1
|
Lorente-Leal V, Pozo P, Bezos J, Collado S, Vicente J, Stuber T, Álvarez J, de Juan L, Romero B. Revisiting Mycobacterium bovis SB0121 genetic diversity reflects the complexity behind bovine tuberculosis persistence in Spain. Prev Vet Med 2025; 239:106519. [PMID: 40215864 DOI: 10.1016/j.prevetmed.2025.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025]
Abstract
Identifying the causes of tuberculosis (TB) chronicity in cattle herds in Spain is a complex endeavour, mainly due to the multiple factors involved in persistence and the clonal population structure of the Mycobacterium tuberculosis complex. This study assessed the genomic diversity among M. bovis isolates belonging to SB0121, the most prevalent genotype in Spain, in chronically-infected herds. A total of 70 M. bovis isolates from 22 herds, located in six Spanish provinces, in which M. bovis SB0121 was isolated in at least three different sampling events were sequenced. Forty-three isolates from wildlife and cattle herds from the same or neighbouring municipalities to the problem herds were also included to identify putative local transmission events. The within-herd analysis revealed a highly complex scenario, in which the majority (95.45 %; n = 21) of the herds were affected by highly distant strains (> 12 SNP differences), probably as a result of separate introductions. Highly similar isolates (< 6 SNPs) were retrieved in different sampling events from 11 herds, likely indicating active transmission of the outbreak strain or continued exposure to the same source of infection. The between-herd and interspecies comparison suggested the occurrence of several putative epidemiological links between cattle and wildlife species from the same or neighbouring municipalities, reflecting the complex epidemiology of the disease in some of the studied areas. The findings of this study highlight the usefulness of whole genome sequencing to study bTB breakdowns and pinpoints its potential for unravelling possible sources of persistence in cattle herds.
Collapse
Affiliation(s)
- Víctor Lorente-Leal
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain.
| | - Pilar Pozo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain; Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - Soledad Collado
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de Sanidad de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Joaquín Vicente
- Health and Biotechnology group (SaBio), Instituto de Investigaciones en Recursos Cinegéticos, Universidad de Castilla la Mancha, Spain
| | - Tod Stuber
- National Veterinary Services Laboratories (NVSL) Diagnostic Bacteriology and Pathology Laboratory, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, USA
| | - Julio Álvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain; Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain; Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain; Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|
2
|
Moens C, Bogaerts B, Lorente-Leal V, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Mostin L, Fretin D, Marché S. Genomic comparison between Mycobacterium bovis and Mycobacterium microti and in silico analysis of peptide-based biomarkers for serodiagnosis. Front Vet Sci 2024; 11:1446930. [PMID: 39372902 PMCID: PMC11449866 DOI: 10.3389/fvets.2024.1446930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, there has been an increase in the number of reported cases of Mycobacterium microti infection in various animals, which can interfere with the ante-mortem diagnosis of animal tuberculosis caused by Mycobacterium bovis. In this study, whole genome sequencing (WGS) was used to search for protein-coding genes to distinguish M. microti from M. bovis. In addition, the population structure of the available M. microti genomic WGS datasets is described, including three novel Belgian isolates from infections in alpacas. Candidate genes were identified by examining the presence of the regions of difference and by a pan-genome analysis of the available WGS data. A total of 80 genes showed presence-absence variation between the two species, including genes encoding Proline-Glutamate (PE), Proline-Proline-Glutamate (PPE), and Polymorphic GC-Rich Sequence (PE-PGRS) proteins involved in virulence and host interaction. Filtering based on predicted subcellular localization, sequence homology and predicted antigenicity resulted in 28 proteins out of 80 that were predicted to be potential antigens. As synthetic peptides are less costly and variable than recombinant proteins, an in silico approach was performed to identify linear and discontinuous B-cell epitopes in the selected proteins. From the 28 proteins, 157 B-cell epitope-based peptides were identified that discriminated between M. bovis and M. microti species. Although confirmation by in vitro testing is still required, these candidate synthetic peptides containing B-cell epitopes could potentially be used in serological tests to differentiate cases of M. bovis from M. microti infection, thus reducing misdiagnosis in animal tuberculosis surveillance.
Collapse
Affiliation(s)
- Charlotte Moens
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
- Laboratory of Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Victor Lorente-Leal
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Laurent Mostin
- Experimental Center Machelen, Sciensano, Machelen, Belgium
| | - David Fretin
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Sylvie Marché
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
3
|
Wood AJ, Benton CH, Delahay RJ, Marion G, Palkopoulou E, Pooley CM, Smith GC, Kao RR. The utility of whole-genome sequencing to identify likely transmission pairs for pathogens with slow and variable evolution. Epidemics 2024; 48:100787. [PMID: 39197305 DOI: 10.1016/j.epidem.2024.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Pathogen whole-genome sequencing (WGS) has been used to track the transmission of infectious diseases in extraordinary detail, especially for pathogens that undergo fast and steady evolution, as is the case with many RNA viruses. However, for other pathogens evolution is less predictable, making interpretation of these data to inform our understanding of their epidemiology more challenging and the value of densely collected pathogen genome data uncertain. Here, we assess the utility of WGS for one such pathogen, in the "who-infected-whom" identification problem. We study samples from hosts (130 cattle, 111 badgers) with confirmed infection of M. bovis (causing bovine Tuberculosis), which has an estimated clock rate as slow as ∼0.1-1 variations per year. For each potential pathway between hosts, we calculate the relative likelihood that such a transmission event occurred. This is informed by an epidemiological model of transmission, and host life history data. By including WGS data, we shrink the number of plausible pathways significantly, relative to those deemed likely on the basis of life history data alone. Despite our uncertainty relating to the evolution of M. bovis, the WGS data are therefore a valuable adjunct to epidemiological investigations, especially for wildlife species whose life history data are sparse.
Collapse
Affiliation(s)
- A J Wood
- Roslin Institute, University of Edinburgh, United Kingdom
| | - C H Benton
- Animal & Plant Health Agency, United Kingdom
| | - R J Delahay
- Animal & Plant Health Agency, United Kingdom
| | - G Marion
- Biomathematics and Statistics Scotland, United Kingdom
| | | | - C M Pooley
- Biomathematics and Statistics Scotland, United Kingdom
| | - G C Smith
- Animal & Plant Health Agency, United Kingdom
| | - R R Kao
- Roslin Institute, University of Edinburgh, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom.
| |
Collapse
|
4
|
Pereira AC, Lourenço J, Themudo G, Botelho A, Cunha MV. Population structure and history of Mycobacterium bovis European 3 clonal complex reveal transmission across ecological corridors of unrecognized importance in Portugal. Microbiol Spectr 2024; 12:e0382923. [PMID: 38771094 PMCID: PMC11218495 DOI: 10.1128/spectrum.03829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Lourenço
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo Themudo
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Botelho
- INIAV, I.P.—National Institute for Agrarian and Veterinary Research, Oeiras, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Pinto D, Themudo G, Pereira AC, Botelho A, Cunha MV. Rescue of Mycobacterium bovis DNA Obtained from Cultured Samples during Official Surveillance of Animal TB: Key Steps for Robust Whole Genome Sequence Data Generation. Int J Mol Sci 2024; 25:3869. [PMID: 38612679 PMCID: PMC11011339 DOI: 10.3390/ijms25073869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological surveillance of animal tuberculosis (TB) based on whole genome sequencing (WGS) of Mycobacterium bovis has recently gained track due to its high resolution to identify infection sources, characterize the pathogen population structure, and facilitate contact tracing. However, the workflow from bacterial isolation to sequence data analysis has several technical challenges that may severely impact the power to understand the epidemiological scenario and inform outbreak response. While trying to use archived DNA from cultured samples obtained during routine official surveillance of animal TB in Portugal, we struggled against three major challenges: the low amount of M. bovis DNA obtained from routinely processed animal samples; the lack of purity of M. bovis DNA, i.e., high levels of contamination with DNA from other organisms; and the co-occurrence of more than one M. bovis strain per sample (within-host mixed infection). The loss of isolated genomes generates missed links in transmission chain reconstruction, hampering the biological and epidemiological interpretation of data as a whole. Upon identification of these challenges, we implemented an integrated solution framework based on whole genome amplification and a dedicated computational pipeline to minimize their effects and recover as many genomes as possible. With the approaches described herein, we were able to recover 62 out of 100 samples that would have otherwise been lost. Based on these results, we discuss adjustments that should be made in official and research laboratories to facilitate the sequential implementation of bacteriological culture, PCR, downstream genomics, and computational-based methods. All of this in a time frame supporting data-driven intervention.
Collapse
Affiliation(s)
- Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Gonçalo Themudo
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
| | - André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Botelho
- National Institute for Agrarian and Veterinary Research (INIAV IP), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Barandiaran S, Marfil MJ, La Sala LF, Tammone A, Condori WE, Winter M, Abate S, Rosas AC, Ponce L, Carpinetti B, Serena MS, Lozano Calderón LC, Zumárraga MJ. Tuberculosis in Wild Pigs from Argentina. ECOHEALTH 2024; 21:71-82. [PMID: 38727761 DOI: 10.1007/s10393-024-01681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/19/2024] [Indexed: 05/26/2024]
Abstract
Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC) and non-tuberculous Mycobacteria (NTM), may infect wild and domestic mammals, including humans. Although cattle are the main hosts and spreaders of M. bovis, many wildlife hosts play an important role worldwide. In Argentina, wild boar and domestic pigs are considered important links in mammalian tuberculosis (mTB) transmission. The aim of this work was to investigate the presence of M. bovis in wild pigs from different regions of Argentina, to characterize isolates of M. bovis obtained, and to compare those with other previously found in vertebrate hosts. A total of 311 samples from wild pigs were obtained, and bacteriological culture, molecular identification and genotyping were performed, obtaining 63 isolates (34 MTC and 29 NTM). Twelve M. bovis spoligotypes were detected. Our findings suggest that wild pigs have a prominent role as reservoirs of mTB in Argentina, based on an estimated prevalence of 11.2 ± 1.8% (95% CI 8.0-14.8) for MTC and the frequency distribution of spoligotypes shared by cattle (75%), domestic pigs (58%) and wildlife (50%). Argentina has a typical scenario where cattle and pigs are farm-raised extensively, sharing the environment with wildlife, creating conditions for effective transmission of mTB in the wildlife-livestock-human interface.
Collapse
Affiliation(s)
- Soledad Barandiaran
- Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. Chorroarín 280, 1427, Buenos Aires, Argentina
| | - María Jimena Marfil
- Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. Chorroarín 280, 1427, Buenos Aires, Argentina.
| | | | - Agostina Tammone
- Centro de Investigación Veterinaria Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Tandil, Argentina
| | - Walter Ezequiel Condori
- Centro de Investigación Veterinaria Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Tandil, Argentina
| | - Marina Winter
- Sede Viedma del Centro de Investigaciones y Transferencia de Río Negro, Universidad Nacional de Río Negro, Viedma, Argentina
| | - Sergio Abate
- Sede Viedma del Centro de Investigaciones y Transferencia de Río Negro, Universidad Nacional de Río Negro, Viedma, Argentina
| | - Ana Carolina Rosas
- Programa Restauración de ambientes y especies amenazadas, Fundación Rewilding Argentina, Buenos Aires, Argentina
| | - Loredana Ponce
- Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. Chorroarín 280, 1427, Buenos Aires, Argentina
| | - Bruno Carpinetti
- Gestión Ambiental/Ecología, Instituto de Ciencias Sociales y Administración, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - María Soledad Serena
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Martín José Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Allen A, Magee R, Devaney R, Ardis T, McNally C, McCormick C, Presho E, Doyle M, Ranasinghe P, Johnston P, Kirke R, Harwood R, Farrell D, Kenny K, Smith J, Gordon S, Ford T, Thompson S, Wright L, Jones K, Prodohl P, Skuce R. Whole-Genome sequencing in routine Mycobacterium bovis epidemiology - scoping the potential. Microb Genom 2024; 10:001185. [PMID: 38354031 PMCID: PMC10926703 DOI: 10.1099/mgen.0.001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium bovis the main agent of bovine tuberculosis (bTB), presents as a series of spatially-localised micro-epidemics across landscapes. Classical molecular typing methods applied to these micro-epidemics, based on genotyping a few variable loci, have significantly improved our understanding of potential epidemiological links between outbreaks. However, they have limited utility owing to low resolution. Conversely, whole-genome sequencing (WGS) provides the highest resolution data available for molecular epidemiology, producing richer outbreak tracing, insights into phylogeography and epidemic evolutionary history. We illustrate these advantages by focusing on a common single lineage of M. bovis (1.140) from Northern Ireland. Specifically, we investigate the spatial sub-structure of 20 years of herd-level multi locus VNTR analysis (MLVA) surveillance data and WGS data from a down sampled subset of isolates of this MLVA type over the same time frame. We mapped 2108 isolate locations of MLVA type 1.140 over the years 2000-2022. We also mapped the locations of 148 contemporary WGS isolates from this lineage, over a similar geographic range, stratifying by single nucleotide polymorphism (SNP) relatedness cut-offs of 15 SNPs. We determined a putative core range for the 1.140 MLVA type and SNP-defined sequence clusters using a 50 % kernel density estimate, using cattle movement data to inform on likely sources of WGS isolates found outside of core ranges. Finally, we applied Bayesian phylogenetic methods to investigate past population history and reproductive number of the 1.140 M. bovis lineage. We demonstrate that WGS SNP-defined clusters exhibit smaller core ranges than the established MLVA type - facilitating superior disease tracing. We also demonstrate the superior functionality of WGS data in determining how this lineage was disseminated across the landscape, likely via cattle movement and to infer how its effective population size and reproductive number has been in flux since its emergence. These initial findings highlight the potential of WGS data for routine monitoring of bTB outbreaks.
Collapse
Affiliation(s)
- Adrian Allen
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Ryan Magee
- Queen’s University Belfast, school of Biological Sciences, UK
| | - Ryan Devaney
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Tara Ardis
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Caitlín McNally
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Carl McCormick
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Eleanor Presho
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Michael Doyle
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Purnika Ranasinghe
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Philip Johnston
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Raymond Kirke
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Roland Harwood
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Damien Farrell
- Central Veterinary Research Laboratory, Kildare, Ireland
- University College Dublin, Dublin, Ireland
| | - Kevin Kenny
- Central Veterinary Research Laboratory, Kildare, Ireland
| | | | | | - Tom Ford
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Suzan Thompson
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Lorraine Wright
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Kerri Jones
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Paulo Prodohl
- Queen’s University Belfast, school of Biological Sciences, UK
| | - Robin Skuce
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| |
Collapse
|
8
|
Roos EO, Loubser J, Kerr TJ, Dippenaar A, Streicher E, Olea-Popelka F, Robbe-Austerman S, Stuber T, Buss P, de Klerk-Lorist LM, Warren RM, van Helden PD, Parsons SD, Miller MA. Whole genome sequencing improves the discrimination between Mycobacterium bovis strains on the southern border of Kruger National Park, South Africa. One Health 2023; 17:100654. [PMID: 38283183 PMCID: PMC10810834 DOI: 10.1016/j.onehlt.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024] Open
Abstract
Background Mycobacterium bovis forms part of the Mycobacterium tuberculosis complex and has an extensive host range and zoonotic potential. Various genotyping methods (e.g., spoligotyping) have been used to describe the molecular epidemiology of M. bovis. Advances in whole genome sequencing (WGS) have increased resolution to enable detection of genomic variants to the level of single nucleotide polymorphisms. This is especially relevant to One Health research on tuberculosis which benefits by being able to use WGS to identify epidemiologically linked cases, especially recent transmission. The use of WGS in molecular epidemiology has been extensively used in humans and cattle but is limited in wildlife. This approach appears to overcome the limitations of conventional genotyping methods due to lack of genetic diversity in M. bovis. Methods This pilot study investigated the spoligotype and WGS of M. bovis isolates (n = 7) from wildlife in Marloth Park (MP) and compared these with WGS data from other South African M. bovis isolates. In addition, the greater resolution of WGS was used to explore the phylogenetic relatedness of M. bovis isolates in neighbouring wildlife populations. Results The phylogenetic analyses showed the closest relatives to the seven isolates from MP were isolates from wildlife in Kruger National Park (KNP), which shares a border with MP. However, WGS data indicated that the KNP and MP isolates formed two distinct clades, even though they had similar spoligotypes and identical in silico genetic regions of difference profiles. Conclusions Mycobacterium bovis isolates from MP were hypothesized to be directly linked to KNP wildlife, based on spoligotyping. However, WGS indicated more complex epidemiology. The presence of two distinct clades which were genetically distinct (SNP distance of 19-47) and suggested multiple transmission events. Therefore, WGS provided new insight into the molecular epidemiology of the M. bovis isolates from MP and their relationship to isolates from KNP. This approach will facilitate greater understanding of M. bovis transmission at wildlife-livestock-human interfaces and advances One Health research on tuberculosis, especially across different host species.
Collapse
Affiliation(s)
- Eduard O. Roos
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Johannes Loubser
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Tanya J. Kerr
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Elizma Streicher
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Francisco Olea-Popelka
- Department of Pathology and Laboratory Medicine, Schulich Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Tod Stuber
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa
| | - Lin-Mari de Klerk-Lorist
- Department of Agriculture Land Reform and Rural Development, Office of the State Veterinarian, Kruger National Park, PO Box 12, Skukuza, 1350, South Africa
| | - Robin M. Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Paul D. van Helden
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Sven D.C. Parsons
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Michele A. Miller
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
9
|
Pereira AC, Reis AC, Cunha MV. Genomic epidemiology sheds light on the emergence and spread of Mycobacterium bovis Eu2 Clonal Complex in Portugal. Emerg Microbes Infect 2023; 12:2253340. [PMID: 37640285 PMCID: PMC10484045 DOI: 10.1080/22221751.2023.2253340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
ABSTRACTAnimal tuberculosis (TB) remains a serious concern for animal and human health. Mycobacterium bovis circulates in multi-host systems, dominated by the European 2 clonal complex (Eu2) in Iberia. In this work, we use genomic epidemiology to infer the emergence, spread, and spatiotemporal patterns of Eu2 in the official epidemiological risk area of animal TB in Portugal. Phylogenetic analysis of 144 M. bovis whole-genome sequences from cattle, wild boar, and red deer, representing the 2002-2021 period, distinguished three Eu2 clades that evolved independently. The major Eu2 clade underwent phylodynamic inferences to estimate the time and location of outbreaks, host transitions, and spatial diffusion as well. The origin of this Eu2 clade was attributed to the red deer population in the Castelo Branco district, near the border with Spain. Most host transitions were intraspecific (80%), while interspecific transmissions between wildlife species (wild boar-red deer), and between wild boar and cattle, were highly supported. Phylogeographic reconstruction evidenced that most transitions (82%) occur within municipalities, highlighting local transmission corridors.Our study indicates that M. bovis continues to spread at the cattle-wildlife interface within the animal TB hotspot area, possibly driven by the foraging behaviour of wild boar near agricultural lands. Red deer seems to be an important driver of TB within wildlife hosts, while the wild boar links the multi-host wildlife community and livestock. This work highlights the value of combining genomic epidemiology with phylodynamic inference to resolve host jumps and spatial patterns of M. bovis, providing real-time clues about points of intervention.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Chang Y, Hartemink N, Byrne AW, Gormley E, McGrath G, Tratalos JA, Breslin P, More SJ, de Jong MCM. Inferring bovine tuberculosis transmission between cattle and badgers via the environment and risk mapping. Front Vet Sci 2023; 10:1233173. [PMID: 37841461 PMCID: PMC10572351 DOI: 10.3389/fvets.2023.1233173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is one of the most challenging and persistent health issues in many countries worldwide. In several countries, bTB control is complicated due to the presence of wildlife reservoirs of infection, i.e. European badger (Meles meles) in Ireland and the UK, which can transmit infection to cattle. However, a quantitative understanding of the role of cattle and badgers in bTB transmission is elusive, especially where there is spatial variation in relative density between badgers and cattle. Moreover, as these two species have infrequent direct contact, environmental transmission is likely to play a role, but the quantitative importance of the environment has not been assessed. Therefore, the objective of this study is to better understand bTB transmission between cattle and badgers via the environment in a spatially explicit context and to identify high-risk areas. We developed an environmental transmission model that incorporates both within-herd/territory transmission and between-species transmission, with the latter facilitated by badger territories overlapping with herd areas. Model parameters such as transmission rate parameters and the decay rate parameter of M. bovis were estimated by maximum likelihood estimation using infection data from badgers and cattle collected during a 4-year badger vaccination trial. Our estimation showed that the environment can play an important role in the transmission of bTB, with a half-life of M. bovis in the environment of around 177 days. Based on the estimated transmission rate parameters, we calculate the basic reproduction ratio (R) within a herd, which reveals how relative badger density dictates transmission. In addition, we simulated transmission in each small local area to generate a first between-herd R map that identifies high-risk areas.
Collapse
Affiliation(s)
- You Chang
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Nienke Hartemink
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research Centre, Wageningen, Netherlands
- Biometris, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Andrew W. Byrne
- One-Health and Welfare Scientific Support Unit, Department of Agriculture, Food and the Marine, National Disease Control Centre, Dublin, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, School of Agriculture, Food Science, and Veterinary Medicine, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - Guy McGrath
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Jamie A. Tratalos
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Philip Breslin
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Simon J. More
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research Centre, Wageningen, Netherlands
| |
Collapse
|
11
|
Klever AM, Alexander KA, Almeida D, Anderson MZ, Ball RL, Beamer G, Boggiatto P, Buikstra JE, Chandler B, Claeys TA, Concha AE, Converse PJ, Derbyshire KM, Dobos KM, Dupnik KM, Endsley JJ, Endsley MA, Fennelly K, Franco-Paredes C, Hagge DA, Hall-Stoodley L, Hayes D, Hirschfeld K, Hofman CA, Honda JR, Hull NM, Kramnik I, Lacourciere K, Lahiri R, Lamont EA, Larsen MH, Lemaire T, Lesellier S, Lee NR, Lowry CA, Mahfooz NS, McMichael TM, Merling MR, Miller MA, Nagajyothi JF, Nelson E, Nuermberger EL, Pena MT, Perea C, Podell BK, Pyle CJ, Quinn FD, Rajaram MVS, Mejia OR, Rothoff M, Sago SA, Salvador LCM, Simonson AW, Spencer JS, Sreevatsan S, Subbian S, Sunstrum J, Tobin DM, Vijayan KKV, Wright CTO, Robinson RT. The Many Hosts of Mycobacteria 9 (MHM9): A conference report. Tuberculosis (Edinb) 2023; 142:102377. [PMID: 37531864 PMCID: PMC10529179 DOI: 10.1016/j.tube.2023.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.
Collapse
Affiliation(s)
- Abigail Marie Klever
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Kathleen A Alexander
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA; CARACAL/Chobe Research Institute Kasane, Botswana
| | - Deepak Almeida
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | | | - Gillian Beamer
- Host Pathogen Interactions and Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paola Boggiatto
- Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Jane E Buikstra
- Center for Bioarchaeological Research, Arizona State University, Tempe, AZ, USA
| | - Bruce Chandler
- Division of Public Health, Alaska Department of Health, AK, USA
| | - Tiffany A Claeys
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Aislinn E Concha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Keith M Derbyshire
- Division of Genetics, The Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kevin Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA; Hospital Infantil de México Federico Gómez, México, USA
| | | | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Don Hayes
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Courtney A Hofman
- Department of Anthropology, University of Oklahoma, Norman, OK, USA; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jennifer R Honda
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Natalie M Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Igor Kramnik
- Pulmonary Center, The Department of Medicine, Boston University Chobanian & Aveedisian School of Medicine, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Elise A Lamont
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Sandrine Lesellier
- French Agency for Food, Environmental & Occupational Health & Safety (ANSES), Laboratory for Rabies and Wildlife,Nancy, France
| | - Naomi R Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Najmus S Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Marlena R Merling
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Elizabeth Nelson
- Microbial Paleogenomics Unit, Dept of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Claudia Perea
- Animal & Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Charlie J Pyle
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Fred D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Oscar Rosas Mejia
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | | | - Saydie A Sago
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Liliana C M Salvador
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Andrew W Simonson
- Department of Microbiology and Molecular Genetics and the Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Srinand Sreevatsan
- Pathobiology & Diagnostic Investigation Department, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | | - David M Tobin
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - K K Vidya Vijayan
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caelan T O Wright
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA.
| |
Collapse
|
12
|
Zeineldin M, Camp P, Farrell D, Lehman K, Thacker T. Whole genome sequencing of Mycobacterium bovis directly from clinical tissue samples without culture. Front Microbiol 2023; 14:1141651. [PMID: 37275178 PMCID: PMC10232834 DOI: 10.3389/fmicb.2023.1141651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Advancement in next generation sequencing offers the possibility of routine use of whole genome sequencing (WGS) for Mycobacterium bovis (M. bovis) genomes in clinical reference laboratories. To date, the M. bovis genome could only be sequenced if the mycobacteria were cultured from tissue. This requirement for culture has been due to the overwhelmingly large amount of host DNA present when DNA is prepared directly from a granuloma. To overcome this formidable hurdle, we evaluated the usefulness of an RNA-based targeted enrichment method to sequence M. bovis DNA directly from tissue samples without culture. Initial spiking experiments for method development were established by spiking DNA extracted from tissue samples with serially diluted M. bovis BCG DNA at the following concentration range: 0.1 ng/μl to 0.1 pg/μl (10-1 to 10-4). Library preparation, hybridization and enrichment was performed using SureSelect custom capture library RNA baits and the SureSelect XT HS2 target enrichment system for Illumina paired-end sequencing. The method validation was then assessed using direct WGS of M. bovis DNA extracted from tissue samples from naturally (n = 6) and experimentally (n = 6) infected animals with variable Ct values. Direct WGS of spiked DNA samples achieved 99.1% mean genome coverage (mean depth of coverage: 108×) and 98.8% mean genome coverage (mean depth of coverage: 26.4×) for tissue samples spiked with BCG DNA at 10-1 (mean Ct value: 20.3) and 10-2 (mean Ct value: 23.4), respectively. The M. bovis genome from the experimentally and naturally infected tissue samples was successfully sequenced with a mean genome coverage of 99.56% and depth of genome coverage ranging from 9.2× to 72.1×. The spoligoyping and M. bovis group assignment derived from sequencing DNA directly from the infected tissue samples matched that of the cultured isolates from the same sample. Our results show that direct sequencing of M. bovis DNA from tissue samples has the potential to provide accurate sequencing of M. bovis genomes significantly faster than WGS from cultures in research and diagnostic settings.
Collapse
|
13
|
Rossi G, Shih BBJ, Egbe NF, Motta P, Duchatel F, Kelly RF, Ndip L, Sander M, Tanya VN, Lycett SJ, Bronsvoort BM, Muwonge A. Unraveling the epidemiology of Mycobacterium bovis using whole-genome sequencing combined with environmental and demographic data. Front Vet Sci 2023; 10:1086001. [PMID: 37266384 PMCID: PMC10230100 DOI: 10.3389/fvets.2023.1086001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/14/2023] [Indexed: 06/03/2023] Open
Abstract
When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies.
Collapse
Affiliation(s)
- Gianluigi Rossi
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Barbara Bo-Ju Shih
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| | - Nkongho Franklyn Egbe
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Paolo Motta
- The Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Florian Duchatel
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| | - Robert Francis Kelly
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Lucy Ndip
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | | | | | - Samantha J. Lycett
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Barend Mark Bronsvoort
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Adrian Muwonge
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
14
|
Baker CR, Barilar I, de Araujo LS, Rimoin AW, Parker DM, Boyd R, Tobias JL, Moonan PK, Click ES, Finlay A, Oeltmann JE, Minin VN, Modongo C, Zetola NM, Niemann S, Shin SS. Use of High-Resolution Geospatial and Genomic Data to Characterize Recent Tuberculosis Transmission, Botswana. Emerg Infect Dis 2023; 29:977-987. [PMID: 37081530 PMCID: PMC10124643 DOI: 10.3201/eid2905.220796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Combining genomic and geospatial data can be useful for understanding Mycobacterium tuberculosis transmission in high-burden tuberculosis (TB) settings. We performed whole-genome sequencing on M. tuberculosis DNA extracted from sputum cultures from a population-based TB study conducted in Gaborone, Botswana, during 2012-2016. We determined spatial distribution of cases on the basis of shared genotypes among isolates. We considered clusters of isolates with ≤5 single-nucleotide polymorphisms identified by whole-genome sequencing to indicate recent transmission and clusters of ≥10 persons to be outbreaks. We obtained both molecular and geospatial data for 946/1,449 (65%) participants with culture-confirmed TB; 62 persons belonged to 5 outbreaks of 10-19 persons each. We detected geospatial clustering in just 2 of those 5 outbreaks, suggesting heterogeneous spatial patterns. Our findings indicate that targeted interventions applied in smaller geographic areas of high-burden TB identified using integrated genomic and geospatial data might help interrupt TB transmission during outbreaks.
Collapse
|
15
|
Deciphering the role of host species for two
Mycobacterium bovis
genotypes from the European 3 clonal complex circulation within a cattle‐badger‐wild boar multihost system. Microbiologyopen 2023. [DOI: 10.1002/mbo3.1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
16
|
Charles C, Conde C, Vorimore F, Cochard T, Michelet L, Boschiroli ML, Biet F. Features of Mycobacterium bovis Complete Genomes Belonging to 5 Different Lineages. Microorganisms 2023; 11:177. [PMID: 36677470 PMCID: PMC9865570 DOI: 10.3390/microorganisms11010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Mammalian tuberculosis (TB) is a zoonotic disease mainly due to Mycobacterium bovis (M. bovis). A current challenge for its eradication is understanding its transmission within multi-host systems. Improvements in long-read sequencing technologies have made it possible to obtain complete bacterial genomes that provide a comprehensive view of species-specific genomic features. In the context of TB, new genomic references based on complete genomes genetically close to field strains are also essential to perform precise field molecular epidemiological studies. A total of 10 M. bovis strains representing each genetic lineage identified in France and in other countries were selected for performing complete assembly of their genomes. Pangenome analysis revealed a "closed" pangenome composed of 3900 core genes and only 96 accessory genes. Whole genomes-based alignment using progressive Mauve showed remarkable conservation of the genomic synteny except that the genomes have a variable number of copies of IS6110. Characteristic genomic traits of each lineage were identified through the discovery of specific indels. Altogether, these results provide new genetic features that improve the description of M. bovis lineages. The availability of new complete representative genomes of M. bovis will be useful to epidemiological studies and better understand the transmission of this clonal-evolving pathogen.
Collapse
Affiliation(s)
- Ciriac Charles
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Cyril Conde
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Fabien Vorimore
- Laboratory for Food Safety, Unit of ‘Pathogenic E. coli’ (COLiPATH) & Genomics Platform ‘IdentyPath’ (IDPA), ANSES, 94701 Maisons-Alfort, France
| | - Thierry Cochard
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Lorraine Michelet
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Maria Laura Boschiroli
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Franck Biet
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| |
Collapse
|
17
|
Legall N, Salvador LCM. Selective sweep sites and SNP dense regions differentiate Mycobacterium bovis isolates across scales. Front Microbiol 2022; 13:787856. [PMID: 36160199 PMCID: PMC9489834 DOI: 10.3389/fmicb.2022.787856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium bovis, a bacterial zoonotic pathogen responsible for the economically and agriculturally important livestock disease bovine tuberculosis (bTB), infects a broad mammalian host range worldwide. This characteristic has led to bidirectional transmission events between livestock and wildlife species as well as the formation of wildlife reservoirs, impacting the success of bTB control measures. Next Generation Sequencing (NGS) has transformed our ability to understand disease transmission events by tracking variant sites, however the genomic signatures related to host adaptation following spillover, alongside the role of other genomic factors in the M. bovis transmission process are understudied problems. We analyzed publicly available M. bovis datasets collected from 700 hosts across three countries with bTB endemic regions (United Kingdom, United States, and New Zealand) to investigate if genomic regions with high SNP density and/or selective sweep sites play a role in Mycobacterium bovis adaptation to new environments (e.g., at the host-species, geographical, and/or sub-population levels). A simulated M. bovis alignment was created to generate null distributions for defining genomic regions with high SNP counts and regions with selective sweeps evidence. Random Forest (RF) models were used to investigate evolutionary metrics within the genomic regions of interest to determine which genomic processes were the best for classifying M. bovis across ecological scales. We identified in the M. bovis genomes 14 and 132 high SNP density and selective sweep regions, respectively. Selective sweep regions were ranked as the most important in classifying M. bovis across the different scales in all RF models. SNP dense regions were found to have high importance in the badger and cattle specific RF models in classifying badger derived isolates from livestock derived ones. Additionally, the genes detected within these genomic regions harbor various pathogenic functions such as virulence and immunogenicity, membrane structure, host survival, and mycobactin production. The results of this study demonstrate how comparative genomics alongside machine learning approaches are useful to investigate further the nature of M. bovis host-pathogen interactions.
Collapse
Affiliation(s)
- Noah Legall
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Liliana C. M. Salvador
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
18
|
Almaw G, Mihret A, Abebe T, Ameni G, Gumi B, Olani A, Tamiru M, Koran T, Aliy A, Sombo M, Ayalew S, Yesuf A, Taye H, Wood JLN, Berg S. Spoligotype analysis of Mycobacterium bovis isolates from cattle and assessment of zoonotic TB transmission among individuals working in bovine TB-infected dairy farms in Ethiopia. Zoonoses Public Health 2022; 69:663-672. [PMID: 37379451 PMCID: PMC9544066 DOI: 10.1111/zph.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/30/2022]
Abstract
Bovine tuberculosis (bTB) is a disease with impact on dairy productivity, as well as having the potential for zoonotic transmission. Understanding the genetic diversity of the disease agent Mycobacterium bovis is important for identifying its routes of transmission. Here we investigated the level of genetic diversity of M. bovis isolates and assessed the zoonotic potential in risk groups of people working in bTB-infected dairy farms in central Ethiopia. M. bovis was isolated and spoligotyped from tissue lesions collected from slaughtered cattle as well as from raw milk collected from bTB positive cows in dairy farms from six urban areas of central Ethiopia. From consented dairy farm workers, knowledge and practices related to zoonotic TB transmission, together with demographic and clinical information, was collected through interviews. Sputum or Fine Needle Aspirate (FNA) samples were collected from suspected TB cases. Spoligotyping of 55 M. bovis isolates that originated either from cattle tissues with tuberculous lesion or from raw milk revealed seven spoligotype patterns where SB1176 was the most prevalent type (47.3%). Most isolates (89.1%) were of the M. bovis African 2 clonal complex. All sputum and FNA samples from 41 dairy farm workers with symptoms of TB were culture negative for any mycobacteria. Among the 41 TB suspected farm workers, 61% did not know about bTB in cattle and its zoonotic potential, and over two-third of these workers practiced raw milk consumption. Our spoligotype analysis suggests a wider transmission of a single spoligotype in the study area. The results reported here may be useful in guiding future work to identify the source and direction of bTB transmission and hence design of a control strategy. Isolation of M. bovis from milk, knowledge gap on zoonotic TB and practice of consumption of raw milk in the study population showed potential risk for zoonotic transmission.
Collapse
Affiliation(s)
- Gizat Almaw
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
- Department of Microbiology, Immunology and Parasitology, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
- Department of Veterinary Medicine, College of Food and AgricultureUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Balako Gumi
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Mekdes Tamiru
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Tafesse Koran
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Abde Aliy
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Melaku Sombo
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Sosina Ayalew
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - Adem Yesuf
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - Hawult Taye
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - James L. N. Wood
- Disease Dynamics Unit, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Stefan Berg
- Bacteriology DepartmentAnimal and Plant Health AgencyWeybridgeUK
| | | |
Collapse
|
19
|
Pozo P, Lorente-Leal V, Robbe-Austerman S, Hicks J, Stuber T, Bezos J, de Juan L, Saez JL, Romero B, Alvarez J. Use of Whole-Genome Sequencing to Unravel the Genetic Diversity of a Prevalent Mycobacterium bovis Spoligotype in a Multi-Host Scenario in Spain. Front Microbiol 2022; 13:915843. [PMID: 35898917 PMCID: PMC9309649 DOI: 10.3389/fmicb.2022.915843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the efforts invested in the eradication of bovine tuberculosis in Spain, herd prevalence has remained constant in the country during the last 15 years (~1.5–1.9%) due to a combination of epidemiological factors impairing disease control, including between-species transmission. Here, our aim was to investigate the molecular diversity of Mycobacterium bovis isolates belonging to the highly prevalent SB0339 spoligotype in the cattle-wildlife interface in different regions of Spain using whole-genome sequencing (WGS). Genomic data of 136 M. bovis isolates recovered from different animal species (cattle, wild boar, fallow deer, and red deer) and locations between 2005 and 2018 were analyzed to investigate between- and within-species transmission, as well as within-herds. All sequenced isolates differed by 49–88 single nucleotide polymorphisms from their most recent common ancestor. Genetic heterogeneity was geographic rather than host species-specific, as isolates recovered from both cattle and wildlife from a given region were more closely related compared to isolates from the same species but geographically distant. In fact, a strong association between the geographic and the genetic distances separating pairs of M. bovis isolates was found, with a significantly stronger effect when cattle isolates were compared with wildlife or cattle-wildlife isolates in Spain. The same results were obtained in Madrid, the region with the largest number of sequenced isolates, but no differences depending on the host were observed. Within-herd genetic diversity was limited despite the considerable time elapsed between isolations. The detection of closely related strains in different hosts demonstrates the complex between-host transmission dynamics present in endemic areas in Spain. In conclusion, WGS results a valuable tool to track bTB infection at a high resolution and may contribute to achieve its eradication in Spain.
Collapse
Affiliation(s)
- Pilar Pozo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Pilar Pozo,
| | - Victor Lorente-Leal
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Jessica Hicks
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Tod Stuber
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucia de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de Sanidad de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Evidence for local and international spread of Mycobacterium avium subspecies paratuberculosis through whole genome sequencing of isolates from the island of Ireland. Vet Microbiol 2022; 268:109416. [DOI: 10.1016/j.vetmic.2022.109416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/14/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022]
|
21
|
Valcheva V, Perea C, Savova-Lalkovska T, Dimitrova A, Radulski L, Mokrousov I, Marinov K, Najdenski H, Bonovska M. Mycobacterium bovis and M. caprae in Bulgaria: insight into transmission and phylogeography gained through whole-genome sequencing. BMC Vet Res 2022; 18:148. [PMID: 35461250 PMCID: PMC9034630 DOI: 10.1186/s12917-022-03249-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND This study aimed to characterize recent Mycobacterium bovis/M. caprae isolates from Bulgaria by whole-genome sequencing (WGS) to gain a first insight into their molecular diversity, transmission, and position within the global phylogeography of this important zoonotic species. RESULTS The isolates were obtained from cattle in diverse locations of Bulgaria in 2015-2020 and were identified by microbiological and PCR assays. WGS data were used for phylogenetic analysis that also included M. bovis global dataset. Thirty-seven M. bovis/caprae isolates from Bulgaria were studied and 34 of them were SNP genotyped. The isolates were subdivided into 3 major phylogenetic groups. Type Mbovis-13 (Eu2 complex [western Europe and northern Africa]) included one isolate. Mbovis-37 type included 5 isolates outside of known clonal complexes. The Bulgarian M. caprae isolates formed a sub-group within the Mcaprae-27B cluster which also included 22 M. caprae isolates from Poland, Spain, Germany, and the Republic of Congo. The Bulgarian M. caprae isolates share their latest common ancestors with Spanish isolates. The Mbovis-37 group shares a distant common ancestor (pairwise distance 22-29 SNPs) with an isolate from Poland but was very distant (> 200 SNPs) from the rest of the tree. The Mbovis-13 group shares a common ancestor with two human isolates from Germany. Phylogeographically, both M. bovis clades had limited circulation in northeastern Bulgaria while the majority of the studied isolates (M. caprae) were from central and western provinces. A phylogenetic network-based analysis demonstrated that 11 Bulgarian isolates were separated by 1 to 6 SNPs within four clusters, mostly forming pairs of isolates. CONCLUSION The obtained WGS analysis positioned the Bulgarian isolates within the global phylogeography of M. bovis/M. caprae. Hypothetically, the observed phylogenetic diversity may not have resulted from livestock trade routes, but instead may reflect the deeply rooted M. bovis/M. caprae phylogeography of Europe. A high level of genetic divergence between the majority of the studied isolates suggests limited active transmission of bTB in Bulgaria during the survey period. At the same time, a possibility of the endemic presence of circulating bTB strains in the form of the latent persistent disease cannot be ruled out.
Collapse
Affiliation(s)
- Violeta Valcheva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria.
| | - Claudia Perea
- National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Tanya Savova-Lalkovska
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | - Albena Dimitrova
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | | | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | | | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| | - Magdalena Bonovska
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| |
Collapse
|
22
|
Duault H, Michelet L, Boschiroli ML, Durand B, Canini L. A Bayesian evolutionary model towards understanding wildlife contribution to F4-family Mycobacterium bovis transmission in the South-West of France. Vet Res 2022; 53:28. [PMID: 35366933 PMCID: PMC8976416 DOI: 10.1186/s13567-022-01044-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/06/2022] [Indexed: 12/16/2022] Open
Abstract
In two “départements” in the South-West of France, bovine tuberculosis (bTB) outbreaks due to Mycobacterium bovis spoligotype SB0821 have been identified in cattle since 2002 and in wildlife since 2013. Using whole genome sequencing, the aim of our study was to clarify badger contribution to bTB transmission in this area. We used a Bayesian evolutionary model, to infer phylogenetic trees and migration rates between two pathogen populations defined by their host-species. In order to account for sampling bias, sub-population structure was inferred using the marginal approximation of the structured coalescent (Mascot) implemented in BEAST2. We included 167 SB0821 strains (21 isolated from badgers and 146 from cattle) and identified 171 single nucleotide polymorphisms. We selected a HKY model and a strict molecular clock. We estimated a badger-to-cattle transition rate (median: 2.2 transitions/lineage/year) 52 times superior to the cattle-to-badger rate (median: 0.042 transitions/lineage/year). Using the maximum clade credibility tree, we identified that over 75% of the lineages from 1989 to 2000 were present in badgers. In addition, we calculated a median of 64 transition events from badger-to-cattle (IQR: 10–91) and a median of zero transition event from cattle-to-badger (IQR: 0–3). Our model enabled us to infer inter-species transitions but not intra-population transmission as in previous epidemiological studies, where relevant units were farms and badger social groups. Thus, while we could not confirm badgers as possible intermediaries in farm-to-farm transmission, badger-to-cattle transition rate was high and we confirmed long-term presence of M.bovis in the badger population in the South-West of France.
Collapse
|
23
|
Zwyer M, Çavusoglu C, Ghielmetti G, Pacciarini ML, Scaltriti E, Van Soolingen D, Dötsch A, Reinhard M, Gagneux S, Brites D. A new nomenclature for the livestock-associated Mycobacterium tuberculosis complex based on phylogenomics. OPEN RESEARCH EUROPE 2021; 1:100. [PMID: 37645186 PMCID: PMC10445919 DOI: 10.12688/openreseurope.14029.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 08/31/2023]
Abstract
Background: The bacteria that compose the Mycobacterium tuberculosis complex (MTBC) cause tuberculosis (TB) in humans and in different animals, including livestock. Much progress has been made in understanding the population structure of the human-adapted members of the MTBC by combining phylogenetics with genomics. Accompanying the discovery of new genetic diversity, a body of operational nomenclature has evolved to assist comparative and molecular epidemiological studies of human TB. By contrast, for the livestock-associated MTBC members, Mycobacterium bovis, M. caprae and M. orygis, there has been a lack of comprehensive nomenclature to accommodate new genetic diversity uncovered by emerging phylogenomic studies. We propose to fill this gap by putting forward a new nomenclature covering the main phylogenetic groups within M. bovis, M. caprae and M. orygis. Methods: We gathered a total of 8,736 whole-genome sequences (WGS) from public sources and 39 newly sequenced strains, and selected a subset of 829 WGS, representative of the worldwide diversity of M. bovis, M. caprae and M. orygis. We used phylogenetics and genetic diversity patterns inferred from WGS to define groups. Results: We propose to divide M. bovis, M. caprae and M. orygis in three main phylogenetic lineages, which we named La1, La2 and La3, respectively. Within La1, we identified several monophyletic groups, which we propose to classify into eight sublineages (La1.1-La1.8). These sublineages differed in geographic distribution, with some being geographically restricted and others globally widespread, suggesting different expansion abilities. To ease molecular characterization of these MTBC groups by the community, we provide phylogenetically informed, single nucleotide polymorphisms that can be used as barcodes for genotyping. These markers were implemented in KvarQ and TB-Profiler, which are platform-independent, open-source tools. Conclusions: Our results contribute to an improved classification of the genetic diversity within the livestock-associated MTBC, which will benefit future molecular epidemiological and evolutionary studies.
Collapse
Affiliation(s)
- Michaela Zwyer
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Cengiz Çavusoglu
- Department of Medical Microbiology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Giovanni Ghielmetti
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Dick Van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands Antilles
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anna Dötsch
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Miriam Reinhard
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Sebastien Gagneux
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Daniela Brites
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
24
|
van Tonder AJ, Thornton MJ, Conlan AJK, Jolley KA, Goolding L, Mitchell AP, Dale J, Palkopoulou E, Hogarth PJ, Hewinson RG, Wood JLN, Parkhill J. Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial. PLoS Pathog 2021; 17:e1010075. [PMID: 34843579 PMCID: PMC8659364 DOI: 10.1371/journal.ppat.1010075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/09/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a causative agent of bovine tuberculosis, a significant source of morbidity and mortality in the global cattle industry. The Randomised Badger Culling Trial was a field experiment carried out between 1998 and 2005 in the South West of England. As part of this trial, M. bovis isolates were collected from contemporaneous and overlapping populations of badgers and cattle within ten defined trial areas. We combined whole genome sequences from 1,442 isolates with location and cattle movement data, identifying transmission clusters and inferred rates and routes of transmission of M. bovis. Most trial areas contained a single transmission cluster that had been established shortly before sampling, often contemporaneous with the expansion of bovine tuberculosis in the 1980s. The estimated rate of transmission from badger to cattle was approximately two times higher than from cattle to badger, and the rate of within-species transmission considerably exceeded these for both species. We identified long distance transmission events linked to cattle movement, recurrence of herd breakdown by infection within the same transmission clusters and superspreader events driven by cattle but not badgers. Overall, our data suggests that the transmission clusters in different parts of South West England that are still evident today were established by long-distance seeding events involving cattle movement, not by recrudescence from a long-established wildlife reservoir. Clusters are maintained primarily by within-species transmission, with less frequent spill-over both from badger to cattle and cattle to badger.
Collapse
Affiliation(s)
- Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark J. Thornton
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. K. Conlan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lee Goolding
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | - James Dale
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | | | | | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Rossi G, Crispell J, Brough T, Lycett SJ, White PCL, Allen A, Ellis RJ, Gordon SV, Harwood R, Palkopoulou E, Presho EL, Skuce R, Smith GC, Kao RR. Phylodynamic analysis of an emergent
Mycobacterium bovis
outbreak in an area with no previously known wildlife infections. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianluigi Rossi
- Roslin Institute and R(D)SVS University of Edinburgh Edinburgh UK
| | - Joseph Crispell
- School of Veterinary Medicine University College Dublin Dublin Ireland
| | - Tanis Brough
- Advice Services Team Service Delivery Directorate APHA Penrith UK
| | | | | | - Adrian Allen
- Bacteriology Branch Veterinary Sciences Division Agri‐food and Biosciences Institute Belfast UK
| | - Richard J. Ellis
- Surveillance and Laboratory Services Department APHA Addlestone UK
| | - Stephen V. Gordon
- School of Veterinary Medicine University College Dublin Dublin Ireland
- Conway Institute University College Dublin Dublin Ireland
| | | | | | - Eleanor L. Presho
- Bacteriology Branch Veterinary Sciences Division Agri‐food and Biosciences Institute Belfast UK
| | - Robin Skuce
- Bacteriology Branch Veterinary Sciences Division Agri‐food and Biosciences Institute Belfast UK
| | | | - Rowland R. Kao
- Roslin Institute and R(D)SVS University of Edinburgh Edinburgh UK
| |
Collapse
|
26
|
Perea C, Ciaravino G, Stuber T, Thacker TC, Robbe-Austerman S, Allepuz A, de Val BP. Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms 2021; 9:microorganisms9081629. [PMID: 34442709 PMCID: PMC8401651 DOI: 10.3390/microorganisms9081629] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
The high-resolution WGS analyses of MTBC strains have provided useful insight for determining sources of infection for animal tuberculosis. In Spain, tuberculosis in livestock is caused by Mycobacterium bovis and Mycobacterium caprae, where wildlife reservoirs play an important role. We analyzed a set of 125 M. bovis isolates obtained from livestock and wildlife from Catalonia to investigate strain diversity and identify possible sources and/or causes of infection. Whole-genome SNP profiles were used for phylogenetic reconstruction and pairwise SNP distance analysis. Additionally, SNPs were investigated to identify virulence and antimicrobial resistance factors to investigate clade-specific associations. Putative transmission clusters (≤12 SNPs) were identified, and associated epidemiological metadata were used to determine possible explanatory factors for transmission. M. bovis distribution was heterogeneous, with 7 major clades and 21 putative transmission clusters. In order of importance, the explanatory factors associated were proximity and neighborhood, residual infection, livestock-wildlife interaction, shared pasture, and movement. Genes related to lipid transport and metabolism showed the highest number of SNPs. All isolates were pyrazinamide resistant, and five were additionally resistant to isoniazid, but no clade-specific associations could be determined. Our findings highlight the importance of high-resolution molecular surveillance to monitor bovine tuberculosis dynamics in a low-prevalence setting.
Collapse
Affiliation(s)
- Claudia Perea
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
- Correspondence:
| | - Giovanna Ciaravino
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
| | - Tod Stuber
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| |
Collapse
|
27
|
Reis AC, Salvador LCM, Robbe-Austerman S, Tenreiro R, Botelho A, Albuquerque T, Cunha MV. Whole Genome Sequencing Refines Knowledge on the Population Structure of Mycobacterium bovis from a Multi-Host Tuberculosis System. Microorganisms 2021; 9:1585. [PMID: 34442664 PMCID: PMC8401292 DOI: 10.3390/microorganisms9081585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
Classical molecular analyses of Mycobacterium bovis based on spoligotyping and Variable Number Tandem Repeat (MIRU-VNTR) brought the first insights into the epidemiology of animal tuberculosis (TB) in Portugal, showing high genotypic diversity of circulating strains that mostly cluster within the European 2 clonal complex. Previous surveillance provided valuable information on the prevalence and spatial occurrence of TB and highlighted prevalent genotypes in areas where livestock and wild ungulates are sympatric. However, links at the wildlife-livestock interfaces were established mainly via classical genotype associations. Here, we apply whole genome sequencing (WGS) to cattle, red deer and wild boar isolates to reconstruct the M. bovis population structure in a multi-host, multi-region disease system and to explore links at a fine genomic scale between M. bovis from wildlife hosts and cattle. Whole genome sequences of 44 representative M. bovis isolates, obtained between 2003 and 2015 from three TB hotspots, were compared through single nucleotide polymorphism (SNP) variant calling analyses. Consistent with previous results combining classical genotyping with Bayesian population admixture modelling, SNP-based phylogenies support the branching of this M. bovis population into five genetic clades, three with apparent geographic specificities, as well as the establishment of an SNP catalogue specific to each clade, which may be explored in the future as phylogenetic markers. The core genome alignment of SNPs was integrated within a spatiotemporal metadata framework to further structure this M. bovis population by host species and TB hotspots, providing a baseline for network analyses in different epidemiological and disease control contexts. WGS of M. bovis isolates from Portugal is reported for the first time in this pilot study, refining the spatiotemporal context of TB at the wildlife-livestock interface and providing further support to the key role of red deer and wild boar on disease maintenance. The SNP diversity observed within this dataset supports the natural circulation of M. bovis for a long time period, as well as multiple introduction events of the pathogen in this Iberian multi-host system.
Collapse
Affiliation(s)
- Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Liliana C. M. Salvador
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | | - Rogério Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Ana Botelho
- INIAV, IP-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (A.B.); (T.A.)
| | - Teresa Albuquerque
- INIAV, IP-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (A.B.); (T.A.)
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
28
|
O’Hare A, Balaz D, Wright DM, McCormick C, McDowell S, Trewby H, Skuce RA, Kao RR. A new phylodynamic model of Mycobacterium bovis transmission in a multi-host system uncovers the role of the unobserved reservoir. PLoS Comput Biol 2021; 17:e1009005. [PMID: 34170901 PMCID: PMC8266114 DOI: 10.1371/journal.pcbi.1009005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/08/2021] [Accepted: 04/25/2021] [Indexed: 11/18/2022] Open
Abstract
Multi-host pathogens are particularly difficult to control, especially when at least one of the hosts acts as a hidden reservoir. Deep sequencing of densely sampled pathogens has the potential to transform this understanding, but requires analytical approaches that jointly consider epidemiological and genetic data to best address this problem. While there has been considerable success in analyses of single species systems, the hidden reservoir problem is relatively under-studied. A well-known exemplar of this problem is bovine Tuberculosis, a disease found in British and Irish cattle caused by Mycobacterium bovis, where the Eurasian badger has long been believed to act as a reservoir but remains of poorly quantified importance except in very specific locations. As a result, the effort that should be directed at controlling disease in badgers is unclear. Here, we analyse densely collected epidemiological and genetic data from a cattle population but do not explicitly consider any data from badgers. We use a simulation modelling approach to show that, in our system, a model that exploits available cattle demographic and herd-to-herd movement data, but only considers the ability of a hidden reservoir to generate pathogen diversity, can be used to choose between different epidemiological scenarios. In our analysis, a model where the reservoir does not generate any diversity but contributes to new infections at a local farm scale are significantly preferred over models which generate diversity and/or spread disease at broader spatial scales. While we cannot directly attribute the role of the reservoir to badgers based on this analysis alone, the result supports the hypothesis that under current cattle control regimes, infected cattle alone cannot sustain M. bovis circulation. Given the observed close phylogenetic relationship for the bacteria taken from cattle and badgers sampled near to each other, the most parsimonious hypothesis is that the reservoir is the infected badger population. More broadly, our approach demonstrates that carefully constructed bespoke models can exploit the combination of genetic and epidemiological data to overcome issues of extreme data bias, and uncover important general characteristics of transmission in multi-host pathogen systems.
Collapse
Affiliation(s)
- Anthony O’Hare
- Computing Science and Mathematics, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Daniel Balaz
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David M. Wright
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Carl McCormick
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
| | - Stanley McDowell
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
| | | | - Robin A. Skuce
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
| | - Rowland R. Kao
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Guinat C, Vergne T, Kocher A, Chakraborty D, Paul MC, Ducatez M, Stadler T. What can phylodynamics bring to animal health research? Trends Ecol Evol 2021; 36:837-847. [PMID: 34034912 DOI: 10.1016/j.tree.2021.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022]
Abstract
Infectious diseases are a major burden to global economies, and public and animal health. To date, quantifying the spread of infectious diseases to inform policy making has traditionally relied on epidemiological data collected during epidemics. However, interest has grown in recent phylodynamic techniques to infer pathogen transmission dynamics from genetic data. Here, we provide examples of where this new discipline has enhanced disease management in public health and illustrate how it could be further applied in animal health. In particular, we describe how phylodynamics can address fundamental epidemiological questions, such as inferring key transmission parameters in animal populations and quantifying spillover events at the wildlife-livestock interface, and generate important insights for the design of more effective control strategies.
Collapse
Affiliation(s)
- Claire Guinat
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Timothee Vergne
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Arthur Kocher
- Transmission, Infection, Diversification & Evolution (tide) group, Max Planck Institute for the Science of Human History, Kahlaische str. 10, 07745 Jena, Germany
| | - Debapryio Chakraborty
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Mathilde C Paul
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Mariette Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
30
|
Rodrigues RDA, Ribeiro Araújo F, Rivera Dávila AM, Etges RN, Parkhill J, van Tonder AJ. Genomic and temporal analyses of Mycobacterium bovis in southern Brazil. Microb Genom 2021; 7. [PMID: 34016251 PMCID: PMC8209730 DOI: 10.1099/mgen.0.000569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M. bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.
Collapse
Affiliation(s)
- Rudielle de Arruda Rodrigues
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Alberto Martín Rivera Dávila
- Computational and Systems Biology Laboratory, Graduate Program in Biodiversity and Health, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
31
|
Bryant JM, Brown KP, Burbaud S, Everall I, Belardinelli JM, Rodriguez-Rincon D, Grogono DM, Peterson CM, Verma D, Evans IE, Ruis C, Weimann A, Arora D, Malhotra S, Bannerman B, Passemar C, Templeton K, MacGregor G, Jiwa K, Fisher AJ, Blundell TL, Ordway DJ, Jackson M, Parkhill J, Floto RA. Stepwise pathogenic evolution of Mycobacterium abscessus. Science 2021; 372:372/6541/eabb8699. [PMID: 33926925 DOI: 10.1126/science.abb8699] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.
Collapse
Affiliation(s)
- Josephine M Bryant
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Karen P Brown
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Sophie Burbaud
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Isobel Everall
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Sanger Institute, Hinxton, UK
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Daniela Rodriguez-Rincon
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dorothy M Grogono
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Chelsea M Peterson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Ieuan E Evans
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Divya Arora
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Scientific Computing Department, Science and Technology Facilities Council, Harwell, UK
| | - Bridget Bannerman
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Charlotte Passemar
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kerra Templeton
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, Scotland, UK
| | - Gordon MacGregor
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, Scotland, UK
| | - Kasim Jiwa
- Newcastle University Translational and Clinical Research Institute and Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute and Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Julian Parkhill
- Wellcome Sanger Institute, Hinxton, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK. .,University of Cambridge Centre for AI in Medicine, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|
32
|
Almaw G, Mekonnen GA, Mihret A, Aseffa A, Taye H, Conlan AJK, Gumi B, Zewude A, Aliy A, Tamiru M, Olani A, Lakew M, Sombo M, Gebre S, Diguimbaye C, Hilty M, Fané A, Müller B, Hewinson RG, Ellis RJ, Nunez-Garcia J, Palkopoulou E, Abebe T, Ameni G, Parkhill J, Wood JLN, Berg S, van Tonder AJ. Population structure and transmission of Mycobacterium bovis in Ethiopia. Microb Genom 2021; 7:000539. [PMID: 33945462 PMCID: PMC8209724 DOI: 10.1099/mgen.0.000539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis, which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M. bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis, based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.
Collapse
Affiliation(s)
- Gizat Almaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Abie Mekonnen
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hawult Taye
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abde Aliy
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Mekdes Tamiru
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Matios Lakew
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Melaku Sombo
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Solomon Gebre
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Colette Diguimbaye
- Institut de Recherches en Elevage pour le Développement & Clinique Médico-Chirurgicale PROVIDENCE, N'Djaména, Chad
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Adama Fané
- Laboratoire Centrale Vétérinaire, Bamako, Mali
| | | | | | | | | | | | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
33
|
Gomez-Buendia A, Romero B, Bezos J, Lozano F, de Juan L, Alvarez J. Spoligotype-specific risk of finding lesions in tissues from cattle infected by Mycobacterium bovis. BMC Vet Res 2021; 17:148. [PMID: 33827573 PMCID: PMC8028093 DOI: 10.1186/s12917-021-02848-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Although the pathogenic effect of members of the Mycobacterium tuberculosis complex in susceptible hosts is well known, differences in clinical signs and pathological findings observed in infected animals have been reported, likely due to a combination of host and pathogen-related factors. Here, we investigated whether Mycobacterium bovis strains belonging to different spoligotypes were associated with a higher risk of occurrence of visible/more severe lesions in target organs (lungs and/or lymph nodes) from infected animals. A large collection of 8889 samples belonging to cattle were classified depending on the presence/absence of tuberculosis-like lesions and its degree of severity. All samples were subjected to culture irrespective of the presence of lesions, and isolates retrieved were identified and subjected to spoligotyping. The association between the presence/severity of the lesions and the isolation of strains from a given spoligotype was assessed using non-parametric tests and Bayesian mixed multivariable logistic regression models that accounted for origin (region and herd) effects. Results Results suggested a difference in severity in lesioned samples depending on the strain’s spoligotype. An association between specific spoligotypes and presence of lesions was observed, with a higher risk of finding lesions in animals infected with strains with spoligotypes SB0120, SB0295 and SB1142 compared with SB0121, and in those coming from certain regions in Spain. Conclusions Our results suggest that strains belonging to certain spoligotypes may be associated with a higher probability in the occurrence of gross/macroscopic lesions in infected cattle, although these observational findings should be confirmed in further studies that allow accounting for the effect of other possible confounders not considered here, and ultimately through experimental studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02848-3.
Collapse
Affiliation(s)
- Alberto Gomez-Buendia
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Lozano
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain. .,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
34
|
Bernitz N, Kerr TJ, Goosen WJ, Chileshe J, Higgitt RL, Roos EO, Meiring C, Gumbo R, de Waal C, Clarke C, Smith K, Goldswain S, Sylvester TT, Kleynhans L, Dippenaar A, Buss PE, Cooper DV, Lyashchenko KP, Warren RM, van Helden PD, Parsons SDC, Miller MA. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front Vet Sci 2021; 8:588697. [PMID: 33585615 PMCID: PMC7876456 DOI: 10.3389/fvets.2021.588697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.
Collapse
Affiliation(s)
- Netanya Bernitz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Josephine Chileshe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Roxanne L. Higgitt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eduard O. Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Christina Meiring
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice de Waal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katrin Smith
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Taschnica T. Sylvester
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Sven D. C. Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
35
|
Identifying likely transmissions in Mycobacterium bovis infected populations of cattle and badgers using the Kolmogorov Forward Equations. Sci Rep 2020; 10:21980. [PMID: 33319838 PMCID: PMC7738532 DOI: 10.1038/s41598-020-78900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
Established methods for whole-genome-sequencing (WGS) technology allow for the detection of single-nucleotide polymorphisms (SNPs) in the pathogen genomes sourced from host samples. The information obtained can be used to track the pathogen’s evolution in time and potentially identify ‘who-infected-whom’ with unprecedented accuracy. Successful methods include ‘phylodynamic approaches’ that integrate evolutionary and epidemiological data. However, they are typically computationally intensive, require extensive data, and are best applied when there is a strong molecular clock signal and substantial pathogen diversity. To determine how much transmission information can be inferred when pathogen genetic diversity is low and metadata limited, we propose an analytical approach that combines pathogen WGS data and sampling times from infected hosts. It accounts for ‘between-scale’ processes, in particular within-host pathogen evolution and between-host transmission. We applied this to a well-characterised population with an endemic Mycobacterium bovis (the causative agent of bovine/zoonotic tuberculosis, bTB) infection. Our results show that, even with such limited data and low diversity, the computation of the transmission probability between host pairs can help discriminate between likely and unlikely infection pathways and therefore help to identify potential transmission networks. However, the method can be sensitive to assumptions about within-host evolution.
Collapse
|
36
|
Dwyer RA, Witte C, Buss P, Goosen WJ, Miller M. Epidemiology of Tuberculosis in Multi-Host Wildlife Systems: Implications for Black ( Diceros bicornis) and White ( Ceratotherium simum) Rhinoceros. Front Vet Sci 2020; 7:580476. [PMID: 33330701 PMCID: PMC7672123 DOI: 10.3389/fvets.2020.580476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Cases of tuberculosis (TB) resulting from infection with Mycobacterium tuberculosis complex (MTBC) have been recorded in captive white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros. More recently, cases have been documented in free-ranging populations of both species in bovine tuberculosis (bTB) endemic areas of South Africa. There is limited information on risk factors and transmission patterns for MTBC infections in African rhinoceros, however, extrapolation from literature on MTBC infections in other species and multi-host systems provides a foundation for understanding TB epidemiology in rhinoceros species. Current diagnostic tests include blood-based immunoassays but distinguishing between subclinical and active infections remains challenging due to the lack of diagnostic techniques. In other species, demographic risk factors for MTBC infection include sex and age, where males and adults are generally at higher risk than females and younger individuals. Limited available historical information reflects similar age- and sex-associated patterns for TB in captive black and white rhinoceros, with more reports of MTBC-associated disease in black rhinoceros than in white rhinoceros. The degree of MTBC exposure in susceptible wildlife depends on their level of interaction, either directly with other infected individuals or indirectly through MTBC contaminated environments, which is dependent on the presence and abundance of infected reservoir hosts and the amount of MTBC shed in their excreta. Captive African rhinoceros have shown evidence of MTBC shedding, and although infection levels are low in free-ranging rhinoceros, there is a risk for intraspecies transmission. Free-ranging rhinoceros in bTB endemic areas may be exposed to MTBC from other infected host species, such as the African buffalo (Syncerus caffer) and greater kudu (Tragelaphus strepsiceros), through shared environmental niches, and resource co-utilization. This review describes current knowledge and information gaps regarding the epidemiology of TB in African rhinoceros.
Collapse
Affiliation(s)
- Rebecca A Dwyer
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Carmel Witte
- Disease Investigations, San Diego Zoo Global, San Diego, CA, United States
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
37
|
Crispell J, Cassidy S, Kenny K, McGrath G, Warde S, Cameron H, Rossi G, MacWhite T, White PCL, Lycett S, Kao RR, Moriarty J, Gordon SV. Mycobacterium bovis genomics reveals transmission of infection between cattle and deer in Ireland. Microb Genom 2020; 6:mgen000388. [PMID: 32553050 PMCID: PMC7641417 DOI: 10.1099/mgen.0.000388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Control of bovine tuberculosis (bTB), caused by Mycobacterium bovis, in the Republic of Ireland costs €84 million each year. Badgers are recognized as being a wildlife source for M. bovis infection of cattle. Deer are thought to act as spillover hosts for infection; however, population density is recognized as an important driver in shifting their epidemiological role, and deer populations across the country have been increasing in density and range. County Wicklow represents one specific area in the Republic of Ireland with a high density of deer that has had consistently high bTB prevalence for over a decade, despite control operations in both cattle and badgers. Our research used whole-genome sequencing of M. bovis sourced from infected cattle, deer and badgers in County Wicklow to evaluate whether the epidemiological role of deer could have shifted from spillover host to source. Our analyses reveal that cattle and deer share highly similar M. bovis strains, suggesting that transmission between these species is occurring in the area. In addition, the high level of diversity observed in the sampled deer population suggests deer may be acting as a source of infection for local cattle populations. These findings have important implications for the control and ultimate eradication of bTB in Ireland.
Collapse
Affiliation(s)
- Joseph Crispell
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Data Science Campus, Office for National Statistics, Newport, UK
| | - Sophie Cassidy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Kevin Kenny
- Central Veterinary Research Laboratory, Backweston, County Kildare, Ireland
| | - Guy McGrath
- UCD Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Susan Warde
- Central Veterinary Research Laboratory, Backweston, County Kildare, Ireland
| | - Henrietta Cameron
- Central Veterinary Research Laboratory, Backweston, County Kildare, Ireland
| | - Gianluigi Rossi
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Teresa MacWhite
- Department of Agriculture, Food and the Marine, Backweston, County Kildare, Ireland
| | - Piran C. L. White
- Department of Environment and Geography, University of York, Wentworth Way, York YO10 5NG, UK
| | | | - Rowland R. Kao
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - John Moriarty
- Central Veterinary Research Laboratory, Backweston, County Kildare, Ireland
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
39
|
Larsen MH, Lacourciere K, Parker TM, Kraigsley A, Achkar JM, Adams LB, Dupnik KM, Hall-Stoodley L, Hartman T, Kanipe C, Kurtz SL, Miller MA, Salvador LCM, Spencer JS, Robinson RT. The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis (Edinb) 2020; 121:101914. [PMID: 32279870 PMCID: PMC7428850 DOI: 10.1016/j.tube.2020.101914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Mycobacteria are important causes of disease in human and animal hosts. Diseases caused by mycobacteria include leprosy, tuberculosis (TB), nontuberculous mycobacteria (NTM) infections and Buruli Ulcer. To better understand and treat mycobacterial disease, clinicians, veterinarians and scientists use a range of discipline-specific approaches to conduct basic and applied research, including conducting epidemiological surveys, patient studies, wildlife sampling, animal models, genetic studies and computational simulations. To foster the exchange of knowledge and collaboration across disciplines, the Many Hosts of Mycobacteria (MHM) conference series brings together clinical, veterinary and basic scientists who are dedicated to advancing mycobacterial disease research. Started in 2007, the MHM series recently held its 8th conference at the Albert Einstein College of Medicine (Bronx, NY). Here, we review the diseases discussed at MHM8 and summarize the presentations on research advances in leprosy, NTM and Buruli Ulcer, human and animal TB, mycobacterial disease comorbidities, mycobacterial genetics and 'omics, and animal models. A mouse models workshop, which was held immediately after MHM8, is also summarized. In addition to being a resource for those who were unable to attend MHM8, we anticipate this review will provide a benchmark to gauge the progress of future research concerning mycobacteria and their many hosts.
Collapse
Affiliation(s)
- Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Tina M Parker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Alison Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Travis Hartman
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Carly Kanipe
- Department of Immunobiology, Iowa State University, Ames, IA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sherry L Kurtz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Washington, DC, USA
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liliana C M Salvador
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
40
|
Loiseau C, Menardo F, Aseffa A, Hailu E, Gumi B, Ameni G, Berg S, Rigouts L, Robbe-Austerman S, Zinsstag J, Gagneux S, Brites D. An African origin for Mycobacterium bovis. Evol Med Public Health 2020; 2020:49-59. [PMID: 32211193 PMCID: PMC7081938 DOI: 10.1093/emph/eoaa005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/24/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Mycobacterium bovis and Mycobacterium caprae are two of the most important agents of tuberculosis in livestock and the most important causes of zoonotic tuberculosis in humans. However, little is known about the global population structure, phylogeography and evolutionary history of these pathogens. METHODOLOGY We compiled a global collection of 3364 whole-genome sequences from M.bovis and M.caprae originating from 35 countries and inferred their phylogenetic relationships, geographic origins and age. RESULTS Our results resolved the phylogenetic relationship among the four previously defined clonal complexes of M.bovis, and another eight newly described here. Our phylogeographic analysis showed that M.bovis likely originated in East Africa. While some groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world. CONCLUSIONS AND IMPLICATIONS Our results allow a better understanding of the global population structure of M.bovis and its evolutionary history. This knowledge can be used to define better molecular markers for epidemiological investigations of M.bovis in settings where whole-genome sequencing cannot easily be implemented. LAY SUMMARY During the last few years, analyses of large globally representative collections of whole-genome sequences (WGS) from the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages have enhanced our understanding of the global population structure, phylogeography and evolutionary history of these pathogens. In contrast, little corresponding data exists for M. bovis, the most important agent of tuberculosis in livestock. Using whole-genome sequences of globally distributed M. bovis isolates, we inferred the genetic relationships among different M. bovis genotypes distributed around the world. The most likely origin of M. bovis is East Africa according to our inferences. While some M. bovis groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world driven by cattle movements.
Collapse
Affiliation(s)
- Chloé Loiseau
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fabrizio Menardo
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Abraham Aseffa
- Mycobacterial Diseases Directorate, Armauer Hansen Research Centre, Addis Ababa, Ethiopia
| | - Elena Hailu
- Mycobacterial Diseases Directorate, Armauer Hansen Research Centre, Addis Ababa, Ethiopia
| | - Balako Gumi
- Department of Animal Science and Range Management, Bule Hora University, Bule Hora Town, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Stefan Berg
- Bacteriology Department, Animal & Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Collection of Mycobacterial Cultures (BCCM/ITM), Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Suelee Robbe-Austerman
- Diagnostic Bacteriology and Pathology Laboratory, National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Jakob Zinsstag
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
41
|
Anyansi C, Keo A, Walker BJ, Straub TJ, Manson AL, Earl AM, Abeel T. QuantTB - a method to classify mixed Mycobacterium tuberculosis infections within whole genome sequencing data. BMC Genomics 2020; 21:80. [PMID: 31992201 PMCID: PMC6986090 DOI: 10.1186/s12864-020-6486-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mixed infections of Mycobacterium tuberculosis and antibiotic heteroresistance continue to complicate tuberculosis (TB) diagnosis and treatment. Detection of mixed infections has been limited to molecular genotyping techniques, which lack the sensitivity and resolution to accurately estimate the multiplicity of TB infections. In contrast, whole genome sequencing offers sensitive views of the genetic differences between strains of M. tuberculosis within a sample. Although metagenomic tools exist to classify strains in a metagenomic sample, most tools have been developed for more divergent species, and therefore cannot provide the sensitivity required to disentangle strains within closely related bacterial species such as M. tuberculosis. Here we present QuantTB, a method to identify and quantify individual M. tuberculosis strains in whole genome sequencing data. QuantTB uses SNP markers to determine the combination of strains that best explain the allelic variation observed in a sample. QuantTB outputs a list of identified strains, their corresponding relative abundances, and a list of drugs for which resistance-conferring mutations (or heteroresistance) have been predicted within the sample. RESULTS We show that QuantTB has a high degree of resolution and is capable of differentiating communities differing by less than 25 SNPs and identifying strains down to 1× coverage. Using simulated data, we found QuantTB outperformed other metagenomic strain identification tools at detecting strains and quantifying strain multiplicity. In a real-world scenario, using a dataset of 50 paired clinical isolates from a study of patients with either reinfections or relapses, we found that QuantTB could detect mixed infections and reinfections at rates concordant with a manually curated approach. CONCLUSION QuantTB can determine infection multiplicity, identify hetero-resistance patterns, enable differentiation between relapse and re-infection, and clarify transmission events across seemingly unrelated patients - even in low-coverage (1×) samples. QuantTB outperforms existing tools and promises to serve as a valuable resource for both clinicians and researchers working with clinical TB samples.
Collapse
Affiliation(s)
- Christine Anyansi
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628XE, The Netherlands.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Arlin Keo
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628XE, The Netherlands
| | - Bruce J Walker
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.,Applied Invention, LLC, 486 Green Street, Cambridge, MA, 02139, USA
| | - Timothy J Straub
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628XE, The Netherlands. .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
42
|
ANTIBIOTIC RESISTANT BACTERIA IN WILDLIFE: PERSPECTIVES ON TRENDS, ACQUISITION AND DISSEMINATION, DATA GAPS, AND FUTURE DIRECTIONS. J Wildl Dis 2020. [DOI: 10.7589/2019-04-099] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Genetic structure of Mycoplasma ovipneumoniae informs pathogen spillover dynamics between domestic and wild Caprinae in the western United States. Sci Rep 2019; 9:15318. [PMID: 31653889 PMCID: PMC6814754 DOI: 10.1038/s41598-019-51444-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
Abstract
Spillover diseases have significant consequences for human and animal health, as well as wildlife conservation. We examined spillover and transmission of the pneumonia-associated bacterium Mycoplasma ovipneumoniae in domestic sheep, domestic goats, bighorn sheep, and mountain goats across the western United States using 594 isolates, collected from 1984 to 2017. Our results indicate high genetic diversity of M. ovipneumoniae strains within domestic sheep, whereas only one or a few strains tend to circulate in most populations of bighorn sheep or mountain goats. These data suggest domestic sheep are a reservoir, while the few spillovers to bighorn sheep and mountain goats can persist for extended periods. Domestic goat strains form a distinct clade from those in domestic sheep, and strains from both clades are found in bighorn sheep. The genetic structure of domestic sheep strains could not be explained by geography, whereas some strains are spatially clustered and shared among proximate bighorn sheep populations, supporting pathogen establishment and spread following spillover. These data suggest that the ability to predict M. ovipneumoniae spillover into wildlife populations may remain a challenge given the high strain diversity in domestic sheep and need for more comprehensive pathogen surveillance.
Collapse
|
44
|
Menardo F, Duchêne S, Brites D, Gagneux S. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog 2019; 15:e1008067. [PMID: 31513651 PMCID: PMC6759198 DOI: 10.1371/journal.ppat.1008067] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/24/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular clock and its phylogenetic applications to genomic data have changed how we study and understand one of the major human pathogens, Mycobacterium tuberculosis (MTB), the etiologic agent of tuberculosis. Genome sequences of MTB strains sampled at different times are increasingly used to infer when a particular outbreak begun, when a drug-resistant clone appeared and expanded, or when a strain was introduced into a specific region. Despite the growing importance of the molecular clock in tuberculosis research, there is a lack of consensus as to whether MTB displays a clocklike behavior and about its rate of evolution. Here we performed a systematic study of the molecular clock of MTB on a large genomic data set (6,285 strains), covering different epidemiological settings and most of the known global diversity. We found that sampling times below 15-20 years were often insufficient to calibrate the clock of MTB. For data sets where such calibration was possible, we obtained a clock rate between 1x10-8 and 5x10-7 nucleotide changes per-site-per-year (0.04-2.2 SNPs per-genome-per-year), with substantial differences between clades. These estimates were not strongly dependent on the time of the calibration points as they changed only marginally when we used epidemiological isolates (sampled in the last 40 years) or three ancient DNA samples (about 1,000 years old) to calibrate the tree. Additionally, the uncertainty and the discrepancies in the results of different methods were sometimes large, highlighting the importance of using different methods, and of considering carefully their assumptions and limitations.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Salvador LCM, O'Brien DJ, Cosgrove MK, Stuber TP, Schooley AM, Crispell J, Church SV, Gröhn YT, Robbe-Austerman S, Kao RR. Disease management at the wildlife-livestock interface: Using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA. Mol Ecol 2019; 28:2192-2205. [PMID: 30807679 DOI: 10.1111/mec.15061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/16/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white-tailed deer (deer) population. It has potentially substantial implications for the health and well-being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well-observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife-livestock interface, providing insights into bTB management in an endemic system.
Collapse
Affiliation(s)
- Liliana C M Salvador
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Ecology and Evolutionary Biology Department, Princeton University, Princeton, New Jersey.,Royal (Dick) Veterinary School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Department of Infectious Diseases, College of Veterinary Medicine, Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Daniel J O'Brien
- Wildlife Disease Laboratory, Michigan Department of Natural Resources, Lansing, Michigan
| | - Melinda K Cosgrove
- Wildlife Disease Laboratory, Michigan Department of Natural Resources, Lansing, Michigan
| | - Tod P Stuber
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa
| | - Angie M Schooley
- Mycobacteriology Laboratory, Infectious Disease Division, Michigan Department of Health and Human Services, Lansing, Michigan
| | - Joseph Crispell
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Steven V Church
- Mycobacteriology Laboratory, Infectious Disease Division, Michigan Department of Health and Human Services, Lansing, Michigan
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa
| | - Rowland R Kao
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Royal (Dick) Veterinary School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
46
|
More SJ. Can bovine TB be eradicated from the Republic of Ireland? Could this be achieved by 2030? Ir Vet J 2019; 72:3. [PMID: 31057791 PMCID: PMC6485114 DOI: 10.1186/s13620-019-0140-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022] Open
Abstract
Background There has been an ongoing decline in bovine tuberculosis (TB) in the Republic of Ireland, however, TB has yet to be eradicated. Further to a recent commitment by the Irish government to eradicate TB by 2030, this paper considers two questions, ‘Can bovine TB be eradicated from the Republic of Ireland?’ and ‘Could this be achieved by 2030?’, given current knowledge from research. Main body of the abstract Until very recently, Ireland has lacked key tools required for eradication. This gap has substantially been filled with the national roll-out of badger vaccination. Nonetheless, there is robust evidence, drawn from general national research, international experiences, and results of a recent modelling study, to suggest that all current strategies plus badger vaccination will not be sufficient to successfully eradicate TB from Ireland by 2030. We face a critical decision point in the programme, specifically the scope and intensity of control measures from this point forward. Adequate information is available, both from research and international experience, to indicate that these additional measures should broadly focus on adequately addressing TB risks from wildlife, implementing additional risk-based cattle controls, and enhancing industry engagement. These three areas are considered in some detail. Conclusion Based on current knowledge, it will not be possible to eradicate TB by 2030 with current control strategies plus national badger vaccination. Additional measures will be needed if Ireland is to eradicate TB within a reasonable time frame. Decisions made now will have long-term implications both in terms of time-to-eradication and cumulative programme costs.
Collapse
Affiliation(s)
- Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| |
Collapse
|
47
|
Crispell J, Balaz D, Gordon SV. HomoplasyFinder: a simple tool to identify homoplasies on a phylogeny. Microb Genom 2019; 5:e000245. [PMID: 30663960 PMCID: PMC6412054 DOI: 10.1099/mgen.0.000245] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
A homoplasy is a nucleotide identity resulting from a process other than inheritance from a common ancestor. Importantly, by distorting the ancestral relationships between nucleotide sequences, homoplasies can change the structure of the phylogeny. Homoplasies can emerge naturally, especially under high selection pressures and/or high mutation rates, or be created during the generation and processing of sequencing data. Identification of homoplasies is critical, both to understand their influence on the analyses of phylogenetic data and to allow an investigation into how they arose. Here we present HomoplasyFinder, a java application that can be used as a stand-a-lone tool or within the statistical programming environment R. Within R and Java, HomoplasyFinder is shown to be able to automatically, and quickly, identify any homoplasies present in simulated and real phylogenetic data. HomoplasyFinder can easily be incorporated into existing analysis pipelines, either within or outside of R, allowing the user to quickly identify homoplasies to inform downstream analyses and interpretation.
Collapse
Affiliation(s)
- Joseph Crispell
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Republic of Ireland
| | - Daniel Balaz
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
| | - Stephen Vincent Gordon
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Republic of Ireland
| |
Collapse
|
48
|
Doyle R, Clegg TA, McGrath G, Tratalos J, Barrett D, Lee A, More SJ. The bovine tuberculosis cluster in north County Sligo during 2014-16. Ir Vet J 2018; 71:24. [PMID: 30534362 PMCID: PMC6262969 DOI: 10.1186/s13620-018-0135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (bTB, caused by infection with Mycobacterium bovis) is endemic in the Irish cattle population, and the subject of a national eradication programme since the late 1950s. During 2014, a substantial area-level bTB outbreak developing in north County Sligo, necessitating the need for an enhanced response. This paper describes this outbreak, the response that was undertaken and some lessons learned. RESULTS In the north Sligo area between 2014 and 2016, 23 (31.9%) of restricted herds had 4 or more reactors to the single intradermal comparative tuberculin test (SICTT)/animals with bTB lesions disclosed during the restriction, and the majority (55.5%) of test-positive animals were identified as standard reactors to the SICTT. The herds restricted during 2014-16 were typically larger than other herds in the study area and introduced more animals during 2013. M. bovis was also detected in local badgers, but not deer. CONCLUSION This paper describes a substantial outbreak in north County Sligo over a 3-year period. A coordinated area-based approach was a key feature of the outbreak, and substantial resources were applied to bring the outbreak under control. No definitive source was identified, nor reasons why a substantial number of herds were infected over a relatively short period. A coordinated regional approach was taken, and a number of lessons were learned including the need for urgency, for a team-based approach, for a consistent message when dealing with the public, for an area-based approach, for a degree of flexibility for the breakdown manager, and for molecular tools to assist in answering key questions relating to the source and spread of M. bovis to many herds during this bTB outbreak.
Collapse
Affiliation(s)
- Rob Doyle
- Department of Agriculture, Food and the Marine, Backweston Administration Building, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Tracy A. Clegg
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| | - Guy McGrath
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| | - Jamie Tratalos
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| | - Damien Barrett
- Department of Agriculture, Food and the Marine, Backweston Administration Building, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Ada Lee
- Cyberport, Pokfulam, Hong Kong Island, Hong Kong
| | - Simon J. More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| |
Collapse
|
49
|
Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB, Warren R, Dippenaar A, Parsons SDC, Beisel C, Behr MA, Fyfe JA, Coscolla M, Gagneux S. A New Phylogenetic Framework for the Animal-Adapted Mycobacterium tuberculosis Complex. Front Microbiol 2018; 9:2820. [PMID: 30538680 PMCID: PMC6277475 DOI: 10.3389/fmicb.2018.02820] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) affects humans and other animals and is caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Previous studies have shown that there are at least nine members of the MTBC infecting animals other than humans; these have also been referred to as ecotypes. However, the ecology and the evolution of these animal-adapted MTBC ecotypes are poorly understood. Here we screened 12,886 publicly available MTBC genomes and newly sequenced 17 animal-adapted MTBC strains, gathering a total of 529 genomes of animal-adapted MTBC strains. Phylogenomic and comparative analyses confirm that the animal-adapted MTBC members are paraphyletic with some members more closely related to the human-adapted Mycobacterium africanum Lineage 6 than to other animal-adapted strains. Furthermore, we identified four main animal-adapted MTBC clades that might correspond to four main host shifts; two of these clades are hypothesized to reflect independent cattle domestication events. Contrary to what would be expected from an obligate pathogen, MTBC nucleotide diversity was not positively correlated with host phylogenetic distances, suggesting that host tropism in the animal-adapted MTBC seems to be driven by contact rates and demographic aspects of the host population rather by than host relatedness. By combining phylogenomics with ecological data, we propose an evolutionary scenario in which the ancestor of Lineage 6 and all animal-adapted MTBC ecotypes was a generalist pathogen that subsequently adapted to different host species. This study provides a new phylogenetic framework to better understand the evolution of the different ecotypes of the MTBC and guide future work aimed at elucidating the molecular mechanisms underlying host range.
Collapse
Affiliation(s)
- Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna: Centro Nazionale di Referenza per la Tubercolosi Bovina, Brescia, Italy
| | - Robin Warren
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anzaan Dippenaar
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Sven David Charles Parsons
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marcel A Behr
- McGill International TB Centre, Infectious Diseases and Immunity in Global Health, McGill University Health Centre and Research Institute, Montréal, QC, Canada
| | - Janet A Fyfe
- Mycobacterium Reference Laboratory, Victoria Infectious Diseases Reference Laboratory, Peter Doherty Institute, Melbourne, VIC, Australia
| | - Mireia Coscolla
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
50
|
Price-Carter M, Brauning R, de Lisle GW, Livingstone P, Neill M, Sinclair J, Paterson B, Atkinson G, Knowles G, Crews K, Crispell J, Kao R, Robbe-Austerman S, Stuber T, Parkhill J, Wood J, Harris S, Collins DM. Whole Genome Sequencing for Determining the Source of Mycobacterium bovis Infections in Livestock Herds and Wildlife in New Zealand. Front Vet Sci 2018; 5:272. [PMID: 30425997 PMCID: PMC6218598 DOI: 10.3389/fvets.2018.00272] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/11/2018] [Indexed: 01/18/2023] Open
Abstract
The ability to DNA fingerprint Mycobacterium bovis isolates helped to define the role of wildlife in the persistence of bovine tuberculosis in New Zealand. DNA fingerprinting results currently help to guide wildlife control measures and also aid in tracing the source of infections that result from movement of livestock. During the last 5 years we have developed the ability to distinguish New Zealand (NZ) M. bovis isolates by comparing the sequences of whole genome sequenced (WGS) M. bovis samples. WGS provides much higher resolution than our other established typing methods and greatly improves the definition of the regional localization of NZ M. bovis types. Three outbreak investigations are described and results demonstrate how WGS analysis has led to the confirmation of epidemiological sourcing of infection, to better definition of new sources of infection by ruling out other possible sources, and has revealed probable wildlife infection in an area considered to be free of infected wildlife. The routine use of WGS analyses for sourcing new M. bovis infections will be an important component of the strategy employed to eradicate bovine TB from NZ livestock and wildlife.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Garry Knowles
- Aquaculture Veterinary Services Ltd., Clyde, New Zealand
| | | | - Joseph Crispell
- University College Dublin School of Veterinary Medicine, Dublin, Ireland
| | - Rowland Kao
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Suelee Robbe-Austerman
- Diagnostic Bacteriology Laboratory, National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service, Ames, IA, United States
| | - Tod Stuber
- Diagnostic Bacteriology Laboratory, National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service, Ames, IA, United States
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - James Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Harris
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Desmond M Collins
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|