1
|
Dwivedi Y, Roy B, Korla PK. Genome-wide methylome-based molecular pathologies associated with depression and suicide. Neuropsychopharmacology 2025; 50:705-716. [PMID: 39645539 PMCID: PMC11845511 DOI: 10.1038/s41386-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Major depressive disorder (MDD) is a debilitating disorder. Suicide attempts are 5-times higher in MDD patients than in the general population. Interestingly, not all MDD patients develop suicidal thoughts or complete suicide. Thus, it is important to study the risk factors that can distinguish suicidality among MDD patients. The present study examined if DNA methylation changes can distinguish suicidal behavior among depressed subjects. Genome-wide DNA methylation was examined in the dorsolateral prefrontal cortex of depressed suicide (MDD+S; n = 15), depressed non-suicide (MDD-S; n = 17), and nonpsychiatric control (C; n = 16) subjects using 850 K Infinium Methylation EPIC BeadChip. The significantly differentially methylated genes were used to determine the functional enrichment of genes for ontological clustering and pathway analysis. Based on the number of CpG content and their relative distribution from specific landmark regions of genes, 32,958 methylation sites were identified across 12,574 genes in C vs. MDD+/-S subjects, 30,852 methylation sites across 12,019 genes in C vs. MDD-S, 41,648 methylation sites across 13,941 genes in C vs. MDD+S, and 49,848 methylation sites across 15,015 genes in MDD-S vs. MDD+S groups. A comparison of methylation sites showed 33,129 unique methylation sites and 5451 genes in the MDD-S group compared to the MDD+S group. Functional analysis suggested oxytocin, GABA, VGFA, TNFA, and mTOR pathways associated with suicide in the MDD group. Altogether, our data show a distinct pattern of DNA methylation, the genomic distribution of differentially methylated sites, gene enrichment, and pathways in MDD suicide compared to non-suicide MDD subjects.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Kumar Korla
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
2
|
Zuzina A, Kolotova D, Balaban P. DNA Methylation and Histone Acetylation Contribute to the Maintenance of LTP in the Withdrawal Behavior Interneurons in Terrestrial Snails. Cells 2024; 13:1850. [PMID: 39594599 PMCID: PMC11592888 DOI: 10.3390/cells13221850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Accumulated data indicate that epigenetic regulations, including histone modifications and DNA methylation, are important means for adjusting the expression of genes in response to various stimuli. In contrast to the success in studying the role of DNA methylation in laboratory rodents, the role of DNA methylation in the terrestrial snail Helix lucorum has been studied only in behavioral experiments. This prompted us to further investigate the role of DNA methylation and the interaction between DNA methylation and histone acetylation in the mechanisms of neuroplasticity in terrestrial snails using in vitro experiments. Dysregulation of DNA methylation by the DNMT inhibitor RG108 significantly suppressed the long-term potentiation (LTP) of synaptic inputs in identified neurons. We then tested whether the RG108-induced weakening of potentiation can be reversed under co-application of histone deacetylase inhibitors sodium butyrate or trichostatin A. It was found that increased histone acetylation significantly compensated for RG108-induced LTP deficiency. These data bring important insights into the functional role of DNA methylation as an important regulatory mechanism and a necessary condition for the development and maintenance of long-term synaptic changes in withdrawal interneurons of terrestrial snails. Moreover, these results support the idea of the interaction of DNA methylation and histone acetylation in the epigenetic regulation of synaptic plasticity.
Collapse
Affiliation(s)
- Alena Zuzina
- Cellular Neurobiology of Learning Laboratory, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| | | | - Pavel Balaban
- Cellular Neurobiology of Learning Laboratory, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| |
Collapse
|
3
|
Park HR, Cai M, Yang EJ. Herbal Formula Extract Ameliorates Anxiety and Cognitive Impairment via Regulation of the Reelin/Dab-1 Pathway in a Murine Model of Post-Traumatic Stress Disorder. Pharmaceutics 2024; 16:1150. [PMID: 39339187 PMCID: PMC11434737 DOI: 10.3390/pharmaceutics16091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
We investigated the effects of epigenetic modifications on post-traumatic stress disorder (PTSD) using a novel combination of herbal medicines from Panax ginseng, Astragalus membranaceus, Atractylodes macrocephala, and Glycyrrhiza uralensis. The herbal formula extract (HFE) (250 mg/kg) was administered orally once daily for 14 days to determine its effects on PTSD in mice by combining prolonged stress and foot shock. The open field and Y-maze tests determined the effect of HFE on PTSD-induced anxiety and cognition. Hippocampal neuronal plastic changes and molecular mechanism were verified. Treatment with HFE decreased anxiety-like behavior and enhanced cognition. Moreover, it reduced the number of PTSD-related hilar ectopic granule cells in the dentate gyrus (DG). PTSD mice showed reduced neuronal plasticity of doublecortin+ cells in the DG, which was restored by HFE treatment. HFE reversed PTSD-induced inhibition of the Reelin/Dab1 pathway, a critical signaling cascade involved in brain development, and regulated Reelin methylation. Furthermore, DNA methylation, methyl-CpG binding protein 2, and DNA methyltransferase 1, which were elevated in the hippocampus of PTSD mice, were restored following HFE treatment. HFE increased the expression of synaptic plasticity-related factors in the hippocampus of PTSD mice. Our findings suggest that HFE can facilitate PTSD treatment by alleviating behavioral abnormalities through the restoration of hippocampal dysfunction via regulation of the Reelin/Dab-1 pathway and DNA methylation in the hippocampus.
Collapse
Affiliation(s)
| | | | - Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea; (H.R.P.); (M.C.)
| |
Collapse
|
4
|
Wang M, Bissonnette N, Laterrière M, Dudemaine PL, Gagné D, Roy JP, Sirard MA, Ibeagha-Awemu EM. DNA methylation haplotype block signatures responding to Staphylococcus aureus subclinical mastitis and association with production and health traits. BMC Biol 2024; 22:65. [PMID: 38486242 PMCID: PMC10941392 DOI: 10.1186/s12915-024-01843-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND DNA methylation has been documented to play vital roles in diseases and biological processes. In bovine, little is known about the regulatory roles of DNA methylation alterations on production and health traits, including mastitis. RESULTS Here, we employed whole-genome DNA methylation sequencing to profile the DNA methylation patterns of milk somatic cells from sixteen cows with naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis and ten healthy control cows. We observed abundant DNA methylation alterations, including 3,356,456 differentially methylated cytosines and 153,783 differential methylation haplotype blocks (dMHBs). The DNA methylation in regulatory regions, including promoters, first exons and first introns, showed global significant negative correlations with gene expression status. We identified 6435 dMHBs located in the regulatory regions of differentially expressed genes and significantly correlated with their corresponding genes, revealing their potential effects on transcriptional activities. Genes harboring DNA methylation alterations were significantly enriched in multiple immune- and disease-related pathways, suggesting the involvement of DNA methylation in regulating host responses to S. aureus subclinical mastitis. In addition, we found nine discriminant signatures (differentiates cows with S. aureus subclinical mastitis from healthy cows) representing the majority of the DNA methylation variations related to S. aureus subclinical mastitis. Validation of seven dMHBs in 200 cows indicated significant associations with mammary gland health (SCC and SCS) and milk production performance (milk yield). CONCLUSIONS In conclusion, our findings revealed abundant DNA methylation alterations in milk somatic cells that may be involved in regulating mammary gland defense against S. aureus infection. Particularly noteworthy is the identification of seven dMHBs showing significant associations with mammary gland health, underscoring their potential as promising epigenetic biomarkers. Overall, our findings on DNA methylation alterations offer novel insights into the regulatory mechanisms of bovine subclinical mastitis, providing further avenues for the development of effective control measures.
Collapse
Affiliation(s)
- Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - David Gagné
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | - Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.
| |
Collapse
|
5
|
Jeoung SW, Park HS, Ryoo ZY, Cho DH, Lee HS, Ryu HY. SUMOylation and Major Depressive Disorder. Int J Mol Sci 2022; 23:8023. [PMID: 35887370 PMCID: PMC9316168 DOI: 10.3390/ijms23148023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.
Collapse
Affiliation(s)
- Seok-Won Jeoung
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
6
|
Grabowska A, Sas-Nowosielska H, Wojtas B, Holm-Kaczmarek D, Januszewicz E, Yushkevich Y, Czaban I, Trzaskoma P, Krawczyk K, Gielniewski B, Martin-Gonzalez A, Filipkowski RK, Olszynski KH, Bernas T, Szczepankiewicz AA, Sliwinska MA, Kanhema T, Bramham CR, Bokota G, Plewczynski D, Wilczynski GM, Magalska A. Activation-induced chromatin reorganization in neurons depends on HDAC1 activity. Cell Rep 2022; 38:110352. [PMID: 35172152 DOI: 10.1016/j.celrep.2022.110352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.
Collapse
Affiliation(s)
- Agnieszka Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Elzbieta Januszewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yana Yushkevich
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Pawel Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Martin-Gonzalez
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, 03550 Alicante, Spain
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Hubert Olszynski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Tytus Bernas
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Department of Anatomy and Neurology, VCU School of Medicine, Richmond, VA 23284, USA
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Malgorzata Alicja Sliwinska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Grzegorz Bokota
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
8
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
9
|
Kumari N, Karmakar A, Chakrabarti S, Ganesan SK. Integrative Computational Approach Revealed Crucial Genes Associated With Different Stages of Diabetic Retinopathy. Front Genet 2020; 11:576442. [PMID: 33304382 PMCID: PMC7693709 DOI: 10.3389/fgene.2020.576442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The increased incidence of diabetic retinopathy (DR) and the legacy effect associated with it has raised a great concern toward the need to find early diagnostic and treatment strategies. Identifying alterations in genes and microRNAs (miRNAs) is one of the most critical steps toward understanding the mechanisms by which a disease progresses, and this can be further used in finding potential diagnostic and prognostic biomarkers and treatment methods. We selected different datasets to identify altered genes and miRNAs. The integrative analysis was employed to find potential candidate genes (differentially expressed and aberrantly methylated genes that are also the target of altered miRNAs) and early genes (genes showing altered expression and methylation pattern during early stage of DR) for DR. We constructed a protein-protein interaction (PPI) network to find hub genes (potential candidate genes showing a greater number of interactions) and modules. Gene ontologies and pathways associated with the identified genes were analyzed to determine their role in DR progression. A total of 271 upregulated-hypomethylated genes, 84 downregulated-hypermethylated genes, 11 upregulated miRNA, and 30 downregulated miRNA specific to DR were identified. 40 potential candidate genes and 9 early genes were also identified. PPI network analysis revealed 7 hub genes (number of interactions >5) and 1 module (score = 5.67). Gene ontology and pathway analysis predicted enrichment of genes in oxidoreductase activity, binding to extracellular matrix, immune responses, leukocyte migration, cell adhesion, PI3K-Akt signaling pathway, ECM receptor interaction, etc., and thus their association with DR pathogenesis. In conclusion, we identified 7 hub genes and 9 early genes that could act as a potential prognostic, diagnostic, or therapeutic target for DR, and a few early genes could also play a role in metabolic memory phenomena.
Collapse
Affiliation(s)
- Nidhi Kumari
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Karmakar
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saikat Chakrabarti
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Senthil Kumar Ganesan
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Creighton SD, Stefanelli G, Reda A, Zovkic IB. Epigenetic Mechanisms of Learning and Memory: Implications for Aging. Int J Mol Sci 2020; 21:E6918. [PMID: 32967185 PMCID: PMC7554829 DOI: 10.3390/ijms21186918] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The neuronal epigenome is highly sensitive to external events and its function is vital for producing stable behavioral outcomes, such as the formation of long-lasting memories. The importance of epigenetic regulation in memory is now well established and growing evidence points to altered epigenome function in the aging brain as a contributing factor to age-related memory decline. In this review, we first summarize the typical role of epigenetic factors in memory processing in a healthy young brain, then discuss the aspects of this system that are altered with aging. There is general agreement that many epigenetic marks are modified with aging, but there are still substantial inconsistencies in the precise nature of these changes and their link with memory decline. Here, we discuss the potential source of age-related changes in the epigenome and their implications for therapeutic intervention in age-related cognitive decline.
Collapse
Affiliation(s)
- Samantha D. Creighton
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Gilda Stefanelli
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Anas Reda
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| | - Iva B. Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| |
Collapse
|
11
|
Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M, Bernal-Vega S, Maldonado-Ruiz R, Reséndez-Pérez D, Rodríguez-Ríos D, Lund G, Garza-Ocañas L, Camacho-Morales A. Fetal Programming by Methyl Donors Modulates Central Inflammation and Prevents Food Addiction-Like Behavior in Rats. Front Neurosci 2020; 14:452. [PMID: 32581665 PMCID: PMC7283929 DOI: 10.3389/fnins.2020.00452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor’s diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting–refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1β, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 μM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor’s diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1β, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marcela Cárdenas-Tueme
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Sofia Bernal-Vega
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
12
|
Poon CH, Chan YS, Fung ML, Lim LW. Memory and neuromodulation: A perspective of DNA methylation. Neurosci Biobehav Rev 2019; 111:57-68. [PMID: 31846654 DOI: 10.1016/j.neubiorev.2019.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Neuromodulation techniques have shown promising efficacy on memory function and understanding the epigenetic mechanisms contributing to these processes would shed light on the molecular outcomes essential for cognition. In this review, we highlight some epigenetic mechanisms underlying neuromodulation and regulatory effects of neuronal activity-induced DNA methylation on genes that are highly involved in memory formation. Next, we examine the evidence to support DNA methyltransferase 3a, methyl-CpG binding protein 2, and DNA demethylase as possible memory modulation targets. Finally, we report the recent developments in the field of neuromodulation and explore the potential of these techniques for future neuroepigenetic research.
Collapse
Affiliation(s)
- Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Ämmälä AJ, Urrila AS, Lahtinen A, Santangeli O, Hakkarainen A, Kantojärvi K, Castaneda AE, Lundbom N, Marttunen M, Paunio T. Epigenetic dysregulation of genes related to synaptic long-term depression among adolescents with depressive disorder and sleep symptoms. Sleep Med 2019; 61:95-103. [DOI: 10.1016/j.sleep.2019.01.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
|
14
|
Wang M, Zhang K, Ngo V, Liu C, Fan S, Whitaker JW, Chen Y, Ai R, Chen Z, Wang J, Zheng L, Wang W. Identification of DNA motifs that regulate DNA methylation. Nucleic Acids Res 2019; 47:6753-6768. [PMID: 31334813 PMCID: PMC6649826 DOI: 10.1093/nar/gkz483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mark but how its locus-specificity is decided in relation to DNA sequence is not fully understood. Here, we have analyzed 34 diverse whole-genome bisulfite sequencing datasets in human and identified 313 motifs, including 92 and 221 associated with methylation (methylation motifs, MMs) and unmethylation (unmethylation motifs, UMs), respectively. The functionality of these motifs is supported by multiple lines of evidence. First, the methylation levels at the MM and UM motifs are respectively higher and lower than the genomic background. Second, these motifs are enriched at the binding sites of methylation modifying enzymes including DNMT3A and TET1, indicating their possible roles of recruiting these enzymes. Third, these motifs significantly overlap with "somatic QTLs" (quantitative trait loci) of methylation and expression. Fourth, disruption of these motifs by mutation is associated with significantly altered methylation level of the CpGs in the neighbor regions. Furthermore, these motifs together with somatic mutations are predictive of cancer subtypes and patient survival. We revealed some of these motifs were also associated with histone modifications, suggesting a possible interplay between the two types of epigenetic modifications. We also found some motifs form feed forward loops to contribute to DNA methylation dynamics.
Collapse
Affiliation(s)
- Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Vu Ngo
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Chengyu Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Shicai Fan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - John W Whitaker
- Department of Genomics, Denovo Biopharma, 10240 Science Center Dr., San Diego, CA, USA
| | - Yue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zhao Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jun Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Wu M. Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Front Cell Neurosci 2019; 13:327. [PMID: 31379511 PMCID: PMC6658887 DOI: 10.3389/fncel.2019.00327] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
Canonical epigenetic modifications, including DNA methylation, histone modification and chromatin remodeling, play a role in numerous life processes, particularly neurodevelopment. Epigenetics explains the development of cells in an organism with the same DNA sequence into different cell types with various functions. However, previous studies on epigenetics have only focused on the chromatin level. Recently, epigenetic modifications of RNA, which mainly include 6-methyladenosine (m6A), pseudouridine, 5-methylcytidine (m5C), inosine (I), 2′-O-ribosemethylation, and 1-methyladenosine (m1A), have gained increasing attention. Circular RNAs (circRNAs), which are a type of non-coding RNA without a 5′ cap or 3′ poly (A) tail, are abundantly found in the brain and might respond to and regulate synaptic function. Also, circRNAs have various functions, such as microRNA sponge, regulation of gene transcription and interaction with RNA binding protein. In addition, circRNAs are methylated by N6-methyladenosine (m6A). In this review, we discuss the crucial roles of epigenetic modifications of circRNAs, such as m6A, in the genesis and development of neurons and in synaptic function and plasticity. Thus, this type of changes in circRNAs might be a therapeutic target in central nervous system (CNS) disorders and could aid the diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Shujuan Meng
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Hecheng Zhou
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziyang Feng
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Zihao Xu
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ying Tang
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
16
|
Pruunsild P, Bading H. Shaping the human brain: evolutionary cis-regulatory plasticity drives changes in synaptic activity-controlled adaptive gene expression. Curr Opin Neurobiol 2019; 59:34-40. [PMID: 31102862 DOI: 10.1016/j.conb.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
Abstract
Neuronal activity-induced gene expression programs involved in synaptic structure- and plasticity-related functions are similar in mice and humans, yet bear distinct features. These include gains or losses of activity-responsiveness of certain genes and differences in gene induction profiles. Here, we discuss a possible origin of dissimilarities in activity-regulated transcription between species. We highlight that while synapse-to-nucleus signalling pathways are evolutionarily conserved, cis-regulatory plasticity has been driving species-specific remodelling of the activity-controlled enhancer landscape, thereby affecting gene regulation. In particular, evolutionary rearrangements of transcription factor binding site placements together with potential species-dependent developmental stage- and/or cell type-specific epigenetic and other trans-acting mechanisms are most likely at least in part accountable for between-species diversity in activity-regulated transcription. It is conceivable that cis-regulatory plasticity may have equipped the synaptic activity-driven adaptive gene program in human neurons with unique, species-specific qualities.
Collapse
Affiliation(s)
- Priit Pruunsild
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Kyrke-Smith M, Williams JM. Bridging Synaptic and Epigenetic Maintenance Mechanisms of the Engram. Front Mol Neurosci 2018; 11:369. [PMID: 30344478 PMCID: PMC6182070 DOI: 10.3389/fnmol.2018.00369] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
How memories are maintained, and how memories are lost during aging or disease, are intensely investigated issues. Arguably, the reigning theory is that synaptic modifications allow for the formation of engrams during learning, and sustaining engrams sustains memory. Activity-regulated gene expression profiles have been shown to be critical to these processes, and their control by the epigenome has begun to be investigated in earnest. Here, we propose a novel theory as to how engrams are sustained. We propose that many of the genes that are currently believed to underlie long-term memory are actually part of a “plasticity transcriptome” that underpins structural and functional modifications to neuronal connectivity during the hours to days following learning. Further, we hypothesize that a “maintenance transcriptome” is subsequently induced that includes epigenetic negative regulators of gene expression, particularly histone deacetylases. The maintenance transcriptome negatively regulates the plasticity transcriptome, and thus the plastic capability of a neuron, after learning. In this way, the maintenance transcriptome would act as a metaplasticity mechanism that raises the threshold for change in neurons within an engram, helping to ensure the connectivity is stabilized and memory is maintained.
Collapse
Affiliation(s)
- Madeleine Kyrke-Smith
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Psychology, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Joanna M Williams
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Abstract
The temporal coding of action potential activity is fundamental to nervous system function. Here we consider how gene expression in neurons is regulated by specific patterns of action potential firing, with an emphasis on new information on epigenetic regulation of gene expression. Patterned action potential activity activates intracellular signaling networks selectively in accordance with the kinetics of activation and inactivation of second messengers, phosphorylation and dephosphorylation of protein kinases, and cytoplasmic and nuclear calcium dynamics, which differentially activate specific transcription factors. Increasing evidence also implicates activity-dependent regulation of epigenetic mechanisms to alter chromatin architecture. Changes in three-dimensional chromatin structure, including chromatin compaction, looping, double-stranded DNA breaks, histone and DNA modification, are altered by action potential activity to selectively inhibit or promote transcription of specific genes. These mechanisms of activity-dependent regulation of gene expression are important in neural development, plasticity, and in neurological and psychological disorders.
Collapse
Affiliation(s)
- Jillian Belgrad
- Nervous System Development and Plasticity Section, The
Eunice Kennedy Shriver National Institute of Child Health and Human Development
(NICHD), Bethesda, MD, USA
| | - R. Douglas Fields
- Nervous System Development and Plasticity Section, The
Eunice Kennedy Shriver National Institute of Child Health and Human Development
(NICHD), Bethesda, MD, USA
| |
Collapse
|
19
|
Starnawska A, Tan Q, McGue M, Mors O, Børglum AD, Christensen K, Nyegaard M, Christiansen L. Epigenome-Wide Association Study of Cognitive Functioning in Middle-Aged Monozygotic Twins. Front Aging Neurosci 2017; 9:413. [PMID: 29311901 PMCID: PMC5733014 DOI: 10.3389/fnagi.2017.00413] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
As the world's population ages, the age-related cognitive decline presents a great challenge to world's healthcare systems. One of the molecular mechanisms implicated in cognitive ageing is DNA methylation, an epigenetic modification known to be a key player in memory formation, maintenance, and synaptic plasticity. Using the twin design we performed an epigenome-wide association study (EWAS) in a population of 486 middle-aged monozygotic twins (mean age at follow-up 65.9, SD = 6.1) and correlated their blood DNA methylation to their level (cross-sectional analysis) and change in cognitive abilities over 10 years (longitudinal analysis). We identified several CpG sites where cross-sectional cognitive functioning was associated with DNA methylation levels. The top identified loci were located in ZBTB46 (p = 5.84 × 10-7), and TAF12 (p = 4.91 × 10-7). KEGG's enrichment analyses of the most associated findings identified "Neuroactive ligand-receptor interaction" as the most enriched pathway (p = 0.0098). Change in cognitive functioning over 10 years was associated with DNA methylation levels in AGBL4 (p = 9.01 × 10-7) and SORBS1 (p = 5.28 × 10-6), with the first gene playing an important role in neuronal survival and the latter gene implicated before in Alzheimer's disease and ischemic stroke. Our findings point to an association between changes in DNA methylation of genes related to neuronal survival and change of cognitive functioning in aging individuals.
Collapse
Affiliation(s)
- Anna Starnawska
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Qihua Tan
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Matt McGue
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Anders D. Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- The Danish Aging Research Center, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mette Nyegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Lene Christiansen
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- The Danish Aging Research Center, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Roth TL. Epigenetic Advances in Behavioral and Brain Sciences have Relevance for Public Policy. ACTA ACUST UNITED AC 2017; 4:202-209. [PMID: 29202007 DOI: 10.1177/2372732217719091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nature and nurture work together to drive development, behavior, and health. Behavioral epigenetics research has uncovered the underlying mechanisms for how this happens. Children's early years in development may offer the greatest opportunity for environmental and experiential factors to influence epigenome (chemical compounds telling our genes what to do), but evidence suggests it is never too late. The policy implications of this research are vast, including relevance for child development, health, and disease intervention and prevention.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE
| |
Collapse
|
21
|
Vaillancourt K, Ernst C, Mash D, Turecki G. DNA Methylation Dynamics and Cocaine in the Brain: Progress and Prospects. Genes (Basel) 2017; 8:genes8050138. [PMID: 28498318 PMCID: PMC5448012 DOI: 10.3390/genes8050138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Cytosine modifications, including DNA methylation, are stable epigenetic marks that may translate environmental change into transcriptional regulation. Research has begun to investigate DNA methylation dynamics in relation to cocaine use disorders. Specifically, DNA methylation machinery, including methyltransferases and binding proteins, are dysregulated in brain reward pathways after chronic cocaine exposure. In addition, numerous methylome-wide and candidate promoter studies have identified differential methylation, at the nucleotide level, in rodent models of cocaine abuse and drug seeking behavior. This review highlights the current progress in the field of cocaine-related methylation, and offers considerations for future research.
Collapse
Affiliation(s)
- Kathryn Vaillancourt
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Carl Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Deborah Mash
- Department of Neurology, University of Miami Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA.
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| |
Collapse
|