strain showed a phenotype typical for the mutant Δpgfur strain, but both the wild-type PgFur protein and its truncated version bound zinc with similar ability. The Δpgfur mutant strain produced higher amounts of HmuY protein compared with the wild-type strain, suggesting compromised regulation of its expression. Potential PgFur ligands, Fe2+, Mn2+, Zn2+, PPIX, or serum components, did not influence HmuY production in the Δpgfur mutant strain. The mutant pgfurΔ4aa and pgfurΔ13aa strains exhibited affected HmuY protein production. PgFur, regardless of the presence of the C-terminal lysine-rich region, bound to the hmu operon promoter. Our data suggest that cooperation of PgFur with partners/cofactors and/or protein/DNA modifications would be required to accomplish its role played in an in vivo multilayer regulatory network.
Collapse
Affiliation(s)
- Michał Śmiga
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Marcin Bielecki
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Mariusz Olczak
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Teresa Olczak
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
47
|
Stav S, Atilho RM, Mirihana Arachchilage G, Nguyen G, Higgs G, Breaker RR. Genome-wide discovery of structured noncoding RNAs in bacteria. BMC Microbiol 2019; 19:66. [PMID: 30902049 PMCID: PMC6429828 DOI: 10.1186/s12866-019-1433-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background Structured noncoding RNAs (ncRNAs) play essential roles in many biological processes such as gene regulation, signaling, RNA processing, and protein synthesis. Among the most common groups of ncRNAs in bacteria are riboswitches. These cis-regulatory, metabolite-binding RNAs are present in many species where they regulate various metabolic and signaling pathways. Collectively, there are likely to be hundreds of novel riboswitch classes that remain hidden in the bacterial genomes that have already been sequenced, and potentially thousands of classes distributed among various other species in the biosphere. The vast majority of these undiscovered classes are proposed to be exceedingly rare, and so current bioinformatics search techniques are reaching their limits for differentiating between true riboswitch candidates and false positives. Results Herein, we exploit a computational search pipeline that can efficiently identify intergenic regions most likely to encode structured ncRNAs. Application of this method to five bacterial genomes yielded nearly 70 novel genetic elements including 30 novel candidate ncRNA motifs. Among the riboswitch candidates identified is an RNA motif involved in the regulation of thiamin biosynthesis. Conclusions Analysis of other genomes will undoubtedly lead to the discovery of many additional novel structured ncRNAs, and provide insight into the range of riboswitches and other kinds of ncRNAs remaining to be discovered in bacteria and archaea. Electronic supplementary material The online version of this article (10.1186/s12866-019-1433-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shira Stav
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Ruben M Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
| | | | - Giahoa Nguyen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
48
|
Miravet-Verde S, Ferrar T, Espadas-García G, Mazzolini R, Gharrab A, Sabido E, Serrano L, Lluch-Senar M. Unraveling the hidden universe of small proteins in bacterial genomes. Mol Syst Biol 2019; 15:e8290. [PMID: 30796087 PMCID: PMC6385055 DOI: 10.15252/msb.20188290] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Identification of small open reading frames (smORFs) encoding small proteins (≤ 100 amino acids; SEPs) is a challenge in the fields of genome annotation and protein discovery. Here, by combining a novel bioinformatics tool (RanSEPs) with “‐omics” approaches, we were able to describe 109 bacterial small ORFomes. Predictions were first validated by performing an exhaustive search of SEPs present in Mycoplasma pneumoniae proteome via mass spectrometry, which illustrated the limitations of shotgun approaches. Then, RanSEPs predictions were validated and compared with other tools using proteomic datasets from different bacterial species and SEPs from the literature. We found that up to 16 ± 9% of proteins in an organism could be classified as SEPs. Integration of RanSEPs predictions with transcriptomics data showed that some annotated non‐coding RNAs could in fact encode for SEPs. A functional study of SEPs highlighted an enrichment in the membrane, translation, metabolism, and nucleotide‐binding categories. Additionally, 9.7% of the SEPs included a N‐terminus predicted signal peptide. We envision RanSEPs as a tool to unmask the hidden universe of small bacterial proteins.
Collapse
Affiliation(s)
- Samuel Miravet-Verde
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guadalupe Espadas-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rocco Mazzolini
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anas Gharrab
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
49
|
Abstract
A growing collection of bacterial riboswitch classes is being discovered that sense central metabolites, coenzymes, and signaling molecules. Included among the various mechanisms of gene regulation exploited by these RNA regulatory elements are several that modulate messenger RNA (mRNA) translation. In this review, the mechanisms of riboswitch-mediated translation control are summarized to highlight both their diversity and potential ancient origins. These mechanisms include ligand-gated presentation or occlusion of ribosome-binding sites, control of alternative splicing of mRNAs, and the regulation of mRNA stability. Moreover, speculation on the potential for novel riboswitch discoveries is presented, including a discussion on the potential for the discovery of a greater diversity of mechanisms for translation control.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
50
|
Conjugational delivery of chromosomal integrative constructs for gene expression in the carbendazim-degrading Rhodococcus erythropolis D-1. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1382-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|