1
|
Shapira G, Karmon G, Hacohen-Kleiman G, Ganaiem M, Shazman S, Theotokis P, Grigoriadis N, Shomron N, Gozes I. ADNP is essential for sex-dependent hippocampal neurogenesis, through male unfolded protein response and female mitochondrial gene regulation. Mol Psychiatry 2025; 30:2696-2706. [PMID: 39715923 DOI: 10.1038/s41380-024-02879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Essential for brain formation and protective against tauopathy, activity-dependent neuroprotective protein (ADNP) is critical for neurogenesis and cognitive functions, while regulating steroid hormone biogenesis. As such, de novo mutations in ADNP lead to syndromic autism and somatic ADNP mutations parallel Alzheimer's disease progression. Furthermore, clinical trials with the ADNP fragment NAP (the investigational drug davunetide) showed efficacy in women suffering from the tauopathy progressive supranuclear palsy and differentially boosted memory in men (spatial) and women (verbal), exhibiting prodromal Alzheimer's disease. While autism is more prevalent in boys and Alzheimer's disease in women, both involve impaired neurogenesis. Here, we asked whether ADNP sex-dependently regulates neurogenesis. Using bromodeoxyuridine (BrdU) as a marker of neurogenesis, we identified two-fold higher labeling in the hippocampal sub-ventricular zone of ADNP-intact male versus female mice. Adnp haplo-insufficient (Adnp+/-) mice or mice CRSIPR/Cas9-edited to present the most prevalent neurodevelopmental ADNP syndrome mutation, p.Tyr718* (Tyr) showed dramatic reductions in male BrdU incorporation, resulting in mutated females presenting higher labeling than males. Treatment with NAP compensated for the male reduction of BrdU labeling. Mechanistically, hippocampal RNAseq revealed male-specific Tyr down-regulation of endoplasmic reticulum unfolded protein response genes critical for sex-dependent organogenesis. Newly discovered mitochondrial accessibility of ADNP was inhibited by the Tyr718* mutation further revealing female-specific Tyr downregulation of mitochondrial ATP6. NAP moderated much of the differential expression caused by p.Tyr718*, accompanied by the down-regulation of neurotoxic, pro-inflammatory and pro-apoptotic genes. Thus, ADNP is a key regulator of sex-dependent neurogenesis that acts by controlling canonical pathways, with NAP compensating for fundamental ADNP deficiencies, striding toward clinical development targeting the ADNP syndrome and related neurodevelopmental/neurodegenerative diseases.
Collapse
Affiliation(s)
- Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gidon Karmon
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Hacohen-Kleiman
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Maram Ganaiem
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, 4353701, Israel
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
2
|
Pizzirusso G, Preka E, Goikolea J, Aguilar-Ruiz C, Rodriguez-Rodriguez P, Vazquez-Cabrera G, Laterza S, Latorre-Leal M, Eroli F, Blomgren K, Maioli S, Nilsson P, Fragkopoulou A, Fisahn A, Arroyo-García LE. Dynamic microglia alterations associate with hippocampal network impairments: A turning point in amyloid pathology progression. Brain Behav Immun 2024; 119:286-300. [PMID: 38608739 DOI: 10.1016/j.bbi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease is a progressive neurological disorder causing memory loss and cognitive decline. The underlying causes of cognitive deterioration and neurodegeneration remain unclear, leading to a lack of effective strategies to prevent dementia. Recent evidence highlights the role of neuroinflammation, particularly involving microglia, in Alzheimer's disease onset and progression. Characterizing the initial phase of Alzheimer's disease can lead to the discovery of new biomarkers and therapeutic targets, facilitating timely interventions for effective treatments. We used the AppNL-G-F knock-in mouse model, which resembles the amyloid pathology and neuroinflammatory characteristics of Alzheimer's disease, to investigate the transition from a pre-plaque to an early plaque stage with a combined functional and molecular approach. Our experiments show a progressive decrease in the power of cognition-relevant hippocampal gamma oscillations during the early stage of amyloid pathology, together with a modification of fast-spiking interneuron intrinsic properties and postsynaptic input. Consistently, transcriptomic analyses revealed that these effects are accompanied by changes in synaptic function-associated pathways. Concurrently, homeostasis- and inflammatory-related microglia signature genes were downregulated. Moreover, we found a decrease in Iba1-positive microglia in the hippocampus that correlates with plaque aggregation and neuronal dysfunction. Collectively, these findings support the hypothesis that microglia play a protective role during the early stages of amyloid pathology by preventing plaque aggregation, supporting neuronal homeostasis, and overall preserving the oscillatory network's functionality. These results suggest that the early alteration of microglia dynamics could be a pivotal event in the progression of Alzheimer's disease, potentially triggering plaque deposition, impairment of fast-spiking interneurons, and the breakdown of the oscillatory circuitry in the hippocampus.
Collapse
Affiliation(s)
- Giusy Pizzirusso
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Efthalia Preka
- Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Julen Goikolea
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Celia Aguilar-Ruiz
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | | | - Simona Laterza
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Maria Latorre-Leal
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Francesca Eroli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Sweden; Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | | | - André Fisahn
- Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| | - Luis Enrique Arroyo-García
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| |
Collapse
|
3
|
Oakley RH, Riddick NV, Moy SS, Cidlowski JA. Imbalanced glucocorticoid and mineralocorticoid stress hormone receptor function has sex-dependent and independent regulatory effects in the mouse hippocampus. Neurobiol Stress 2024; 28:100589. [PMID: 38075021 PMCID: PMC10709088 DOI: 10.1016/j.ynstr.2023.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 02/12/2024] Open
Abstract
Many stress-related neuropsychiatric disorders display pronounced sex differences in their frequency and clinical symptoms. Glucocorticoids are primary stress hormones that have been implicated in the development of these disorders but whether they contribute to the observed sex bias is poorly understood. Glucocorticoids signal through two closely related nuclear receptors, the glucocorticoid (GR) and mineralocorticoid receptor (MR). To elucidate the sex-specific and independent actions of glucocorticoids in the hippocampus, we developed knockout mice lacking hippocampal GR, MR, or both GR and MR. Mice deficient in hippocampal MR or both GR and MR showed an altered molecular phenotype of CA2 neurons and reduced anxiety-like behavior in both sexes, but altered stress adaptation behavior only in females and enhanced fear-motivated cue learning only in males. All three knockout mouse models displayed reduced sociability but only in male mice. Male and female mice deficient in both hippocampal GR and MR exhibited extensive neurodegeneration in the dentate gyrus. Global transcriptomic analysis revealed a marked expansion in the number of dysregulated genes in the hippocampus of female knockout mice compared to their male counterparts; however, the overall patterns of gene dysregulation were remarkably similar in both sexes. Within and across sex comparisons identified key GR and MR target genes and associated signaling pathways underlying the knockout phenotypes. These findings define major sex-dependent and independent effects of GR/MR imbalances on gene expression and functional profiles in the hippocampus and inform new strategies for treating men and women with stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Robert H. Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Natallia V. Riddick
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A. Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
4
|
Zhvania M, Japaridze N, Tizabi Y, Lomidze N, Pochkhidze N, Rzayev F, Gasimov E. Differential effects of aging on hippocampal ultrastructure in male vs. female rats. Biogerontology 2023; 24:925-935. [PMID: 37515624 DOI: 10.1007/s10522-023-10052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
Age-related decline in physical and cognitive functions are facts of life that do not affect everyone to the same extent. We had reported earlier that such cognitive decline is both sex- and context-dependent. Moreover, age-associated ultrastructural changes were observed in the hippocampus of male rats. In this study, we sought to determine potential differences in ultrastructural changes between male and female rats at various stages of life. We performed quantitative electron microscopic evaluation of hippocampal CA1 region, an area intimately involved in cognitive behavior, in both male and female adolescent, adult and old Wistar rats. Specifically, we measured the number of docking synaptic vesicles in axo-dendritic synapses, the length of active zone as well as the total number of synaptic vesicles. Distinct age- and sex-dependent effects were observed in several parameters. Thus, adult female rats had the lowest synaptic active zone compared to both adolescent and old female rats. Moreover, the same parameter was significantly lower in adult and old female rats compared to their male counterparts. On the other hand, old male rats had significantly lower number of total synaptic vesicles compared to both adolescent and adult male rats as well as compared to their female counterparts. Taken together, it may be suggested that age- and sex-dependent ultrastructural changes in the hippocampus may underlie at least some of the differences in cognitive functions among these groups.
Collapse
Affiliation(s)
- Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia.
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- New Vision University, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Eldar Gasimov
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
5
|
Gauvrit T, Benderradji H, Pelletier A, Aboulouard S, Faivre E, Carvalho K, Deleau A, Vallez E, Launay A, Bogdanova A, Besegher M, Le Gras S, Tailleux A, Salzet M, Buée L, Delahaye F, Blum D, Vieau D. Multi-Omics Data Integration Reveals Sex-Dependent Hippocampal Programming by Maternal High-Fat Diet during Lactation in Adult Mouse Offspring. Nutrients 2023; 15:4691. [PMID: 37960344 PMCID: PMC10649590 DOI: 10.3390/nu15214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Hamza Benderradji
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Alexandre Pelletier
- The Department of Pharmacology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Soulaimane Aboulouard
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Emilie Faivre
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Kévin Carvalho
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Aude Deleau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Emmanuelle Vallez
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Agathe Launay
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Anna Bogdanova
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Mélanie Besegher
- US 41-UMS 2014-PLBS, Animal Facility, University of Lille, CNRS, INSERM, CHU Lille, 59000 Lille, France;
| | - Stéphanie Le Gras
- CNRS U7104, INSERM U1258, GenomEast Platform, IGBMC, University of Strasbourg, 67412 Illkirch, France;
| | - Anne Tailleux
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Michel Salzet
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Luc Buée
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Fabien Delahaye
- Sanofi Precision Medicine and Computational Biology, 94081 Vitry-sur-Seine, France;
| | - David Blum
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Didier Vieau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| |
Collapse
|
6
|
Abdullatef S, Farina C. Publicly available ex vivo transcriptomics datasets to explore CNS physiology and neurodegeneration: state of the art and perspectives. Front Neurosci 2023; 17:1211079. [PMID: 37680966 PMCID: PMC10481165 DOI: 10.3389/fnins.2023.1211079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
The central nervous system (CNS) is characterized by an intricate composition of diverse cell types, including neurons and glia cells (astrocytes, oligodendrocytes, and microglia), whose functions may differ along time, between sexes and upon pathology. The advancements in high-throughput transcriptomics are providing fundamental insights on cell phenotypes, so that molecular codes and instructions are ever more described for CNS physiology and neurodegeneration. To facilitate the search of relevant information, this review provides an overview of key CNS transcriptomics studies ranging from CNS development to ageing and from physiology to pathology as defined for five neurodegenerative disorders and their relative animal models, with a focus on molecular descriptions whose raw data were publicly available. Accurate phenotypic descriptions of cellular states correlate with functional changes and this knowledge may support research devoted to the development of therapeutic strategies supporting CNS repair and function.
Collapse
Affiliation(s)
- Sandra Abdullatef
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Mulvey B, Frye HE, Lintz T, Fass S, Tycksen E, Nelson EC, Morón JA, Dougherty JD. Cnih3 Deletion Dysregulates Dorsal Hippocampal Transcription across the Estrous Cycle. eNeuro 2023; 10:ENEURO.0153-22.2023. [PMID: 36849260 PMCID: PMC10027183 DOI: 10.1523/eneuro.0153-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
In females, the hippocampus, a critical brain region for coordination of learning, memory, and behavior, displays altered physiology and behavioral output across the estrous or menstrual cycle. However, the molecular effectors and cell types underlying these observed cyclic changes have only been partially characterized to date. Recently, profiling of mice null for the AMPA receptor trafficking gene Cnih3 have demonstrated estrous-dependent phenotypes in dorsal hippocampal synaptic plasticity, composition, and learning/memory. We therefore profiled dorsal hippocampal transcriptomes from female mice in each estrous cycle stage, and contrasted it with that of males, across wild-type (WT) and Cnih3 mutants. In wild types, we identified only subtle differences in gene expression between the sexes, while comparing estrous stages to one another revealed up to >1000 differentially expressed genes (DEGs). These estrous-responsive genes are especially enriched in gene markers of oligodendrocytes and the dentate gyrus, and in functional gene sets relating to estrogen response, potassium channels, and synaptic gene splicing. Surprisingly, Cnih3 knock-outs (KOs) showed far broader transcriptomic differences between estrous cycle stages and males. Moreover, Cnih3 knock-out drove subtle but extensive expression changes accentuating sex differential expression at diestrus and estrus. Altogether, our profiling highlights cell types and molecular systems potentially impacted by estrous-specific gene expression patterns in the adult dorsal hippocampus, enabling mechanistic hypothesis generation for future studies of sex-differential neuropsychiatric function and dysfunction. Moreover, these findings suggest an unrecognized role of Cnih3 in buffering against transcriptional effects of estrous, providing a candidate molecular mechanism to explain estrous-dependent phenotypes observed with Cnih3 loss.
Collapse
Affiliation(s)
- Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Hannah E Frye
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tania Lintz
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stuart Fass
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
8
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Regulation of N6-Methyladenosine after Myocardial Infarction. Cells 2022; 11:cells11152271. [PMID: 35892568 PMCID: PMC9329994 DOI: 10.3390/cells11152271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Development of heart failure (HF) after myocardial infarction (MI) is responsible for premature death. Complex cellular and molecular mechanisms are involved in this process. A number of studies have linked the epitranscriptomic RNA modification N6-methyladenosine (m6A) with HF, but it remains unknown how m6A affects the risk of developing HF after MI. We addressed the regulation of m6A and its demethylase fat mass and obesity-associated (FTO) after MI and their association with HF. Using liquid chromatography coupled to mass spectrometry, we observed an increase of m6A content in the infarcted area of rat hearts subjected to coronary ligation and a decrease in blood. FTO expression measured by quantitative PCR was downregulated in the infarcted hearts. In whole blood samples collected at the time of reperfusion in MI patients, m6A content was lower in patients who developed HF as attested by a 4-month ejection fraction (EF) of ≤40% as compared to patients who did not develop HF (EF > 50%). M6A content was higher in females. These results show that m6A measured in blood is associated with HF development after MI and motivate further investigation of the potential role of m6A as a novel epitranscriptomics biomarker and therapeutic target of HF.
Collapse
|
11
|
Wang S, García-Seisdedos D, Prakash A, Kundu DJ, Collins A, George N, Fexova S, Moreno P, Papatheodorou I, Jones AR, Vizcaíno JA. Integrated view and comparative analysis of baseline protein expression in mouse and rat tissues. PLoS Comput Biol 2022; 18:e1010174. [PMID: 35714157 PMCID: PMC9246241 DOI: 10.1371/journal.pcbi.1010174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/30/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
The increasingly large amount of proteomics data in the public domain enables, among other applications, the combined analyses of datasets to create comparative protein expression maps covering different organisms and different biological conditions. Here we have reanalysed public proteomics datasets from mouse and rat tissues (14 and 9 datasets, respectively), to assess baseline protein abundance. Overall, the aggregated dataset contained 23 individual datasets, including a total of 211 samples coming from 34 different tissues across 14 organs, comprising 9 mouse and 3 rat strains, respectively. In all cases, we studied the distribution of canonical proteins between the different organs. The number of canonical proteins per dataset ranged from 273 (tendon) and 9,715 (liver) in mouse, and from 101 (tendon) and 6,130 (kidney) in rat. Then, we studied how protein abundances compared across different datasets and organs for both species. As a key point we carried out a comparative analysis of protein expression between mouse, rat and human tissues. We observed a high level of correlation of protein expression among orthologs between all three species in brain, kidney, heart and liver samples, whereas the correlation of protein expression was generally slightly lower between organs within the same species. Protein expression results have been integrated into the resource Expression Atlas for widespread dissemination.
Collapse
Affiliation(s)
- Shengbo Wang
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David García-Seisdedos
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ananth Prakash
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Deepti Jaiswal Kundu
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andrew Collins
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Silvie Fexova
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Pablo Moreno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andrew R. Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
12
|
Uhl M, Schmeisser MJ, Schumann S. The Sexual Dimorphic Synapse: From Spine Density to Molecular Composition. Front Mol Neurosci 2022; 15:818390. [PMID: 35250477 PMCID: PMC8894598 DOI: 10.3389/fnmol.2022.818390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
A synaptic sexual dimorphism is relevant in the context of multiple neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Many of these disorders show a different prevalence and progression in woman and man. A similar variance is also present in corresponding animal models. To understand and characterize this dimorphism in pathologies it is important to first understand sex differences in unaffected individuals. Therefore, sexual differences have been studied since 1788, first focusing on brain weight, size, and volume. But as these measures are not directly related to brain function, the investigation of sexual dimorphism also expanded to other organizational levels of the brain. This review is focused on sexual dimorphism at the synaptic level, as these specialized structures are the smallest functional units of the brain, determining cell communication, connectivity, and plasticity. Multiple differences between males and females can be found on the levels of spine density, synaptic morphology, and molecular synapse composition. These differences support the importance of sex-disaggregated data. The specificity of changes to a particular brain region or circuit might support the idea of a mosaic brain, in which each tile individually lies on a continuum from masculinization to feminization. Moreover, synapses can be seen as the smallest tiles of the mosaic determining the classification of larger areas.
Collapse
Affiliation(s)
- Mara Uhl
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| | - Sven Schumann
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Sven Schumann,
| |
Collapse
|
13
|
Saland SK, Wilczak K, Voss E, Lam TT, Kabbaj M. Sex- and estrous-cycle dependent dorsal hippocampal phosphoproteomic changes induced by low-dose ketamine. Sci Rep 2022; 12:1820. [PMID: 35110693 PMCID: PMC8810966 DOI: 10.1038/s41598-022-05937-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Numerous emotional and cognitive processes mediated by the hippocampus present differences between sexes and can be markedly influenced by hormonal status in males and females of several species. In rodents, the dorsal hippocampus (dHPC) is known to contribute to the rapid antidepressant actions of the NMDA receptor antagonist ketamine. We and others have demonstrated a greater sensitivity to the fast-acting antidepressant ketamine in female versus male rats that is estrogen- and progesterone-dependent. However, the underlying mechanisms remain unclear. Using an acute low dose (2.5 mg/kg) of ketamine that is behaviorally effective in female but not male rats, a label-free phosphoproteomics approach was employed to identify ketamine-induced changes in signaling pathway activation and phosphoprotein abundance within the dHPC of intact adult male rats and female rats in either diestrus or proestrus. At baseline, males and females showed striking dissimilarities in the dHPC proteome and phosphoproteome related to synaptic signaling and mitochondrial function-differences also strongly influenced by cycle stage in female rats. Notably, phosphoproteins enriched in PKA signaling emerged as being both significantly sex-dependent at baseline and also the primary target of ketamine-induced protein phosphorylation selectively in female rats, regardless of cycle stage. Reduced phosphoprotein abundance within this pathway was observed in males, suggesting bi-directional effects of low-dose ketamine between sexes. These findings present biological sex and hormonal milieu as critical modulators of ketamine's rapid actions within this brain region and provide greater insight into potential translational and post-translational processes underlying sex- and hormone-dependent modulation of ketamine's therapeutic effects.
Collapse
Affiliation(s)
- Samantha K Saland
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| | - Kathrin Wilczak
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Edward Voss
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
14
|
Seney ML, Nestler EJ. Introduction to Special Issue: Insight Into Sex Differences in Neuropsychiatric Syndromes From Transcriptomic Analyses. Biol Psychiatry 2022; 91:3-5. [PMID: 34857105 PMCID: PMC8887677 DOI: 10.1016/j.biopsych.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Marianne L. Seney
- Department of Psychiatry and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Sil A, Erfani A, Lamb N, Copland R, Riedel G, Platt B. Sex Differences in Behavior and Molecular Pathology in the 5XFAD Model. J Alzheimers Dis 2021; 85:755-778. [PMID: 34864660 DOI: 10.3233/jad-210523] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The prevalence of Alzheimer's disease (AD) is greater in women compared to men, but the reasons for this remain unknown. This sex difference has been widely neglected in experimental studies using transgenic mouse models of AD. OBJECTIVE Here, we studied behavior and molecular pathology of 5-month-old 5XFAD mice, which express mutated human amyloid precursor protein and presenilin-1 on a C57BL/6J background, versus their wild-type littermate controls, to compared both sex- and genotype-dependent differences. METHODS A novel behavioral paradigm was utilized (OF-NO-SI), comprising activity measures (Open Field, OF) arena, followed by Novel Object exploration (NO) and Social Interaction (SI) of a sex-matched conspecific. Each segment consisted of two repeated trials to assess between-trial habituation. Subsequently, brain pathology (amyloid load, stress response and inflammation markers, synaptic integrity, trophic support) was assessed using qPCR and western blotting. RESULTS Female 5XFAD mice had higher levels of human APP and amyloid-β and heightened inflammation versus males. These markers correlated with hyperactivity observed in both sexes, yet only female 5XFAD mice presented with deficits in object and social exploration. Male animals had higher expression of stress markers and neurotrophic factors irrespective of genotype, this correlated with cognitive performance. CONCLUSION The impact of sex on AD-relevant phenotypes is in line with human data and emphasizes the necessity of appropriate study design and reporting. Differential molecular profiles observed in male versus female mice offer insights into possible protective mechanisms, and hence treatment strategies.
Collapse
Affiliation(s)
- Annesha Sil
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Arina Erfani
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Nicola Lamb
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Rachel Copland
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Gernot Riedel
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
16
|
Bhatia TN, Clark RN, Needham PG, Miner KM, Jamenis AS, Eckhoff EA, Abraham N, Hu X, Wipf P, Luk KC, Brodsky JL, Leak RK. Heat Shock Protein 70 as a Sex-Skewed Regulator of α-Synucleinopathy. Neurotherapeutics 2021; 18:2541-2564. [PMID: 34528172 PMCID: PMC8804008 DOI: 10.1007/s13311-021-01114-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/01/2023] Open
Abstract
The role of molecular chaperones, such as heat shock protein 70 (Hsp70), is not typically studied as a function of biological sex, but by addressing this gap we might improve our understanding of proteinopathic disorders that predominate in one sex. Therefore, we exposed male or female primary hippocampal cultures to preformed α-synuclein fibrils in a model of early-stage Lewy pathology. We first discovered that two mechanistically distinct inhibitors of Hsp70 function increased phospho-α-synuclein+ inclusions more robustly in male-derived neurons. Because Hsp70 is released into extracellular compartments and may restrict cell-to-cell transmission/amplification of α-synucleinopathy, we then tested the effects of low-endotoxin, exogenous Hsp70 (eHsp70) in primary hippocampal cultures. eHsp70 was taken up by and reduced α-synuclein+ inclusions in cells of both sexes, but pharmacological suppression of Hsp70 function attenuated the inhibitory effect of eHsp70 on perinuclear inclusions only in male neurons. In 20-month-old male mice infused with α-synuclein fibrils in the olfactory bulb, daily intranasal eHsp70 delivery also reduced inclusion numbers and the time to locate buried food. eHsp70 penetrated the limbic system and spinal cord of male mice within 3 h but was cleared within 72 h. Unexpectedly, no evidence of eHsp70 uptake from nose into brain was observed in females. A trend towards higher expression of inducible Hsp70-but not constitutive Hsp70 or Hsp40-was observed in amygdala tissues from male subjects with Lewy body disorders compared to unaffected male controls, supporting the importance of this chaperone in human disease. Women expressed higher amygdalar Hsp70 levels compared to men, regardless of disease status. Together, these data provide a new link between biological sex and a key chaperone that orchestrates proteostasis.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Patrick G Needham
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Elizabeth A Eckhoff
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Dept. of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Dept. of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey L Brodsky
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Barthelson K, Dong Y, Newman M, Lardelli M. PRESENILIN 1 Mutations Causing Early-Onset Familial Alzheimer's Disease or Familial Acne Inversa Differ in Their Effects on Genes Facilitating Energy Metabolism and Signal Transduction. J Alzheimers Dis 2021; 82:327-347. [PMID: 34024832 DOI: 10.3233/jad-210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The most common cause of early-onset familial Alzheimer's disease (EOfAD) is mutations in PRESENILIN 1 (PSEN1) allowing production of mRNAs encoding full-length, but mutant, proteins. In contrast, a single known frameshift mutation in PSEN1 causes familial acne inversa (fAI) without EOfAD. The molecular consequences of heterozygosity for these mutation types, and how they cause completely different diseases, remains largely unexplored. OBJECTIVE To analyze brain transcriptomes of young adult zebrafish to identify similarities and differences in the effects of heterozygosity for psen1 mutations causing EOfAD or fAI. METHODS RNA sequencing was performed on mRNA isolated from the brains of a single family of 6-month-old zebrafish siblings either wild type or possessing a single, heterozygous EOfAD-like or fAI-like mutation in their endogenous psen1 gene. RESULTS Both mutations downregulate genes encoding ribosomal subunits, and upregulate genes involved in inflammation. Genes involved in energy metabolism appeared significantly affected only by the EOfAD-like mutation, while genes involved in Notch, Wnt and neurotrophin signaling pathways appeared significantly affected only by the fAI-like mutation. However, investigation of direct transcriptional targets of Notch signaling revealed possible increases in γ-secretase activity due to heterozygosity for either psen1 mutation. Transcriptional adaptation due to the fAI-like frameshift mutation was evident. CONCLUSION We observed both similar and contrasting effects on brain transcriptomes of the heterozygous EOfAD-like and fAI-like mutations. The contrasting effects may illuminate how these mutation types cause distinct diseases.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Yang Dong
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
18
|
Zaręba-Kozioł M, Bartkowiak-Kaczmarek A, Roszkowska M, Bijata K, Figiel I, Halder AK, Kamińska P, Müller FE, Basu S, Zhang W, Ponimaskin E, Włodarczyk J. S-Palmitoylation of Synaptic Proteins as a Novel Mechanism Underlying Sex-Dependent Differences in Neuronal Plasticity. Int J Mol Sci 2021; 22:ijms22126253. [PMID: 34200797 PMCID: PMC8230572 DOI: 10.3390/ijms22126253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although sex differences in the brain are prevalent, the knowledge about mechanisms underlying sex-related effects on normal and pathological brain functioning is rather poor. It is known that female and male brains differ in size and connectivity. Moreover, those differences are related to neuronal morphology, synaptic plasticity, and molecular signaling pathways. Among different processes assuring proper synapse functions are posttranslational modifications, and among them, S-palmitoylation (S-PALM) emerges as a crucial mechanism regulating synaptic integrity. Protein S-PALM is governed by a family of palmitoyl acyltransferases, also known as DHHC proteins. Here we focused on the sex-related functional importance of DHHC7 acyltransferase because of its S-PALM action over different synaptic proteins as well as sex steroid receptors. Using the mass spectrometry-based PANIMoni method, we identified sex-dependent differences in the S-PALM of synaptic proteins potentially involved in the regulation of membrane excitability and synaptic transmission as well as in the signaling of proteins involved in the structural plasticity of dendritic spines. To determine a mechanistic source for obtained sex-dependent changes in protein S-PALM, we analyzed synaptoneurosomes isolated from DHHC7-/- (DHHC7KO) female and male mice. Our data showed sex-dependent action of DHHC7 acyltransferase. Furthermore, we revealed that different S-PALM proteins control the same biological processes in male and female synapses.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Anup Kumar Halder
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Paulina Kamińska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Franziska E. Müller
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1/A9, 48149 Munster, Germany;
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| |
Collapse
|
19
|
Baik SH, Selvaraji S, Fann DY, Poh L, Jo DG, Herr DR, Zhang SR, Kim HA, Silva MD, Lai MK, Chen CLH, Drummond GR, Lim KL, Sobey CG, Arumugam TV. Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging (Albany NY) 2021; 13:14651-14674. [PMID: 34074801 PMCID: PMC8221317 DOI: 10.18632/aging.203123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Vascular dementia (VaD) is a progressive cognitive impairment of vascular etiology. VaD is characterized by cerebral hypoperfusion, increased blood-brain barrier permeability and white matter lesions. An increased burden of VaD is expected in rapidly aging populations. The hippocampus is particularly susceptible to hypoperfusion, and the resulting memory impairment may play a crucial role in VaD. Here we have investigated the hippocampal gene expression profile of young and old mice subjected to cerebral hypoperfusion by bilateral common carotid artery stenosis (BCAS). Our data in sham-operated young and aged mice reveal an age-associated decline in cerebral blood flow and differential gene expression. In fact, BCAS and aging caused broadly similar effects. However, BCAS-induced changes in hippocampal gene expression differed between young and aged mice. Specifically, transcriptomic analysis indicated that in comparison to young sham mice, many pathways altered by BCAS in young mice resembled those already present in sham aged mice. Over 30 days, BCAS in aged mice had minimal effect on either cerebral blood flow or hippocampal gene expression. Immunoblot analyses confirmed these findings. Finally, relative to young sham mice the cell type-specific profile of genes in both young BCAS and old sham animals further revealed common cell-specific genes. Our data provide a genetic-based molecular framework for hypoperfusion-induced hippocampal damage and reveal common cellular signaling pathways likely to be important in the pathophysiology of VaD.
Collapse
Affiliation(s)
- Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sharmelee Selvaraji
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Deron R. Herr
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Shenpeng R. Zhang
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Mitchell K.P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grant R. Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Christopher G. Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
20
|
Inglis A, Ubungen R, Farooq S, Mata P, Thiam J, Saleh S, Shibin S, Al-Mohanna FA, Collison KS. Strain-based and sex-biased differences in adrenal and pancreatic gene expression between KK/HlJ and C57BL/6 J mice. BMC Genomics 2021; 22:180. [PMID: 33711921 PMCID: PMC7953684 DOI: 10.1186/s12864-021-07495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/26/2021] [Indexed: 11/15/2022] Open
Abstract
Background The ever-increasing prevalence of diabetes and associated comorbidities serves to highlight the necessity of biologically relevant small-animal models to investigate its etiology, pathology and treatment. Although the C57BL/6 J model is amongst the most widely used mouse model due to its susceptibility to diet-induced obesity (DIO), there are a number of limitations namely [1] that unambiguous fasting hyperglycemia can only be achieved via dietary manipulation and/or chemical ablation of the pancreatic beta cells. [2] Heterogeneity in the obesogenic effects of hypercaloric feeding has been noted, together with sex-dependent differences, with males being more responsive. The KK mouse strain has been used to study aspects of the metabolic syndrome and prediabetes. We recently conducted a study which characterized the differences in male and female glucocentric parameters between the KK/HlJ and C57BL/6 J strains as well as diabetes-related behavioral differences (Inglis et al. 2019). In the present study, we further characterize these models by examining strain- and sex-dependent differences in pancreatic and adrenal gene expression using Affymetrix microarray together with endocrine-associated serum analysis. Results In addition to strain-associated differences in insulin tolerance, we found significant elevations in KK/HlJ mouse serum leptin, insulin and aldosterone. Additionally, glucagon and corticosterone were elevated in female mice of both strains. Using 2-factor ANOVA and a significance level set at 0.05, we identified 10,269 pancreatic and 10,338 adrenal genes with an intensity cut-off of ≥2.0 for all 4 experimental groups. In the pancreas, gene expression upregulated in the KK/HlJ strain related to increased insulin secretory granule biofunction and pancreatic hyperplasia, whereas ontology of upregulated adrenal differentially expressed genes (DEGs) related to cell signaling and neurotransmission. We established a network of functionally related DEGs commonly upregulated in both endocrine tissues of KK/HlJ mice which included the genes coding for endocrine secretory vesicle biogenesis and regulation: PCSK2, PCSK1N, SCG5, PTPRN, CHGB and APLP1. We also identified genes with sex-biased expression common to both strains and tissues including the paternally expressed imprint gene neuronatin. Conclusion Our novel results have further characterized the commonalities and diversities of pancreatic and adrenal gene expression between the KK/HlJ and C57BL/6 J strains as well as differences in serum markers of endocrine physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07495-4.
Collapse
Affiliation(s)
- Angela Inglis
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Rosario Ubungen
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Sarah Farooq
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Princess Mata
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Jennifer Thiam
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Soad Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Sherin Shibin
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Kate S Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
21
|
Baksi S, Pradhan A. Thyroid hormone: sex-dependent role in nervous system regulation and disease. Biol Sex Differ 2021; 12:25. [PMID: 33685490 PMCID: PMC7971120 DOI: 10.1186/s13293-021-00367-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will be very beneficial to understand how TH acts in male and female brains and what are the critical genes and signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also presented that provides critical information on TH-regulated genes, signaling, and disease.
Collapse
Affiliation(s)
- Shounak Baksi
- Causality Biomodels, Kerala Technology Innovation Zone, Cochin, 683503, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
22
|
Gene expression profiling in neuronal cells identifies a different type of transcriptome modulated by NF-Y. Sci Rep 2020; 10:21714. [PMID: 33303918 PMCID: PMC7728767 DOI: 10.1038/s41598-020-78682-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
A heterotrimeric transcription factor NF-Y is crucial for cell-cycle progression in various types of cells. In contrast, studies using NF-YA knockout mice have unveiled its essential role in endoplasmic reticulum (ER) homeostasis in neuronal cells. However, whether NF-Y modulates a different transcriptome to mediate distinct cellular functions remains obscure. Here, we knocked down NF-Y in two types of neuronal cells, neuro2a neuroblastoma cells and mouse brain striatal cells, and performed gene expression profiling. We found that down-regulated genes preferentially contained NF-Y-binding motifs in their proximal promoters, and notably enriched genes related to ER functions rather than those for cell cycle. This contrasts with the profiling data of HeLa and embryonic stem cells in which distinct down-regulation of cell cycle-related genes was observed. Clustering analysis further identified several functional clusters where populations of the down-regulated genes were highly distinct. Further analyses using chromatin immunoprecipitation and RNA-seq data revealed that the transcriptomic difference was not correlated with DNA binding of NF-Y but with splicing of NF-YA. These data suggest that neuronal cells have a different type of transcriptome in which ER-related genes are dominantly modulated by NF-Y, and imply that NF-YA splicing alteration could be involved in this cell type-specific gene modulation.
Collapse
|
23
|
Panov J, Kaphzan H. Bioinformatics analyses show dysregulation of calcium-related genes in Angelman syndrome mouse model. Neurobiol Dis 2020; 148:105180. [PMID: 33212289 DOI: 10.1016/j.nbd.2020.105180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by the loss of function of the UBE3A protein in the brain. In a previous study, we showed that activity-dependent calcium dynamics in hippocampal CA1 pyramidal neurons of AS mice is compromised, and its normalization rescues the hippocampal-dependent deficits. Therefore, we expected that the expression profiles of calcium-related genes would be altered in AS mice hippocampi. METHODS We analyzed mRNA sequencing data from AS model mice and WT controls in light of the newly published CaGeDB database of calcium-related genes. We validated our results in two independent RNA sequencing datasets from two additional different AS models: first one, a human neuroblastoma cell line where UBE3A expression was knocked down by siRNA, and the second, an iPSC-derived neurons from AS patient and healthy donor control. FINDINGS We found signatures of dysregulated calcium-related genes in AS mouse model hippocampus. Additionally, we show that these calcium-related genes function as signatures for AS in other human cellular models of AS, thus strengthening our findings. INTERPRETATION Our findings suggest the downstream implications and significance of the compromised calcium signaling in Angelman syndrome. Moreover, since AS share similar features with other autism spectrum disorders, we believe that these findings entail meaningful data and approach for other neurodevelopmental disorders, especially those with known alterations of calcium signaling. FUNDING This work was supported by the Angelman Syndrome Foundation and by the Israel Science Foundation, Grant Number 248/20.
Collapse
Affiliation(s)
- Julia Panov
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
24
|
Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress 2020; 13:100251. [PMID: 33344706 PMCID: PMC7739184 DOI: 10.1016/j.ynstr.2020.100251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Exposure to early-life stress (ELS) increases risk for poor mental and physical health outcomes that emerge at different stages across the lifespan. Yet, how age interacts with ELS to impact the expression of specific phenotypes remains largely unknown. An established limited-bedding paradigm was used to induce ELS in mouse pups over the early postnatal period. Initial analyses focused on the hippocampus, based on documented sensitivity to ELS in humans and various animal models, and the large body of data reporting anatomical and physiological outcomes in this structure using this ELS paradigm. An unbiased discovery proteomics approach revealed distinct adaptations in the non-nuclear hippocampal proteome in male versus female offspring at two distinct developmental stages: juvenile and adult. Gene ontology and KEGG pathway analyses revealed significant enrichment in proteins associated with mitochondria and the oxidative phosphorylation (OXPHOS) pathway in response to ELS in female hippocampus only. To determine whether the protein adaptations to ELS reflected altered function, mitochondrial respiration (driven through complexes II-IV) and complex I activity were measured in isolated hippocampal mitochondria using a Seahorse X96 Flux analyzer and immunocapture ELISA, respectively. ELS had no effect on basal respiration in either sex at either age. In contrast, ELS increased OXPHOS capacity in juvenile males and females, and reduced OXPHOS capacity in adult females but not adult males. A similar pattern of ELS-induced changes was observed for complex I activity. These data suggest that initial adaptations in juvenile hippocampus due to ELS were not sustained in adults. Mitochondrial adaptations to ELS were also exhibited peripherally by liver. Overall, the temporal distinctions in mitochondrial responses to ELS show that ELS-generated adaptations and outcomes are complex over the lifespan. This may contribute to differences in the timing of appearance of mental and physical disturbances, as well as potential sex differences that influence only select outcomes.
Collapse
Key Words
- AA, antimycin A
- ADP, adenosine diphosphate
- CI, confidence interval
- Complex I activity
- ELS, early-life stress
- Early-life stress
- FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
- GO, gene ontology
- HCD, high energy C-trap dissociation
- Hippocampus
- Liver
- MS/MS, tandem mass spectrometry
- Mitochondrial respiration
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation
- P, postnatal day
- Proteomics
- SCX, strong cation exchange
- iTRAQ, isobaric tag for relative and absolute quantitation
- oligo, oligomycin
Collapse
Affiliation(s)
- Kathie L. Eagleson
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Miranda Villaneuva
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rebecca M. Southern
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Simchovitz-Gesher A, Soreq H. Pharmaceutical Implications of Sex-Related RNA Divergence in Psychiatric Disorders. Trends Pharmacol Sci 2020; 41:840-850. [DOI: 10.1016/j.tips.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
|
26
|
Manji Z, Rojas A, Wang W, Dingledine R, Varvel NH, Ganesh T. 5xFAD Mice Display Sex-Dependent Inflammatory Gene Induction During the Prodromal Stage of Alzheimer's Disease. J Alzheimers Dis 2020; 70:1259-1274. [PMID: 31322556 DOI: 10.3233/jad-180678] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) pathology consists of extracellular deposits of amyloid-β peptides (Aβ) and intracellular neurofibrillary tangles. These pathological alterations are accompanied by a neuroinflammatory response consisting of increased expression of inflammatory mediators. An anti-inflammatory strategy designed to prevent or delay the development of AD would benefit from knowing when neuroinflammation appears in the transgenic models during prodromal disease stages relative to Aβ pathology. We investigated the expression patterns of inflammatory mediators in the brain of 5xFAD mice in comparison to development of Aβ deposition. Expression changes in inflammatory mediators and glial markers are more robust in female mice starting at three months of age, in contrast to males in which there is no clear trend through five months. Female and male 5xFAD mice also displayed an age-dependent increase in cortical Aβ deposition congruent with neuroinflammation. Thus, in the 5xFAD mouse model of AD, administration of an anti-inflammatory agent would be most efficacious when administered before three months of age.
Collapse
Affiliation(s)
- Zahra Manji
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas H Varvel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Rilett KC, Luo OD, McVey-Neufeld KA, MacKenzie RN, Foster JA. Loss of T cells influences sex differences in stress-related gene expression. J Neuroimmunol 2020; 343:577213. [PMID: 32278229 DOI: 10.1016/j.jneuroim.2020.577213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Deficiencies in the adaptive immune system have been linked to anxiety-like behaviours and stress reactivity. Mice lacking T lymphocytes through knockout of the T cell receptor (TCR) β and δ chains were compared to wild type C57Bl/6 mice. Central stress circuitry gene expression was assessed following repeated restraint stress. TCRβ-/-δ-/- mice showed an increased baseline plasma corticosterone and exaggerated changes in stress-related gene expression after repeated restraint stress. Sexual dimorphic stress responses were observed in wild-type C57Bl/6 mice but not in TCRβ-/-δ-/- mice. These data suggest that T cell-brain interactions influence sex-differences in CNS stress circuitry and stress reactivity.
Collapse
Affiliation(s)
- Kelly C Rilett
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Owen D Luo
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Karen-Anne McVey-Neufeld
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Robyn N MacKenzie
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
28
|
Khaliulin I, Kartawy M, Amal H. Sex Differences in Biological Processes and Nitrergic Signaling in Mouse Brain. Biomedicines 2020; 8:biomedicines8050124. [PMID: 32429146 PMCID: PMC7277573 DOI: 10.3390/biomedicines8050124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) represents an important signaling molecule which modulates the functions of different organs, including the brain. S-nitrosylation (SNO), a post-translational modification that involves the binding of the NO group to a cysteine residue, is a key mechanism of nitrergic signaling. Most of the experimental studies are carried out on male animals. However, significant differences exist between males and females in the signaling mechanisms. To investigate the sex differences in the SNO-based regulation of biological functions and signaling pathways in the cortices of 6–8-weeks-old mice, we used the mass spectrometry technique, to identify S-nitrosylated proteins, followed by large-scale computational biology. This work revealed significant sex differences in the NO and SNO-related biological functions in the cortices of mice for the first-time. The study showed significant SNO-induced enrichment of the synaptic processes in female mice, but enhanced SNO-related cytoskeletal processes in the male mice. Proteins, which were S-nitrosylated in the cortices of mice of both groups, were more abundant in the female brain. Finally, we investigated the shared molecular processes that were found in both sexes. This study presents a mechanistic insight into the role of S-nitrosylation in both sexes and provides strong evidence of sex difference in many biological processes and signalling pathways, which will open future research directions on sex differences in neurological disorders.
Collapse
|
29
|
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 2020; 21:251. [PMID: 32293250 PMCID: PMC7092514 DOI: 10.1186/s12864-020-6600-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| |
Collapse
|
30
|
" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int J Mol Sci 2019; 21:ijms21010296. [PMID: 31906252 PMCID: PMC6982247 DOI: 10.3390/ijms21010296] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.
Collapse
|
31
|
Herzog DP, Wegener G, Lieb K, Müller MB, Treccani G. Decoding the Mechanism of Action of Rapid-Acting Antidepressant Treatment Strategies: Does Gender Matter? Int J Mol Sci 2019; 20:ijms20040949. [PMID: 30813226 PMCID: PMC6412361 DOI: 10.3390/ijms20040949] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Gender differences play a pivotal role in the pathophysiology and treatment of major depressive disorder. This is strongly supported by a mean 2:1 female-male ratio of depression consistently observed throughout studies in developed nations. Considering the urgent need to tailor individualized treatment strategies to fight depression more efficiently, a more precise understanding of gender-specific aspects in the pathophysiology and treatment of depressive disorders is fundamental. However, current treatment guidelines almost entirely neglect gender as a potentially relevant factor. Similarly, the vast majority of animal experiments analysing antidepressant treatment in rodent models exclusively uses male animals and does not consider gender-specific effects. Based on the growing interest in innovative and rapid-acting treatment approaches in depression, such as the administration of ketamine, its metabolites or electroconvulsive therapy, this review article summarizes the evidence supporting the importance of gender in modulating response to rapid acting antidepressant treatment. We provide an overview on the current state of knowledge and propose a framework for rodent experiments to ultimately decode gender-dependent differences in molecular and behavioural mechanisms involved in shaping treatment response.
Collapse
Affiliation(s)
- David P Herzog
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark.
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Giulia Treccani
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark.
| |
Collapse
|
32
|
Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, Hartl M, von Haeseler A, Gerner C, Raible F, Tessmar-Raible K. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. eLife 2019; 8:e41556. [PMID: 30767890 PMCID: PMC6377233 DOI: 10.7554/elife.41556] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Many marine animals, ranging from corals to fishes, synchronise reproduction to lunar cycles. In the annelid Platynereis dumerilii, this timing is orchestrated by an endogenous monthly (circalunar) clock entrained by moonlight. Whereas daily (circadian) clocks cause extensive transcriptomic and proteomic changes, the quality and quantity of regulations by circalunar clocks have remained largely elusive. By establishing a combined transcriptomic and proteomic profiling approach, we provide first systematic insight into the molecular changes in Platynereis heads between circalunar phases, and across sexual differentiation and maturation. Whereas maturation elicits large transcriptomic and proteomic changes, the circalunar clock exhibits only minor transcriptomic, but strong proteomic regulation. Our study provides a versatile extraction technique and comprehensive resources. It corroborates that circadian and circalunar clock effects are likely distinct and identifies key molecular brain signatures for reproduction, sex and circalunar clock phase. Examples include prepro-whitnin/proctolin and ependymin-related proteins as circalunar clock targets.
Collapse
Affiliation(s)
- Sven Schenk
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Stephanie C Bannister
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Fritz J Sedlazeck
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dorothea Anrather
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Bui Quang Minh
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Andrea Bileck
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Markus Hartl
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Arndt von Haeseler
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Florian Raible
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
33
|
Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome. BMC Genomics 2019; 20:87. [PMID: 30683046 PMCID: PMC6347839 DOI: 10.1186/s12864-019-5426-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex-determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g. zinc finger protein X-linked (Zfx). Conclusions This method successfully identified several genes and transcripts that showed expression differences in the brain of adult male and female Amami spiny rat. The functional significance of these findings, especially differential expression of transcripts encoding zinc finger proteins, in this unusual rodent species remains to be determined. Electronic supplementary material The online version of this article (10.1186/s12864-019-5426-6) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. Front Neurosci 2019; 13:2. [PMID: 30733664 PMCID: PMC6353788 DOI: 10.3389/fnins.2019.00002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023] Open
Abstract
Aging is regarded as a major risk factor for neurodegenerative diseases. Thus, a better understanding of the similarities between the aging process and neurodegenerative diseases at the cellular and molecular level may reveal better understanding of this detrimental relationship. In the present study, we mined publicly available gene expression datasets from healthy individuals and patients affected by neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease) across a broad age spectrum and compared those with mouse aging and mouse cell-type specific gene expression profiles. We performed weighted gene co-expression network analysis (WGCNA) and found a gene network strongly related with both aging and neurodegenerative diseases. This network was significantly enriched with a microglial signature as imputed from cell type-specific sequencing data. Since mouse models are extensively used for the study of human diseases, we further compared these human gene regulatory networks with age-specific mouse brain transcriptomes. We discovered significantly preserved networks with both human aging and human disease and identified 17 shared genes in the top-ranked immune/microglia module, among which we found five human hub genes TYROBP, FCER1G, ITGB2, MYO1F, PTPRC, and two mouse hub genes Trem2 and C1qa. Taken together, these results support the hypothesis that microglia are key players involved in human aging and neurodegenerative diseases, and suggest that mouse models should be appropriate for studying these microglial changes in human.
Collapse
Affiliation(s)
- Shradha Mukherjee
- Health Informatics Advanced Science Masters Program, Arizona State University, Tempe, AZ, United States
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christine Klaus
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Mihaela Pricop-Jeckstadt
- Institute for Medical Informatics and Biometry, Faculty of Medicine “Carl Gustav Carus”, TU Dresden, Dresden, Germany
| | | | - Felix L. Struebing
- Department of Translational Brain Research, German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
35
|
Yagi S, Galea LAM. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 2019; 44:200-213. [PMID: 30214058 PMCID: PMC6235970 DOI: 10.1038/s41386-018-0208-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
Sex differences are reported in hippocampal plasticity, cognition, and in a number of disorders that target the integrity of the hippocampus. For example, meta-analyses reveal that males outperform females on hippocampus-dependent tasks in rodents and in humans, furthermore women are more likely to experience greater cognitive decline in Alzheimer's disease and depression, both diseases characterized by hippocampal dysfunction. The hippocampus is a highly plastic structure, important for processing higher order information and is sensitive to the environmental factors such as stress. The structure retains the ability to produce new neurons and this process plays an important role in pattern separation, proactive interference, and cognitive flexibility. Intriguingly, there are prominent sex differences in the level of neurogenesis and the activation of new neurons in response to hippocampus-dependent cognitive tasks in rodents. However, sex differences in spatial performance can be nuanced as animal studies have demonstrated that there are task, and strategy choice dependent sex differences in performance, as well as sex differences in the subregions of the hippocampus influenced by learning. This review discusses sex differences in pattern separation, pattern completion, spatial learning, and links between adult neurogenesis and these cognitive functions of the hippocampus. We emphasize the importance of including both sexes when studying genomic, cellular, and structural mechanisms of the hippocampal function.
Collapse
Affiliation(s)
- Shunya Yagi
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
36
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Bundy JL, Vied C, Badger C, Nowakowski RS. Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: A multi-omic analysis. J Comp Neurol 2018; 527:462-475. [PMID: 30291623 DOI: 10.1002/cne.24551] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/16/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the most common form of dementia. Like many neurological disorders, Alzheimer's disease has a sex-biased epidemiological profile, affecting approximately twice as many women as men. The cause of this sex difference has yet to be elucidated. To identify molecular correlates of this sex bias, we investigated molecular pathology in females and males using the 5XFamilial Alzheimer's disease mutations (5XFAD) genetic mouse model of Alzheimer's disease. We profiled the transcriptome and proteome of the mouse hippocampus during early stages of disease development (1, 2, and 4 months of age). Our analysis reveals 42 genes that are differentially expressed between disease and wild-type animals at 2 months of age, prior to observable plaque deposition. In 4-month-old animals, we detect 1,316 differentially expressed transcripts between transgenic and control 5XFAD mice, many of which are associated with immune function. Additionally, we find that some of these transcriptional perturbations are correlated with altered protein levels in 4-month-old transgenic animals. Importantly, our data indicate that female 5XFAD mouse exhibit more profound pathology than their male counterparts as measured by differences in gene expression. We also find that the 5XFAD transgenes are more highly expressed in female 5XFAD mice than their male counterparts, which could partially account for the sex-biased molecular pathology observed in this dataset.
Collapse
Affiliation(s)
- Joseph L Bundy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida.,Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, Florida
| | - Crystal Badger
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Richard S Nowakowski
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
38
|
Yang T, Britt JK, Cintrón-Pérez CJ, Vázquez-Rosa E, Tobin KV, Stalker G, Hardie J, Taugher RJ, Wemmie J, Pieper AA, Lee A. Ca 2+-Binding Protein 1 Regulates Hippocampal-dependent Memory and Synaptic Plasticity. Neuroscience 2018; 380:90-102. [PMID: 29660444 DOI: 10.1016/j.neuroscience.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022]
Abstract
Ca2+-binding protein 1 (CaBP1) is a Ca2+-sensing protein similar to calmodulin that potently regulates voltage-gated Ca2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). By western blot, the largest CaBP1 splice variant, caldendrin, was detected in hippocampal lysates from wild-type (WT) but not C-KO mice. Compared to WT mice, C-KO mice exhibited mild deficits in spatial learning and memory in both the Barnes maze and in Morris water maze reversal learning. In contextual but not cued fear-conditioning assays, C-KO mice showed greater freezing responses than WT mice. In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories.
Collapse
Affiliation(s)
- Tian Yang
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Jeremiah K Britt
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Coral J Cintrón-Pérez
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Edwin Vázquez-Rosa
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin V Tobin
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Grant Stalker
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Jason Hardie
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Rebecca J Taugher
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - John Wemmie
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew A Pieper
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Free Radical, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Radiation Oncology Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Veterans Affairs, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Pappajohn Biomedical Institute and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
39
|
Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Front Genet 2018; 9:89. [PMID: 29662502 PMCID: PMC5890196 DOI: 10.3389/fgene.2018.00089] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Collapse
Affiliation(s)
- Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|