1
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Karmakar A, Augustine ABHR, Thummer RP. Genes as Genome Stabilizers in Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095244 DOI: 10.1007/5584_2025_853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
Collapse
Affiliation(s)
- Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Allan Blessing Harison Raj Augustine
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
3
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
4
|
Festuccia N, Vandormael-Pournin S, Chervova A, Geiselmann A, Langa-Vives F, Coux RX, Gonzalez I, Collet GG, Cohen-Tannoudji M, Navarro P. Nr5a2 is dispensable for zygotic genome activation but essential for morula development. Science 2024; 386:eadg7325. [PMID: 39361745 DOI: 10.1126/science.adg7325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024]
Abstract
Early embryogenesis is driven by transcription factors (TFs) that first activate the zygotic genome and then specify the lineages constituting the blastocyst. Although the TFs specifying the blastocyst's lineages are well characterized, those playing earlier roles remain poorly defined. Using mouse models of the TF Nr5a2, we show that Nr5a2-/- embryos arrest at the early morula stage and exhibit altered lineage specification, frequent mitotic failure, and substantial chromosome segregation defects. Although NR5A2 plays a minor but measurable role during zygotic genome activation, it predominantly acts as a master regulator at the eight-cell stage, controlling expression of lineage-specifying TFs and genes involved in mitosis, telomere maintenance, and DNA repair. We conclude that NR5A2 coordinates proliferation, genome stability, and lineage specification to ensure correct morula development.
Collapse
Affiliation(s)
- Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Sandrine Vandormael-Pournin
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Anna Geiselmann
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
- Sorbonne Université, Complexité du Vivant, 75005 Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Inma Gonzalez
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Guillaume Giraud Collet
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
- Université Paris Cité, BioSPC, 75013 Paris, France
| | - Michel Cohen-Tannoudji
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| |
Collapse
|
5
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
6
|
Guo Y, Kitano T, Inoue K, Murano K, Hirose M, Li TD, Sakashita A, Ishizu H, Ogonuki N, Matoba S, Sato M, Ogura A, Siomi H. Obox4 promotes zygotic genome activation upon loss of Dux. eLife 2024; 13:e95856. [PMID: 38856708 PMCID: PMC11196112 DOI: 10.7554/elife.95856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024] Open
Abstract
Once fertilized, mouse zygotes rapidly proceed to zygotic genome activation (ZGA), during which long terminal repeats (LTRs) of murine endogenous retroviruses with leucine tRNA primer (MERVL) are activated by a conserved homeodomain-containing transcription factor, DUX. However, Dux-knockout embryos produce fertile mice, suggesting that ZGA is redundantly driven by an unknown factor(s). Here, we present multiple lines of evidence that the multicopy homeobox gene, Obox4, encodes a transcription factor that is highly expressed in mouse two-cell embryos and redundantly drives ZGA. Genome-wide profiling revealed that OBOX4 specifically binds and activates MERVL LTRs as well as a subset of murine endogenous retroviruses with lysine tRNA primer (MERVK) LTRs. Depletion of Obox4 is tolerated by embryogenesis, whereas concomitant Obox4/Dux depletion markedly compromises embryonic development. Our study identified OBOX4 as a transcription factor that provides genetic redundancy to preimplantation development.
Collapse
Grants
- Grant-in-Aid for Scientific Research in Innovative Areas,19H05753 Ministry of Education, Culture, Sports, Science and Technology
- Project to Elucidate and Control Mechanisms of Aging and Longevity Japan Agency for Medical Research and Development
- Grant-in-Aid for Scientific Research in Innovative Areas,19H05758 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research KAKENHI,20K21507 Japan Society for the Promotion of Science
- Grant-in-Aid for Scientific Research KAKENHI,22H02534 Japan Society for the Promotion of Science
- Student Grant-in-Aid Program Keio University
- Doctoral Program Student Support Fellowship Japan Science and Technology Agency
- Grant-in-Aid for Scientific Research in Innovative Areas 19H05753 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research in Innovative Areas 19H05758 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research KAKENHI 20K21507 Japan Society for the Promotion of Science
- Grant-in-Aid for Scientific Research KAKENHI 22H02534 Japan Society for the Promotion of Science
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- Sumitomo Foundation
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Tomohiro Kitano
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Kimiko Inoue
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Michiko Hirose
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio UniversityTokyoJapan
| | - Ten D Li
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Hirotsugu Ishizu
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Narumi Ogonuki
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
| | - Shogo Matoba
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
| | - Masayuki Sato
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio UniversityTokyoJapan
| |
Collapse
|
7
|
Shen Z, Naveed M, Bao J. Untacking small RNA profiling and RNA fragment footprinting: Approaches and challenges in library construction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1852. [PMID: 38715192 DOI: 10.1002/wrna.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Zhaokang Shen
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Muhammad Naveed
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| |
Collapse
|
8
|
Lai F, Li L, Hu X, Liu B, Zhu Z, Liu L, Fan Q, Tian H, Xu K, Lu X, Li Q, Feng K, Wang L, Lin Z, Deng H, Li J, Xie W. NR5A2 connects zygotic genome activation to the first lineage segregation in totipotent embryos. Cell Res 2023; 33:952-966. [PMID: 37935903 PMCID: PMC10709309 DOI: 10.1038/s41422-023-00887-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/08/2023] [Indexed: 11/09/2023] Open
Abstract
Zygotic genome activation (ZGA) marks the beginning of the embryonic program for a totipotent embryo, which gives rise to the inner cell mass (ICM) where pluripotent epiblast arises, and extraembryonic trophectoderm. However, how ZGA is connected to the first lineage segregation in mammalian embryos remains elusive. Here, we investigated the role of nuclear receptor (NR) transcription factors (TFs), whose motifs are highly enriched and accessible from the 2-cell (2C) to 8-cell (8C) stages in mouse embryos. We found that NR5A2, an NR TF strongly induced upon ZGA, was required for this connection. Upon Nr5a2 knockdown or knockout, embryos developed beyond 2C normally with the zygotic genome largely activated. However, 4-8C-specific gene activation was substantially impaired and Nr5a2-deficient embryos subsequently arrested at the morula stage. Genome-wide chromatin binding analysis showed that NR5A2-bound cis-regulatory elements in both 2C and 8C embryos are strongly enriched for B1 elements where its binding motif is embedded. NR5A2 was not required for the global opening of its binding sites in 2C embryos but was essential to the opening of its 8C-specific binding sites. These 8C-specific, but not 2C-specific, binding sites are enriched near genes involved in blastocyst and stem cell regulation, and are often bound by master pluripotency TFs in blastocysts and embryonic stem cells (ESCs). Importantly, NR5A2 regulated key pluripotency genes Nanog and Pou5f1/Oct4, and primitive endoderm regulatory genes including Gata6 among many early ICM genes, as well as key trophectoderm regulatory genes including Tead4 and Gata3 at the 8C stage. By contrast, master pluripotency TFs NANOG, SOX2, and OCT4 targeted both early and late ICM genes in mouse ESCs. Taken together, these data identify NR5A2 as a key regulator in totipotent embryos that bridges ZGA to the first lineage segregation during mouse early development.
Collapse
Affiliation(s)
- Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaoyu Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ziqi Zhu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kong Feng
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lijuan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- College of Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
9
|
Yang X, Lou C, Zhang Q, Liu G, Ding Y, Zhang Q, Ye C. Hypoxia-induced circRTN4IP1 promotes progression and glycolysis of hepatocellular carcinoma cells. Funct Integr Genomics 2023; 23:339. [PMID: 37982910 DOI: 10.1007/s10142-023-01256-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Hypoxia is one of the hallmarks of solid tumors, especially in hepatocellular carcinoma (HCC). CircRNAs are reported to be tightly connected to hypoxia and also have essential roles in cancer progression. However, many circRNAs implicated in hypoxia-mediated HCC progression are still unclear and require further exploration. In this study, a hypoxia cell model was structured by exposing cells to hypoxia conditions (1% O2) and normoxia conditions (21% O2) as a control. The effects of hypoxia and normoxia on cell viability, migration, invasion, and glycolysis were examined. The expressions of circRNARTN4IP1 under hypoxia were identified. Finally, molecular mechanisms and biological function of circRTN4IP1 were explored. We confirmed that hypoxia treatment facilitated capacities of proliferation, migration, invasion, and glycolysis in tumor cells. Hypoxia induced a significant increase expression of circRTN4IP1 in cells. Functionally, knockdown of circRTN4IP1 inhibited cell malignant progression and glycolysis under hypoxia HCC cells. Mechanistically, HIF1A targeted the promoter region of circRTN4IP1 and positively regulated the expression of circRTN4IP1. In addition, circRTN4IP1 targeted miR-532-5p/G6PC3 axis. In short, hypoxia induced activation of the HIF1A/circRTN4IP1/miR-532-5p/G6PC3 signaling axis, which promoted proliferation, migration, invasion, and glycolysis of HCC cells. This study may reveal a possible mechanism driving the progression of hypoxia HCC, so as to find potential effective candidates for targeting hypoxia microenvironment therapy.
Collapse
Affiliation(s)
- Xijing Yang
- Department of Biotherapy, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), No. 700, North Moyu Road, Jiading District, Shanghai, 201805, China
| | - Cheng Lou
- Department of Oncology, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, 201805, China
| | - Qing Zhang
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Guofang Liu
- Department of Biotherapy, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), No. 700, North Moyu Road, Jiading District, Shanghai, 201805, China
| | - Yongmei Ding
- Department of Biotherapy, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), No. 700, North Moyu Road, Jiading District, Shanghai, 201805, China
| | - Qian Zhang
- Department of Biotherapy, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), No. 700, North Moyu Road, Jiading District, Shanghai, 201805, China.
| | - Chun Ye
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, China.
| |
Collapse
|
10
|
Li J, Yuan P, Ma G, Liu Y, Zhang Q, Wang W, Guo Y. The composition dynamics of transposable elements in human blastocysts. J Hum Genet 2023; 68:681-688. [PMID: 37308564 DOI: 10.1038/s10038-023-01169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Transposable elements (TEs) are mobile DNA sequences that can replicate themselves and play significant roles in embryo development and chromosomal structure remodeling. In this study, we investigated the variation of TEs in blastocysts with different parental genetic backgrounds. We analyzed the proportions of 1137 TEs subfamilies from six classes at the DNA level using Bowtie2 and PopoolationTE2 in 196 blastocysts with abnormal parental chromosomal diseases. Our findings revealed that the parental karyotype was the dominant factor influencing TEs frequencies. Out of the 1116 subfamilies, different frequencies were observed in blastocysts with varying parental karyotypes. The development stage of blastocysts was the second most crucial factor influencing TEs proportions. A total of 614 subfamilies exhibited different proportions at distinct blastocyst stages. Notably, subfamily members belonging to the Alu family showed a high proportion at stage 6, while those from the LINE class exhibited a high proportion at stage 3 and a low proportion at stage 6. Moreover, the proportions of some TEs subfamilies also varied depending on blastocyst karyotype, inner cell mass status, and outer trophectoderm status. We found that 48 subfamilies displayed different proportions between balanced and unbalanced blastocysts. Additionally, 19 subfamilies demonstrated varying proportions among different inner cell mass scores, and 43 subfamilies exhibited different proportions among outer trophectoderm scores. This study suggests that the composition of TEs subfamilies may be influenced by various factors and undergoes dynamic modulation during embryo development.
Collapse
Affiliation(s)
- Jian Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- IVF Center, The First People's Hospital of Kashi Prefecture, Kashi, China
| | - Guangwei Ma
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Reproductive Medical Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingxue Zhang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Li C, Zhang Y, Leng L, Pan X, Zhao D, Li X, Huang J, Bolund L, Lin G, Luo Y, Xu F. The single-cell expression profile of transposable elements and transcription factors in human early biparental and uniparental embryonic development. Front Cell Dev Biol 2022; 10:1020490. [PMID: 36438554 PMCID: PMC9691860 DOI: 10.3389/fcell.2022.1020490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 10/24/2023] Open
Abstract
Transposable elements (TEs) and transcription factors (TFs) are involved in the precise regulation of gene expression during the preimplantation stage. Activation of TEs is a key event for mammalian embryonic genome activation and preimplantation early embryonic development. TFs are involved in the regulation of drastic changes in gene expression patterns, but an inventory of the interplay between TEs and TFs during normal/abnormal human embryonic development is still lacking. Here we used single-cell RNA sequencing data generated from biparental and uniparental embryos to perform an integrative analysis of TE and TF expression. Our results showed that endogenous retroviruses (ERVs) are mainly expressed during the minor embryonic genome activation (EGA) process of early embryos, while Alu is gradually expressed in the middle and later stages. Some important ERVs (e.g., LTR5_Hs, MLT2A1) and Alu TEs are expressed at significantly lower levels in androgenic embryos. Integrative analysis revealed that the expression of the transcription factors CTCF and POU5F1 is correlated with the differential expression of ERV TEs. Comparative coexpression network analysis further showed distinct expression levels of important TFs (e.g., LEUTX and ZSCAN5A) in dizygotic embryos vs. parthenogenetic and androgenic embryos. This systematic investigation of TE and TF expression in human early embryonic development by single-cell RNA sequencing provides valuable insights into mammalian embryonic development.
Collapse
Affiliation(s)
- Conghui Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yue Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Lizhi Leng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Reproductive and Stem Cells Engineering, Ministry of Health, Changsha, China
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xiaoguang Pan
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Depeng Zhao
- Department of Reproductive Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xuemei Li
- Department of Reproductive Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jinrong Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Bolund
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Reproductive and Stem Cells Engineering, Ministry of Health, Changsha, China
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yonglun Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Fengping Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI Cell, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
12
|
Shikata D, Matoba S, Hada M, Sakashita A, Inoue K, Ogura A. Suppression of endogenous retroviral enhancers in mouse embryos derived from somatic cell nuclear transfer. Front Genet 2022; 13:1032760. [PMID: 36425066 PMCID: PMC9681155 DOI: 10.3389/fgene.2022.1032760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Endogenous retroviruses (ERVs) in the mammalian genome play diverse roles in embryonic development. These developmentally related ERVs are generally repressed in somatic cells and therefore are likely repressed in embryos derived from somatic cell nuclear transfer (SCNT). In this study, we sought to identify ERVs that are repressed in SCNT-derived morulae, which might cause previously unexplained embryonic deaths shortly after implantation. Our transcriptome analysis revealed that, amongst ERV families, ERVK was specifically, and strongly downregulated in SCNT-derived embryos while other transposable elements including LINE and ERVL were unchanged. Among the subfamilies of ERVK, RLTR45-int was most repressed in SCNT-derived embryos despite its highest expression in control fertilized embryos. Interestingly, the nearby genes (within 5–50 kb, n = 18; 50–200 kb, n = 63) of the repressed RLTR45-int loci were also repressed in SCNT-derived embryos, with a significant correlation between them. Furthermore, lysine H3K27 acetylation was enriched around the RLTR45-int loci. These findings indicate that RLTR45-int elements function as enhancers of nearby genes. Indeed, deletion of two sequential RLTR45-int loci on chromosome 4 or 18 resulted in downregulations of nearby genes at the morula stage. We also found that RLTR45-int loci, especially SCNT-low, enhancer-like loci, were strongly enriched with H3K9me3, a repressive histone mark. Importantly, these H3K9me3-enriched regions were not activated by overexpression of H3K9me3 demethylase Kdm4d in SCNT-derived embryos, suggesting the presence of another epigenetic barrier repressing their expressions and enhancer activities in SCNT embryos. Thus, we identified ERVK subfamily RLTR45-int, putative enhancer elements, as a strong reprogramming barrier for SCNT (253 words).
Collapse
Affiliation(s)
- Daiki Shikata
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masashi Hada
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- *Correspondence: Atsuo Ogura,
| |
Collapse
|
13
|
Dynamic Transcriptional Landscape of Grass Carp (Ctenopharyngodon idella) Reveals Key Transcriptional Features Involved in Fish Development. Int J Mol Sci 2022; 23:ijms231911547. [PMID: 36232849 PMCID: PMC9569805 DOI: 10.3390/ijms231911547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
A high-quality baseline transcriptome is a valuable resource for developmental research as well as a useful reference for other studies. We gathered 41 samples representing 11 tissues/organs from 22 important developmental time points within 197 days of fertilization of grass carp eggs in order to systematically examine the role of lncRNAs and alternative splicing in fish development. We created a high-quality grass carp baseline transcriptome with a completeness of up to 93.98 percent by combining strand-specific RNA sequencing and single-molecule real-time RNA sequencing technologies, and we obtained temporal expression profiles of 33,055 genes and 77,582 transcripts during development and tissue differentiation. A family of short interspersed elements was preferentially expressed at the early stage of zygotic activation in grass carp, and its possible regulatory components were discovered through analysis. Additionally, after thoroughly analyzing alternative splicing events, we discovered that retained intron (RI) alternative splicing events change significantly in both zygotic activation and tissue differentiation. During zygotic activation, we also revealed the precise regulatory characteristics of the underlying functional RI events.
Collapse
|
14
|
The Role of Hypoxia-Associated Long Non-Coding RNAs in Breast Cancer. Cells 2022; 11:cells11101679. [PMID: 35626715 PMCID: PMC9139647 DOI: 10.3390/cells11101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide. In the United States, even with earlier diagnosis and treatment improvements, the decline in mortality has stagnated in recent years. More research is needed to provide better diagnostic, prognostic, and therapeutic tools for these patients. Long non-coding RNAs are newly described molecules that have extensive roles in breast cancer. Emerging reports have shown that there is a strong link between these RNAs and the hypoxic response of breast cancer cells, which may be an important factor for enhanced tumoral progression. In this review, we summarize the role of hypoxia-associated lncRNAs in the classic cancer hallmarks, describing their effects on the upstream and downstream hypoxia signaling pathway and the use of them as diagnostic and prognostic tools.
Collapse
|
15
|
Berrens RV, Yang A, Laumer CE, Lun ATL, Bieberich F, Law CT, Lan G, Imaz M, Bowness JS, Brockdorff N, Gaffney DJ, Marioni JC. Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat Biotechnol 2022; 40:546-554. [PMID: 34782740 PMCID: PMC7614850 DOI: 10.1038/s41587-021-01093-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) regulate diverse biological processes, from early development to cancer. Expression of young TEs is difficult to measure with next-generation, single-cell sequencing technologies because their highly repetitive nature means that short complementary DNA reads cannot be unambiguously mapped to a specific locus. Single CELl LOng-read RNA-sequencing (CELLO-seq) combines long-read single cell RNA-sequencing with computational analyses to measure TE expression at unique loci. We used CELLO-seq to assess the widespread expression of TEs in two-cell mouse blastomeres as well as in human induced pluripotent stem cells. Across both species, old and young TEs showed evidence of locus-specific expression with simulations demonstrating that only a small number of very young elements in the mouse could not be mapped back to the reference with high confidence. Exploring the relationship between the expression of individual elements and putative regulators revealed large heterogeneity, with TEs within a class showing different patterns of correlation and suggesting distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Rebecca V Berrens
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Andrian Yang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Christopher E Laumer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Florian Bieberich
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- ETH Zürich, Basel, Switzerland
| | - Cheuk-Ting Law
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Guocheng Lan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- School of Biomedical Sciences,Stem Cell and Regenerative Consortium, Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Maria Imaz
- Wellcome Sanger Institute, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Cambridge, UK
- Genomics Plc, Oxford, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
16
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
17
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol Reprod 2021; 105:918-933. [PMID: 34086842 DOI: 10.1093/biolre/ioab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (scNT) for production of viable offspring is relatively low as compared to in vitro fertilization (IVF), presumably due to deficiencies in epigenetic reprogramming of the donor cell genome. Such defects may also involve the population of small non-coding RNAs (sncRNAs), which are important during early embryonic development. The objective of this study was to examine dynamic changes in relative abundance of sncRNAs during the maternal-to embryonic transition (MET) in bovine embryos produced by scNT as compared to IVF by using RNA sequencing. When comparing populations of miRNA in scNT versus IVF embryos, only miR-2340, miR-345, and miR34a were differentially expressed in morulae, though many more miRNAs were differentially expressed when comparing across developmental stages. Also of interest, distinct populations of piwi-interacting like RNAs (pilRNAs) were identified in bovine embryos prior to and during embryonic genome activation (EGA) as compared bovine embryos post EGA and differentiated cells. Overall, sncRNA sequencing analysis of preimplantation embryos revealed largely similar profiles of sncRNAs for IVF and scNT embryos at the 2-cell, 8-cell, morula and blastocyst stages of development. However, these sncRNA profiles, including miRNA, piRNA and tRNA fragments, were notably distinct prior to and after completion of the MET.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
18
|
Yuan P, Guo Q, Guo H, Lian Y, Zhai F, Yan Z, Long C, Zhu P, Tang F, Qiao J, Yan L. The methylome of a human polar body reflects that of its sibling oocyte and its aberrance may indicate poor embryo development. Hum Reprod 2021; 36:318-330. [PMID: 33313772 DOI: 10.1093/humrep/deaa292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
STUDY QUESTION Is it possible to evaluate the methylome of individual oocytes to investigate the DNA methylome alterations in metaphase II (MII) oocytes with reduced embryo developmental potential? SUMMARY ANSWER The DNA methylome of each human first polar body (PB1) closely mirrored that of its sibling MII oocyte; hypermethylated long interspersed nuclear element (LINE) and long terminal repeats (LTRs) and methylation aberrations in PB1 promoter regions may indicate poor embryo development. WHAT IS KNOWN ALREADY The developmental potential of an embryo is determined by the oocyte's developmental competence, and the PB1 is a good substitute to examine the chromosomal status of the corresponding oocyte. However, DNA methylation, a key epigenetic modification, also regulates gene expression and embryo development. STUDY DESIGN, SIZE, DURATION Twelve pairs of PB1s and sibling MII oocytes were biopsied and sequenced to compare their methylomes. To further investigate the methylome of PB1s and the potential epigenetic factors that may affect oocyte quality, MII oocytes (n = 74) were fertilized through ICSI, while PB1s were biopsied and profiled to measure DNA methylation. The corresponding embryos were further cultured to track their development potential. The oocytes and sperm samples used in this study were donated by healthy volunteers with signed informed consent. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell methylome sequencing was applied to obtain the DNA methylation profiles of PB1s and oocytes. The DNA methylome of PB1s was compared between the respective group of oocytes that progressed to blastocysts and the group of oocytes that failed to develop. DNA methylation levels of corresponding regions and differentially methylated regions were calculated using customized Perl and R scripts. RNA-seq data were downloaded from a previously published paper and reanalysed. MAIN RESULTS AND THE ROLE OF CHANCE The results from PB1-MII oocyte pair validated that PB1 contains nearly the same methylome (average Pearson correlation is 0.92) with sibling MII oocyte. LINE and LTR expression increased markedly after fertilization. Moreover, the DNA methylation levels in LINE (including LINE1 and LINE2) and LTR were significantly higher in the PB1s of embryos that could not reach the blastocyst stage (Wilcoxon-Matt-Whitney test, P < 0.05). DNA methylation in PB1 promoters correlated negatively with gene expression of MII oocyte. Regarding the methylation status of the promoter regions, 66 genes were hypermethylated in the developmental arrested group, with their related functions (significantly enriched in several Gene Ontology terms) including transcription, positive regulation of adenylate cyclase activity, mitogen-activated protein kinase (MAPK) cascade and intracellular oestrogen receptor signalling pathway. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Data analysis performed in this study focused on the competence of human oocytes and compared them with maternal genetic and epigenetic profiles. Therefore, data regarding the potential regulatory roles of paternal genomes in embryo development are lacking. WIDER IMPLICATIONS OF THE FINDINGS The results from PB1-oocyte pairs demonstrated that PB1s shared similar methylomes with their sibling oocytes. The selection of the good embryos for transfer should not only rely on morphology but also consider the DNA methylation of the corresponding PB1 and therefore MII oocyte. The application of early-stage analysis of PB1 offers an option for high-quality oocyte and embryo selection, which provides an additional tool for elective single embryo transfer in assisted reproduction. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2018YFC1004003, 2017YFA0103801), the National Natural Science Foundation of China (81730038, 3187144, 81521002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16020703). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Qianying Guo
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Hongshan Guo
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ying Lian
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Fan Zhai
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Zhiqiang Yan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Chuan Long
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Ping Zhu
- Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fuchou Tang
- Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China.,Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| |
Collapse
|
19
|
The Regulation and Functions of Endogenous Retrovirus in Embryo Development and Stem Cell Differentiation. Stem Cells Int 2021; 2021:6660936. [PMID: 33727936 PMCID: PMC7937486 DOI: 10.1155/2021/6660936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Endogenous retroviruses (ERVs) are repetitive sequences in the genome, belonging to the retrotransposon family. During the course of life, ERVs are associated with multiple aspects of chromatin and transcriptional regulation in development and pathological conditions. In mammalian embryos, ERVs are extensively activated in early embryo development, but with a highly restricted spatial-temporal pattern; and they are drastically silenced during differentiation with exceptions in extraembryonic tissue and germlines. The dynamic activation pattern of ERVs raises questions about how ERVs are regulated in the life cycle and whether they are functionally important to cell fate decision during early embryo and somatic cell development. Therefore, in this review, we focus on the pieces of evidence demonstrating regulations and functions of ERVs during stem cell differentiation, which suggests that ERV activation is not a passive result of cell fate transition but the active epigenetic and transcriptional regulation during mammalian development and stem cell differentiation.
Collapse
|
20
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
21
|
Shao W, Wang T. Transcript assembly improves expression quantification of transposable elements in single-cell RNA-seq data. Genome Res 2021; 31:88-100. [PMID: 33355230 PMCID: PMC7849386 DOI: 10.1101/gr.265173.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022]
Abstract
Transposable elements (TEs) are an integral part of the host transcriptome. TE-containing noncoding RNAs (ncRNAs) show considerable tissue specificity and play important roles during development, including stem cell maintenance and cell differentiation. Recent advances in single-cell RNA-seq (scRNA-seq) revolutionized cell type-specific gene expression analysis. However, effective scRNA-seq quantification tools tailored for TEs are lacking, limiting our ability to dissect TE expression dynamics at single-cell resolution. To address this issue, we established a TE expression quantification pipeline that is compatible with scRNA-seq data generated across multiple technology platforms. We constructed TE-containing ncRNA references using bulk RNA-seq data and showed that quantifying TE expression at the transcript level effectively reduces noise. As proof of principle, we applied this strategy to mouse embryonic stem cells and successfully captured the expression profile of endogenous retroviruses in single cells. We further expanded our analysis to scRNA-seq data from early stages of mouse embryogenesis. Our results illustrated the dynamic TE expression at preimplantation stages and revealed 146 TE-containing ncRNA transcripts with substantial tissue specificity during gastrulation and early organogenesis.
Collapse
Affiliation(s)
- Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
22
|
Ruggeri E, Lira-Albarrán S, Grow EJ, Liu X, Harner R, Maltepe E, Ramalho-Santos M, Donjacour A, Rinaudo P. Sex-specific epigenetic profile of inner cell mass of mice conceived in vivo or by IVF. Mol Hum Reprod 2020; 26:866-878. [PMID: 33010164 PMCID: PMC7821709 DOI: 10.1093/molehr/gaaa064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The preimplantation stage of development is exquisitely sensitive to environmental stresses, and changes occurring during this developmental phase may have long-term health effects. Animal studies indicate that IVF offspring display metabolic alterations, including hypertension, glucose intolerance and cardiac hypertrophy, often in a sexual dimorphic fashion. The detailed nature of epigenetic changes following in-vitro culture is, however, unknown. This study was performed to evaluate the epigenetic (using whole-genome bisulfite sequencing (WGBS) and assay for transposase-accessible chromatin using sequencing (ATAC-seq)) and transcriptomic changes (using RNA-seq) occurring in the inner cell mass (ICM) of male or female mouse embryos generated in vivo or by IVF. We found that the ICM of IVF embryos, compared to the in-vivo ICM, differed in 3% of differentially methylated regions (DMRs), of which 0.1% were located on CpG islands. ATAC-seq revealed that 293 regions were more accessible and 101 were less accessible in IVF embryos, while RNA-seq revealed that 21 genes were differentially regulated in IVF embryos. Functional enrichment analysis revealed that stress signalling (STAT and NF-kB signalling), developmental processes and cardiac hypertrophy signalling showed consistent changes in WGBS and ATAC-seq platforms. In contrast, male and female embryos showed minimal changes. Male ICM had an increased number of significantly hyper-methylated DMRs, while only 27 regions showed different chromatin accessibility and only one gene was differentially expressed. In summary, this study provides the first comprehensive analysis of DNA methylation, chromatin accessibility and RNA expression changes induced by IVF in male and female ICMs. This dataset can be of value to all researchers interested in the developmental origin of health and disease (DOHaD) hypothesis and might lead to a better understanding of how early embryonic manipulation may affect adult health.
Collapse
Affiliation(s)
- Elena Ruggeri
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
- San Diego Zoo Global, Institute for Conservation Research, Reproductive Sciences, Escondido, CA, 92027, USA
| | - Saúl Lira-Albarrán
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Edward J Grow
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Xiaowei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Royce Harner
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, 94143, USA
| | - Miguel Ramalho-Santos
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, ON, M5G1X5, Canada
- Department of Molecular Genetics, University of Toronto, ON, M5S1A8, Canada
| | - Annemarie Donjacour
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
23
|
Babenko V, Babenko R, Orlov Y. Analyzing a putative enhancer of optic disc morphology. BMC Genet 2020; 21:73. [PMID: 33092545 PMCID: PMC7583307 DOI: 10.1186/s12863-020-00873-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background Genome-wide association studies have identified the CDC7-TGFBR3 intergenic region on chromosome 1 to be strongly associated with optic disc area size. The mechanism of its function remained unclear until new data on eQTL markers emerged from the Genotype-Tissue Expression project. The target region was found to contain a strong silencer of the distal (800 kb) Transcription Factor (TF) gene GFI1 (Growth Factor Independent Transcription Repressor 1) specifically in neuroendocrine cells (pituitary gland). GFI1 has also been reported to be involved in the development of sensory neurons and hematopoiesis. Therefore, GFI1, being a developmental gene, is likely to affect optic disc area size by altering the expression of the associated genes via long-range interactions. Results Distribution of haplotypes in the putative enhancer region has been assessed using the data on four continental supergroups generated by the 1000 Genomes Project. The East Asian (EAS) populations were shown to manifest a highly homogenous unimodal haplotype distribution pattern within the region with the major haplotype occurring with the frequency of 0.9. Another European specific haplotype was observed with the frequency of 0.21. The major haplotype appears to be involved in silencing GFI1repressor gene expression, which might be the cause of increased optic disc area characteristic of the EAS populations. The enhancer/eQTL region overlaps AluJo element, which implies that this particular regulatory element is primate-specific and confined to few tissues. Conclusion Population specific distribution of GFI1 enhancer alleles may predispose certain ethnic groups to glaucoma.
Collapse
Affiliation(s)
- Vladimir Babenko
- Institute of Cytology and Genetics, Lavrentyeva 10, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Pirogova Str 2, Novosibirsk, 630090, Russia.
| | - Roman Babenko
- Institute of Cytology and Genetics, Lavrentyeva 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova Str 2, Novosibirsk, 630090, Russia
| | - Yuri Orlov
- Institute of Cytology and Genetics, Lavrentyeva 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova Str 2, Novosibirsk, 630090, Russia.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya 8-2, Moscow, 119991, Russia
| |
Collapse
|
24
|
Yap MW, Young GR, Varnaite R, Morand S, Stoye JP. Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses. PLoS Genet 2020; 16:e1008471. [PMID: 32525879 PMCID: PMC7313476 DOI: 10.1371/journal.pgen.1008471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/23/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses and their hosts are locked in an evolutionary race where resistance to infection is acquired by the hosts while viruses develop strategies to circumvent these host defenses. Forming one arm of the host defense armory are cell autonomous restriction factors like Fv1. Originally described as protecting laboratory mice from infection by murine leukemia virus (MLV), Fv1s from some wild mice have also been found to restrict non-MLV retroviruses, suggesting an important role in the protection against viruses in nature. We surveyed the Fv1 genes of wild mice trapped in Thailand and characterized their restriction activities against a panel of retroviruses. An extra copy of the Fv1 gene, named Fv7, was found on chromosome 6 of three closely related Asian species of mice: Mus caroli, M. cervicolor, and M. cookii. The presence of flanking repeats suggested it arose by LINE-mediated retroduplication within their most recent common ancestor. A high degree of natural variation was observed in both Fv1 and Fv7 and, on top of positive selection at certain residues, insertions and deletions were present that changed the length of the reading frames. These genes exhibited a range of restriction phenotypes, with activities directed against gamma-, spuma-, and lentiviruses. It seems likely, at least in the case of M. caroli, that the observed gene duplication may expand the breadth of restriction beyond the capacity of Fv1 alone and that one or more such viruses have recently driven or continue to drive the evolution of the Fv1 and Fv7 genes.
Collapse
Affiliation(s)
| | | | | | - Serge Morand
- Centre National de la Recherche Scientifique-Centre de coopération
Internationale en Recherche Agronomique pour le Développement Animal et Gestion
Intégrée des Risques, Faculty of Veterinary Technology, Kasetsart University,
Bangkok, Thailand
| | - Jonathan P. Stoye
- The Francis Crick Institute, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United
Kingdom
| |
Collapse
|
25
|
Chen L, Pan X, Guo W, Gan Z, Zhang YH, Niu Z, Huang T, Cai YD. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. Genomics 2020; 112:2524-2534. [PMID: 32045671 DOI: 10.1016/j.ygeno.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
The development of embryonic cells involves several continuous stages, and some genes are related to embryogenesis. To date, few studies have systematically investigated changes in gene expression profiles during mammalian embryogenesis. In this study, a computational analysis using machine learning algorithms was performed on the gene expression profiles of mouse embryonic cells at seven stages. First, the profiles were analyzed through a powerful Monte Carlo feature selection method for the generation of a feature list. Second, increment feature selection was applied on the list by incorporating two classification algorithms: support vector machine (SVM) and repeated incremental pruning to produce error reduction (RIPPER). Through SVM, we extracted several latent gene biomarkers, indicating the stages of embryonic cells, and constructed an optimal SVM classifier that produced a nearly perfect classification of embryonic cells. Furthermore, some interesting rules were accessed by the RIPPER algorithm, suggesting different expression patterns for different stages.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - XiaoYong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| | - Wei Guo
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zijun Gan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
26
|
Jeon J, Park JS, Min B, Chung SK, Kim MK, Kang YK. Retroelement Insertion in a CRISPR/Cas9 Editing Site in the Early Embryo Intensifies Genetic Mosaicism. Front Cell Dev Biol 2019; 7:273. [PMID: 31781562 PMCID: PMC6857330 DOI: 10.3389/fcell.2019.00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Continued CRISPR/Cas9-mediated editing activity that allows differential and asynchronous modification of alleles in successive cell generations expands allelic complexity. To understand the earliest events during CRISPR/Cas9 editing and the allelic selection among the progeny of subsequent cell divisions, we inspected in detail the genotypes of 4- and 8-cell embryos and embryonic stem cells (ESCs) after microinjection of a CRISPR toolkit into the zygotes. We found a higher editing frequency in 8-cell embryos than in 4-cell embryos, indicating that the CRISPR/Cas9 activity persisted through the 8-cell stage. Analysis of a CRISPR/Cas9 transgenic founder mouse revealed that four different alleles were present in its organs in different combinations and that its germline included three different mutant alleles, as shown by the genotypes of the pups. The indel depth, which measured the extent of indels at the sequence level within single embryos, decreased significantly as the embryos advanced to form ESCs, suggesting that exclusion of fatal indels occurred in the subsequent cell generations. Interestingly, we discovered that the CRISPR sites frequently contained introduced retroelement sequences and that this occurred preferentially with certain classes of retroelements. Therefore, in addition to CRISPR/Cas9's innate mechanism of separate, differential enzymatic modifications of alleles, the frequent retroelement insertions that occur in early mouse embryos during CRISPR/Cas9 editing further expand the allelic diversity and mosaicism in the resulting transgenic founders.
Collapse
Affiliation(s)
- Jeehyun Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Animal Science, Chungnam National University, Daejeon, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sun-Ku Chung
- Division of Clinical Medicine, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Min Kyu Kim
- Department of Animal Science, Chungnam National University, Daejeon, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
27
|
Madissoon E, Damdimopoulos A, Katayama S, Krjutškov K, Einarsdottir E, Mamia K, De Groef B, Hovatta O, Kere J, Damdimopoulou P. Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development. Sci Rep 2019; 9:8411. [PMID: 31182756 PMCID: PMC6557853 DOI: 10.1038/s41598-019-44882-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023] Open
Abstract
Pleomorphic adenoma gene 1 (PLAG1) is a transcription factor involved in cancer and growth. We discovered a de novo DNA motif containing a PLAG1 binding site in the promoters of genes activated during zygotic genome activation (ZGA) in human embryos. This motif was located within an Alu element in a region that was conserved in the murine B1 element. We show that maternally provided Plag1 is needed for timely mouse preimplantation embryo development. Heterozygous mouse embryos lacking maternal Plag1 showed disrupted regulation of 1,089 genes, spent significantly longer time in the 2-cell stage, and started expressing Plag1 ectopically from the paternal allele. The de novo PLAG1 motif was enriched in the promoters of the genes whose activation was delayed in the absence of Plag1. Further, these mouse genes showed a significant overlap with genes upregulated during human ZGA that also contain the motif. By gene ontology, the mouse and human ZGA genes with de novo PLAG1 motifs were involved in ribosome biogenesis and protein synthesis. Collectively, our data suggest that PLAG1 affects embryo development in mice and humans through a conserved DNA motif within Alu/B1 elements located in the promoters of a subset of ZGA genes.
Collapse
Affiliation(s)
- Elo Madissoon
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis core facility, Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, 50410, Tartu, Estonia.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
| | - Katariina Mamia
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Outi Hovatta
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden. .,Research Programs Unit, Molecular Neurology, University of Helsinki, and Folkhälsan Institute of Genetics, 00014, Helsinki, Finland. .,School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, WC2R 2LS, UK.
| | - Pauliina Damdimopoulou
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden. .,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| |
Collapse
|
28
|
Yandım C, Karakülah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics 2019; 20:439. [PMID: 31151386 PMCID: PMC6545021 DOI: 10.1186/s12864-019-5803-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The last decade witnessed a number of genome-wide studies on human pre-implantation, which mostly focused on genes and provided only limited information on repeats, excluding the satellites. Considering the fact that repeats constitute a large portion of our genome with reported links to human physiology and disease, a thorough understanding of their spatiotemporal regulation during human embryogenesis will give invaluable clues on chromatin dynamics across time and space. Therefore, we performed a detailed expression analysis of all repetitive DNA elements including the satellites across stages of human pre-implantation and embryonic stem cells. RESULTS We uncovered stage-specific expressions of more than a thousand repeat elements whose expressions fluctuated with a mild global decrease at the blastocyst stage. Most satellites were highly expressed at the 4-cell level and expressions of ACRO1 and D20S16 specifically peaked at this point. Whereas all members of the SVA elements were highly upregulated at 8-cell and morula stages, other transposons and small RNA repeats exhibited a high level of variation among their specific subtypes. Our repeat enrichment analysis in gene promoters coupled with expression correlations highlighted potential links between repeat expressions and nearby genes, emphasising mostly 8-cell and morula specific genes together with SVA_D, LTR5_Hs and LTR70 transposons. The DNA methylation analysis further complemented the understanding on the mechanistic aspects of the repeatome's regulation per se and revealed critical stages where DNA methylation levels are negatively correlating with repeat expression. CONCLUSIONS Taken together, our study shows that specific expression patterns are not exclusive to genes and long non-coding RNAs but the repeatome also exhibits an intriguingly dynamic pattern at the global scale. Repeats identified in this study; particularly satellites, which were historically associated with heterochromatin, and those with potential links to nearby gene expression provide valuable insights into the understanding of key events in genomic regulation and warrant further research in epigenetics, genomics and developmental biology.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey.,Department of Genetics and Bioengineering, İzmir University of Economics, Faculty of Engineering, 35330, Balçova, İzmir, Turkey.,Department of Medicine, Division of Brain Sciences, Hammersmith Hospital, Imperial College London, Faculty of Medicine, W12 0NN, London, UK
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey. .,İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
29
|
Reznik B, Cincotta SA, Jaszczak RG, Mateo LJ, Shen J, Cao M, Baskin L, Ye P, An W, Laird DJ. Heterogeneity of transposon expression and activation of the repressive network in human fetal germ cells. Development 2019; 146:dev.171157. [PMID: 30658985 DOI: 10.1242/dev.171157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic resetting in germ cells during development de-represses transposable elements (TEs). piRNAs protect fetal germ cells by targeted mRNA destruction and deposition of repressive epigenetic marks. Here, we provide the first evidence for an active piRNA pathway and TE repression in germ cells of human fetal testis. We identify pre-pachytene piRNAs with features of secondary amplification that map most abundantly to the long interspersed element type 1 (L1) family of TEs. L1-ORF1p expression is heterogeneous in fetal germ cells, peaks at mid-gestation and declines concomitantly with increases in piRNAs, nuclear localization of HIWI2 and an increase in H3K9me3. Surprisingly, the same cells with accumulation of L1-ORF1p display highest levels of HIWI2 and H3K9me3. Conversely, the earliest germ cells with high levels of L1-ORF1p express low levels of the chaperone HSP90α. We propose that a subset of germ cells resists L1 expression, whereas L1-expressing germ cells activate the repression pathway that leads to epigenetic silencing of L1 via H3K9me3.
Collapse
Affiliation(s)
- Boris Reznik
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebecca G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Leslie J Mateo
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ping Ye
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57105, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Pirogov SA, Maksimenko OG, Georgiev PG. Transposable Elements in the Evolution of Gene Regulatory Networks. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Masbou AK, Friedenthal JB, McCulloh DH, McCaffrey C, Fino ME, Grifo JA, Licciardi F. A Comparison of Pregnancy Outcomes in Patients Undergoing Donor Egg Single Embryo Transfers With and Without Preimplantation Genetic Testing. Reprod Sci 2018; 26:1661-1665. [PMID: 30572797 DOI: 10.1177/1933719118820474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two of the many milestone developments in the field of assisted reproduction have been oocyte donation and preimplantation genetic testing for aneuploidy (PGT-A). Because it has been demonstrated that even young women produce a meaningful proportion of aneuploid embryos, screening out such abnormalities could potentially increase the efficacy of donor egg (DE) cycles. In this retrospective cohort study, we investigated the effect of PGT-A on DE cycle outcomes, including implantation rate (IR), spontaneous abortion rate (SABR), and ongoing pregnancy/live birth rate. We used fresh and frozen donor cycles not using PGT-A as comparison groups; all cases involved single embryo transfer. Data analysis revealed that PGT-A did not improve pregnancy outcome metrics in DE cycles, although there was a trend toward decreasing the SABR. There was a significant increase in IR with fresh cycles outperforming all frozen cycles. Overall, these results suggest that the benefits of performing PGT-A on embryos derived from young DEs may be limited and that there is an effect of the freezing process on pregnancy outcomes. These findings may provide useful insights into the science and practice of PGT-A across all of its applications.
Collapse
Affiliation(s)
| | | | | | | | | | - James A Grifo
- New York University Fertility Center, New York, NY, USA
| | | |
Collapse
|
32
|
Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 2018; 19:534. [PMID: 30567491 PMCID: PMC6299935 DOI: 10.1186/s12859-018-2486-6] [Citation(s) in RCA: 942] [Impact Index Per Article: 134.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis, differential expression, and pathway analysis. RESULTS iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species. The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we analyzed an RNA-Seq dataset of lung fibroblasts with Hoxa1 knockdown and revealed the possible roles of SP1 and E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. In both examples, we validated known molecular pathways and generated novel, testable hypotheses. CONCLUSIONS Combining comprehensive analytic functionalities with massive annotation databases, iDEP ( http://ge-lab.org/idep/ ) enables biologists to easily translate transcriptomic and proteomic data into actionable insights.
Collapse
Affiliation(s)
- Steven Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Box 2225, Brookings, SD 57007 USA
| | - Eun Wo Son
- Department of Mathematics and Statistics, South Dakota State University, Box 2225, Brookings, SD 57007 USA
| | - Runan Yao
- Department of Mathematics and Statistics, South Dakota State University, Box 2225, Brookings, SD 57007 USA
| |
Collapse
|
33
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
34
|
Tobar-Tosse F, Veléz PE, Ocampo-Toro E, Moreno PA. Structure, clustering and functional insights of repeats configurations in the upstream promoter region of the human coding genes. BMC Genomics 2018; 19:862. [PMID: 30537933 PMCID: PMC6288848 DOI: 10.1186/s12864-018-5196-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Repetitive DNA sequences (Repeats) are significant regions in the human genome that have a specific genomic distribution, structure, and several binding sites for genome architecture and function. In consequence, the possible configurations of Repeats in specific and dynamic regions like the gene promoters could define footprints for molecular mechanisms, pathways, and cell function beyond their density in the genome. Here we explored the distribution of Repeats in the upstream promoter region of the human coding genes with the aim to identify specific configurations, clusters and functional meaning of those elements. Our method includes structural descriptions, hierarchical clustering, pathway association, and functional enrichment analysis. Results We report here several configurations of Repeats in the upstream promoter region (UPR), which define 2729 patterns for the 80% of the human coding genes. There are 47 types of Repeats in these configurations, where the most frequent were Alu, Low_complexity, MIR, Simple_repeat, LINE/L2, LINE/L1, hAT-Charlie, and ERV1. The distribution, length, and the high frequency of Repeats in the UPR defines several patterns and clusters, where the minimum frequency of configuration among Repeats was higher than 0.7. We found those clusters associated with cellular pathways and ontologies; thus, it was plausible to determine groups of Repeats to specific functional insights, for example, pathways for Genetic Information Processing or Metabolism shows particular groups of Repeats with specific configurations. Conclusion Based on these findings, we propose that specific configurations of repetitive elements describe frequent patterns in the upstream promoter for sets of human coding genes, which those correlated to specific and essential cell pathways and functions. Electronic supplementary material The online version of this article (10.1186/s12864-018-5196-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabian Tobar-Tosse
- Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Patricia E Veléz
- Departamento de Biología, FACNED, Universidad del Cauca, Popayán, Colombia
| | - Eliana Ocampo-Toro
- Especialización en Hematología y Oncología Clínica, Universidad Libre Seccional Cali, Cali, Colombia
| | - Pedro A Moreno
- Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
35
|
Colombo AR, Triche T, Ramsingh G. Transposable Element Expression in Acute Myeloid Leukemia Transcriptome and Prognosis. Sci Rep 2018; 8:16449. [PMID: 30401833 PMCID: PMC6219593 DOI: 10.1038/s41598-018-34189-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Over half of the human genome is comprised of transposable elements (TE). Despite large-scale studies of the transcriptome in cancer, a comprehensive look at TE expression and its relationship to various mutations or prognosis has not been performed. We characterized the expression of TE in 178 adult acute myeloid leukemia (AML) patients using transcriptome data from The Cancer Genome Atlas. We characterized mutation specific dysregulation of TE expression using a multivariate linear model. We identified distinct patterns of TE expression associated with specific mutations and transcriptional networks. Genes regulating methylation was not associated with significant change in TE expression. Using an unpenalized cox regression analysis we identified a TE expression signature that predicted prognosis in AML. We identified 14 candidate prognostic TE transcripts (TEP) that classified AML as high/low-risk and this was independent of mutation-based and coding-gene expression based risk-stratification. TEP was able to predict prognosis in independent cohorts of 284 pediatric AML patients and 19 relapsed adult AML patients. This first comprehensive study of TE expression in AML demonstrates that TE expression can serve as a biomarker for prognosis in AML, and provides novel insights into the biology of AML. Studies characterizing its role in other cancers are warranted.
Collapse
Affiliation(s)
- Anthony R Colombo
- Jane Anne Nohl Division of Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California, 90033, USA
| | - Timothy Triche
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| | - Giridharan Ramsingh
- Jane Anne Nohl Division of Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California, 90033, USA.
| |
Collapse
|
36
|
Weltner J, Balboa D, Katayama S, Bespalov M, Krjutškov K, Jouhilahti EM, Trokovic R, Kere J, Otonkoski T. Human pluripotent reprogramming with CRISPR activators. Nat Commun 2018; 9:2643. [PMID: 29980666 PMCID: PMC6035213 DOI: 10.1038/s41467-018-05067-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/13/2018] [Indexed: 02/08/2023] Open
Abstract
CRISPR-Cas9-based gene activation (CRISPRa) is an attractive tool for cellular reprogramming applications due to its high multiplexing capacity and direct targeting of endogenous loci. Here we present the reprogramming of primary human skin fibroblasts into induced pluripotent stem cells (iPSCs) using CRISPRa, targeting endogenous OCT4, SOX2, KLF4, MYC, and LIN28A promoters. The low basal reprogramming efficiency can be improved by an order of magnitude by additionally targeting a conserved Alu-motif enriched near genes involved in embryo genome activation (EEA-motif). This effect is mediated in part by more efficient activation of NANOG and REX1. These data demonstrate that human somatic cells can be reprogrammed into iPSCs using only CRISPRa. Furthermore, the results unravel the involvement of EEA-motif-associated mechanisms in cellular reprogramming.
Collapse
Affiliation(s)
- Jere Weltner
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Maxim Bespalov
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
- Competence Centre on Health Technologies, Tartu, 50410, Estonia
| | - Eeva-Mari Jouhilahti
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Ras Trokovic
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Juha Kere
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden.
- School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK.
- Folkhälsan Institute of Genetics, Helsinki, 00290, Finland.
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland.
| |
Collapse
|
37
|
Royall AH, Maeso I, Dunwell TL, Holland PWH. Mouse Obox and Crxos modulate preimplantation transcriptional profiles revealing similarity between paralogous mouse and human homeobox genes. EvoDevo 2018; 9:2. [PMID: 29423137 PMCID: PMC5787275 DOI: 10.1186/s13227-018-0091-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/07/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND ETCHbox genes are eutherian-specific homeobox genes expressed during preimplantation development at a time when the first cell lineage decisions are being made. The mouse has an unusual repertoire of ETCHbox genes with several gene families lost in evolution and the remaining two, Crxos and Obox, greatly divergent in sequence and number. Each has undergone duplication to give a double homeodomain Crxos locus and a large cluster of over 60 Obox loci. The gene content differences between species raise important questions about how evolution can tolerate loss of genes implicated in key developmental events. RESULTS We find that Crxos internal duplication occurred in the mouse lineage, while Obox duplication was stepwise, generating subgroups with distinct sequence and expression. Ectopic expression of three Obox genes and a Crxos transcript in primary mouse embryonic cells followed by transcriptome sequencing allowed investigation into their functional roles. We find distinct transcriptomic influences for different Obox subgroups and Crxos, including modulation of genes related to zygotic genome activation and preparation for blastocyst formation. Comparison with similar experiments performed using human homeobox genes reveals striking overlap between genes downstream of mouse Crxos and genes downstream of human ARGFX. CONCLUSIONS Mouse Crxos and human ARGFX homeobox genes are paralogous rather than orthologous, yet they have evolved to regulate a common set of genes. This suggests there was compensation of function alongside gene loss through co-option of a different locus. Functional compensation by non-orthologous genes with dissimilar sequences is unusual but may indicate underlying distributed robustness. Compensation may be driven by the strong evolutionary pressure for successful early embryo development.
Collapse
Affiliation(s)
- Amy H. Royall
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Thomas L. Dunwell
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Peter W. H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
38
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Colombo AR, Zubair A, Thiagarajan D, Nuzhdin S, Triche TJ, Ramsingh G. Suppression of Transposable Elements in Leukemic Stem Cells. Sci Rep 2017; 7:7029. [PMID: 28765607 PMCID: PMC5539300 DOI: 10.1038/s41598-017-07356-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/23/2017] [Indexed: 01/15/2023] Open
Abstract
Genomic transposable elements (TEs) comprise nearly half of the human genome. The expression of TEs is considered potentially hazardous, as it can lead to insertional mutagenesis and genomic instability. However, recent studies have revealed that TEs are involved in immune-mediated cell clearance. Hypomethylating agents can increase the expression of TEs in cancer cells, inducing ‘viral mimicry’, causing interferon signalling and cancer cell killing. To investigate the role of TEs in the pathogenesis of acute myeloid leukaemia (AML), we studied TE expression in several cell fractions of AML while tracking its development (pre-leukemic haematopoietic stem cells, leukemic stem cells [LSCs], and leukemic blasts). LSCs, which are resistant to chemotherapy and serve as reservoirs for relapse, showed significant suppression of TEs and interferon pathways. Similarly, high-risk cases of myelodysplastic syndrome (MDS) showed far greater suppression of TEs than low-risk cases. We propose TE suppression as a mechanism for immune escape in AML and MDS. Repression of TEs co-occurred with the upregulation of several genes known to modulate TE expression, such as RNA helicases and autophagy genes. Thus, we have identified potential pathways that can be targeted to activate cancer immunogenicity via TEs in AML and MDS.
Collapse
Affiliation(s)
- Anthony R Colombo
- Keck School of Medicine of University of Southern California, Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Los Angeles, California, 90033, USA
| | - Asif Zubair
- University of Southern California, Department of Molecular and Computational Biology, Los Angeles, CA, 90089-2910, USA
| | - Devi Thiagarajan
- Keck School of Medicine of University of Southern California, Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Los Angeles, California, 90033, USA.,Langone Medical Center of New York University School of Medicine, Endocrinology Division for the Study of Diabetes, 550 1st Avenue, New York, NY, 10016, USA
| | - Sergey Nuzhdin
- University of Southern California, Department of Molecular and Computational Biology, Los Angeles, CA, 90089-2910, USA
| | - Timothy J Triche
- Keck School of Medicine of University of Southern California, Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Los Angeles, California, 90033, USA.
| | - Giridharan Ramsingh
- Keck School of Medicine of University of Southern California, Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Los Angeles, California, 90033, USA.
| |
Collapse
|