1
|
Chen B, Shi Y, Sun Y, Lu L, Wang L, Liu Z, Cheng S. Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities. ABIOTECH 2024; 5:71-93. [PMID: 38576433 PMCID: PMC10987475 DOI: 10.1007/s42994-023-00129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 04/06/2024]
Abstract
The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.
Collapse
Affiliation(s)
- Baizhi Chen
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Yan Shi
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Yuchen Sun
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Lu Lu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Zijian Liu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Shifeng Cheng
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| |
Collapse
|
2
|
Yang EJ, Maranas CJ, Nemhauser JL. A comparative analysis of stably expressed genes across diverse angiosperms exposes flexibility in underlying promoter architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544596. [PMID: 37398445 PMCID: PMC10312641 DOI: 10.1101/2023.06.12.544596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Promoters regulate both the amplitude and pattern of gene expression-key factors needed for optimization of many synthetic biology applications. Previous work in Arabidopsis found that promoters that contain a TATA-box element tend to be expressed only under specific conditions or in particular tissues, while promoters which lack any known promoter elements, thus designated as Coreless, tend to be expressed more ubiquitously. To test whether this trend represents a conserved promoter design rule, we identified stably expressed genes across multiple angiosperm species using publicly available RNA-seq data. Comparisons between core promoter architectures and gene expression stability revealed differences in core promoter usage in monocots and eudicots. Furthermore, when tracing the evolution of a given promoter across species, we found that core promoter type was not a strong predictor of expression stability. Our analysis suggests that core promoter types are correlative rather than causative in promoter expression patterns and highlights the challenges in finding or building constitutive promoters that will work across diverse plant species.
Collapse
Affiliation(s)
- Eric J.Y. Yang
- University of Washington, Department of Biology, Seattle, WA 98105-1800, USA
| | | | | |
Collapse
|
3
|
Joudaki F, Ismaili A, Sohrabi SS, Hosseini SZ, Kahrizi D, Ahmadi H. Transcriptome analysis of gall oak (Quercus infectoria): De novo assembly, functional annotation and metabolic pathways analysis. Genomics 2023; 115:110588. [PMID: 36841311 DOI: 10.1016/j.ygeno.2023.110588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Gall oak (Quercus infectoria) is a native tree of Iran, whose gall extract is used to treat many diseases. The presence of abundant secondary metabolites with various bioactivities in this plant has made it medically important. Despite its medicinal value, due to the lack of genomic information, the biosynthetic pathways of these compounds in this species are still unknown. The current research was aimed at observing, characterizing, and investigating the biosynthetic pathways of these compounds in Q.infectoria. De novo transcriptome assembly was conducted using the RNA sequencing technique. A total of 89,335 unigenes were generated, of which 6928 unigenes showed differential expression in leaves compared to root tissue. Gene ontology examination of DEGs revealed GO-term enrichment was related to cellular processes and enzyme activity. KEGG enrichment analysis for DEGs showed that most unigenes were related to metabolic pathways and biosynthesis of secondary metabolites. Moreover, 39 families of transcription factors were identified, of which the C2H2, bZIP, bHLH, and ERF TFs had the highest frequency. In the absence of a reference genome, the overall study of transcriptome will provide a reference for future functional and comparative studies. Moreover, the data obtained from sequencing and de novo assembly can be a valuable scientific resource for Q.infectoria.
Collapse
Affiliation(s)
- Forough Joudaki
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Seyed Sajad Sohrabi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Seyedeh Zahra Hosseini
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Danial Kahrizi
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Hadi Ahmadi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
4
|
Hou W, Zhang X, Liu Y, Liu Y, Feng BL. RNA-Seq and genetic diversity analysis of faba bean ( Vicia faba L.) varieties in China. PeerJ 2023; 11:e14259. [PMID: 36643650 PMCID: PMC9838209 DOI: 10.7717/peerj.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Background Faba bean (Vicia faba L) is one of the most important legumes in the world. However, there is relatively little genomic information available for this species owing to its large genome. The lack of data impedes the discovery of molecular markers and subsequent genetic research in faba bean. The objective of this study was to analyze the faba bean transcriptome, and to develop simple sequence repeat (SSR) markers to determine the genetic diversity of 226 faba bean varieties derived from different regions in China. Methods Faba bean varieties with different phenotype were used in transcriptome analysis. The functions of the unigenes were analyzed using various database. SSR markers were developed and the polymorphic markers were selected to conduct genetic diversity analysis. Results A total of 92.43 Gb of sequencing data was obtained in this study, and 133,487 unigene sequences with a total length of 178,152,541 bp were assembled. A total of 5,200 SSR markers were developed on the basis of RNA-Seq analysis. Then, 200 SSR markers were used to evaluate polymorphisms. In total, 103 (51.5%) SSR markers showed significant and repeatable bands between different faba bean varieties. Clustering analysis revealed that 226 faba bean materials were divided into five groups. Genetic diversity analysis revealed that the relationship between different faba beans in China was related, especially in the same region. These results provided a valuable data resource for annotating genes to different categories and developing SSR markers.
Collapse
Affiliation(s)
- Wanwei Hou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Xiaojuan Zhang
- College of Eco-Environmental Engineering, Qinghai Universit, Xining, Qinghai, China
| | - Yuling Liu
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Yujiao Liu
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Bai li Feng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Shi B, Haq IU, Fiaz S, Alharthi B, Xu ML, Wang JL, Hou WH, Feng XB. Genome-wide identification and expression analysis of the ZF-HD gene family in pea ( Pisum sativum L.). Front Genet 2023; 13:1089375. [PMID: 36685917 PMCID: PMC9849798 DOI: 10.3389/fgene.2022.1089375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Pea is a conventional grain-feed-grass crop in Tibet and the only high-protein legume in the region; therefore, it plays an important role in Tibetan food and grass security. Zinc finger-homeodomain (ZF-HD) belongs to a family of homozygous heterotypic cassette genes, which play an important role in plant growth, development, and response to adversity stress. Using a bioinformatics approach, 18 PsZF-HD family members were identified. These genes were distributed across seven chromosomes and two scaffold fragments, and evolutionary analysis classified them into two subgroups, MIF and ZHD. The MIF subgroup was subdivided into three subclasses (PsMIFⅠ-III), and the ZHD subgroup was subdivided into five subclasses (ZHDⅠ-V). The PsZF-HD members were named PsMIF1-PsMIF4 and PsZHD1-PsZHD14. Twelve conserved motifs and four conserved domains were identified from PsZF-HD family, of which MIF subgroup only contained one domain, while ZHD subgroup contained two types of domains. In addition, there were significant differences in the three-dimensional structures of the protein members of the two subgroups. Most PsZF-HD genes had no introns (13/18), and only five genes had one intron. Forty-five cis-acting elements were predicted and screened, involving four categories: light response, stress, hormone, and growth and development. Transcriptome analysis of different tissues during pea growth and development showed that PsZHD11, 8, 13, 14 and MIF4 were not expressed or were individually expressed in low amounts in the tissues, while the other 13 PsZF-HDs genes were differentially expressed and showed tissue preference, as seen in aboveground reproductive organs, where PsZHD6, 2, 10 and MIF1 (except immature seeds) were highly expressed. In the aerial vegetative organs, PsZHD6, 1, and 10 were significantly overexpressed, while in the underground root system, PsMIF3 was specifically overexpressed. The leaf transcriptome under a low-nitrogen environment showed that the expression levels of 17 PsZF-HDs members were upregulated in shoot organs. The leaf transcriptome analysis under a low-temperature environment showed stress-induced upregulation of PsZHD10 and one genes and down-regulation of PsZHD6 gene. These results laid the foundation for deeper exploration of the functions of the PsZF-HD genes and also improved the reference for molecular breeding for stress resistance in peas.
Collapse
Affiliation(s)
- Bowen Shi
- Plant Sciences College, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, China
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, Saudi Arabia
| | - Ming-Long Xu
- Plant Sciences College, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, China
| | - Jian-Lin Wang
- Plant Sciences College, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, China
| | - Wei-Hai Hou
- Plant Sciences College, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, China,*Correspondence: Wei-Hai Hou, ; Xi-Bo Feng,
| | - Xi-Bo Feng
- Plant Sciences College, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, China,*Correspondence: Wei-Hai Hou, ; Xi-Bo Feng,
| |
Collapse
|
6
|
Zhang S, Guo X, Li J, Zhang Y, Yang Y, Zheng W, Xue X. Effects of light-emitting diode spectral combinations on growth and quality of pea sprouts under long photoperiod. FRONTIERS IN PLANT SCIENCE 2022; 13:978462. [PMID: 36161035 PMCID: PMC9490185 DOI: 10.3389/fpls.2022.978462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Pea sprouts have rich nutrition and are considered good for heart health. In this study, the kaspa peas and black-eyed peas were chosen to clarify the effect of different LED spectral combinations on the growth, yield, and nutritional quality of pea sprouts under long photoperiod (22 h light/2 h dark). The results showed that the two pea varieties responded differently to light spectral combinations. Black-eyed pea sprouts had higher plant height, fresh weight per plant, dry weight per plant, soluble sugar content, and lower malondialdehyde (MDA) content than kaspa peas under the same light treatment. Compared with white light, red-to-blue ratio of 2:1 significantly increased peroxidase (POD) and superoxide dismutase (SOD) activity, soluble sugar and soluble protein content of kaspa pea sprouts, and decreased MDA content of black-eyed pea sprouts. Blue light was negatively correlated with the plant height of pea sprouts and positively correlated with SOD activity, vitamin C, soluble sugar, and soluble protein content. Antioxidant capacity, yield, and nutritional quality of black-eyed pea sprouts were higher than those of kaspa pea sprouts under the same light treatment. Blue light improved the nutritional quality of pea sprouts. Compared with other light treatments, the red-to-blue ratio of 2:1 was more conducive to improving the antioxidant capacity and nutritional quality of pea sprouts under long photoperiod.
Collapse
Affiliation(s)
- Siqi Zhang
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolei Guo
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Youming Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wengang Zheng
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| |
Collapse
|
7
|
Wu L, Fredua-Agyeman R, Strelkov SE, Chang KF, Hwang SF. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. Int J Mol Sci 2022; 23:9744. [PMID: 36077139 PMCID: PMC9456226 DOI: 10.3390/ijms23179744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Aphanomyces root rot, caused by Aphanomyces euteiches, causes severe yield loss in field pea (Pisum sativum). The identification of a pea germplasm resistant to this disease is an important breeding objective. Polygenetic resistance has been reported in the field pea cultivar '00-2067'. To facilitate marker-assisted selection (MAS), bulked segregant RNA-seq (BSR-seq) analysis was conducted using an F8 RIL population derived from the cross of 'Carman' × '00-2067'. Root rot development was assessed under controlled conditions in replicated experiments. Resistant (R) and susceptible (S) bulks were constructed based on the root rot severity in a greenhouse study. The BSR-seq analysis of the R bulks generated 44,595,510~51,658,688 reads, of which the aligned sequences were linked to 44,757 genes in a reference genome. In total, 2356 differentially expressed genes were identified, of which 44 were used for gene annotation, including defense-related pathways (jasmonate, ethylene and salicylate) and the GO biological process. A total of 344.1 K SNPs were identified between the R and S bulks, of which 395 variants were located in 31 candidate genes. The identification of novel genes associated with partial resistance to Aphanomyces root rot in field pea by BSR-seq may facilitate efforts to improve management of this important disease.
Collapse
Affiliation(s)
| | | | | | | | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
8
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
9
|
Genomics Associated Interventions for Heat Stress Tolerance in Cool Season Adapted Grain Legumes. Int J Mol Sci 2021; 23:ijms23010399. [PMID: 35008831 PMCID: PMC8745526 DOI: 10.3390/ijms23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cool season grain legumes occupy an important place among the agricultural crops and essentially provide multiple benefits including food supply, nutrition security, soil fertility improvement and revenue for farmers all over the world. However, owing to climate change, the average temperature is steadily rising, which negatively affects crop performance and limits their yield. Terminal heat stress that mainly occurred during grain development phases severely harms grain quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field peas, etc. Although, traditional breeding approaches with advanced screening procedures have been employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines alone are no longer enough to meet global demands. Genomics-assisted interventions including new-generation sequencing technologies and genotyping platforms have facilitated the development of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the current scenario, we attempted to review the intervention of genomics to decipher different components of tolerance to heat stress and future possibilities of using newly developed genomics-based interventions in cool season adapted grain legumes.
Collapse
|
10
|
Huang S, Gali KK, Lachagari RVB, Chakravartty N, Bueckert RA, Tar’an B, Warkentin TD. Identification of heat responsive genes in pea stipules and anthers through transcriptional profiling. PLoS One 2021; 16:e0251167. [PMID: 34735457 PMCID: PMC8568175 DOI: 10.1371/journal.pone.0251167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
Field pea (Pisum sativum L.), a cool-season legume crop, is known for poor heat tolerance. Our previous work identified PR11-2 and PR11-90 as heat tolerant and susceptible lines in a recombinant inbred population. CDC Amarillo, a Canadian elite pea variety, was considered as another heat tolerant variety based on its similar field performance as PR11-2. This study aimed to characterize the differential transcription. Plants of these three varieties were stressed for 3 h at 38°C prior to self-pollination, and RNAs from heat stressed anthers and stipules on the same flowering node were extracted and sequenced via the Illumina NovaSeq platform for the characterization of heat responsive genes. In silico results were further validated by qPCR assay. Differentially expressed genes (DEGs) were identified at log2 |fold change (FC)| ≥ 2 between high temperature and control temperature, the three varieties shared 588 DEGs which were up-regulated and 220 genes which were down-regulated in anthers when subjected to heat treatment. In stipules, 879 DEGs (463/416 upregulation/downregulation) were consistent among varieties. The above heat-induced genes of the two plant organs were related to several biological processes i.e., response to heat, protein folding and DNA templated transcription. Ten gene ontology (GO) terms were over-represented in the consistently down-regulated DEGs of the two organs, and these terms were mainly related to cell wall macromolecule metabolism, lipid transport, lipid localization, and lipid metabolic processes. GO enrichment analysis on distinct DEGs of individual pea varieties suggested that heat affected biological processes were dynamic, and variety distinct responses provide insight into molecular mechanisms of heat-tolerance response. Several biological processes, e.g., cellular response to DNA damage stimulus in stipule, electron transport chain in anther that were only observed in heat induced PR11-2 and CDC Amarillo, and their relevance to field pea heat tolerance is worth further validation.
Collapse
Affiliation(s)
- Shaoming Huang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krishna K. Gali
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | - Bunyamin Tar’an
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas D. Warkentin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Liu X, Zhang A, Zhao J, Shang J, Zhu Z, Wu X, Zha D. Transcriptome profiling reveals potential genes involved in browning of fresh-cut eggplant (Solanum melongena L.). Sci Rep 2021; 11:16081. [PMID: 34373468 PMCID: PMC8352891 DOI: 10.1038/s41598-021-94831-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022] Open
Abstract
Fresh-cut processing promotes enzymatic browning of fresh fruits and vegetables, which negatively affects the product appearance and impacts their nutrition. We used RNA-sequencing to analyze the transcriptomic changes occurring during the browning of fresh-cut eggplant fruit samples from both browning-sensitive and browning-resistant cultivars to investigate the molecular mechanisms involved in browning. A total of 8347 differentially expressed genes were identified, of which 62 genes were from six gene families (i.e., PPO, PAL, POD, CAT, APX, and GST) potentially associated with enzymatic browning. Furthermore, using qRT-PCR, we verified 231 differentially regulated transcription factors in fresh-cut eggplant fruits. The enzyme activities of PPO, POD, PAL, and CAT in '36' were significantly higher than those of 'F' fresh-cut for 15 min. Both PPO and POD play a major role in the browning of eggplant pulp and might therefore act synergistically in the browning process. Meanwhile, qPCR results of 18 browning related genes randomly screened in 15 eggplant materials with different browning tolerance showed variant-specific expression of genes. Lastly, gene regulatory networks were constructed to identify the browning-related genes. This work provides a basis for future molecular studies of eggplants, and lays a theoretical foundation for the development of browning-resistant fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Xiaohui Liu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Aidong Zhang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Jie Zhao
- Pudong New District Agro-Technology Extension Center, Shanghai, 201201, China
| | - Jing Shang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zongwen Zhu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Xuexia Wu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| | - Dingshi Zha
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| |
Collapse
|
12
|
Afonin AM, Leppyanen IV, Kulaeva OA, Shtark OY, Tikhonovich IA, Dolgikh EA, Zhukov VA. A high coverage reference transcriptome assembly of pea (Pisum sativum L.) mycorrhizal roots. Vavilovskii Zhurnal Genet Selektsii 2021; 24:331-339. [PMID: 33659815 PMCID: PMC7716550 DOI: 10.18699/vj20.625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arbuscular mycorrhiza (AM) is an ancient mutualistic symbiosis formed by 80–90 % of land plant species with
the obligatorily biotrophic fungi that belong to the phylum Glomeromycota. This symbiosis is mutually beneficial, as
AM fungi feed on plant photosynthesis products, in turn improving the efficiency of nutrient uptake from the environment. The garden pea (Pisum sativum L.), a widely cultivated crop and an important model for genetics, is capable of
forming triple symbiotic systems consisting of the plant, AM fungi and nodule bacteria. As transcriptomic and proteomic approaches are being implemented for studying the mutualistic symbioses of pea, a need for a reference transcriptome of genes expressed under these specific conditions for increasing the resolution and the accuracy of other
methods arose. Numerous transcriptome assemblies constructed for pea did not include mycorrhizal roots, hence the
aim of the study to construct a reference transcriptome assembly of pea mycorrhizal roots. The combined transcriptome of mycorrhizal roots of Pisum sativum cv. Frisson inoculated with Rhizophagus irregularis BEG144 was investigated,
and for both the organisms independent transcriptomes were assembled (coverage 177x for pea and 45x for fungus).
Genes specific to mycorrhizal roots were found in the assembly, their expression patterns were examined with qPCR on
two pea cultivars, Frisson and Finale. The gene expression depended on the inoculation stage and on the pea cultivar.
The investigated genes may serve as markers for early stages of inoculation in genetically diverse pea cultivars.
Collapse
Affiliation(s)
- A M Afonin
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - I V Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - O A Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - O Y Shtark
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - I A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - E A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - V A Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| |
Collapse
|
13
|
Pandey AK, Rubiales D, Wang Y, Fang P, Sun T, Liu N, Xu P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:755-776. [PMID: 33433637 DOI: 10.1007/s00122-020-03751-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 05/09/2023]
Abstract
Pea (Pisum sativum L.), a cool-season legume crop grown in more than 85 countries, is the second most important grain legume and one of the major green vegetables in the world. While pea was historically studied as the genetic model leading to the discovery of the laws of genetics, pea research has lagged behind that of other major legumes in the genomics era, due to its large and complex genome. The evolving climate change and growing population have posed grand challenges to the objective of feeding the world, making it essential to invest research efforts to develop multi-omics resources and advanced breeding tools to support fast and continuous development of improved pea varieties. Recently, the pea researchers have achieved key milestones in omics and molecular breeding. The present review provides an overview of the recent important progress including the development of genetic resource databases, high-throughput genotyping assays, reference genome, genes/QTLs responsible for important traits, transcriptomic, proteomic, and phenomic atlases of various tissues under different conditions. These multi-faceted resources have enabled the successful implementation of various markers for monitoring early-generation populations as in marker-assisted backcrossing breeding programs. The emerging new breeding approaches such as CRISPR, speed breeding, and genomic selection are starting to change the paradigm of pea breeding. Collectively, the rich omics resources and omics-enable breeding approaches will enhance genetic gain in pea breeding and accelerate the release of novel pea varieties to meet the elevating demands on productivity and quality.
Collapse
Affiliation(s)
- Arun K Pandey
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 14004, Córdoba, Spain
| | - Yonggang Wang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Ma L, Yi D, Gong W, Gong P, Wang Z. De novo transcriptome characterisation of two auxin-related genes associated with plant growth habit in Astragalus adsurgens Pall. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:3-12. [PMID: 31571396 DOI: 10.1111/plb.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Astragalus adsurgens Pall., a perennial legume native to China, is commonly used as a forage crop. And it has great value for sustainable development of grasslands in arid and semi arid regions. However, to date, little is known regarding the A. adsurgens genome, and no studies have determined whether it would be possible to improve the germplasm of A. adsurgens through genetic modification. In this study, we used an RNA-seq protocol to generate a de novo transcriptome including 151,516 unigenes of A. adsurgens. We compared the transcriptomes of A. adsurgens having different growth habits (prostrate/erect) and identified 14,133 single nucleotide polymorphism sites (SNP) in 8,139 unigenes. Differential expression gene (DEG) analysis suggested that 10,982 unigenes were up-regulated in the prostrate plant relative to the erect plant, while 10,607 unigenes were down-regulated. Of the 21,589 DEG, Unigene72782_All (LAX4) and CL12494.Contig3_All (TIR1), an auxin transporter gene and an auxin transport inhibitor gene, respectively, were predicted to influence the growth habit of A. adsurgens, which were verified by qRT-PCR in these phenotypes. These results suggest that auxin transport was more active in the prostrate plant than in the erect plant, resulting in asymmetric distribution of auxin that affects the growth habit of A. adsurgens. Overall, this study may provide a basis for future research on key genes in A. adsurgens and may deepen our understanding of the molecular mechanisms regulating plant growth habit.
Collapse
Affiliation(s)
- L Ma
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - D Yi
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - W Gong
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - P Gong
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
- Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Z Wang
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
16
|
Zhang J, Liu L, Shu JP, Jin DM, Shen H, Chen HF, Zhang R, Yan YH. Transcriptomic Evidence of Adaptive Evolution of the Epiphytic Fern Asplenium nidus. Int J Genomics 2019; 2019:1429316. [PMID: 31871926 PMCID: PMC6913284 DOI: 10.1155/2019/1429316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022] Open
Abstract
Epiphytic ferns have been found to flourish after angiosperms dominated forest communities, and they play important roles in rainforest canopies. How do epiphytic ferns adapt to tropical rainforest canopy habitats? At present, we know little about the molecular mechanism underlying this adaptation. Asplenium nidus is a well-known epiphytic fern that is closely related to the terrestrial species Asplenium komarovii. Here, RNA-seq and comparative transcriptomic analyses were performed to explore the underlying basis of the adaptation of A. nidus to extreme environments. A total of 44.04 and 44.57 Mb clean reads were obtained from A. nidus and A. komarovii, respectively, and they were assembled into 89,741 and 77,912 unigenes. Functional annotation showed that 52,305 (58.28% of the total genes for A. nidus) and 45,938 (58.96% of the total genes for A. komarovii) unigenes were annotated in public databases. Genes involved in stress responses and photosynthesis were found to have undergone positive selection in A. nidus. Compared to A. komarovii, transcription factors related to stress response, leaf development, and root development were found to be considerably expanded in A. nidus, especially in the ANR1 subclade of MADS-box family genes which played roles in lateral root development. This study improves our understanding of the adaptation of A. nidus to epiphytic habitats by forming unique strategies.
Collapse
Affiliation(s)
- Jiao Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
- Shanghai Chenshan Plant Science Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jiang-Ping Shu
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
| | - Dong-Mei Jin
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Rui Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yue-Hong Yan
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
- Shanghai Chenshan Plant Science Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Comprehensive Stress-Based De Novo Transcriptome Assembly and Annotation of Guar ( Cyamopsis tetragonoloba (L.) Taub.): An Important Industrial and Forage Crop. Int J Genomics 2019; 2019:7295859. [PMID: 31687376 PMCID: PMC6800914 DOI: 10.1155/2019/7295859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
The forage crop Guar (Cyamopsis tetragonoloba (L.) Taub.) has the ability to endure heat, drought, and mild salinity. A complete image on its genic architecture will promote our understanding about gene expression networks and different tolerance mechanisms at the molecular level. Therefore, whole mRNA sequence approach on the Guar plant was conducted to provide a snapshot of the mRNA information in the cell under salinity, heat, and drought stresses to be integrated with previous transcriptomic studies. RNA-Seq technology was employed to perform a 2 × 100 paired-end sequencing using an Illumina HiSeq 2500 platform for the transcriptome of leaves of C. tetragonoloba under normal, heat, drought, and salinity conditions. Trinity was used to achieve a de novo assembly followed by gene annotation, functional classification, metabolic pathway analysis, and identification of SSR markers. A total of 218.2 million paired-end raw reads (~44 Gbp) were generated. Of those, 193.5M paired-end reads of high quality were used to reconstruct a total of 161,058 transcripts (~266 Mbp) with N50 of 2552 bp and 61,508 putative genes. There were 6463 proteins having >90% full-length coverage against the Swiss-Prot database and 94% complete orthologs against Embryophyta. Approximately, 62.87% of transcripts were blasted, 50.46% mapped, and 43.50% annotated. A total of 4715 InterProScan families, 3441 domains, 74 repeats, and 490 sites were detected. Biological processes, molecular functions, and cellular components comprised 64.12%, 25.42%, and 10.4%, respectively. The transcriptome was associated with 985 enzymes and 156 KEGG pathways. A total of 27,066 SSRs were gained with an average frequency of one SSR/9.825 kb in the assembled transcripts. This resulting data will be helpful for the advanced analysis of Guar to multi-stress tolerance.
Collapse
|
18
|
Ravindran SP, Herrmann M, Cordellier M. Contrasting patterns of divergence at the regulatory and sequence level in European Daphnia galeata natural populations. Ecol Evol 2019; 9:2487-2504. [PMID: 30891195 PMCID: PMC6405927 DOI: 10.1002/ece3.4894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Understanding the genetic basis of local adaptation has long been a focus of evolutionary biology. Recently, there has been increased interest in deciphering the evolutionary role of Daphnia's plasticity and the molecular mechanisms of local adaptation. Using transcriptome data, we assessed the differences in gene expression profiles and sequences in four European Daphnia galeata populations. In total, ~33% of 32,903 transcripts were differentially expressed between populations. Among 10,280 differentially expressed transcripts, 5,209 transcripts deviated from neutral expectations and their population-specific expression pattern is likely the result of local adaptation processes. Furthermore, a SNP analysis allowed inferring population structure and distribution of genetic variation. The population divergence at the sequence level was comparatively higher than the gene expression level by several orders of magnitude consistent with strong founder effects and lack of gene flow between populations. Using sequence homology, the candidate transcripts were annotated using a comparative genomics approach. Additionally, we also performed a weighted gene co-expression analysis to identify population-specific regulatory patterns of transcripts in D. galeata. Thus, we identified candidate transcriptomic regions for local adaptation in this key species of aquatic ecosystems in the absence of any laboratory-induced stressor.
Collapse
Affiliation(s)
| | - Maike Herrmann
- Department of Veterinary MedicinePaul‐Ehrlich‐InstitutLangenGermany
| | | |
Collapse
|
19
|
Jayasinghege CPA, Ozga JA, Nadeau CD, Kaur H, Reinecke DM. TIR1 auxin receptors are implicated in the differential response to 4-Cl-IAA and IAA in developing pea fruit. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1239-1253. [PMID: 30715391 PMCID: PMC6382345 DOI: 10.1093/jxb/ery456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/07/2019] [Indexed: 05/24/2023]
Abstract
The auxins indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA) occur naturally in pea (Pisum sativum); however, only 4-Cl-IAA mimics the presence of seeds in stimulating pericarp growth. To examine if this differential auxin effect is mediated through TIR1/AFB auxin receptors, pea TIR1 and AFB2 homologs were functionally characterized in Arabidopsis, and receptor expression, and auxin distribution and action were profiled in developing pea fruits. PsTIR1a, PsTIR1b, and PsAFB2 restored the auxin-sensitive root growth response to the mutant Arabidopsis seedlings Attir1-10 and/or Attir1-10 afb2-3. Expression of PsTIR1 or AtTIR1 in Attir1-10 afb2-3 mutants also restored the greater root inhibitory response of 4-Cl-IAA compared to that of IAA, implicating TIR1 receptors in this response. The ability of 4-Cl-IAA to stimulate a stronger DR5::GUS auxin response than IAA at the same concentration in pea pericarps was associated with its ability to enrich the auxin-receptor transcript pool with PsTIR1a and PsAFB2 by decreasing the transcript abundance of PsTIR1b (mimicking results in pericarps with developing seeds). Therefore, the markedly different effect of IAA and 4-Cl-IAA on pea fruit growth may at least partially involve TIR1/AFB receptors and the differential modulation of their population, resulting in specific Aux/IAA protein degradation that leads to an auxin-specific tissue response.
Collapse
Affiliation(s)
- Charitha P A Jayasinghege
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science University of Alberta, Edmonton, Alberta, Canada
| | - Courtney D Nadeau
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science University of Alberta, Edmonton, Alberta, Canada
| | - Harleen Kaur
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science University of Alberta, Edmonton, Alberta, Canada
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Haynsen MS, Vatanparast M, Mahadwar G, Zhu D, Moger-Reischer RZ, Doyle JJ, Crandall KA, Egan AN. De novo transcriptome assembly of Pueraria montana var. lobata and Neustanthus phaseoloides for the development of eSSR and SNP markers: narrowing the US origin(s) of the invasive kudzu. BMC Genomics 2018; 19:439. [PMID: 29871589 PMCID: PMC5989403 DOI: 10.1186/s12864-018-4798-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Kudzu, Pueraria montana var. lobata, is a woody vine native to Southeast Asia that has been introduced globally for cattle forage and erosion control. The vine is highly invasive in its introduced areas, including the southeastern US. Modern molecular marker resources are limited for the species, despite its importance. Transcriptomes for P. montana var. lobata and a second phaseoloid legume taxon previously ascribed to genus Pueraria, Neustanthus phaseoloides, were generated and mined for microsatellites and single nucleotide polymorphisms. RESULTS Roche 454 sequencing of P. montana var. lobata and N. phaseoloides transcriptomes produced read numbers ranging from ~ 280,000 to ~ 420,000. Trinity assemblies produced an average of 17,491 contigs with mean lengths ranging from 639 bp to 994 bp. Transcriptome completeness, according to BUSCO, ranged between 64 and 77%. After vetting for primer design, there were 1646 expressed simple sequence repeats (eSSRs) identified in P. montana var. lobata and 1459 in N. phaseoloides. From these eSSRs, 17 identical primer pairs, representing inter-generic phaseoloid eSSRs, were created. Additionally, 13 primer pairs specific to P. montana var. lobata were also created. From these 30 primer pairs, a final set of seven primer pairs were used on 68 individuals of P. montana var. lobata for characterization across the US, China, and Japan. The populations exhibited from 20 to 43 alleles across the seven loci. We also conducted pairwise tests for high-confidence SNP discovery from the kudzu transcriptomes we sequenced and two previously sequenced P. montana var. lobata transcriptomes. Pairwise comparisons between P. montana var. lobata ranged from 358 to 24,475 SNPs, while comparisons between P. montana var. lobata and N. phaseoloides ranged from 5185 to 30,143 SNPs. CONCLUSIONS The discovered molecular markers for kudzu provide a starting point for comparative genetic studies within phaseoloid legumes. This study both adds to the current genetic resources and presents the first available genomic resources for the invasive kudzu vine. Additionally, this study is the first to provide molecular evidence to support the hypothesis of Japan as a source of US kudzu and begins to narrow the origin of US kudzu to the central Japanese island of Honshu.
Collapse
Affiliation(s)
- Matthew S. Haynsen
- Department of Biology, George Washington University, Washington, DC USA
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Mohammad Vatanparast
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Gouri Mahadwar
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Present address: College of Engineering, Oregon State University, Corvallis, OR USA
| | - Dennis Zhu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Present address: Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Roy Z. Moger-Reischer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Present address: Department of Biology, Indiana University Bloomington, Bloomington, IN USA
| | - Jeff J. Doyle
- School of Integrated Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY USA
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Ashley N. Egan
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| |
Collapse
|
21
|
Jiao K, Li X, Guo W, Su S, Luo D. High-Throughput RNA-Seq Data Analysis of the Single Nucleotide Polymorphisms (SNPs) and Zygomorphic Flower Development in Pea (Pisum sativum L.). Int J Mol Sci 2017; 18:E2710. [PMID: 29261120 PMCID: PMC5751311 DOI: 10.3390/ijms18122710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
Pea (Pisum sativum L.) is a model plant that has been used in classical genetics and organ development studies. However, its large and complex genome has hindered research investigations in pea. Here, we generated transcriptomes from different tissues or organs of three pea accessions using next-generation sequencing to assess single nucleotide polymorphisms (SNPs), and further investigated petal differentially expressed genes to elucidate the mechanisms regulating floral zygomorphy. Eighteen samples were sequenced, which yielded a total of 617 million clean reads, and de novo assembly resulted in 87,137 unigenes. A total of 9044 high-quality SNPs were obtained among the three accessions, and a consensus map was constructed. We further discovered several dorsoventral asymmetrically expressed genes that were confirmed by qRT-PCR among different petals, including previously reported three CYC-like proliferating cell factor (TCP) genes. One MADS-box gene was highly expressed in dorsal petals, and several MYB factors were predominantly expressed among dorsal, lateral, and/or ventral petals, together with a ventrally expressed TCP gene. In sum, our comprehensive database complements the existing resources for comparative genetic mapping and facilitates future investigations in legume zygomorphic flower development.
Collapse
Affiliation(s)
- Keyuan Jiao
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xin Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210014, China.
| | - Wuxiu Guo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shihao Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Da Luo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
22
|
Kulaeva OA, Zhernakov AI, Afonin AM, Boikov SS, Sulima AS, Tikhonovich IA, Zhukov VA. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS One 2017; 12:e0186713. [PMID: 29073280 PMCID: PMC5658071 DOI: 10.1371/journal.pone.0186713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022] Open
Abstract
Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.
Collapse
Affiliation(s)
- Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse, Saint-Petersburg, Russia
| | - Aleksandr I. Zhernakov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse, Saint-Petersburg, Russia
| | - Alexey M. Afonin
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse, Saint-Petersburg, Russia
| | - Sergei S. Boikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse, Saint-Petersburg, Russia
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse, Saint-Petersburg, Russia
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse, Saint-Petersburg, Russia
- Saint-Petersburg State University, Universitetskaya embankment, Saint-Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse, Saint-Petersburg, Russia
| |
Collapse
|
23
|
Baldé A, Neves D, García-Breijo FJ, Pais MS, Cravador A. De novo assembly of Phlomis purpurea after challenging with Phytophthora cinnamomi. BMC Genomics 2017; 18:700. [PMID: 28877668 PMCID: PMC5585901 DOI: 10.1186/s12864-017-4042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phlomis plants are a source of biological active substances with potential applications in the control of phytopathogens. Phlomis purpurea (Lamiaceae) is autochthonous of southern Iberian Peninsula and Morocco and was found to be resistant to Phytophthora cinnamomi. Phlomis purpurea has revealed antagonistic effect in the rhizosphere of Quercus suber and Q. ilex against P. cinnamomi. Phlomis purpurea roots produce bioactive compounds exhibiting antitumor and anti-Phytophthora activities with potential to protect susceptible plants. Although these important capacities of P. purpurea have been demonstrated, there is no transcriptomic or genomic information available in public databases that could bring insights on the genes underlying this anti-oomycete activity. RESULTS Using Illumina technology we obtained a de novo assembly of P. purpurea transcriptome and differential transcript abundance to identify putative defence related genes in challenged versus non-challenged plants. A total of 1,272,600,000 reads from 18 cDNA libraries were merged and assembled into 215,739 transcript contigs. BLASTX alignment to Nr NCBI database identified 124,386 unique annotated transcripts (57.7%) with significant hits. Functional annotation identified 83,550 out of 124,386 unique transcripts, which were mapped to 141 pathways. 39% of unigenes were assigned GO terms. Their functions cover biological processes, cellular component and molecular functions. Genes associated with response to stimuli, cellular and primary metabolic processes, catalytic and transporter functions were among those identified. Differential transcript abundance analysis using DESeq revealed significant differences among libraries depending on post-challenge times. Comparative cyto-histological studies of P. purpurea roots challenged with P. cinnamomi zoospores and controls revealed specific morphological features (exodermal strips and epi-cuticular layer), that may provide a constitutive efficient barrier against pathogen penetration. Genes involved in cutin biosynthesis and in exodermal Casparian strips formation were up-regulated. CONCLUSIONS The de novo assembly of transcriptome using short reads for a non-model plant, P. purpurea, revealed many unique transcripts useful for further gene expression, biological function, genomics and functional genomics studies. The data presented suggest a combination of a constitutive resistance and an increased transcriptional response from P. purpurea when challenged with the pathogen. This knowledge opens new perspectives for the understanding of defence responses underlying pathogenic oomycete/plant interaction upon challenge with P. cinnamomi.
Collapse
Affiliation(s)
- Aladje Baldé
- Plant Molecular Biology and Biotechnology Lab, Center for Biosystems (BioSys), Functional and Integrative Genomics (BioFIG), Edifício C2, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Present Address: Universidade Jean Piaget, Bissau, Guinea-Bissau
| | - Dina Neves
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Francisco J. García-Breijo
- Departamento de Ecosistemas Agroforestales, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Maria Salomé Pais
- Plant Molecular Biology and Biotechnology Lab, Center for Biosystems (BioSys), Functional and Integrative Genomics (BioFIG), Edifício C2, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alfredo Cravador
- Centre for Mediterranean Bioresources and Food (MeditBio), FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
24
|
Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing. Mol Genet Genomics 2017; 292:1151-1163. [PMID: 28667404 DOI: 10.1007/s00438-017-1338-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/19/2017] [Indexed: 01/23/2023]
Abstract
Radish is an important root vegetable crop with high nutritional, economic, and medicinal value. Lignin is an important secondary metabolite possessing a great effect on plant growth and product quality. To date, lignin biosynthesis-related genes have been identified in some important plant species. However, little information on characterization of critical genes involved in plant lignin biosynthesis is available in radish. In this study, a total of 71,148 transcripts sequences were obtained from radish root, of which 66 assembled unigenes and ten candidate genes were identified to be involved in lignin monolignol biosynthesis. Full-length cDNA sequences of seven randomly selected genes were isolated and sequenced from radish root, and the assembled unigenes covered more than 80% of their corresponding cDNA sequences. Moreover, the lignin content gradually accumulated in leaf during the developmental stages, and it increased from pre-cortex to cortex splitting stage, followed by a decrease at thickening stage and then increased at mature stage in root. RT-qPCR analysis revealed that all these genes except RsF5H exhibited relatively low expression level in root at thickening stage. The expression profiles of Rs4CL5, RsCCoAOMT1, and RsCOMT genes were consistent with the changes of root lignin content, implying that these candidate genes may play important roles in lignin formation in radish root. These findings would provide valuable information for identification of lignin biosynthesis-related genes and facilitate dissection of molecular mechanism underlying lignin biosynthesis in radish and other root vegetable crops.
Collapse
|
25
|
Rodda MS, Davidson J, Javid M, Sudheesh S, Blake S, Forster JW, Kaur S. Molecular Breeding for Ascochyta Blight Resistance in Lentil: Current Progress and Future Directions. FRONTIERS IN PLANT SCIENCE 2017; 8:1136. [PMID: 28706526 PMCID: PMC5489742 DOI: 10.3389/fpls.2017.01136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/13/2017] [Indexed: 05/24/2023]
Abstract
Lentil (Lens culinaris Medik.) is a diploid (2n = 2x = 14), self-pollinating, cool-season, grain legume that is cultivated worldwide and is highly valuable due to its high protein content. However, lentil production is constrained by many factors including biotic stresses, majority of which are fungal diseases such as ascochyta blight (AB), fusarium wilt, rust, stemphylium blight, anthracnose, and botrytis gray mold. Among various diseases, AB is a major -problem in many lentil-producing countries and can significantly reduce crop production. Breeding for AB resistance has been a priority for breeding programs across the globe and consequently, a number of resistance sources have been identified and extensively exploited. In order to increase the efficiency of combining genes from different genetic backgrounds, molecular genetic tools can be integrated with conventional breeding methods. A range of genetic linkage maps have been generated based on DNA-based markers, and quantitative trait loci (QTLs) for AB resistance have been identified. Molecular markers linked to these QTLs may potentially be used for efficient pyramiding of the AB disease resistance genes. Significant genomic resources have been established to identify and characterize resistance genes, including an integrated genetic map, expressed sequence tag libraries, gene based markers, and draft genome sequences. These resources are already being utilized for lentil crop improvement, to more effectively select for disease resistance, as a case study of the Australian breeding program will show. The combination of genomic resources, effective molecular genetic tools and high resolution phenotyping tools will improve the efficiency of selection for ascochyta blight resistance and accelerate varietal development of global lentil breeding programs.
Collapse
Affiliation(s)
- Matthew S. Rodda
- Agriculture Victoria, Grains Innovation ParkHorsham, VIC, Australia
| | - Jennifer Davidson
- Pulse and Oilseed Pathology, Plant Health and Biosecurity, Sustainable Systems, South Australian Research and Development Institute, UrrbraeAdelaide, SA, Australia
| | - Muhammad Javid
- Agriculture Victoria, Grains Innovation ParkHorsham, VIC, Australia
| | - Shimna Sudheesh
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
| | - Sara Blake
- Pulse and Oilseed Pathology, Plant Health and Biosecurity, Sustainable Systems, South Australian Research and Development Institute, UrrbraeAdelaide, SA, Australia
| | - John W. Forster
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
| |
Collapse
|
26
|
Singh V, Goel R, Pande V, Asif MH, Mohanty CS. De novo sequencing and comparative analysis of leaf transcriptomes of diverse condensed tannin-containing lines of underutilized Psophocarpus tetragonolobus (L.) DC. Sci Rep 2017; 7:44733. [PMID: 28322296 PMCID: PMC5359716 DOI: 10.1038/srep44733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 11/09/2022] Open
Abstract
Condensed tannin (CT) or proanthocyanidin (PA) is a unique group of phenolic metabolite with high molecular weight with specific structure. It is reported that, the presence of high-CT in the legumes adversely affect the nutrients in the plant and impairs the digestibility upon consumption by animals. Winged bean (Psophocarpus tetragonolobus (L.) DC.) is one of the promising underutilized legume with high protein and oil-content. One of the reasons for its underutilization is due to the presence of CT. Transcriptome sequencing of leaves of two diverse CT-containing lines of P. tetragonolobus was carried out on Illumina Nextseq 500 sequencer to identify the underlying genes and contigs responsible for CT-biosynthesis. RNA-Seq data generated 102586 and 88433 contigs for high (HCTW) and low CT (LCTW) lines of P. tetragonolobus, respectively. Based on the similarity searches against gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database revealed 5210 contigs involved in 229 different pathways. A total of 1235 contigs were detected to differentially express between HCTW and LCTW lines. This study along with its findings will be helpful in providing information for functional and comparative genomic analysis of condensed tannin biosynthesis in this plant in specific and legumes in general.
Collapse
Affiliation(s)
- Vinayak Singh
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Ridhi Goel
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Mehar Hasan Asif
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India
| | - Chandra Sekhar Mohanty
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India
| |
Collapse
|
27
|
Kerr SC, Gaiti F, Beveridge CA, Tanurdzic M. De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes. BMC Genomics 2017; 18:221. [PMID: 28253862 PMCID: PMC5335751 DOI: 10.1186/s12864-017-3577-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The decision for a bud to grow into a branch is a key regulatory process affecting plant architecture. In order to study molecular processes regulating axillary bud outgrowth in the model plant garden pea (Pisum sativum), we sequenced the axillary bud transcriptome and performed de novo transcriptome assembly. RESULTS We assembled a pea axillary bud transcriptome into 81,774 transcripts comprised of 194,067 isoforms. This new pea transcriptome resource is both comprehensive and representative, as shown by comparison to other available pea sequence resources. Over half of the transcriptome could be annotated based on sequence homology to Arabidopsis thaliana proteins, while almost one quarter of the isoforms were identified as putative long non-coding RNAs (lncRNAs). This transcriptome will be useful in studies of pea buds because it includes genes expressed specifically in buds which are not represented in other transcriptome studies. We also investigated the impact of a short time collection series on gene expression. Differential gene expression analysis identified 142 transcripts changing within the short 170 min time frame that the buds were harvested within. Thirty-three of these transcripts are implicated in diurnal fluctuations in other flowering plants, while the remaining transcripts include 31 putative lncRNA. Further investigation of the differentially expressed transcripts found an enrichment of genes involved in post-transcriptional regulation, including RNA processing and modification, as well as genes involved in fatty acid biosynthesis and oxidative phosphorylation. CONCLUSIONS We have sequenced and assembled a high quality pea bud transcriptome containing both coding and non-coding RNA transcripts that will be useful for further studies into axillary bud outgrowth. Over the short sample collection time frame of just 170 min, we identified differentially expressed coding and non-coding RNA, some of which are implicated in diurnal regulation, highlighting the utility of our transcriptome resource in identifying gene expression changes and informing future experimental designs.
Collapse
Affiliation(s)
- Stephanie C. Kerr
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| | - Federico Gaiti
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| | - Christine A. Beveridge
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| | - Milos Tanurdzic
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| |
Collapse
|
28
|
Muñoz N, Liu A, Kan L, Li MW, Lam HM. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement. Int J Mol Sci 2017; 18:E328. [PMID: 28165413 PMCID: PMC5343864 DOI: 10.3390/ijms18020328] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/14/2023] Open
Abstract
Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.
Collapse
Affiliation(s)
- Nacira Muñoz
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Centro de Investigaciones Agropecuarias-INTA, Instituto de Fisiología y Recursos Genéticos Vegetales, Córdoba X5000, Argentina.
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000, Argentina.
| | - Ailin Liu
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Leo Kan
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Man-Wah Li
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Sulima AS, Zhukov VA, Afonin AA, Zhernakov AI, Tikhonovich IA, Lutova LA. Selection Signatures in the First Exon of Paralogous Receptor Kinase Genes from the Sym2 Region of the Pisum sativum L. Genome. FRONTIERS IN PLANT SCIENCE 2017; 8:1957. [PMID: 29184566 PMCID: PMC5694491 DOI: 10.3389/fpls.2017.01957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/30/2017] [Indexed: 05/06/2023]
Abstract
During the initial step of the symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria (rhizobia), the bacterial signal molecule known as the Nod factor (nodulation factor) is recognized by plant LysM motif-containing receptor-like kinases (LysM-RLKs). The fifth chromosome of barrel medic (Medicago truncatula Gaertn.) contains a cluster of paralogous LysM-RLK genes, one of which is known to participate in symbiosis. In the syntenic region of the pea (Pisum sativum L.) genome, three genes have been identified: PsK1 and PsSym37, two symbiosis-related LysM-RLK genes with known sequences, and the unsequenced PsSym2 gene which presumably encodes a LysM-RLK and is associated with increased selectivity to certain Nod factors. In this work, we identified a new gene encoding a LysM-RLK, designated as PsLykX, within the Sym2 genomic region. We sequenced the first exons (corresponding to the protein receptor domain) of PsSym37, PsK1, and PsLykX from a large set of pea genotypes of diverse origin. The nucleotide diversity of these fragments was estimated and groups of haplotypes for each gene were revealed. Footprints of selection pressure were detected via comparative analyses of SNP distribution across the first exons of these genes and their homologs MtLYK2, MtLYK3, and MtLYK4 from M. truncatula retrieved from the Medicago Hapmap project. Despite the remarkable similarity among all the studied genes, they exhibited contrasting selection signatures, possibly pointing to diversification of their functions. Signatures of balancing selection were found in LysM1-encoding parts of PsSym37 and PsK1, suggesting that the diversity of these parts may be important for pea LysM-RLKs. The first exons of PsSym37 and PsK1 displayed signatures of purifying selection, as well as MtLYK2 of M. truncatula. Evidence of positive selection affecting primarily LysM domains was found in all three investigated M. truncatula genes, as well as in the pea gene PsLykX. The data suggested that PsLykX is a promising candidate for PsSym2, which has remained elusive for more than 30 years.
Collapse
Affiliation(s)
- Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
- *Correspondence: Vladimir A. Zhukov
| | - Alexey A. Afonin
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | | | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila A. Lutova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
30
|
Hradilová I, Trněný O, Válková M, Cechová M, Janská A, Prokešová L, Aamir K, Krezdorn N, Rotter B, Winter P, Varshney RK, Soukup A, Bednář P, Hanáček P, Smýkal P. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea ( Pisum sp.). FRONTIERS IN PLANT SCIENCE 2017; 8:542. [PMID: 28487704 PMCID: PMC5404241 DOI: 10.3389/fpls.2017.00542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/27/2017] [Indexed: 05/19/2023]
Abstract
The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography-electrospray ionization/mass spectrometry and Laser desorption/ionization-mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes (SHATTERING and SHATTERPROOF) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence.
Collapse
Affiliation(s)
- Iveta Hradilová
- Department of Botany, Palacký University in OlomoucOlomouc, Czechia
| | - Oldřich Trněný
- Department of Plant Biology, Mendel University in BrnoBrno, Czechia
- Agricultural Research, Ltd.Troubsko, Czechia
| | - Markéta Válková
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Monika Cechová
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Anna Janská
- Department of Experimental Plant Biology, Charles UniversityPrague, Czechia
| | - Lenka Prokešová
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in BrnoBrno, Czechia
| | - Khan Aamir
- Research Program-Genetic Gains, ICRISATHyderabad, India
| | | | | | | | | | - Aleš Soukup
- Department of Experimental Plant Biology, Charles UniversityPrague, Czechia
| | - Petr Bednář
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Pavel Hanáček
- Department of Plant Biology, Mendel University in BrnoBrno, Czechia
| | - Petr Smýkal
- Department of Botany, Palacký University in OlomoucOlomouc, Czechia
- *Correspondence: Petr Smýkal
| |
Collapse
|
31
|
Sudheesh S, Verma P, Forster JW, Cogan NOI, Kaur S. Generation and Characterisation of a Reference Transcriptome for Lentil (Lens culinaris Medik.). Int J Mol Sci 2016; 17:E1887. [PMID: 27845747 PMCID: PMC5133886 DOI: 10.3390/ijms17111887] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/19/2016] [Accepted: 10/31/2016] [Indexed: 01/14/2023] Open
Abstract
RNA-Seq using second-generation sequencing technologies permits generation of a reference unigene set for a given species, in the absence of a well-annotated genome sequence, supporting functional genomics studies, gene characterisation and detailed expression analysis for specific morphophysiological or environmental stress response traits. A reference unigene set for lentil has been developed, consisting of 58,986 contigs and scaffolds with an N50 length of 1719 bp. Comparison to gene complements from related species, reference protein databases, previously published lentil transcriptomes and a draft genome sequence validated the current dataset in terms of degree of completeness and utility. A large proportion (98%) of unigenes were expressed in more than one tissue, at varying levels. Candidate genes associated with mechanisms of tolerance to both boron toxicity and time of flowering were identified, which can eventually be used for the development of gene-based markers. This study has provided a comprehensive, assembled and annotated reference gene set for lentil that can be used for multiple applications, permitting identification of genes for pathway-specific expression analysis, genetic modification approaches, development of resources for genotypic analysis, and assistance in the annotation of a future lentil genome sequence.
Collapse
Affiliation(s)
- Shimna Sudheesh
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Preeti Verma
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
| | - John W Forster
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Noel O I Cogan
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Sukhjiwan Kaur
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
32
|
Vatanparast M, Shetty P, Chopra R, Doyle JJ, Sathyanarayana N, Egan AN. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci Rep 2016; 6:29070. [PMID: 27356763 PMCID: PMC4928180 DOI: 10.1038/srep29070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| | - Prateek Shetty
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA
| | - Ratan Chopra
- United States Department of Agriculture, Agriculture Research Service, 3810 4th St., Lubbock, TX, 79415, USA
| | - Jeff J Doyle
- Section of Plant Breeding &Genetics, School of Integrative Plant Science, Cornell University, 412 Mann Library, Ithaca, NY, 14853, USA
| | - N Sathyanarayana
- Department of Botany, Sikkim University, 5th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | - Ashley N Egan
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| |
Collapse
|
33
|
Liu GH, Xu MJ, Chang QC, Gao JF, Wang CR, Zhu XQ. De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Parasit Vectors 2016; 9:143. [PMID: 26968659 PMCID: PMC4788885 DOI: 10.1186/s13071-016-1436-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/05/2016] [Indexed: 12/19/2022] Open
Abstract
Background Schistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China. The S. turkestanicum cercariae can also infect humans, causing cercarial dermatitis in many countries and regions of the world. In spite of its significance as a pathogen of animals and humans, there is little transcriptomic and genomic data in the public databases. Methods Herein, we performed the transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females of S. turkestanicum and de novo transcriptome assembly. Results Approximately 81.1 (female) and 80.5 (male) million high-quality clean reads were obtained and then 29,526 (female) and 41,346 (male) unigenes were assembled. A total of 34,624 unigenes were produced from S. turkestanicum females and males, with an average length of 878 nucleotides (nt) and N50 of 1480 nt. Of these unigenes, 25,158 (72.7 %) were annotated by blast searches against the NCBI non-redundant protein database. Among these, 21,995 (63.5 %), 22,189 (64.1 %) and 13,754 (39.7 %) of the unigenes had significant similarity in the NCBI non-redundant protein (NR), non-redundant nucleotide (NT) and Swiss-Prot databases, respectively. In addition, 3150 unigenes were identified to be expressed specifically in females and 1014 unigenes were identified to be expressed specifically in males. Interestingly, several pathways associated with gonadal development and sex maintenance were found, including the Wnt signaling pathway (103; 2 %) and progesterone-mediated oocyte maturation (77; 1.5 %). Conclusions The present study characterized and compared the transcriptomes of adult female and male blood fluke, S. turkestanicum. These results will not only serve as valuable resources for future functional genomics studies to understand the molecular aspects of S. turkestanicum, but also will provide essential information for ongoing whole genome sequencing efforts on this pathogenic blood fluke.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.,College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - Jun-Feng Gao
- Department of Parasitology, Heilongjiang Institute of Veterinary Science, Qiqihar, Heilongjiang Province, 161006, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|
34
|
Liu N, Zhang G, Xu S, Mao W, Hu Q, Gong Y. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development. FRONTIERS IN PLANT SCIENCE 2015; 6:1039. [PMID: 26635856 PMCID: PMC4658420 DOI: 10.3389/fpls.2015.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/09/2015] [Indexed: 05/19/2023]
Abstract
Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding.
Collapse
Affiliation(s)
- Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guwen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shengchun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Weihua Mao
- Center of Analysis and Measurement, Zhejiang UniversityHangzhou, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yaming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Yaming Gong
| |
Collapse
|