1
|
Coskuner-Weber O, Alpsoy S, Yolcu O, Teber E, de Marco A, Shumka S. Metagenomics studies in aquaculture systems: Big data analysis, bioinformatics, machine learning and quantum computing. Comput Biol Chem 2025; 118:108444. [PMID: 40187295 DOI: 10.1016/j.compbiolchem.2025.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
The burgeoning field of aquaculture has become a pivotal contributor to global food security and economic growth, presently surpassing capture fisheries in aquatic animal production as evidenced by recent statistics. However, the dense fish populations inherent in aquaculture systems exacerbate abiotic stressors and promote pathogenic spread, posing a risk to sustainability and yield. This study delves into the transformative potential of metagenomics, a method that directly retrieves genetic material from environmental samples, in elucidating microbial dynamics within aquaculture ecosystems. Our findings affirm that metagenomics, bolstered by tools in big data analytics, bioinformatics, and machine learning, can significantly enhance the precision of microbial assessment and pathogen detection. Furthermore, we explore quantum computing's emergent role, which promises unparalleled efficiency in data processing and model construction, poised to address the limitations of conventional computational techniques. Distinct from metabarcoding, metagenomics offers an expansive, unbiased profile of microbial biodiversity, revolutionizing our capacity to monitor, predict, and manage aquaculture systems with high accuracy and adaptability. Despite the challenges of computational demands and variability in data standardization, this study advocates for continued technological integration, thereby fostering resilient and sustainable aquaculture practices in a climate of escalating global food requirements.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| | - Semih Alpsoy
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Ozgur Yolcu
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Egehan Teber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica 5000, Slovenia
| | - Spase Shumka
- Faculty of Biotechnology and Food, Agricultural University of Tirana, 1019 Koder Kamza, Tirana, Albania
| |
Collapse
|
2
|
Dettleff P, Fuentes M, Gonzalez P, Aedo J, Zuloaga R, Estrada JM, Molina A, Valdes JA. Generating transcriptomic resources in the teleost fish black cusk-eel (Genypterus maculatus) to evaluate thermal stress in the liver under a climate change scenario. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:75. [PMID: 40153091 DOI: 10.1007/s10695-025-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
The black cusk-eel (Genypterus maculatus) is a native fish that is relevant for traditional Chilean fisheries and has aquaculture potential. However, the genomic information and the biological knowledge related to the effect of thermal stress response are limited. This study generated the first de novo transcriptome assembly of the liver of G. maculatus and investigated the hepatic response to thermal stress in the G. maculatus. The de novo assembly resulted in 26,620 annotated transcripts, with an N50 of 2297, and a GC% of 49.76%. BUSCO analysis showed 97.1% and 75.7% complete orthologous (Metazoa and Actinopterygi, respectively). Functional annotation showed a total of 55,556 GO terms, with 26,128 annotations on biological process, 15,225 annotations on molecular functions, and 14,213 annotations on cellular component. The RNA-seq analysis revealed 94 differentially expressed transcripts in response to thermal stress, with 64 downregulated and 30 upregulated transcripts. The enrichment analysis showed biological processes related to double-strand break repair via homologous recombination, reciprocal meiotic recombination, and DNA repair. A significant increase in cortisol levels with no significant difference activity of hepatic enzymes (ALT, AST, AP) due to thermal stress was observed. Also, an increase in DNA damage (AP sites formation) and lipid peroxidation (HNE protein adducts) in the liver due to thermal stress was observed. The differentially expressed transcripts were validated using qPCR, confirming the RNA-seq results. The findings provide valuable genomic information for G. maculatus and highlight the physiological and molecular responses to thermal stress in the species under the context of climate change.
Collapse
Affiliation(s)
- Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile.
| | - Marcia Fuentes
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Pamela Gonzalez
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Jorge Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alfredo Molina
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdes
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile.
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
3
|
Andersen LK, Thompson NF, Abernathy JW, Ahmed RO, Ali A, Al-Tobasei R, Beck BH, Calla B, Delomas TA, Dunham RA, Elsik CG, Fuller SA, García JC, Gavery MR, Hollenbeck CM, Johnson KM, Kunselman E, Legacki EL, Liu S, Liu Z, Martin B, Matt JL, May SA, Older CE, Overturf K, Palti Y, Peatman EJ, Peterson BC, Phelps MP, Plough LV, Polinski MP, Proestou DA, Purcell CM, Quiniou SMA, Raymo G, Rexroad CE, Riley KL, Roberts SB, Roy LA, Salem M, Simpson K, Waldbieser GC, Wang H, Waters CD, Reading BJ. Advancing genetic improvement in the omics era: status and priorities for United States aquaculture. BMC Genomics 2025; 26:155. [PMID: 39962419 PMCID: PMC11834649 DOI: 10.1186/s12864-025-11247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The innovations of the "Omics Era" have ushered in significant advancements in genetic improvement of agriculturally important animal species through transforming genetics, genomics and breeding strategies. These advancements were often coordinated, in part, by support provided over 30 years through the 1993-2023 National Research Support Project 8 (NRSP8, National Animal Genome Research Program, NAGRP) and affiliate projects focused on enabling genomic discoveries in livestock, poultry, and aquaculture species. These significant and parallel advances demand strategic planning of future research priorities. This paper, as an output from the May 2023 Aquaculture Genomics, Genetics, and Breeding Workshop, provides an updated status of genomic resources for United States aquaculture species, highlighting major achievements and emerging priorities. MAIN TEXT Finfish and shellfish genome and omics resources enhance our understanding of genetic architecture and heritability of performance and production traits. The 2023 Workshop identified present aims for aquaculture genomics/omics research to build on this progress: (1) advancing reference genome assembly quality; (2) integrating multi-omics data to enhance analysis of production and performance traits; (3) developing resources for the collection and integration of phenomics data; (4) creating pathways for applying and integrating genomics information across animal industries; and (5) providing training, extension, and outreach to support the application of genome to phenome. Research focuses should emphasize phenomics data collection, artificial intelligence, identifying causative relationships between genotypes and phenotypes, establishing pathways to apply genomic information and tools across aquaculture industries, and an expansion of training programs for the next-generation workforce to facilitate integration of genomic sciences into aquaculture operations to enhance productivity, competitiveness, and sustainability. CONCLUSION This collective vision of applying genomics to aquaculture breeding with focus on the highlighted priorities is intended to facilitate the continued advancement of the United States aquaculture genomics, genetics and breeding research community and industries. Critical challenges ahead include the practical application of genomic tools and analytical frameworks beyond academic and research communities that require collaborative partnerships between academia, government, and industry. The scope of this review encompasses the use of omics tools and applications in the study of aquatic animals cultivated for human consumption in aquaculture settings throughout their life-cycle.
Collapse
Affiliation(s)
| | | | | | - Ridwan O Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Bernarda Calla
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
| | - Thomas A Delomas
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | | | - S Adam Fuller
- USDA-ARS Harry K Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Julio C García
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Mackenzie R Gavery
- Environmental and Fishery Sciences Division, NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Christopher M Hollenbeck
- Texas A&M AgriLife Research, College Station, TX, USA
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kevin M Johnson
- California Sea Grant, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Erin L Legacki
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Sixin Liu
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Zhanjiang Liu
- Department of Biology, Tennessee Technological University, Cookeville, TN, USA
| | - Brittany Martin
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph L Matt
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Samuel A May
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Caitlin E Older
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, MS, USA
| | - Ken Overturf
- USDA-ARS Small Grains and Potato Germplasm Research, Hagerman, ID, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | - Brian C Peterson
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | | | - Louis V Plough
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Mark P Polinski
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Dina A Proestou
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | | | | | - Guglielmo Raymo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Kenneth L Riley
- Office of Aquaculture, NOAA Fisheries, Silver Spring, MD, USA
| | | | - Luke A Roy
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Alabama Fish Farming Center, Greensboro, AL, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Kelly Simpson
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | | | - Charles D Waters
- NOAA Alaska Fisheries Science Center Auke Bay Laboratories, Juneau, AK, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Liu Z, Gao D. Hydin as the Candidate Master Sex Determination Gene in Channel Catfish (Ictalurus punctatus) and Its Epigenetic Regulation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:6. [PMID: 39579181 DOI: 10.1007/s10126-024-10387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 11/25/2024]
Abstract
Sex determination is a fascinating area of research. To date, more than 20 master sex determination (SD) genes have been reported from vertebrate animals. With channel catfish (Ictalurus punctatus), much work has been conducted to determine its master SD gene, ranging from genetic linkage mapping, genome-wide association (GWA) analysis, genome sequencing, comparative genome analysis, epigenomic analysis, transcriptome analysis, and functional studies. Here in this mini review, we provide positional, expression, regulatory, and functional evidence supporting hydin (hydrocephalus-inducing protein or HYDIN axonemal central pair apparatus protein-like) as a master SD gene in channel catfish. Hydin is located within the sex determination region (SDR) within a mapped 8.9-Mb non-recombinational segment on chromosome 4 of channel catfish. It is highly expressed in genetic males, but not in genetic females. The alleles of X and Y are highly differentially methylated with the X chromosome being hypermethylated and the Y chromosome hypomethylated. The hypomethylated Y allele of hydin is expressed while the hypermethylated X allele is not expressed. Such allelic expression fits well with the XY sex determination system of channel catfish. Functional analysis using a methylation blocker, 5-aza-dC, demonstrated that demethylation, especially within the SDR, is accompanied with increased expression of hydin, which led to sex reversal of genetic females into phenotypic males. These evidences support the candidacy of hydin as a master SD gene in channel catfish. Future knockout and analysis of affected genes after hydin knockout should provide insights into how hydin functions as a master SD gene.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, 38505, USA.
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, 38505, USA
| |
Collapse
|
5
|
Zhang W, Shen M, Chu P, Wang T, Ji J, Ning X, Yin S, Zhang K. Molecular characterization of CIRBP from Takifugu fasciatus and its potential roles in cold-induced liver damage. Int J Biol Macromol 2024; 281:136492. [PMID: 39393746 DOI: 10.1016/j.ijbiomac.2024.136492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
As a potent stressor, environmental cold stress induces severe mitochondrial dysfunction with the overproduction of reactive oxygen species (ROS) in fish, resulting in liver damage. However, the molecular mechanisms underlying the cold-induced liver damage remain unclear. In the present study, the cold-inducible RNA-binding protein (CIRBP) from Takifugu fasciatus was characterized, and its role in cold-induced oxidative stress damage was investigated. An acute liver injury model was constructed by exposing T. fasciatus individuals to temperatures of 25, 19, and 13 °C. Cold exposure markedly induced histomorphological liver injury and triggered endogenous apoptosis and NLRP3 inflammatory response. Cold treatment significantly increased CIRBP gene expression. A similar expression pattern was detected for thioredoxin (TRX), suggesting that these two proteins play a role in the establishment of cold adaptation. CIRBP binds directly to the 3'-UTR of TRX. Furthermore, in vivo experiment showed that, when CIRBP expression in T. fasciatus is knocked down, the time to loss equilibrium significantly shortened at 13 °C. Taken together, our study revealed that CIRBP is a critical protective factor against cold induced liver damage and that the CIRBP/TRX pathway could function as an underlying mechanism for cold adaptation in teleosts.
Collapse
Affiliation(s)
- Wenwen Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Minghao Shen
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Peng Chu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China.
| |
Collapse
|
6
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Zhang D, Tian T, Li S, Du J, Lei C, Zhu T, Han L, Song H. Transcriptome analysis of four types of gonadal tissues in largemouth bass ( Micropterus salmoides) to reveal its sex-related genes. Front Genet 2024; 15:1459427. [PMID: 39253718 PMCID: PMC11381392 DOI: 10.3389/fgene.2024.1459427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
The sex determination system of largemouth bass (Micropterus salmoides, LMB) is XX/XY; however, the underlying molecular mechanisms involved in early sex differentiation, gonadal development, and exogenous hormone-induced sex reversal remain unknown. In this study, LMB at 15 days post-hatching (dph) were fed diets containing 20 mg/kg of 17α-methyltestosterone (17α-MT) or 30 mg/kg of 17β-estradiol (17β-E2) for 60 days, respectively. Serum steroid levels, histological observations of the gonads, and identification of sex-specific markers were employed to screen the gonads of 60-day-old normal female fish (XX-F), normal male fish (XY-M), 17β-E2 induced pseudo-female fish (XY-F), and 17α-MT-induced pseudo-male fish (XX-M) for transcriptome sequencing in order to uncover genes and pathway involved in the process of sexual reversal. The results from histology and serum sex steroid hormone analysis showed that both 17α-MT and 17β-E2 were capable of inducing sex reversal of LMB at 15 dph. Transcriptome results revealed a total of 2,753 genes exhibiting differential expression, and the expression pattern of these genes in the gonads of XX-M or XY-F resembled that of normal females or males. The male sex-biased genes that are upregulated in XX-M and downregulated in XY-F are referred to as key genes for male reversal, while the female sex-biased genes that are upregulated in XY-F and downregulated in XX-M are referred to as key genes for female reversal. Finally, 12 differentially expressed genes (DEGs) related to male sex reversal were screened, including star2, cyp17a, cyp11b1, dmrt1, amh, sox9a, katnal1, spata4, spata6l, spata7, spata18 and foxl3. 2 DEGs (foxl2a and cyp19a1b) were found to be associated with female sex reversal. The changes in these genes collectively influence the direction of sex differentiation of LMB. Among them, star2, dmrt1 and cyp19a1b with significantly altered expression levels may play potentially crucial role in the process of gender reversal. The expression patterns of 21 randomly selected genes were verified using qRT-PCR which confirmed the reliability and accuracy of the RNA-seq results. These findings not only enhance our understanding of the molecular basis underlying sex reversal but also provide crucial data support for future breeding research on unisexual LMB.
Collapse
Affiliation(s)
- Dongyun Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
- College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Taihang Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Linqiang Han
- Guangdong Province Liangshi Aquaculture Seed Industry, Foshan, Guangdong, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| |
Collapse
|
8
|
Wong A, Frommel AY, Sumaila UR, Cheung WWL. A traits-based approach to assess aquaculture's contributions to food, climate change, and biodiversity goals. NPJ OCEAN SUSTAINABILITY 2024; 3:30. [PMID: 38828386 PMCID: PMC11142914 DOI: 10.1038/s44183-024-00065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Aquaculture has the potential to support a sustainable and equitable food system in line with the United Nations Sustainable Development Goals (SDG) on food security, climate change, and biodiversity (FCB). Biological diversity amongst aquaculture organisms can drive diverse contributions to such goals. Existing studies have assessed the performance of a limited number of taxa in the general context of improving aquaculture production, but few explicitly consider the biological attributes of farmed aquatic taxa at the FCB nexus. Through a systematic literature review, we identify key traits associated with FCB and evaluate the potential of aquaculture to contribute to FCB goals using a fuzzy logic model. The majority of identified traits are associated with food security, and two-thirds of traits linked with food security are also associated with climate change or biodiversity, revealing potential co-benefits of optimizing a single trait. Correlations between FCB indices further suggest that challenges and opportunities in aquaculture are intertwined across FCB goals, but low mean FCB scores suggest that the focus of aquaculture research and development on food production is insufficient to address food security, much less climate or biodiversity issues. As expected, production-maximizing traits (absolute fecundity, the von Bertalanffy growth function coefficient K, macronutrient density, maximum size, and trophic level as a proxy for feed efficiency) highly influence a species' FCB potential, but so do species preferences for environmental conditions (tolerance to phosphates, nitrates, and pH levels, as well as latitudinal and geographic ranges). Many highly farmed species that are typically associated with food security, especially finfish, score poorly for food, climate, and biodiversity potential. Algae and mollusc species tend to perform well across FCB indices, revealing the importance of non-fish species in achieving FCB goals and potential synergies in integrated multi-trophic aquaculture systems. Overall, this study provides decision-makers with a biologically informed assessment of desirable aquaculture traits and species while illuminating possible strategies to increase support for FCB goals. Our findings can be used as a foundation for studying the socio-economic opportunities and barriers for aquaculture transitions to develop equitable pathways toward FCB-positive aquaculture across nuanced regional contexts.
Collapse
Affiliation(s)
- Aleah Wong
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| | - Andrea Y. Frommel
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC Canada
| | - U. Rashid Sumaila
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| | - William W. L. Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
9
|
Chen X, Peng M, Yang C, Li Q, Feng P, Zhu W, Zhang Y, Zeng D, Zhao Y. Genome-wide QTL and eQTL mapping reveal genes associated with growth rate trait of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2024; 25:414. [PMID: 38671371 PMCID: PMC11046935 DOI: 10.1186/s12864-024-10328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Growth rate is a crucial economic trait for farmed animals, but the genetic regulation of this trait is largely unknown in non-model organisms such as shrimp. RESULTS In this study, we performed genome-wide phenotypic quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) mapping analyses to identify genes affecting the growth rate of Pacific white shrimp (Litopenaeus vannamei), which is the most commercially-farmed crustacean worldwide. We used RNA-sequencing of 268 individuals in a mapping population, and subsequently validated our findings through gene silencing and shrimp growth experiments. We constructed a high-density genetic linkage map comprising 5533 markers spanning 44 linkage groups, with a total distance of 6205.75 cM and an average marker interval of 1.12 cM. Our analyses identified 11 QTLs significantly correlated with growth rate, and 117,525 eQTLs. By integrating QTL and eQTL data, we identified a gene (metalloreductase STEAP4) highly associated with shrimp growth rate. RNA interference (RNAi) analysis and growth experiments confirmed that STEAP4 was significantly correlated with growth rate in L. vannamei. CONCLUSIONS Our results indicate that the comprehensive analysis of QTL and eQTL can effectively identify genes involved in complex animal traits. This is important for marker-assisted selection (MAS) of animals. Our work contributes to the development of shrimp breeding and available genetic resources.
Collapse
Affiliation(s)
- Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yongde Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
10
|
Zhang L, Li H, Shi M, Ren K, Zhang W, Cheng Y, Wang Y, Xia XQ. FishSNP: a high quality cross-species SNP database of fishes. Sci Data 2024; 11:286. [PMID: 38461307 PMCID: PMC10924876 DOI: 10.1038/s41597-024-03111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
The progress of aquaculture heavily depends on the efficient utilization of diverse genetic resources to enhance production efficiency and maximize profitability. Single nucleotide polymorphisms (SNPs) have been widely used in the study of aquaculture genomics, genetics, and breeding research since they are the most prevalent molecular markers on the genome. Currently, a large number of SNP markers from cultured fish species are scattered in individual studies, making querying complicated and data reuse problematic. We compiled relevant SNP data from literature and public databases to create a fish SNP database, FishSNP ( http://bioinfo.ihb.ac.cn/fishsnp ), and also used a unified analysis pipeline to process raw data that the author of the literature did not perform SNP calling on to obtain SNPs with high reliability. This database presently contains 45,690,243 (45 million) nonredundant SNP data for 13 fish species, with 30,288,958 (30 million) of those being high-quality SNPs. The main function of FishSNP is to search, browse, annotate and download SNPs, which provide researchers various and comprehensive associated information.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mijuan Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Keyi Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Wanting Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yingyin Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Qin Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Olymon K, Yadav M, Teronpi V, Kumar A. Unravelling the genomic secrets of bacterial fish pathogens: a roadmap to aquaculture sustainability. Mol Biol Rep 2024; 51:364. [PMID: 38407655 DOI: 10.1007/s11033-024-09331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
In the field of aquaculture, bacterial pathogens pose significant challenges to fish health and production. Advancements in genomic technologies have revolutionized our understanding of bacterial fish pathogens and their interactions with their host species. This review explores the application of genomic approaches in the identification, classification, and characterization of bacterial fish pathogens. Through an extensive analysis of the literature, we have compiled valuable data on 79 bacterial fish pathogens spanning 13 different phyla, encompassing their whole genome sequences. By leveraging high-throughput sequencing techniques, researchers have gained valuable insights into the genomic makeup of these pathogens, enabling a deeper understanding of their virulence factors and mechanisms of host interaction. Furthermore, genomic approaches have facilitated the discovery of potential vaccine and drug targets, opening up new avenues for the development of effective interventions against fish pathogens. Additionally, the utilization of genomics in fish disease resistance and control in aquaculture has shown promising results, enabling the identification of genetic markers associated with disease resistance traits. This review highlights the significant contributions of genomics to the field of fish pathogen research and underscores its potential for improving disease management strategies and enhancing the sustainability of aquaculture practices.
Collapse
Affiliation(s)
- Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohit Yadav
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Valentina Teronpi
- Department, of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, Assam, 784184, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
12
|
Salem M, Al-Tobasei R, Ali A, An L, Wang Y, Bai X, Bi Y, Zhou H. Functional annotation of regulatory elements in rainbow trout uncovers roles of the epigenome in genetic selection and genome evolution. Gigascience 2024; 13:giae092. [PMID: 39657104 DOI: 10.1093/gigascience/giae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024] Open
Abstract
Rainbow trout (RBT) has gained widespread attention as a biological model across various fields and has been rapidly adopted for aquaculture and recreational purposes on 6 continents. Despite significant efforts to develop genome sequences for RBT, the functional genomic basis of RBT's environmental, phenotypic, and evolutionary variations still requires epigenome reference annotations. This study has produced a comprehensive catalog and epigenome annotation tracks of RBT, detecting gene regulatory elements, including chromatin histone modifications, chromatin accessibility, and DNA methylation. By integrating chromatin immunoprecipitation sequencing, ATAC sequencing, Methyl Mini-seq, and RNA sequencing data, this new regulatory element catalog has helped to characterize the epigenome dynamics and its correlation with gene expression. The study has also identified potential causal variants and transcription factors regulating complex domestication phenotypic traits. This research also provides valuable insights into the epigenome's role in gene evolution and the mechanism of duplicate gene retention 100 million years after RBT whole-genome duplication and during re-diploidization. The newly developed epigenome annotation maps are among the first in fish and are expected to enhance the accuracy and efficiency of genomic studies and applications, including genome-wide association studies, causative variation identification, and genomic selection in RBT and fish comparative genomics.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742-231, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742-231, USA
| | - Liqi An
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Xuechen Bai
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Ye Bi
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Wang M, Ding F, Wang H, Li L, Dai Y, Sun Z, Li N. Versatile generation of precise gene edits in bovines using SEGCPN. BMC Biol 2023; 21:226. [PMID: 37864194 PMCID: PMC10589966 DOI: 10.1186/s12915-023-01677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/07/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Gene knockout and knock-in have been widely performed in large farm animals based on genome editing systems. However, many types of precise gene editing, including targeted deletion, gene tagging, and large gene fragment replacement, remain a challenge in large farm animals. RESULTS Here, we established versatile self-excising gene-targeting technology in combination with programmable nucleases (SEGCPN) to efficiently generate various types of precise gene editing in bovine. First, we used this versatile method to successfully generate bovine embryos with point mutations and 11-bp deletions at the MSTN locus. Second, we successfully generated bulls with EGFP labeling at the SRY locus. Finally, we successfully generated humanized cows in which the endogenous 18-kb α-casein gene was replaced with a 2.6-kb human α-lactalbumin gene. CONCLUSIONS In summary, our new SEGCPN method offers unlimited possibilities for various types of precise gene editing in large animals for application both in agriculture and disease models.
Collapse
Affiliation(s)
- Ming Wang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China
- Beijing Capital Agribusiness Future Biotechnology Co., Ltd, No. 75 Bingjiaokou Hutong, Beijing, 100088, China
| | - Fangrong Ding
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Haiping Wang
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Ling Li
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China.
| | - ZhaoLin Sun
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China.
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China.
- Beijing Capital Agribusiness Future Biotechnology Co., Ltd, No. 75 Bingjiaokou Hutong, Beijing, 100088, China.
| | - Ning Li
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China.
- Beijing Capital Agribusiness Future Biotechnology Co., Ltd, No. 75 Bingjiaokou Hutong, Beijing, 100088, China.
| |
Collapse
|
14
|
Waldbieser GC, Liu S, Yuan Z, Older CE, Gao D, Shi C, Bosworth BG, Li N, Bao L, Kirby MA, Jin Y, Wood ML, Scheffler B, Simpson S, Youngblood RC, Duke MV, Ballard L, Phillippy A, Koren S, Liu Z. Reference genomes of channel catfish and blue catfish reveal multiple pericentric chromosome inversions. BMC Biol 2023; 21:67. [PMID: 37013528 PMCID: PMC10071708 DOI: 10.1186/s12915-023-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.
Collapse
Affiliation(s)
- Geoffrey C Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experiment Station Road, P.O. Box 38, Stoneville, MS, 38776, USA
| | - Shikai Liu
- MOE Key Laboratory of Mariculture and College of Fisheries, Ocean University of China, Qingdao, 266003, China
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Caitlin E Older
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experiment Station Road, P.O. Box 38, Stoneville, MS, 38776, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, 13244, USA
| | - Chenyu Shi
- MOE Key Laboratory of Mariculture and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Brian G Bosworth
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experiment Station Road, P.O. Box 38, Stoneville, MS, 38776, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Mona A Kirby
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experiment Station Road, P.O. Box 38, Stoneville, MS, 38776, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Monica L Wood
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experiment Station Road, P.O. Box 38, Stoneville, MS, 38776, USA
| | - Brian Scheffler
- US Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Sheron Simpson
- US Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, MS, 39762, USA
| | - Mary V Duke
- US Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Linda Ballard
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experiment Station Road, P.O. Box 38, Stoneville, MS, 38776, USA
| | - Adam Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
15
|
Yu P, Wang Y, Li Z, Jin H, Li LL, Han X, Wang ZW, Yang XL, Li XY, Zhang XJ, Zhou L, Gui JF. Causal gene identification and desirable trait recreation in goldfish. SCIENCE CHINA LIFE SCIENCES 2022; 65:2341-2353. [DOI: 10.1007/s11427-022-2194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
|
16
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
17
|
Gajahin Gamage NT, Miyashita R, Takahashi K, Asakawa S, Senevirathna JDM. Proteomic Applications in Aquatic Environment Studies. Proteomes 2022; 10:proteomes10030032. [PMID: 36136310 PMCID: PMC9505238 DOI: 10.3390/proteomes10030032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Genome determines the unique individualities of organisms; however, proteins play significant roles in the generation of the colorful life forms below water. Aquatic systems are usually complex and multifaceted and can take on unique modifications and adaptations to environmental changes by altering proteins at the cellular level. Proteomics is an essential strategy for exploring aquatic ecosystems due to the diverse involvement of proteins, proteoforms, and their complexity in basic and advanced cellular functions. Proteomics can expedite the analysis of molecular mechanisms underlying biological processes in an aquatic environment. Previous proteomic studies on aquatic environments have mainly focused on pollution assessments, ecotoxicology, their role in the food industry, and extraction and identification of natural products. Aquatic protein biomarkers have been comprehensively reported and are currently extensively applied in the pharmaceutical and medical industries. Cellular- and molecular-level responses of organisms can be used as indicators of environmental changes and stresses. Conversely, environmental changes are expedient in predicting aquatic health and productivity, which are crucial for ecosystem management and conservation. Recent advances in proteomics have contributed to the development of sustainable aquaculture, seafood safety, and high aquatic food production. Proteomic approaches have expanded to other aspects of the aquatic environment, such as protein fingerprinting for species identification. In this review, we encapsulated current proteomic applications and evaluated the potential strengths, weaknesses, opportunities, and threats of proteomics for future aquatic environmental studies. The review identifies both pros and cons of aquatic proteomics and projects potential challenges and recommendations. We postulate that proteomics is an emerging, powerful, and integrated omics approach for aquatic environmental studies.
Collapse
Affiliation(s)
- Nadeeka Thushari Gajahin Gamage
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Rina Miyashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jayan Duminda Mahesh Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Correspondence:
| |
Collapse
|
18
|
Lv J, Wang Y, Ni P, Lin P, Hou H, Ding J, Chang Y, Hu J, Wang S, Bao Z. Development of a high-throughput SNP array for sea cucumber (Apostichopus japonicus) and its application in genomic selection with MCP regularized deep neural networks. Genomics 2022; 114:110426. [PMID: 35820495 DOI: 10.1016/j.ygeno.2022.110426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022]
Abstract
High-throughput single nucleotide polymorphism (SNP) genotyping assays are powerful tools for genetic studies and genomic breeding applications for many species. Though large numbers of SNPs have been identified in sea cucumber (Apostichopus japonicus), but, as yet, no high-throughput genotyping platform is available for this species. In this study, we designed and developed a high-throughput 24 K SNP genotyping array named HaishenSNP24K for A. japonicus, based on the multi-objective-local optimization (MOLO) algorithm and HD-Marker genotyping method. The SNP array exhibited a relatively high genotyping call rate (> 96%), genotyping accuracy (>95%) and exhibited highly polymorphic in sea cucumber populations. In addition, we also assessed its application in genomic selection (GS). Deep neural networks (DNN) that can capture the complicated interactions of genes have been proposed as a promising tool in GS for SNP-based genomic prediction of complex traits in animal breeding. To overcome the problem of over-fitting when using the HaishenSNP24K array as high-dimensional DNN input, we developed minmax concave penalty (MCP) regularization for sparse deep neural networks (DNN-MCP) that finds an optimal sparse structure of a DNN by minimizing the square error subject to the non-convex penalty MCP on the parameters (weights and biases). Compared to two linear models, namely RR-GBLUP and Bayes B, and the nonlinear model DNN, DNN-MCP has greatly improved the genomic prediction ability for three quantitative traits (e.g., wet weight, dry weight and survival time) in the sea cucumber population. To the best of our knowledge, this is the first work to develop a high-throughput SNP array for A. japonicus and a new model DNN-MCP for genomic prediction of complex traits in GS. The present results provide evidence that supports the HaishenSNP24K array with DNN-MCP will be valuable for genetic studies and molecular breeding in A. japonicus.
Collapse
Affiliation(s)
- Jia Lv
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Ping Ni
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ping Lin
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, UK
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jun Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Yaqing Chang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Jingjie Hu
- Ocean University China, Sanya Oceanog Inst, Lab Trop Marine Germplasm Res & Breeding Engn, Sanya 572000, China.
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
19
|
Yang F, Wan H, Li J, Wang Q, Yang N, Zhu X, Liu Z, Yang Y, Ma W, Fan X, Yang W, Zhou Y. Pentaploidization Enriches the Genetic Diversity of Wheat by Enhancing the Recombination of AB Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:883868. [PMID: 35845672 PMCID: PMC9281561 DOI: 10.3389/fpls.2022.883868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Allohexaploidization and continuous introgression play a key role in the origin and evolution of bread wheat. The genetic bottleneck of bread wheat resulting from limited germplasms involved in the origin and modern breeding may be compensated by gene flow from tetraploid wheat through introgressive hybridization. The inter-ploidy hybridization between hexaploid and tetraploid wheat generates pentaploid hybrids first, which absorbed genetic variations both from hexaploid and tetraploid wheat and have great potential for re-evolution and improvement in bread wheat. Therefore, understanding the effects of the pentaploid hybrid is of apparent significance in our understanding of the historic introgression and in informing breeding. In the current study, two sets of F2 populations of synthetic pentaploid wheat (SPW1 and SPW2) and synthetic hexaploid wheat (SHW1 and SHW2) were created to analyze differences in recombination frequency (RF) of AB genomes and distorted segregation of polymorphic SNP markers through SNP genotyping. Results suggested that (1) the recombination of AB genomes in the SPW populations was about 3- to 4-fold higher than that in the SHW populations, resulting from the significantly (P < 0.01) increased RF between adjacent and linked SNP loci, especially the variations that occurred in a pericentromeric region which would further enrich genetic diversity; (2) the crosses of hexaploid × tetraploid wheat could be an efficient way to produce pentaploid derivatives than the crosses of tetraploid × hexaploid wheat according to the higher germination rate found in the former crosses; (3) the high proportion of distorted segregation loci that skewed in favor of the female parent genotype/allele in the SPW populations might associate with the fitness and survival of the offspring. Based on the presented data, we propose that pentaploid hybrids should increasingly be used in wheat breeding. In addition, the contribution of gene flow from tetraploid wheat to bread wheat mediated by pentaploid introgressive hybridization also was discussed in the re-evolution of bread wheat.
Collapse
Affiliation(s)
- Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ning Yang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinguo Zhu
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zehou Liu
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yumin Yang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wujun Ma
- Australia-China Joint Centre for Wheat Improvement, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wuyun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Integrated Analyses of DNA Methylation and Gene Expression of Rainbow Trout Muscle under Variable Ploidy and Muscle Atrophy Conditions. Genes (Basel) 2022; 13:genes13071151. [PMID: 35885934 PMCID: PMC9319582 DOI: 10.3390/genes13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, is an important cool, freshwater aquaculture species used as a model for biological research. However, its genome reference has not been annotated for epigenetic markers affecting various biological processes, including muscle growth/atrophy. Increased energetic demands during gonadogenesis/reproduction provoke muscle atrophy in rainbow trout. We described DNA methylation and its associated gene expression in atrophying muscle by comparing gravid, diploid females to sterile, triploid females. Methyl Mini-seq and RNA-Seq were simultaneously used to characterize genome-wide DNA methylation and its association with gene expression in rainbow trout muscle. Genome-wide enrichment in the number of CpGs, accompanied by depleted methylation levels, was noticed around the gene transcription start site (TSS). Hypermethylation of CpG sites within ±1 kb on both sides of TSS (promoter and gene body) was weakly/moderately associated with reduced gene expression. Conversely, hypermethylation of the CpG sites in downstream regions of the gene body +2 to +10 kb was weakly associated with increased gene expression. Unlike mammalian genomes, rainbow trout gene promotors are poor in CpG islands, at <1% compared to 60%. No signs of genome-wide, differentially methylated (DM) CpGs were observed due to the polyploidy effect; only 1206 CpGs (0.03%) were differentially methylated, and these were primarily associated with muscle atrophy. Twenty-eight genes exhibited differential gene expression consistent with methylation levels of 31 DM CpGs. These 31 DM CpGs represent potential epigenetic markers of muscle atrophy in rainbow trout. The DM CpG-harboring genes are involved in apoptosis, epigenetic regulation, autophagy, collagen metabolism, cell membrane functions, and Homeobox proteins. Our study also identified genes explaining higher water content and modulated glycolysis previously shown as characteristic biochemical signs of rainbow trout muscle atrophy associated with sexual maturation. This study characterized DNA methylation in the rainbow trout genome and its correlation with gene expression. This work also identified novel epigenetic markers associated with muscle atrophy in fish/lower vertebrates.
Collapse
|
21
|
Hai DM, Yen DT, Liem PT, Tam BM, Huong DTT, Hang BTB, Hieu DQ, Garigliany MM, Coppieters W, Kestemont P, Phuong NT, Farnir F. A High-Quality Genome Assembly of Striped Catfish ( Pangasianodon hypophthalmus) Based on Highly Accurate Long-Read HiFi Sequencing Data. Genes (Basel) 2022; 13:923. [PMID: 35627308 PMCID: PMC9141817 DOI: 10.3390/genes13050923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
The HiFi sequencing technology yields highly accurate long-read data with accuracies greater than 99.9% that can be used to improve results for complex applications such as genome assembly. Our study presents a high-quality chromosome-scale genome assembly of striped catfish (Pangasianodon hypophthalmus), a commercially important species cultured mainly in Vietnam, integrating HiFi reads and Hi-C data. A 788.4 Mb genome containing 381 scaffolds with an N50 length of 21.8 Mb has been obtained from HiFi reads. These scaffolds have been further ordered and clustered into 30 chromosome groups, ranging from 1.4 to 57.6 Mb, based on Hi-C data. The present updated assembly has a contig N50 of 14.7 Mb, representing a 245-fold and 4.2-fold improvement over the previous Illumina and Illumina-Nanopore-Hi-C based version, respectively. In addition, the proportion of repeat elements and BUSCO genes identified in our genome is remarkably higher than in the two previously released striped catfish genomes. These results highlight the power of using HiFi reads to assemble the highly repetitive regions and to improve the quality of genome assembly. The updated, high-quality genome assembled in this work will provide a valuable genomic resource for future population genetics, conservation biology and selective breeding studies of striped catfish.
Collapse
Affiliation(s)
- Dao Minh Hai
- FARAH/Sustainable Animal Production, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Pham Thanh Liem
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Bui Minh Tam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Dang Quang Hieu
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Mutien-Marie Garigliany
- FARAH/Veterinary Public Health, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
| | | | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environnment, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Frédéric Farnir
- FARAH/Sustainable Animal Production, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
| |
Collapse
|
22
|
Gene Editing of the Catfish Gonadotropin-Releasing Hormone Gene and Hormone Therapy to Control the Reproduction in Channel Catfish, Ictalurus punctatus. BIOLOGY 2022; 11:biology11050649. [PMID: 35625377 PMCID: PMC9138287 DOI: 10.3390/biology11050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Transcription activator-like effector nuclease (TALEN) plasmids targeting the channel catfish gonadotropin-releasing hormone (cfGnRH) gene were delivered into fertilized eggs with double electroporation to sterilize channel catfish (Ictalurus punctatus). Targeted cfGnRH fish were sequenced and base deletion, substitution, and insertion were detected. The gene mutagenesis was achieved in 52.9% of P1 fish. P1 mutants (individuals with human-induced sequence changes at the cfGnRH locus) had lower spawning rates (20.0−50.0%) when there was no hormone therapy compared to the control pairs (66.7%) as well as having lower average egg hatch rates (2.0% versus 32.3−74.3%) except for one cfGnRH mutated female that had a 66.0% hatch rate. After low fertility was observed in 2016, application of luteinizing hormone-releasing hormone analog (LHRHa) hormone therapy resulted in good spawning and hatch rates for mutants in 2017, which were not significantly different from the controls (p > 0.05). No exogenous DNA fragments were detected in the genome of mutant P1 fish, indicating no integration of the plasmids. No obvious effects on other economically important traits were observed after the knockout of the reproductive gene in the P1 fish. Growth rates, survival, and appearance between mutant and control individuals were not different. While complete knock-out of reproductive output was not achieved, as these were mosaic P1 brood stock, gene editing of channel catfish for the reproductive confinement of gene-engineered, domestic, and invasive fish to prevent gene flow into the natural environment appears promising.
Collapse
|
23
|
Liu J, Zhang D, Zhang L, Wang Z, Shen J. New Insight on Vitality Differences for the Penaeid Shrimp, Fenneropenaeus chinensis, in Low Salinity Environment Through Transcriptomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.716018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive rainfall changes salinity in shrimp farming ponds in short period and exerts low salinity stress on the outdoor breeding shrimp under global warming. Fenneropenaeus chinensis can have different performance on vitality in low salinity environments. To reveal mechanisms of vitality difference in shrimp living in low saline environments. This study based on the normal and moribund F. chinensis in 10 ppt salinity environment using high-throughput sequencing identifies 1,429 differentially expressed genes (DEGs), 586 of which are upregulated, while 843 of which are downregulated in the normal group (FCN10) as compared to the moribund group (FCM10). Meanwhile, another transcriptomic analysis is conducted on the normal and moribund shrimp from 25 ppt (FCN25 vs. FCM25) salinity environment as the control, in which 1,311 DEGs (upregulated: 327 genes, downregulated: 984 genes) are identified. In this study, intersective pathways, GO (Gene Ontology) categories and DEGs from the two groups of comparative transcriptome are investigated. The two intersective pathways (Metabolism of xenobiotics by cytochrome P450, Pentose, and glucuronate interconversions) significantly enriched by DEGs are related to detoxification. In these two pathways, there is one vitality regulation-related gene (VRRG), the Dhdh (dihydrodiol dehydrogenase), which is upregulated in both the groups of FCN10 and FCN25 as compared to the groups of FCM10 and FCM25, respectively. Similarly, in the 25 top intersective GO categories, four VRRGs are revealed. Three of them are upregulated (Itgbl, kielin/chordin-like protein, Slc2a8, solute carrier family 2, facilitated glucose transporter member 8-like protein and Cyp3a30, cytochrome P450 3A30-like protein); one of them is downregulated (Slc6a9, sodium-dependent nutrient amino acid transporter 1-like protein isoform X2). These GO categories are related to transmembrane transporter activity of substance, enzyme inhibitor activity, monooxygenase activity. RT-qPCR analysis further verifies the VRRGs. The study gives new insight into understanding the vitality differences for F. chinensis, in low salinity environment. The pathways and DEGs in response to low salinity stress in modulating the vitality of F. chinensis that could serve as tools in future genetic studies and molecular breeding.
Collapse
|
24
|
Yue K, Shen Y. An overview of disruptive technologies for aquaculture. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Li J, Zhang G, Yin D, Li Y, Zhang Y, Cheng J, Zhang K, Ji J, Wang T, Jia Y, Yin S. Integrated application of multi-omics strategies provides insights into the environmental hypoxia response in Pelteobagrus vachelli muscle. Mol Cell Proteomics 2022; 21:100196. [PMID: 35031490 PMCID: PMC8938323 DOI: 10.1016/j.mcpro.2022.100196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Increasing pressures on aquatic ecosystems because of pollutants, nutrient enrichment, and global warming have severely depleted oxygen concentrations. This sudden and significant lack of oxygen has resulted in persistent increases in fish mortality rates. Revealing the molecular mechanism of fish hypoxia adaptation will help researchers to find markers for hypoxia induced by environmental stress. Here, we used a multiomics approach to identify several hypoxia-associated miRNAs, mRNAs, proteins, and metabolites involved in diverse biological pathways in the muscles of Pelteobagrus vachelli. Our findings revealed significant hypoxia-associated changes in muscles over 4 h of hypoxia exposure and discrete tissue-specific patterns. We have previously reported that P. vachelli livers exhibit increased anaerobic glycolysis, heme synthesis, erythropoiesis, and inhibit apoptosis when exposed to hypoxia for 4 h. However, the opposite was observed in muscles. According to our comprehensive analysis, fishes show an acute response to hypoxia, including activation of catabolic pathways to generate more energy, reduction of biosynthesis to decrease energy consumption, and shifting from aerobic to anaerobic metabolic contributions. Also, we found that hypoxia induced muscle dysfunction by impairing mitochondrial function, activating inflammasomes, and apoptosis. The hypoxia-induced mitochondrial dysfunction enhanced oxidative stress, apoptosis, and further triggered interleukin-1β production via inflammasome activation. In turn, interleukin-1β further impaired mitochondrial function or apoptosis by suppressing downstream mitochondrial biosynthesis–related proteins, thus resulting in a vicious cycle of inflammasome activation and mitochondrial dysfunction. Our findings contribute meaningful insights into the molecular mechanisms of hypoxia, and the methods and study design can be utilized across different fish species. First multiomics analysis of mRNA, miRNA, protein, and metabolite in fishes. Liver and muscle were tissue-specific induced by hypoxia. About 70 genes and 16 miRNAs related to hypoxia adaptation were detected. Hypoxia affects muscle function by mediating energy metabolism via HIF pathway.
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China
| | - Guosong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China.
| | - Danqing Yin
- School of Computer Science, University of Sydney, Sydney, 2006, Australia
| | - Yao Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yiran Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jinghao Cheng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Abstract
To date, genomic prediction has been conducted in about 20 aquaculture species, with a preference for intra-family genomic selection (GS). For every trait under GS, the increase in accuracy obtained by genomic estimated breeding values instead of classical pedigree-based estimation of breeding values is very important in aquaculture species ranging from 15% to 89% for growth traits, and from 0% to 567% for disease resistance. Although the implementation of GS in aquaculture is of little additional investment in breeding programs already implementing sib testing on pedigree, the deployment of GS remains sparse, but could be boosted by adaptation of cost-effective imputation from low-density panels. Moreover, GS could help to anticipate the effect of climate change by improving sustainability-related traits such as production yield (e.g., carcass or fillet yields), feed efficiency or disease resistance, and by improving resistance to environmental variation (tolerance to temperature or salinity variation). This chapter synthesized the literature in applications of GS in finfish, crustaceans and molluscs aquaculture in the present and future breeding programs.
Collapse
Affiliation(s)
- François Allal
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France.
| | - Nguyen Hong Nguyen
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
27
|
Vue D, Tang Q. Zika Virus Overview: Transmission, Origin, Pathogenesis, Animal Model and Diagnosis. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10.15212/zoonoses-2021-0017. [PMID: 34957474 PMCID: PMC8698461 DOI: 10.15212/zoonoses-2021-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zika virus (ZIKV) was first discovered in 1947 in Uganda. ZIKV did not entice much attention until Brazil hosted the 2016 Summer Olympics Game, where ZIKV attracted a global audience. ZIKV is a flavivirus that can be transmitted chiefly through the biting of the mosquito or sexually or by breastfeeding at a lower scale. As time passed, the recent discovery of how the ZIKV causes congenital neurodevelopmental defects, including microcephaly, makes us reevaluate the importance of ZIKV interaction with centrosome organization because centrosome plays an important role in cell division. When the ZIKV disrupts centrosome organization and mitotic abnormalities, this will alter neural progenitor differentiation. Altering the neural progenitor differentiation will lead to cell cycle arrest, increase apoptosis, and inhibit the neural progenitor cell differentiation, as this can lead to abnormalities in neural cell development resulting in microcephaly. Understanding the importance of ZIKV infection throughout the years, this review article gives an overview of the history, transmission routes, pathogenesis, animal models, and diagnosis.
Collapse
Affiliation(s)
- Dallas Vue
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW Washington, DC 20059, USA
| |
Collapse
|
28
|
Jackson T, Ishengoma E, Rhode C. Cross-species Exon Capture and Whole Exome Sequencing: Application, Utility and Challenges for Genomic Resource Development in Non-model Species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:560-575. [PMID: 34241713 DOI: 10.1007/s10126-021-10046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Comprehending the genetic architecture of complex traits has many applications in evolution, ecology, conservation biology and plant and animal production systems. Underlying research questions in these fields are diverse species that often have limited genetic information available. In aquaculture, for example, genetic progress has been slow in many species due to a lack in such genetic information. In this study, zebrafish (as a well-studied model species) was used in cross-species transfer to develop genomic resources and identify candidate genes underling growth differentials in dusky kob. Dusky kob is a Sciaenid finfish and an emerging aquaculture species. The zebrafish All Exon Predesigned Probe-set capture protocol was used to enrich fractionated DNA samples from kob, classified as either large or small, before massive parallel sequencing on the Ion Torrent platform. Although vast quantities of sequence data were generated, only about 30% of contigs could be identified as zebrafish homologues. There were numerous species-specific sequences and inconsistent coverage of sequencing products across samples, likely due to non-specific binding of the probe-set as a result of the evolutionary divergence between zebrafish and kob. Nonetheless, more than 55,000 SNPs could be reliably identified and genotyped to the individual level. Using SNP genotypic divergence estimates, between large and small cohorts, a number of candidate genes associated with growth was also identified for future investigation. These findings contribute to the growing body of evidence demonstrating the utility of a cross-species capture approach in the development of important genomic resources for understanding traits of interest in species without reference genomes.
Collapse
Affiliation(s)
- T Jackson
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - E Ishengoma
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Department of Biological Sciences, Mkwawa University College of Education, University of Dar Es Salaam, P.O. Box 2329, Dar es Salaam, Tanzania
| | - C Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
29
|
Yu X, Megens HJ, Mengistu SB, Bastiaansen JWM, Mulder HA, Benzie JAH, Groenen MAM, Komen H. Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 2021; 22:426. [PMID: 34107887 PMCID: PMC8188787 DOI: 10.1186/s12864-021-07486-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population. Results In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage. Conclusions There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07486-5.
Collapse
Affiliation(s)
- Xiaofei Yu
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - Hendrik-Jan Megens
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Samuel Bekele Mengistu
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.,School of Animal and Range Sciences, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - John W M Bastiaansen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Han A Mulder
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - John A H Benzie
- WorldFish Centre, Jalan Batu Maung, Bayan Lepas, Penang, Malaysia.,School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Martien A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Hans Komen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
30
|
Ramberg S, Høyheim B, Østbye TKK, Andreassen R. A de novo Full-Length mRNA Transcriptome Generated From Hybrid-Corrected PacBio Long-Reads Improves the Transcript Annotation and Identifies Thousands of Novel Splice Variants in Atlantic Salmon. Front Genet 2021; 12:656334. [PMID: 33986770 PMCID: PMC8110904 DOI: 10.3389/fgene.2021.656334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Atlantic salmon (Salmo salar) is a major species produced in world aquaculture and an important vertebrate model organism for studying the process of rediploidization following whole genome duplication events (Ss4R, 80 mya). The current Salmo salar transcriptome is largely generated from genome sequence based in silico predictions supported by ESTs and short-read sequencing data. However, recent progress in long-read sequencing technologies now allows for full-length transcript sequencing from single RNA-molecules. This study provides a de novo full-length mRNA transcriptome from liver, head-kidney and gill materials. A pipeline was developed based on Iso-seq sequencing of long-reads on the PacBio platform (HQ reads) followed by error-correction of the HQ reads by short-reads from the Illumina platform. The pipeline successfully processed more than 1.5 million long-reads and more than 900 million short-reads into error-corrected HQ reads. A surprisingly high percentage (32%) represented expressed interspersed repeats, while the remaining were processed into 71 461 full-length mRNAs from 23 071 loci. Each transcript was supported by several single-molecule long-read sequences and at least three short-reads, assuring a high sequence accuracy. On average, each gene was represented by three isoforms. Comparisons to the current Atlantic salmon transcripts in the RefSeq database showed that the long-read transcriptome validated 25% of all known transcripts, while the remaining full-length transcripts were novel isoforms, but few were transcripts from novel genes. A comparison to the current genome assembly indicates that the long-read transcriptome may aid in improving transcript annotation as well as provide long-read linkage information useful for improving the genome assembly. More than 80% of transcripts were assigned GO terms and thousands of transcripts were from genes or splice-variants expressed in an organ-specific manner demonstrating that hybrid error-corrected long-read transcriptomes may be applied to study genes and splice-variants expressed in certain organs or conditions (e.g., challenge materials). In conclusion, this is the single largest contribution of full-length mRNAs in Atlantic salmon. The results will be of great value to salmon genomics research, and the pipeline outlined may be applied to generate additional de novo transcriptomes in Atlantic Salmon or applied for similar projects in other species.
Collapse
Affiliation(s)
- Sigmund Ramberg
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Bjørn Høyheim
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
31
|
Cui Z, Liu Y, Yuan J, Zhang X, Ventura T, Ma KY, Sun S, Song C, Zhan D, Yang Y, Liu H, Fan G, Cai Q, Du J, Qin J, Shi C, Hao S, Fitzgibbon QP, Smith GG, Xiang J, Chan TY, Hui M, Bao C, Li F, Chu KH. The Chinese mitten crab genome provides insights into adaptive plasticity and developmental regulation. Nat Commun 2021; 12:2395. [PMID: 33888695 PMCID: PMC8062507 DOI: 10.1038/s41467-021-22604-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
The infraorder Brachyura (true or short-tailed crabs) represents a successful group of marine invertebrates yet with limited genomic resources. Here we report a chromosome-anchored reference genome and transcriptomes of the Chinese mitten crab Eriocheir sinensis, a catadromous crab and invasive species with wide environmental tolerance, strong osmoregulatory capacity and high fertility. We show the expansion of specific gene families in the crab, including F-ATPase, which enhances our knowledge on the adaptive plasticity of this successful invasive species. Our analysis of spatio-temporal transcriptomes and the genome of E. sinensis and other decapods shows that brachyurization development is associated with down-regulation of Hox genes at the megalopa stage when tail shortening occurs. A better understanding of the molecular mechanism regulating sexual development is achieved by integrated analysis of multiple omics. These genomic resources significantly expand the gene repertoire of Brachyura, and provide insights into the biology of this group, and Crustacea in general.
Collapse
Affiliation(s)
- Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tomer Ventura
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Ka Yan Ma
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Chengwen Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hourong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | - Jing Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jing Qin
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | | | - Shijie Hao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Min Hui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
32
|
Orbán L, Shen X, Phua N, Varga L. Toward Genome-Based Selection in Asian Seabass: What Can We Learn From Other Food Fishes and Farm Animals? Front Genet 2021; 12:506754. [PMID: 33968125 PMCID: PMC8097054 DOI: 10.3389/fgene.2021.506754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Due to the steadily increasing need for seafood and the plateauing output of fisheries, more fish need to be produced by aquaculture production. In parallel with the improvement of farming methods, elite food fish lines with superior traits for production must be generated by selection programs that utilize cutting-edge tools of genomics. The purpose of this review is to provide a historical overview and status report of a selection program performed on a catadromous predator, the Asian seabass (Lates calcarifer, Bloch 1790) that can change its sex during its lifetime. We describe the practices of wet lab, farm and lab in detail by focusing onto the foundations and achievements of the program. In addition to the approaches used for selection, our review also provides an inventory of genetic/genomic platforms and technologies developed to (i) provide current and future support for the selection process; and (ii) improve our understanding of the biology of the species. Approaches used for the improvement of terrestrial farm animals are used as examples and references, as those processes are far ahead of the ones used in aquaculture and thus they might help those working on fish to select the best possible options and avoid potential pitfalls.
Collapse
Affiliation(s)
- László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore.,Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary
| | - Xueyan Shen
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore.,Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Norman Phua
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - László Varga
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllõ, Hungary.,Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, Gödöllõ, Hungary
| |
Collapse
|
33
|
Lyu D, Yu Y, Wang Q, Luo Z, Zhang Q, Zhang X, Xiang J, Li F. Identification of Growth-Associated Genes by Genome-Wide Association Study and Their Potential Application in the Breeding of Pacific White Shrimp ( Litopenaeus vannamei). Front Genet 2021; 12:611570. [PMID: 33897754 PMCID: PMC8058354 DOI: 10.3389/fgene.2021.611570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei) is the most widely cultured shrimp in the world. A great attention has been paid to improve its body weight (BW) at harvest through genetic selection for decades. Genome-wide association study (GWAS) is a tool to dissect the genetic basis of the traits. In this study, a GWAS approach was conducted to find genes related to BW through genotyping 94,113 single nucleotide polymorphisms (SNPs) in 200 individuals from a breeding population. Four BW-related SNPs located in LG19 and LG39 were identified. Through further candidate gene association analysis, the SNPs in two candidate genes, deoxycytidylate deaminase and non-receptor protein tyrosine kinase, were found to be related with the body weight of the shrimp. Marker-assisted best linear unbiased prediction (MA-BLUP) based on the SNPs in these two genes was used to estimate the breeding values, and the result showed that the highest prediction accuracy of MA-BLUP was increased by 9.4% than traditional BLUP. These results will provide useful information for the marker-assisted breeding in L. vannamei.
Collapse
Affiliation(s)
- Ding Lyu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
34
|
Huang Y, Bugg W, Bangs M, Qin G, Drescher D, Backenstose N, Weng CC, Zhang Y, Khalil K, Dong S, Elaswad A, Ye Z, Lu C, Vo K, Simora RM, Ma X, Taylor Z, Yang Y, Zhou T, Guo J, Salze G, Qin Z, Wang Y, Dunham RA. Direct and pleiotropic effects of the Masou Salmon Delta-5 Desaturase transgene in F1 channel catfish (Ictalurus punctatus). Transgenic Res 2021; 30:185-200. [PMID: 33792795 DOI: 10.1007/s11248-021-00242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/11/2021] [Indexed: 11/27/2022]
Abstract
Channel catfish (Ictalurus punctatus) is the primary culture species in the US along with its hybrid made with male blue catfish, I. furcatus. In an effort to improve the nutritional value of channel catfish, the masou salmon Δ5-desaturase like gene (D5D) driven by the common carp beta-actin promoter (βactin) was inserted into channel catfish. The objectives of this study were to determine the effectiveness of βactin-D5D for improving n-3 fatty acid production in F1 transgenic channel catfish, as well as examine pleiotropic effects on growth, proximate analysis, disease resistance, and other performance traits. Transgenic F1 channel catfish showed a 33% increase in the relative proportion of n-3 fatty acids coupled with a 15% decrease in n-6 fatty acids and a 17% decrease in n-9 fatty acids when compared to non-transgenic full-siblings (P < 0.01, P < 0.01, P < 0.01). However, while the relative proportion of n-3 fatty acids was achieved, the total amount of fatty acids in the transgenic fish decreased resulting in a reduction of all fatty acids. Insertion of the βactin-D5D transgene into channel catfish also had large effects on the body composition, and growth of channel catfish. Transgenic channel catfish grew faster, were more disease resistant, had higher protein and moisture percentage, but lower fat percentage than full-sib controls. There were sex effects as performance changes were more dramatic and significant in males. The βactin-D5D transgenic channel catfish were also more uniform in their fatty acid composition, growth and other traits.
Collapse
Affiliation(s)
- Yingqi Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - William Bugg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Max Bangs
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 32304, USA
| | - Guyu Qin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David Drescher
- Muckleshoot Indian Tribe Department of Fisheries, 39015-A 172nd Ave SE, Auburn, WA, 98092, USA
| | - Nathan Backenstose
- Department of Biological Sciences, University At Buffalo, Buffalo, NY, 14260, USA
| | - Chia Chen Weng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Yiliu Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Karim Khalil
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sheng Dong
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Zhi Ye
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Khoi Vo
- Department of Aquacultures and Technology, Can Tho Technical Economic College, Can Tho City, Vietnam
| | - Rhoda Mae Simora
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, 5023, Iloilo, Philippines
| | - Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Zachary Taylor
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Jingping Guo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | | | - Zhenkui Qin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yi Wang
- Biosystems Engineering Department, Auburn University, Auburn, AL, 36849, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
35
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
36
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
37
|
Blay C, Haffray P, Bugeon J, D’Ambrosio J, Dechamp N, Collewet G, Enez F, Petit V, Cousin X, Corraze G, Phocas F, Dupont-Nivet M. Genetic Parameters and Genome-Wide Association Studies of Quality Traits Characterised Using Imaging Technologies in Rainbow Trout, Oncorhynchus mykiss. Front Genet 2021; 12:639223. [PMID: 33692832 PMCID: PMC7937956 DOI: 10.3389/fgene.2021.639223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
One of the top priorities of the aquaculture industry is the genetic improvement of economically important traits in fish, such as those related to processing and quality. However, the accuracy of genetic evaluations has been hindered by a lack of data on such traits from a sufficiently large population of animals. The objectives of this study were thus threefold: (i) to estimate genetic parameters of growth-, yield-, and quality-related traits in rainbow trout (Oncorhynchus mykiss) using three different phenotyping technologies [invasive and non-invasive: microwave-based, digital image analysis, and magnetic resonance imaging (MRI)], (ii) to detect quantitative trait loci (QTLs) associated with these traits, and (iii) to identify candidate genes present within these QTL regions. Our study collected data from 1,379 fish on growth, yield-related traits (body weight, condition coefficient, head yield, carcass yield, headless gutted carcass yield), and quality-related traits (total fat, percentage of fat in subcutaneous adipose tissue, percentage of fat in flesh, flesh colour); genotypic data were then obtained for all fish using the 57K SNP Axiom® Trout Genotyping array. Heritability estimates for most of the 14 traits examined were moderate to strong, varying from 0.12 to 0.67. Most traits were clearly polygenic, but our genome-wide association studies (GWASs) identified two genomic regions on chromosome 8 that explained up to 10% of the genetic variance (cumulative effects of two QTLs) for several traits (weight, condition coefficient, subcutaneous and total fat content, carcass and headless gutted carcass yields). For flesh colour traits, six QTLs explained 1-4% of the genetic variance. Within these regions, we identified several genes (htr1, gnpat, ephx1, bcmo1, and cyp2x) that have been implicated in adipogenesis or carotenoid metabolism, and thus represent good candidates for further functional validation. Finally, of the three techniques used for phenotyping, MRI demonstrated particular promise for measurements of fat content and distribution, while the digital image analysis-based approach was very useful in quantifying colour-related traits. This work provides new insights that may aid the development of commercial breeding programmes in rainbow trout, specifically with regard to the genetic improvement of yield and flesh-quality traits as well as the use of invasive and/or non-invasive technologies to predict such traits.
Collapse
Affiliation(s)
- Carole Blay
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | - Jonathan D’Ambrosio
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- SYSAAF, Station LPGP-INRAE, Rennes, France
| | - Nicolas Dechamp
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Xavier Cousin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
| | - Geneviève Corraze
- INRAE, University of Pau & Pays Adour, E2S UPPA, UMR 1419 NuMéA, Saint-Pée-sur-Nivelle, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | |
Collapse
|
38
|
Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper ( Epinephelus tukula). BIOLOGY 2021; 10:biology10010036. [PMID: 33430356 PMCID: PMC7825770 DOI: 10.3390/biology10010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary The potato grouper is a novel aquaculture species in Taiwan. Due to the lack of genetic information concerning this species, we have developed molecular markers based on transcriptome sequencing and further characterized their association with gene diversity and growth traits of this species. Ultimately, these markers could be utilized as accurate and efficient tools for genetic management and marker-assisted selection of potato grouper with distinct growth traits. Abstract The accuracy and efficiency of marker-assisted selection (MAS) has been proven for economically critical aquaculture species. The potato grouper (Epinephelus tukula), a novel cultured grouper species in Taiwan, shows large potential in aquaculture because of its fast growth rate among other groupers. Because of the lack of genetic information for the potato grouper, the first transcriptome and expressed sequence tag (EST)-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were developed. Initially, the transcriptome was obtained from seven cDNA libraries by using the Illumina platform. De novo transcriptome of the potato grouper yielded 51.34 Gb and 111,490 unigenes. The EST-derived SSR and SNP markers were applied in genetic management, in parentage analysis, and to discover the functional markers of economic traits. The F1 juveniles were identified as siblings from one pair of parents (80 broodstocks). Fast- and slow-growth individuals were analyzed using functional molecular markers and through their association with growth performance. The results revealed that two SNPs were correlated with growth traits. The transcriptome database obtained in this study and its derived SSR and SNP markers may be applied not only for MAS but also to maintain functional gene diversity in the novel cultured grouper.
Collapse
|
39
|
de Los Ríos-Pérez L, Nguinkal JA, Verleih M, Rebl A, Brunner RM, Klosa J, Schäfer N, Stüeken M, Goldammer T, Wittenburg D. An ultra-high density SNP-based linkage map for enhancing the pikeperch (Sander lucioperca) genome assembly to chromosome-scale. Sci Rep 2020; 10:22335. [PMID: 33339898 PMCID: PMC7749136 DOI: 10.1038/s41598-020-79358-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Pikeperch (Sander lucioperca) is a fish species with growing economic significance in the aquaculture industry. However, successful positioning of pikeperch in large-scale aquaculture requires advances in our understanding of its genome organization. In this study, an ultra-high density linkage map for pikeperch comprising 24 linkage groups and 1,023,625 single nucleotide polymorphisms markers was constructed after genotyping whole-genome sequencing data from 11 broodstock and 363 progeny, belonging to 6 full-sib families. The sex-specific linkage maps spanned a total of 2985.16 cM in females and 2540.47 cM in males with an average inter-marker distance of 0.0030 and 0.0026 cM, respectively. The sex-averaged map spanned a total of 2725.53 cM with an average inter-marker distance of 0.0028 cM. Furthermore, the sex-averaged map was used for improving the contiguity and accuracy of the current pikeperch genome assembly. Based on 723,360 markers, 706 contigs were anchored and oriented into 24 pseudomolecules, covering a total of 896.48 Mb and accounting for 99.47% of the assembled genome size. The overall contiguity of the assembly improved with a scaffold N50 length of 41.06 Mb. Finally, an updated annotation of protein-coding genes and repetitive elements of the enhanced genome assembly is provided at NCBI.
Collapse
Affiliation(s)
- Lidia de Los Ríos-Pérez
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Julien A Nguinkal
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Marieke Verleih
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald M Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jan Klosa
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nadine Schäfer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Marcus Stüeken
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Malchower Chaussee 1, 17194, Hohen Wangelin, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany. .,Molecular Biology and Fish Genetics, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059, Rostock, Germany.
| | - Dörte Wittenburg
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
40
|
Effects of gonadotropin-releasing hormone analog (GnRHa) immunization on the gonadal transcriptome and proteome of tilapia (Oreochromis niloticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100780. [PMID: 33296765 DOI: 10.1016/j.cbd.2020.100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin releasing hormone (GnRH) plays an important role in the regulation of vertebrate reproduction. Studies have shown that immunization against GnRHa can induce sexually sterile tilapia. To explore the mechanism behind this, in this study, RNA-seq and data-independent acquisition (DIA) techniques were used to study the transcriptome and proteome of the gonad of tilapia immunized with GnRHa. 644 differentially expressed genes (80 upregulated and 564 downregulated) and 1150 differentially expressed proteins (351 upregulated and 799 downregulated) were identified. There were 209 genes with consistent differential expression patterns in the transcriptomic and proteomic analyses, of which 9 were upregulated and 200 downregulated, indicating that the gonad gene expression was inhibited by GnRHa immunization. The downregulated genes were particularly involved in the functions of single-organism process, binding, cellular process, metabolic process and catalytic activity, and associated with the pathways including ECM-receptor interaction, focal adhesion, cardiac muscle contraction and oxidative phosphorylation. The expression of six differentially expressed genes involved in the GnRH signaling pathway was all downregulated. In addition, several important functional genes related to gonadal development after GnRHa immunization were screened. This study confirmed the expression of corresponding genes was affected by GnRHa on the gonad development in tilapia at the molecular level, and laid a foundation for elucidating the mechanism of GnRHa immunization.
Collapse
|
41
|
Zhou T, Chen B, Ke Q, Zhao J, Pu F, Wu Y, Chen L, Zhou Z, Bai Y, Pan Y, Gong J, Zheng W, Xu P. Development and Evaluation of a High-Throughput Single-Nucleotide Polymorphism Array for Large Yellow Croaker ( Larimichthys crocea). Front Genet 2020; 11:571751. [PMID: 33193675 PMCID: PMC7645154 DOI: 10.3389/fgene.2020.571751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
High-density single-nucleotide polymorphism (SNP) genotyping array is an essential tool for genetic analyses of animals and plants. Large yellow croaker (Larimichthys crocea) is one of the most commercially important marine fish species in China. Although plenty of SNPs have been identified in large yellow croaker, no high-throughput genotyping array is available. In this study, a high-throughput SNP array named NingXin-I with 600K SNPs was developed and evaluated. A set of 82 large yellow croakers were collected from different locations of China and re-sequenced. A total of 9.34M SNPs were identified by mapping sequence reads to the large yellow croaker reference genome. About 1.98M candidate SNPs were selected for further analyses by using criteria such as SNP quality score and conversion performance in the final array. Finally, 579.5K SNPs evenly distributed across the large yellow croaker genome with an average spacing of 1.19 kb were proceeded to array production. The performance of NingXin-I array was evaluated in 96 large yellow croaker individuals from five populations, and 83.38% SNPs on the array were polymorphic sites. A further test of the NingXin-I array in five closely related species in Sciaenidae identified 26.68–56.23% polymorphic SNP rate across species. A phylogenetic tree inferred by using the genotype data generated by NingXin-I confirmed the phylogenetic distance of the species in Sciaenidae. The performance of NingXin-I in large yellow croaker and the other species in Sciaenidae suggested high accuracy and broad application. The NingXin-I array should be valuable for quantitative genetic studies, such as genome-wide association studies (GWASs), high-density linkage map construction, haplotype analysis, and genome-based selection.
Collapse
Affiliation(s)
- Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yidi Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
42
|
Zheng J, Wang P, Mao Y, Su Y, Wang J. Full-length transcriptome analysis provides new insights into the innate immune system of Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:283-295. [PMID: 32755684 DOI: 10.1016/j.fsi.2020.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
As invertebrates, shrimp are generally thought to solely rely on their innate immune system to combat invading pathogens. Recently, an increasing number of studies have revealed that the innate immune response of invertebrates exhibits diversity and specificity based on their diverse immune molecules. Herein, a full-length transcriptome analysis of several immune-related tissues (hepatopancreas, gill, hemocytes, stomach and intestine) in the kuruma shrimp (Marsupenaeus japonicus) was conducted to identify immune-related molecules with a focus on transcript variations. In total, 11,222 nonredundant full-length transcripts with an N50 length of 5174 were obtained, and most of these transcripts (94.84%) were successfully annotated. In addition, a total of 147 long noncoding RNAs (lncRNAs) were also predicted. Importantly, transcript variants of several vital immune-related genes were observed, including twenty-five alpha-2-macroglobulins (α2-Ms), ten Toll-like receptors (TLRs), six C-type lectins (CTLs), five M-type lectins (MTLs) and three Down syndrome cell adhesion molecules (Dscams). Furthermore, 509 nonredundant full-length transcripts were predicted to be generated from alternative splicing (AS) events, which contribute to the diversity of immune molecules. Overall, our study provides valuable data on the full-length transcripts of M. japonicus, which will facilitate the exploration of immune molecules in this species. Moreover, numerous transcript variants of immune molecules detected in this study provide clues for further investigating the diversity and specificity of the innate immune response in shrimp.
Collapse
Affiliation(s)
- Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
43
|
Jung H, Ventura T, Chung JS, Kim WJ, Nam BH, Kong HJ, Kim YO, Jeon MS, Eyun SI. Twelve quick steps for genome assembly and annotation in the classroom. PLoS Comput Biol 2020; 16:e1008325. [PMID: 33180771 PMCID: PMC7660529 DOI: 10.1371/journal.pcbi.1008325] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genome sequencing and de novo assembly, once the exclusive domain of well-funded international consortia, have become increasingly affordable, thus fitting the budgets of individual research groups. Third-generation long-read DNA sequencing technologies are increasingly used, providing extensive genomic toolkits that were once reserved for a few select model organisms. Generating high-quality genome assemblies and annotations for many aquatic species still presents significant challenges due to their large genome sizes, complexity, and high chromosome numbers. Indeed, selecting the most appropriate sequencing and software platforms and annotation pipelines for a new genome project can be daunting because tools often only work in limited contexts. In genomics, generating a high-quality genome assembly/annotation has become an indispensable tool for better understanding the biology of any species. Herein, we state 12 steps to help researchers get started in genome projects by presenting guidelines that are broadly applicable (to any species), sustainable over time, and cover all aspects of genome assembly and annotation projects from start to finish. We review some commonly used approaches, including practical methods to extract high-quality DNA and choices for the best sequencing platforms and library preparations. In addition, we discuss the range of potential bioinformatics pipelines, including structural and functional annotations (e.g., transposable elements and repetitive sequences). This paper also includes information on how to build a wide community for a genome project, the importance of data management, and how to make the data and results Findable, Accessible, Interoperable, and Reusable (FAIR) by submitting them to a public repository and sharing them with the research community.
Collapse
Affiliation(s)
- Hyungtaek Jung
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tomer Ventura
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - J. Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seong-il Eyun
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
44
|
Peng M, Zeng D, Zhu W, Chen X, Yang C, Liu Q, Li Q, Wang H, Liu H, Liang J, Lin Y, Chen X, Zhao Y. Construction of a High-Density Genetic Map and Identification of Quantitative Trait Loci for Nitrite Tolerance in the Pacific White Shrimp ( Litopenaeus vannamei). Front Genet 2020; 11:571880. [PMID: 33193676 PMCID: PMC7541944 DOI: 10.3389/fgene.2020.571880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
Nitrite is a major environmental toxin in aquaculture systems that disrupts multiple physiological functions in aquatic animals. Although nitrite tolerance in shrimp is closely related to successful industrial production, few genetic studies of this trait are available. In this study, we constructed a high-density genetic map of Litopenaeus vannamei with 17,242 single nucleotide polymorphism markers spanning 6,828.06 centimorgans (cM), with an average distance of 0.4 cM between adjacent markers on 44 linkage groups (LGs). Using this genetic map, we identified two markers associated with nitrite tolerance. We then sequenced the transcriptomes of the most nitrite-tolerant and nitrite-sensitive individuals from each of four genetically distinct L. vannamei families (LV-I–4). We found 2,002, 1,983, 1,954, and 1,867 differentially expressed genes in families LV-1, LV-2, LV-3, and LV-4, respectively. By integrating QTL and transcriptomics analyses, we identified a candidate gene associated with nitrite tolerance. This gene was annotated as solute carrier family 26 member 6 (SLC26A6). RNA interference (RNAi) analysis demonstrated that SLC26A6 was critical for nitrite tolerance in L. vannamei. The present study increases our understanding of the molecular mechanisms underlying nitrite tolerance in shrimp and provides a basis for molecular-marker-assisted shrimp breeding.
Collapse
Affiliation(s)
- Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agriculture University, Wuhan, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agriculture University, Wuhan, China
| | - Jingzhen Liang
- Life Science Research Institute, Guangxi University, Nanning, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
45
|
Identification of a Growth-Associated Single Nucleotide Polymorphism (SNP) in Cyclin C of the Giant Tiger Shrimp Penaeus monodon. Biochem Genet 2020; 59:114-133. [PMID: 32780225 DOI: 10.1007/s10528-020-09993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
The full-length cDNA of cyclin C of the giant tiger shrimp Penaeus monodon (PmCyC) was isolated by RACE-PCR. It was 1443 bp in length containing an open reading frame (ORF) of 804 bp and 267 deduced amino acids. Tissue distribution analysis indicated that PmCyC was more abundantly expressed in ovaries and testes than other tissues of female and male juveniles (P < 0.05). A pair of primers was designed, and an amplification product of 403 bp containing an intron of 123 bp was obtained. Polymorphism of amplified PmCyC gene segments of the 5th (3-month-old G5, N = 30) and 7th (5-month-old G7, N = 18) generations of domesticated juveniles was analyzed. Four conserved SNPs (T>C134, T>C188, G>A379, and T>C382) were found within the examined sequences. A TaqMan genotyping assay was developed for detection of a T>C134 SNP. Association analysis indicated that this SNP displayed significant association with body weight (P < 4.2e-10) and total length (P < 2e-09) of the examined G7 P. monodon (N = 419) with an allele substitution effect of 5.02 ± 0.78 g and 1.41 ± 0.19 cm, respectively. Juveniles with C/C134 (22.80 ± 2.51 g and 12.97 ± 0.53 cm, N = 19) and T/C134 (20.41 ± 0.93 g and 12.77 ± 0.21 cm, N = 129) genotypes exhibited a significantly greater average body weight and total length than those with a T/T134 genotype (14.72 ± 0.53 g and 11.37 ± 0.13 cm, N = 271) (P < 0.05).
Collapse
|
46
|
Antibiotic-induced alterations and repopulation dynamics of yellowtail kingfish microbiota. Anim Microbiome 2020; 2:26. [PMID: 33499964 PMCID: PMC7807502 DOI: 10.1186/s42523-020-00046-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish. This work assessed yellowtail kingfish (Seriola lalandi) skin and gut bacterial communities after an oral antibiotic combination therapy in poor performing fish that displayed signs of enteritis over an 18-day period. In an attempt to promote improved bacterial re-establishment after antibiotic treatment, faecal microbiota transplantation (FMT) was also administered via gavage or in the surrounding seawater, and its affect was evaluated over 15 days post-delivery. RESULTS Antibiotic treatment greatly perturbed the global gut bacterial communities of poor-performing fish - an effect that lasted for up to 18 days post treatment. This perturbation was marked by a significant decrease in species diversity and evenness, as well as a concomitant increase in particular taxa like an uncultured Mycoplasmataceae sp., which persisted and dominated antibiotic-treated fish for the entire 18-day period. The skin-associated bacterial communities were also perturbed by the antibiotic treatment, notably within the first 3 days; however, this was unlike the gut, as skin microbiota appeared to shift towards a more 'normal' (though disparate) state after 5 days post antibiotic treatment. FMT was only able to modulate the impacts of antibiotics in some individuals for a short time period, as the magnitude of change varied substantially between individuals. Some fish maintained certain transplanted gut taxa (i.e. present in the FMT inoculum; namely various Aliivibrio related ASVs) at Day 2 post FMT, although these were lost by Day 8 post FMT. CONCLUSION As we observed notable, prolonged perturbations induced by antibiotics on the gut bacterial assemblages, further work is required to better understand the processes/dynamics of their re-establishment following antibiotic exposure. In this regard, procedures like FMT represent a novel approach for promoting improved microbial recovery, although their efficacy and the factors that support their success requires further investigation.
Collapse
|
47
|
Sui J, Luan S, Dai P, Fu Q, Meng X, Luo K, Cao B, Kong J. High accuracy of pooled DNA genotyping by 2b-RAD sequencing in the Pacific white shrimp, Litopenaeus vannamei. PLoS One 2020; 15:e0236343. [PMID: 32730349 PMCID: PMC7392308 DOI: 10.1371/journal.pone.0236343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022] Open
Abstract
Using pooled DNA genotyping to estimate the proportional contributions from multiple families in a pooled sample is of particular interest for selective breeding in aquaculture. We compared different pooled libraries with separate 2b-RAD sequencing of Litopenaeus vannamei individuals to assess the effect of different population structures (different numbers of individuals and families) on pooled DNA sequencing, the accuracy of parent sequencing of the DNA pools and the effect of SNP numbers on pooled DNA sequencing. We demonstrated that small pooled DNA genotyping of up to 53 individuals by 2b-RAD sequencing could provide a highly accurate assessment of population allele frequencies. The accuracy increased as the number of individuals and families increased. The allele frequencies of the parents from each pool were highly correlated with those of the pools or the corresponding individuals in the pool. We chose 500-28,000 SNPs to test the effect of SNP number on the accuracy of pooled sequencing, and no linear relationship was found between them. When the SNP number was fixed, increasing the number of individuals in the mixed pool resulted in higher accuracy of each pooled genotyping. Our data confirmed that pooled DNA genotyping by 2b-RAD sequencing could achieve higher accuracy than that of individual-based genotyping. The results will provide important information for shrimp breeding programs.
Collapse
Affiliation(s)
- Juan Sui
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Sheng Luan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Dai
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiang Fu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xianhong Meng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kun Luo
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baoxiang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
48
|
Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss) Breeding Strains by Using Next-Generation Sequencing. Genes (Basel) 2020; 11:genes11080841. [PMID: 32722051 PMCID: PMC7464081 DOI: 10.3390/genes11080841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout (Oncorhynchus mykiss), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.
Collapse
|
49
|
An osmolality/salinity-responsive enhancer 1 (OSRE1) in intron 1 promotes salinity induction of tilapia glutamine synthetase. Sci Rep 2020; 10:12103. [PMID: 32694739 PMCID: PMC7374092 DOI: 10.1038/s41598-020-69090-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 01/02/2023] Open
Abstract
Euryhaline tilapia (Oreochromis mossambicus) are fish that tolerate a wide salinity range from fresh water to > 3× seawater. Even though the physiological effector mechanisms of osmoregulation that maintain plasma homeostasis in fresh water and seawater fish are well known, the corresponding molecular mechanisms that control switching between hyper- (fresh water) and hypo-osmoregulation (seawater) remain mostly elusive. In this study we show that hyperosmotic induction of glutamine synthetase represents a prominent part of this switch. Proteomics analysis of the O. mossambicus OmB cell line revealed that glutamine synthetase is transcriptionally regulated by hyperosmolality. Therefore, the 5' regulatory sequence of O. mossambicus glutamine synthetase was investigated. Using an enhancer trapping assay, we discovered a novel osmosensitive mechanism by which intron 1 positively mediates glutamine synthetase transcription. Intron 1 includes a single, functional copy of an osmoresponsive element, osmolality/salinity-responsive enhancer 1 (OSRE1). Unlike for conventional enhancers, the hyperosmotic induction of glutamine synthetase by intron 1 is position dependent. But irrespective of intron 1 position, OSRE1 deletion from intron 1 abolishes hyperosmotic enhancer activity. These findings indicate that proper intron 1 positioning and the presence of an OSRE1 in intron 1 are required for precise enhancement of hyperosmotic glutamine synthetase expression.
Collapse
|
50
|
Genomes of major fishes in world fisheries and aquaculture: Status, application and perspective. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|