1
|
Zhou Y, Ren W, Shao W, Gao Y, Yao K, Yang M, Zhang X, Wang Y, Li F, Yang L. Exploration of non-coding RNAs related to intramuscular fat deposition Xinjiang Brown cattle and Angus × Wagyu cattle. BMC Genomics 2025; 26:249. [PMID: 40087563 PMCID: PMC11908044 DOI: 10.1186/s12864-025-11453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Non-coding RNAs (ncRNAs) serve as crucial regulatory elements in the process of adipogenesis in animals; however, the specific roles and interrelationships of ncRNAs in bovine fat deposition remain poorly understood. This study aims to investigate the differentially expressed ncRNAs in the longissimus dorsi muscle of Xinjiang Brown cattle (XB) and Angus × Wagyu cattle (AW), to elucidate the regulatory mechanisms underlying lipidogenesis that may involve ncRNAs. Four Xinjiang Brown cattle and four Angus × Wagyu cattle were selected, ensuring they are subjected to identical feeding conditions, in order to evaluate the intermuscular fat (IMF) of longissimus dorsi muscles. The fat content of muscle tissue was quantified using the Soxhlet extraction method, revealing that the fat levels in the AW group were significantly elevated compared to those in the XB group. Taking muscle samples for paraffin sectioning and observing their morphology, it was found that the fat richness of the AW group was significantly higher than that of the XB group. Utilizing high-throughput RNA sequencing technology, we conducted an extensive transcriptomic analysis of longissimus dorsi muscles of XB and AW to identify significant ncRNAs implicated in fat metabolism and adipogenesis. The miRNA analysis yielded between 109,343,831 117,258,570 clean reads, whereas the lncRNA and circRNA analyses produced between 81,607,756 102,917,174 clean reads. Subsequent analysis revealed the identification of 53 differentially expressed miRNAs, 176 differentially expressed lncRNAs, and 234 differentially expressed circRNAs. KEGG enrichment analysis revealed that the target genes of differentially expressed miRNAs, lncRNAs, and circRNAs are significantly enriched in 2, 17, and 22 distinct pathways, respectively. The pathways associated with the differential enrichment of miRNA target genes involve processes such as phosphorylation and protein modification. Concurrently, the pathways linked to the varying enrichment of lncRNA target genes encompass G protein-coupled receptor signaling, regulation of cell death and apoptosis, activities related to GTPase activation, and functions governing nucleotide triphosphatases, among others. The circRNA exhibiting differential expression are significantly enriched in a variety of biological processes, including signal transduction, nucleic acid synthesis, cellular architecture, GTPase activation, and phosphatase activities, among others. The analysis of the ncRNA interaction network suggests that AGBL1, THRB, and S100A13 may play pivotal roles in the formation and adipogenic differentiation of adipocytes. In conclusion, we conducted a comprehensive analysis and discussion of the complete transcriptome of intermuscular fat tissue from the longissimus dorsi muscles in Xinjiang Brown cattle and Angus × Wagyu cattle. This study provides a theoretical foundation for enhancing our understanding of the molecular mechanisms underlying fat metabolism and deposition in beef cattle.
Collapse
Affiliation(s)
- Yuxin Zhou
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wanping Ren
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wei Shao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yu Gao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Kangyu Yao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Min Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xinyu Zhang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yiran Wang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Fengming Li
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Liang Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
2
|
Zhang Q, Xiao W, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Ameliorative effects of
Lactobacillus fermentum isolated from individuals following vegan, omnivorous and high-meat diets on ulcerative colitis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3181-3192. [DOI: 10.26599/fshw.2023.9250005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Liao H, He B. Predictive value of cuproptosis and disulfidptosis-related lncRNA in head and neck squamous cell carcinoma prognosis and treatment. Heliyon 2024; 10:e37996. [PMID: 39323825 PMCID: PMC11422553 DOI: 10.1016/j.heliyon.2024.e37996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Objective Head and neck squamous cell carcinoma (HNSCC) is a highly lethal and prevalent malignant tumor with a poor prognosis due to its high recurrence rate, This study aims to develop a prognostic index for HNSCC patients based on Cuproptosis and Disulfidptosis-related long noncoding RNA. Methods Gene expression and clinical data for HNSCC were obtained from The Cancer Genome Atlas (TCGA). Using Lasso regression and multivariate Cox regression, we established a risk scoring model. The predictive ability of the nomogram, based on clinical features and risk scores, was verified using receiver operating characteristics and calibration curves. We compared independent prognostic parameters, risk score distribution, and survival between high-risk and low-risk groups, followed by preliminary validity evaluations of the model. Results Our systematic evaluation of prognostic risk provides a new direction for improving the survival prognosis of HNSCC patients in clinical practice, The model effectively categorized patients into high- and low-risk groups with distinct outcomes, identifying numerous gene mutations in these groups, A low-risk score was associated with a better prognosis and higher survival rates. Conclusion The risk score prognostic prediction system developed in this study shows potential efficacy in predicting the prognosis of HNSCC patients and has practical applications in clinical settings.
Collapse
Affiliation(s)
- Hongming Liao
- Department of Otolaryngology Head and neck surgery, Tianmen first people's Hospital, Tianmen, Hubei, 431700, China
| | - Benchao He
- Department of Otolaryngology Head and neck surgery, Tianmen first people's Hospital, Tianmen, Hubei, 431700, China
| |
Collapse
|
4
|
Kim MJ, Lim SG, Cho DH, Lee JY, Suk K, Lee WH. Regulation of inflammatory response by LINC00346 via miR-25-3p-mediated modulation of the PTEN/PI3K/AKT/NF-κB pathway. Biochem Biophys Res Commun 2024; 709:149828. [PMID: 38537596 DOI: 10.1016/j.bbrc.2024.149828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Long intergenic non-coding RNA 346 (LINC00346) has been reported to be involved in the development of atherosclerosis and specific cancers by affecting signaling pathways. However, its function in inflammation has not been thoroughly studied. Therefore, its expression pattern and function were determined in the human macrophage-like cell line THP-1. Lipopolysaccharide (LPS) treatment induced the expression of LINC00346. LPS-induced NF-κB activation and proinflammatory cytokine expression were suppressed or enhanced by the overexpression or knockdown of LINC00346, respectively. Analyses using dual luciferase assay and decoy RNAs that could block RNA-RNA interactions indicated that LINC00346 improves phosphatase and tensin homolog (PTEN) expression by sponging miR-25-3p. Subsequently, PTEN suppresses phosphoinositide-3 kinase (PI3K)-mediated conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3) as well as consequent activation of protein kinase B (AKT) and NF-κB. Interestingly, database analysis revealed that the expression levels of LINC00346 and PTEN were simultaneously decreased in breast cancer tissues. Further analyses conducted using a breast cancer cell line, MDA-MB-231, confirmed the functional relationship among LINC00346, miR-25-3p, and PTEN in LPS-induced activation of NF-κB. These results indicate that miR-25-3p-sponging activity of LINC00346 affects the balance between PTEN and PI3K as well as the downstream activation of AKT/NF-κB pathway in inflammatory conditions.
Collapse
Affiliation(s)
- Min-Ji Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jun-Yeong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 FOUR KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
6
|
Chen Y, Zhang X, Yang J, Feng W, Deng G, Xu S, Guo M. Extracellular Vesicles Derived from Selenium-Deficient MAC-T Cells Aggravated Inflammation and Apoptosis by Triggering the Endoplasmic Reticulum (ER) Stress/PI3K-AKT-mTOR Pathway in Bovine Mammary Epithelial Cells. Antioxidants (Basel) 2023; 12:2077. [PMID: 38136197 PMCID: PMC10740620 DOI: 10.3390/antiox12122077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) deficiency disrupts intracellular REDOX homeostasis and severely deteriorates immune and anti-inflammatory function in high-yielding periparturient dairy cattle. To investigate the damage of extracellular vesicles derived from Se-deficient MAC-T cells (SeD-EV) on normal mammary epithelial cells, an in vitro model of Se deficiency was established. Se-deficient MAC-T cells produced many ROS, promoting apoptosis and the release of inflammatory factors. Extracellular vesicles were successfully isolated by ultrahigh-speed centrifugation and identified by transmission electron microscopy, particle size analysis, and surface markers (CD63, CD81, HSP70, and TSG101). RNA sequencing was performed on exosomal RNA. A total of 9393 lncRNAs and 63,155 mRNAs transcripts were identified in the SeC and SeD groups, respectively, of which 126 lncRNAs and 955 mRNAs were differentially expressed. Furthermore, SeD-EV promoted apoptosis of normal MAC-T cells by TUNEL analysis. SeD-EV significantly inhibited Bcl-2, while Bax and Cleaved Caspase3 were greatly increased. Antioxidant capacity (CAT, T-AOC, SOD, and GSH-Px) was inhibited in SeD-EV-treated MAC-T cells. Additionally, p-PERK, p-eIF2α, ATF4, CHOP, and XBP1 were all elevated in MAC-T cells supplemented with SeD-EV. In addition, p-PI3K, p-Akt, and p-mTOR were decreased strikingly by SeD-EV. In conclusion, SeD-EV caused oxidative stress, thus triggering apoptosis and inflammation through endoplasmic reticulum stress and the PI3K-Akt-mTOR signaling pathway, which contributed to explaining the mechanism of Se deficiency causing mastitis.
Collapse
Affiliation(s)
- Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiangqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Jing Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Wen Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| |
Collapse
|
7
|
Bai Z, Wu Y, Cai W, Zheng Y, Hui T, Yue C, Sun J, Wang Y, Wang Z. High-throughput analysis of lncRNA in cows with naturally infected Staphylococcus aureus mammary gland. Anim Biotechnol 2023; 34:2166-2174. [PMID: 35649423 DOI: 10.1080/10495398.2022.2077744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
LncRNA (long non-coding RNA) is an RNA molecule with a length between 200 and 100,000 nt. It does not encode proteins and is involved in a variety of intracellular processes, becoming a research hotspot of genetics. To identify key lncRNAs associated with dairy mastitis, we collected mammary epithelial tissue samples of Normal disease-free Holstein cows (HCN) and unhealthy Holstein cows with Staphylococcus aureus (HCU) and performed RNA sequencing (RNA-seq) on the samples. A total of 270 differentially expressed lncRNAs and 500 differentially expressed mRNAs were identified by high-throughput sequencing and bioinformatics analysis. Furthermore, Hydrolase activity is the most enriched in GO, and ErbB signaling pathway is significantly enriched in KEGG. In addition, through qPCR validation of 5 candidate lncRNAs in HCN and HCU, four differentially expressed lncRNAs MSTRG.498, MSTRG57.1, MSTRG.41.1 and MSTRG 124.1 were confirmed to have significant differentially expressed in cow mastitis. Also, lncRNA MSTRG.498 and its target gene, SMC4, might directly or indirectly play a role in cow mastitis. The regulatory network of lncRNA-miRNA-mRNA has been inferred from a bioinformatics perspective, which may assist understand the underlying molecular mechanism of lncRNAs involved in regulating mastitis in cows. Our findings will provide meaningful resources for further research on the regulatory function of lncRNAs in cow mastitis.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Taiyu Hui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanru Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Sahito JZA, Deng S, Qin L, Xiao L, Zhang D, Huang B. CeRNA Network Reveals the Circular RNA Characterization in Goat Ear Fibroblasts Reprogramming into Mammary Epithelial Cells. Genes (Basel) 2023; 14:1831. [PMID: 37895180 PMCID: PMC10606430 DOI: 10.3390/genes14101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/29/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA that play a crucial role in the development and lactation of mammary glands in mammals. A total of 107 differentially expressed circRNAs (DE circRNAs) were found, of which 52 were up-regulated and 55 were down-regulated. We also found that DE circRNA host genes were mainly involved in GO terms related to the development process of mammary epithelial cells and KEGG pathways were mostly related to mammary epithelial cells, lactation, and gland development. Protein network analysis found that DE circRNAs can competitively bind to miRNAs as key circRNAs by constructing a circRNA-miRNA-mRNA network. CircRNAs competitively bind to miRNAs (miR-10b-3p, miR-671-5p, chi-miR-200c, chi-miR-378-3p, and chi-miR-30e-5p) involved in goat mammary gland development, mammary epithelial cells, and lactation, affecting the expression of core genes (CDH2, MAPK1, ITGB1, CAMSAP2, and MAPKAPK5). Here, we generated CiMECs and systematically explored the differences in the transcription profile for the first time using whole-transcriptome sequencing. We also analyzed the interaction among mRNA, miRNA, and cirRNA and predicted that circRNA plays an important role in the maintenance of mammary epithelial cells.
Collapse
Affiliation(s)
- Jam Zaheer Ahmed Sahito
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Shan Deng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Liangshan Qin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Lianggui Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Dandan Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
- Guangxi Key Laboratory of Eye Health, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Ben Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
- Guangxi Key Laboratory of Eye Health, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| |
Collapse
|
9
|
Wei M, Tang W, Lv D, Liu M, Wang G, Liu Q, Qin L, Huang B, Zhang D. Long-chain noncoding RNA sequencing analysis reveals the molecular profiles of chemically induced mammary epithelial cells. Front Genet 2023; 14:1189487. [PMID: 37745843 PMCID: PMC10514351 DOI: 10.3389/fgene.2023.1189487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were important regulators affecting the cellular reprogramming process. Previous studies from our group have demonstrated that small molecule compounds can induce goat ear fibroblasts to reprogram into mammary epithelial cells with lactation function. In this study, we used lncRNA-Sequencing (lncRNA-seq) to analyze the lncRNA expression profile of cells before and after reprogramming (CK vs. 5i8 d). The results showed that a total of 3,970 candidate differential lncRNAs were detected, 1,170 annotated and 2,800 new lncRNAs. Compared to 0 d cells, 738 lncRNAs were significantly upregulated and 550 were significantly downregulated in 8 d cells. Heat maps of lncrnas and target genes with significant differences showed that the fate of cell lineages changed. Functional enrichment analysis revealed that these differently expressed (DE) lncRNAs target genes were mainly involved in signaling pathways related to reprogramming and mammary gland development, such as the Wnt signaling pathway, PI3K-Akt signaling pathway, arginine and proline metabolism, ECM-receptor interaction, and MAPK signaling pathway. The accuracy of sequencing was verified by real-time fluorescence quantification (RT-qPCR) of lncRNAs and key candidate genes, and it was also demonstrated that the phenotype and genes of the cells were changed. Therefore, this study offers a foundation for explaining the molecular mechanisms of lncRNAs in chemically induced mammary epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ben Huang
- Guangxi Key Laboratory of Eye Health, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Dandan Zhang
- Guangxi Key Laboratory of Eye Health, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
10
|
Jing H, Chen Y, Qiu C, Guo MY. LncRNAs Transcriptome Analysis Revealed Potential Mechanisms of Selenium to Mastitis in Dairy Cows. Biol Trace Elem Res 2022; 200:4316-4324. [PMID: 35013889 DOI: 10.1007/s12011-021-03042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
The trace element selenium (Se) plays an indispensable role in the growth of humans and animals due to its antioxidant function. Mastitis is one of the most important diseases affecting the dairy industry in the world. In recent years, long non-coding RNAs (lncRNAs) have been implicated in a series of cellular processes and disease development processes. RNA-sequencing technology was used to characterize lncRNA profiles and compared transcriptomic dynamics among the control group, the LPS group, and the Se-treated group to highlight the potential roles and functions of lncRNAs in the mammary epithelial cells of dairy cows. We identified 14 specific lncRNAs related to Se and their predicted target genes. KEGG and GO functional annotation was used to elucidate their biological function and the pathways in which they may be involved. The present study provides novel insights for exploring the molecular markers for the protection of Se against mastitis in dairy cows.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
11
|
Xuan R, Zhao X, Li Q, Zhao Y, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T, Wang J. Characterization of long noncoding RNA in nonlactating goat mammary glands reveals their regulatory role in mammary cell involution and remodeling. Int J Biol Macromol 2022; 222:2158-2175. [DOI: 10.1016/j.ijbiomac.2022.09.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
12
|
Oyelami FO, Usman T, Suravajhala P, Ali N, Do DN. Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022; 11:pathogens11091009. [PMID: 36145441 PMCID: PMC9501195 DOI: 10.3390/pathogens11091009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide lengths. They have been shown to have great potential in eutherians/human disease diagnosis and treatments and are now gaining more importance for the improvement of diseases in livestock. To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous advancement in deep sequencing technologies and various bioinformatics tools has enabled the elucidation of their roles in bovine health. Among farm animals' diseases, mastitis, a common inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature, we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential applications of emerging genome editing technologies, as well as integrated omics platforms for ncRNA studies and implications for mastitis are presented.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Tahir Usman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana 690525, Kerala, India
| | - Nawab Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Duy N. Do
- Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Hanoi 100000, Vietnam
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: ; Tel.: +1-9029578789
| |
Collapse
|
13
|
Wu Z, Fan H, Jin J, Gao S, Huang R, Wu S, Bao W. Insight into mechanisms of pig lncRNA FUT3-AS1 regulating E. coli F18-bacterial diarrhea. PLoS Pathog 2022; 18:e1010584. [PMID: 35696408 PMCID: PMC9191744 DOI: 10.1371/journal.ppat.1010584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/10/2022] [Indexed: 12/21/2022] Open
Abstract
Escherichia coli F18 is a common conditional pathogen that is associated with a variety of infections in humans and animals. LncRNAs have emerged as critical players in pathogen infection, but their role in the resistance of the host to bacterial diarrhea remains unknown. Here, we used piglets as animal model and identified an antisense lncRNA termed FUT3-AS1 as a host regulator related to E. coli F18 infection by RNA sequencing. Downregulation of FUT3-AS1 expression contributed to the enhancement of E. coli F18 resistance in IPEC-J2 cells. FUT3-AS1 knockdown reduced FUT3 expression via decreasing the H4K16ac level of FUT3 promoter. Besides, the FUT3-AS1/miR-212 axis could act as a competing endogenous RNA to regulate FUT3 expression. Functional analysis demonstrated that target FUT3 plays a vital role in the resistance of IPEC-J2 cells to E. coli F18 invasion. A Fut3-knockout mice model was established and Fut3-knockout mice obviously improved the ability of resistance to bacterial diarrhea. Interestingly, FUT3 could enhance E. coli F18 susceptibility by activating glycosphingolipid biosynthesis and toll-like receptor signaling which are related to receptor formation and immune response, respectively. In summary, we have identified a novel biomarker FUT3-AS1 that modulates E. coli F18 susceptibility via histone H4 modifications or miR-212/FUT3 axis, which will provide theoretical guidance to develop novel strategies for combating bacterial diarrhea in piglets.
Collapse
Affiliation(s)
- Zhengchang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Hairui Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Jian Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
14
|
Preliminary study on gene regulation and its pathways in Chinese Holstein cows with clinical mastitis caused by Staphylococcus aureus. J Vet Res 2022; 66:179-187. [PMID: 35892111 PMCID: PMC9281521 DOI: 10.2478/jvetres-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Clinical mastitis (CM) is one of the most common diseases of dairy cows globally, has a complex aetiology and recurs easily. Staphylococcus aureus is a frequently isolated pathogen responsible for bovine mastitis and remains difficult to eradicate.
Material and Methods
To characterise the transcriptional profiles of dairy cows infected by S. aureus, we performed an RNA-seq analysis of peripheral blood leukocytes in lactating Chinese Holstein dairy cows with CM and did the same with healthy cows’ samples as controls.
Results
A total of 4,286 genes were detected in the CM cases infected with S. aureus which were differentially expressed compared to the controls, 3,085 of which were upregulated, the remainder being downregulated. Notably, we observed that some differentially expressed genes (DEGs) had strong protein–protein interaction. Of these, six downregulated DEGs (AKR1C4, PTGS2, HNMT, EPHX2, CMBL, and IDH1) were involved in the metabolic pathway, while eight upregulated DEGs (VWF, GP9, MYLK, GP6, F2RL3, ITGB3, GP5, and PRKG1) were associated with the platelet activation pathway.
Conclusion
The transcriptome dataset of CM cases would be a valuable resource for clinical guidance on anti-inflammatory medication and for deeper understanding of the biological processes of CM response to S. aureus infection, and it would enable us to identify specific genes for diagnostic markers and possibly for targeted therapy.
Collapse
|
15
|
Jia L, Wang J, Luoreng Z, Wang X, Wei D, Yang J, Hu Q, Ma Y. Progress in Expression Pattern and Molecular Regulation Mechanism of LncRNA in Bovine Mastitis. Animals (Basel) 2022; 12:ani12091059. [PMID: 35565486 PMCID: PMC9105470 DOI: 10.3390/ani12091059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Bovine mastitis is an inflammatory disease of the mammary glands that causes serious harm to cow health and huge economic losses. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate a variety of diseases of humans and animals, especially the immune response and inflammatory disease process. This paper reviews the role of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of lncRNA expression and the molecular regulatory mechanism in bovine mastitis, and looks forward to the research and application prospect of lncRNA in bovine mastitis, intending to provide a reference for scientific researchers to systematically understand this research field. Abstract Bovine mastitis is an inflammatory disease caused by pathogenic microbial infection, trauma, or other factors. Its morbidity is high, and it is difficult to cure, causing great harm to the health of cows and the safety of dairy products. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are a class of endogenous non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate the immune response of humans and animals on three levels (transcription, epigenetic modification, and post-transcription), and are widely involved in the pathological process of inflammatory diseases. Over the past few years, extensive findings revealed basic roles of lncRNAs in inflammation, especially bovine mastitis. This paper reviews the expression pattern and mechanism of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of the lncRNA expression pattern and molecular regulatory mechanism in bovine mastitis, analyzes the molecular regulatory network of differentially expressed lncRNAs, and looks forward to the research and application prospect of lncRNA in bovine mastitis, laying a foundation for molecular breeding and the biological therapy of bovine mastitis.
Collapse
Affiliation(s)
- Li Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qichao Hu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
16
|
Mumtaz PT, Bhat B, Ibeagha-Awemu EM, Taban Q, Wang M, Dar MA, Bhat SA, Shabir N, Shah RA, Ganie NA, Velayutham D, Haq ZU, Ahmad SM. Mammary epithelial cell transcriptome reveals potential roles of lncRNAs in regulating milk synthesis pathways in Jersey and Kashmiri cattle. BMC Genomics 2022; 23:176. [PMID: 35246027 PMCID: PMC8896326 DOI: 10.1186/s12864-022-08406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process. Results To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were found co-expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling, and RAP1 signaling pathways. These pathways are known to play key roles in lactation biology and mammary gland development. Conclusions Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08406-x.
Collapse
Affiliation(s)
- Peerzada Tajamul Mumtaz
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India.,Department of Biochemistry, School of Life Sciences Jaipur National University, Jaipur, India
| | - Basharat Bhat
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Jammu, India
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Shakil Ahmad Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Nazir A Ganie
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | | | - Zulfqar Ul Haq
- Division of Livestock Production and Management, SKUAST-K, Srinagar, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India.
| |
Collapse
|
17
|
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ, Chen H. Exosomal RNAs: Novel Potential Biomarkers for Diseases-A Review. Int J Mol Sci 2022; 23:2461. [PMID: 35269604 PMCID: PMC8910301 DOI: 10.3390/ijms23052461] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Exosomes are a subset of nano-sized extracellular vesicles originating from endosomes. Exosomes mediate cell-to-cell communication with their cargos, which includes mRNAs, miRNAs, lncRNAs, and circRNAs. Exosomal RNAs have cell specificity and reflect the conditions of their donor cells. Notably, their detection in biofluids can be used as a diagnostic marker for various diseases. Exosomal RNAs are ideal biomarkers because their surrounding membranes confer stability and they are detectable in almost all biofluids, which helps to reduce trauma and avoid invasive examinations. However, knowledge of exosomal biomarkers remains scarce. The present review summarizes the biogenesis, secretion, and uptake of exosomes, the current researches exploring exosomal mRNAs, miRNAs, lncRNAs, and circRNAs as potential biomarkers for the diagnosis of human diseases, as well as recent techniques of exosome isolation.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Bing-Lin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China;
| | - Yong-Zhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Xian-Yong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Wu-Jun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
18
|
Mu T, Hu H, Feng X, Ma Y, Wang Y, Liu J, Yu B, Wen W, Zhang J, Gu Y. Screening and Conjoint Analysis of Key lncRNAs for Milk Fat Metabolism in Dairy Cows. Front Genet 2022; 13:772115. [PMID: 35186023 PMCID: PMC8850724 DOI: 10.3389/fgene.2022.772115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important regulatory role in various biological processes as a key regulatory factor. However, the complete expression profile of lncRNAs in dairy cows and its function in milk fat synthesis are unknown. In this study, RNA sequencing (RNA-seq) was used to research the whole genome expression of lncRNAs and mRNA transcripts in high and low milk fat percentage (MFP) bovine mammary epithelial cells (BMECs), and joint analysis was carried out. We identified a total of 47 differentially expressed genes (DEGs) and 38 differentially expressed lncRNAs (DELs, Padj <0.05), enrichment analysis screened out 11 candidate DEGs that may regulate milk fat metabolism. Downregulated differential gene ENPP2 (The expression level in BMECs of high milk fat dairy cows was lower than that of low milk fat cows) and upregulated differential gene BCAT1 are more likely to participate in the milk fat metabolism, and its function needs further experiments verification. The enrichment analysis of target genes predicted by DELs identified 7 cis (co-localization) and 10 trans (co-expression) candidate target genes related to milk lipid metabolism, corresponding to a total of 18 DELs. Among them, the targeting relationship between long intervening/intergenic noncoding RNA (lincRNA) TCONS_00082721 and FABP4 is worthy of attention. One hundred and fifty-six competing endogenous RNAs (ceRNAs) interaction regulation networks related to milk fat metabolism were constructed based on the expression information of DELs, differential microRNAs (miRNAs), and lipid metabolism-related target genes. The regulatory network centered on miR-145 will be the focus of subsequent experimental research. The ceRNAs regulatory network related to TCONS_00082721 and TCONS_00172817 are more likely to be involved in milk fat synthesis. These results will provide new ways to understand the complex biology of dairy cow milk fat synthesis and provide valuable information for breed improvement of Chinese Holstein cow.
Collapse
Affiliation(s)
- Tong Mu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Honghong Hu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, China
| | - Ying Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiamin Liu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Baojun Yu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Wan Wen
- Animal Husbandry Extension Station, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, China
- *Correspondence: Yaling Gu,
| |
Collapse
|
19
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
20
|
Regulatory network of miRNA, lncRNA, transcription factor and target immune response genes in bovine mastitis. Sci Rep 2021; 11:21899. [PMID: 34753991 PMCID: PMC8578396 DOI: 10.1038/s41598-021-01280-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Pre- and post-transcriptional modifications of gene expression are emerging as foci of disease studies, with some studies revealing the importance of non-coding transcripts, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). We hypothesize that transcription factors (TFs), lncRNAs and miRNAs modulate immune response in bovine mastitis and could potentially serve as disease biomarkers and/or drug targets. With computational analyses, we identified candidate genes potentially regulated by miRNAs and lncRNAs base pair complementation and thermodynamic stability of binding regions. Remarkably, we found six miRNAs, two being bta-miR-223 and bta-miR-24-3p, to bind to several targets. LncRNAs NONBTAT027932.1 and XR_003029725.1, were identified to target several genes. Functional and pathway analyses revealed lipopolysaccharide-mediated signaling pathway, regulation of chemokine (C-X-C motif) ligand 2 production and regulation of IL-23 production among others. The overarching interactome deserves further in vitro/in vivo explication for specific molecular regulatory mechanisms during bovine mastitis immune response and could lay the foundation for development of disease markers and therapeutic intervention.
Collapse
|
21
|
Cai X, Wu S, Mipam T, Luo H, Yi C, Xu C, Zhao W, Wang H, Zhong J. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak. Funct Integr Genomics 2021; 21:665-678. [PMID: 34626308 DOI: 10.1007/s10142-021-00806-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Cattleyaks are the crossbred offspring between cattle and yaks, exhibiting the prominent adaptability to the harsh environment as yaks and much higher growth performances than yaks around Qinghai-Tibet plateau. Unfortunately, cattleyak cannot be effectively used in yak breeding due to its male infertility resulted from spermatogenic arrest. In this study, we performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine the expression profiles of long noncoding RNA (lncRNA) from cattleyak and yak testis. A total of 604 differentially expressed (DE) lncRNAs (135 upregulated and 469 downregulated) were identified in cattleyak with respect to yak. Through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we identified several DE lncRNAs regulating the mitotic cell cycle processes by targeting the genes significantly associated with the mitotic cell cycle checkpoint and DNA damage checkpoint term and also significantly involved in p53 signaling pathway, mismatch repair and homologous recombination pathway (P < 0.05). The reverse transcription PCR (RT-PCR) and quantitative Real-Time PCR (qRT-PCR) analysis of the randomly selected fourteen DE lncRNAs and the seven target genes validated the RNA-seq data and their true expressions during spermatogenesis in vivo. Molecular cloning and sequencing indicated that the testis lncRNAs NONBTAT012170 and NONBTAT010258 presented higher similarity among different cattleyak and yak individuals. The downregulation of these target genes in cattleyak contributed to the abnormal DNA replication and spermatogenic arrest during the S phase of mitotic cell cycle. This study provided a novel insight into lncRNA expression profile changes associated with spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Shixin Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongying Wang
- College of Chemistry&Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Potential Novel Biomarkers for Mastitis Diagnosis in Sheep. Animals (Basel) 2021; 11:ani11102783. [PMID: 34679803 PMCID: PMC8532728 DOI: 10.3390/ani11102783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Inflammation of the mammary gland (mastitis) is an important disease of dairy sheep. Mastitis management depends mainly on the diagnosis. Conventional diagnostic methods including somatic cell count, California Mastitis Test, and microbial culture have limitations. Therefore researchers are looking for new diagnostic biomarkers of mastitis including specific proteins produced by the liver in case of disease (acute phase proteins), unique genetic sequences (miRNAs), or antimicrobial peptides produced by immune cells during inflammation (cathelicidines). Abstract This review aims to characterize promising novel markers of ovine mastitis. Mastitis is considered as one of the primary factors for premature culling in dairy sheep and has noticeable financial, productional, and animal welfare-related implications. Furthermore, clinical, and subclinical mammary infections negatively affect milk yield and alter the milk composition, thereby leading to lowered quality of dairy products. It is, therefore, crucial to control and prevent mastitis through proper diagnosis, treatment or culling, and appropriate udder health management particularly at the end of the lactation period. The clinical form of mastitis is characterized by abnormalities in milk and mammary gland tissue alteration or systemic symptoms consequently causing minor diagnostic difficulties. However, to identify ewes with subclinical mastitis, laboratory diagnostics is crucial. Mastitis control is primarily dependent on determining somatic cell count (SCC) and the California Mastitis Test (CMT), which aim to detect the quantity of cells in the milk sample. The other useful diagnostic tool is microbial culture, which complements SCC and CMT. However, all mentioned diagnostic methods have their limitations and therefore novel biomarkers of ovine subclinical mastitis are highly desired. These sensitive indicators include acute-phase proteins, miRNA, and cathelicidins measurements, which could be determined in ovine serum and/or milk and in the future may become useful in early mastitis diagnostics as well as a preventive tool. This may contribute to increased detection of ovine mammary gland inflammation in sheep, especially in subclinical form, and consequently improves milk quality and quantity.
Collapse
|
23
|
Michailidou S, Gelasakis A, Banos G, Arsenos G, Argiriou A. Comparative Transcriptome Analysis of Milk Somatic Cells During Lactation Between Two Intensively Reared Dairy Sheep Breeds. Front Genet 2021; 12:700489. [PMID: 34349787 PMCID: PMC8326974 DOI: 10.3389/fgene.2021.700489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
In dairy sheep industry, milk production dictates the value of a ewe. Milk production is directly related to the morphology and physiology of the mammary gland; both being designated targets of breeding strategies. Although within a flock breeding parameters are mutual, large differences in milk production among individual ewes are usually observed. In this work, we tested two of the most productive dairy sheep breeds reared intensively in Greece, one local the Chios breed and one foreign the Lacaune breed. We used transcriptome sequencing to reveal molecular mechanisms that render the mammary gland highly productive or not. While highly expressed genes (caseins and major whey protein genes) were common among breeds, differences were observed in differentially expressed genes. ENSOARG00000008077, as a member of ribosomal protein 14 family, together with LPCAT2, CCR3, GPSM2, ZNF131, and ASIP were among the genes significantly differentiating mammary gland's productivity in high yielding ewes. Gene ontology terms were mainly linked to the inherent transcriptional activity of the mammary gland (GO:0005524, GO:0030552, GO:0016740, GO:0004842), lipid transfer activity (GO:0005319) and innate immunity (GO:0002376, GO:0075528, GO:0002520). In addition, clusters of genes affecting zinc and iron trafficking into mitochondria were highlighted for high yielding ewes (GO:0071294, GO:0010043). Our analyses provide insights into the molecular pathways involved in lactation between ewes of different performances. Results revealed management issues that should be addressed by breeders in order to move toward increased milk yields through selection of the desired phenotypes. Our results will also contribute toward the selection of the most resilient and productive ewes, thus, will strengthen the existing breeding systems against a spectrum of environmental threats.
Collapse
Affiliation(s)
- Sofia Michailidou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College, Easter Bush, Edinburgh, United Kingdom
| | - George Arsenos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| |
Collapse
|
24
|
Murugesan KD, Gupta ID, Onteru SK, Dash A, Sukhija N, Sivalingam J, Mohanty AK. Profiling and integrated analysis of whole-transcriptome changes in uterine caruncles of pregnant and non-pregnant buffaloes. Genomics 2021; 113:2338-2349. [PMID: 34022349 DOI: 10.1016/j.ygeno.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Improved reproductive performance in buffaloes can be achieved by understanding the basic mechanism governing the embryonic attachment and feto-maternal communication. Considering this, trascriptomic profiling and integrative analysis of long intergenic non-coding RNAs were carried out in the uterine caruncles of pregnant and non-pregnant buffaloes. Transcriptome data of pregnant and non-pregnant uterine caruncles after quality control was used to perform the analysis. Total of 86 novel lincRNAs expressed in uterine caruncular tissues were identified and characterized. Differential expression analysis revealed that 447 mRNAs and 185 mRNAs were up- and down- regulated, respectively. The number of up- and down- regulated lincRNAs were 114 and 13, respectively. Of the identified 86 novel lincRNAs, six novel lincRNAs were up-regulated in the pregnant uterine caruncles. GO terms (biological process) and PANTHER pathways associated with reproduction and embryogenesis were over-represented in differentially expressed genes. Through miRNA interaction analysis, interactions of 16 differentially expressed lincRNAs with mi-RNAs involved in reproduction were identified. This study has provided a catalogue of differentially expressed genes and novel regions previously unknown to play a significant role in buffalo reproduction. The results from the current study extends the buffalo uterine lncRNAs database and provides candidate regulators for future molecular genetic studies on buffalo uterine physiology to improve the embryo implantation and successful completion of pregnancy.
Collapse
Affiliation(s)
- Kousalya Devi Murugesan
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - I D Gupta
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Suneel Kumar Onteru
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Aishwarya Dash
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Nidhi Sukhija
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Jayakumar Sivalingam
- Animal Genetics and Breeding Division, National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
25
|
Long Intergenic Non-Coding RNAs in the Mammary Parenchyma and Fat Pad of Pre-Weaning Heifer Calves: Identification and Functional Analysis. Animals (Basel) 2021; 11:ani11051268. [PMID: 33924848 PMCID: PMC8145500 DOI: 10.3390/ani11051268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/10/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Enhanced plane of nutrition at pre-weaning stage can promote the development of mammary gland especially heifer calves. Although several genes are involved in this process, long intergenic non-coding RNAs (lincRNAs) are regarded as key regulators in the regulated network and are still largely unknown. We identified and characterized 534 putative lincRNAs based on the published RNA-seq data, including heifer calves in two groups: fed enhanced milk replacer (EH, 1.13 kg/day, including 28% crude protein, 25% fat) group and fed restricted milk replacer (R, 0.45 kg/day, including 20% crude protein, 20% fat) group. Sub-samples from the mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested from heifer calves. According to the information of these lincRNAs' quantitative trait loci (QTLs), the neighboring and co-expression genes were used to predict their function. By comparing EH vs R, 79 lincRNAs (61 upregulated, 18 downregulated) and 86 lincRNAs (54 upregulated, 32 downregulated) were differentially expressed in MFP and PAR, respectively. In MFP, some differentially expressed lincRNAs (DELs) are involved in lipid metabolism pathways, while, in PAR, among of DELs are involved in cell proliferation pathways. Taken together, this study explored the potential regulatory mechanism of lincRNAs in the mammary gland development of calves under different planes of nutrition.
Collapse
|
26
|
Marete A, Ariel O, Ibeagha-Awemu E, Bissonnette N. Identification of Long Non-coding RNA Isolated From Naturally Infected Macrophages and Associated With Bovine Johne's Disease in Canadian Holstein Using a Combination of Neural Networks and Logistic Regression. Front Vet Sci 2021; 8:639053. [PMID: 33969037 PMCID: PMC8100051 DOI: 10.3389/fvets.2021.639053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic enteritis in most ruminants. The pathogen MAP causes Johne's disease (JD), a chronic, incurable, wasting disease. Weight loss, diarrhea, and a gradual drop in milk production characterize the disease's clinical phase, culminating in death. Several studies have characterized long non-coding RNA (lncRNA) in bovine tissues, and a previous study characterizes (lncRNA) in macrophages infected with MAP in vitro. In this study, we aim to characterize the lncRNA in macrophages from cows naturally infected with MAP. From 15 herds, feces and blood samples were collected for each cow older than 24 months, twice yearly over 3–5 years. Paired samples were analyzed by fecal PCR and blood ELISA. We used RNA-seq data to study lncRNA in macrophages from 33 JD(+) and 33 JD(–) dairy cows. We performed RNA-seq analysis using the “new Tuxedo” suite. We characterized lncRNA using logistic regression and multilayered neural networks and used DESeq2 for differential expression analysis and Panther and Reactome classification systems for gene ontology (GO) analysis. The study identified 13,301 lncRNA, 605 of which were novel lncRNA. We found seven genes close to differentially expressed lncRNA, including CCDC174, ERI1, FZD1, TWSG1, ZBTB38, ZNF814, and ZSCAN4. None of the genes associated with susceptibility to JD have been cited in the literature. LncRNA target genes were significantly enriched for biological process GO terms involved in immunity and nucleic acid regulation. These include the MyD88 pathway (TLR5), GO:0043312 (neutrophil degranulation), GO:0002446 (neutrophil-mediated immunity), and GO:0042119 (neutrophil activation). These results identified lncRNA with potential roles in host immunity and potential candidate genes and pathways through which lncRNA might function in response to MAP infection.
Collapse
Affiliation(s)
- Andrew Marete
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Olivier Ariel
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada.,Faculty of Science, Sherbrooke University, Sherbrooke, QC, Canada
| | - Eveline Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Goszczynski DE, Halstead MM, Islas-Trejo AD, Zhou H, Ross PJ. Transcription initiation mapping in 31 bovine tissues reveals complex promoter activity, pervasive transcription, and tissue-specific promoter usage. Genome Res 2021; 31:732-744. [PMID: 33722934 PMCID: PMC8015843 DOI: 10.1101/gr.267336.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023]
Abstract
Characterizing transcription start sites is essential for understanding the regulatory mechanisms that control gene expression. Recently, a new bovine genome assembly (ARS-UCD1.2) with high continuity, accuracy, and completeness was released; however, the functional annotation of the bovine genome lacks precise transcription start sites and contains a low number of transcripts in comparison to human and mouse. By using the RAMPAGE approach, this study identified transcription start sites at high resolution in a large collection of bovine tissues. We found several known and novel transcription start sites attributed to promoters of protein-coding and lncRNA genes that were validated through experimental and in silico evidence. With these findings, the annotation of transcription start sites in cattle reached a level comparable to the mouse and human genome annotations. In addition, we identified and characterized transcription start sites for antisense transcripts derived from bidirectional promoters, potential lncRNAs, mRNAs, and pre-miRNAs. We also analyzed the quantitative aspects of RAMPAGE to produce a promoter activity atlas, reaching highly reproducible results comparable to traditional RNA-seq. Coexpression networks revealed considerable use of tissue-specific promoters, especially between brain and testicle, which expressed several genes in common from alternate loci. Furthermore, regions surrounding coexpressed modules were enriched in binding factor motifs representative of each tissue. The comprehensive annotation of promoters in such a large collection of tissues will substantially contribute to our understanding of gene expression in cattle and other mammalian species, shortening the gap between genotypes and phenotypes.
Collapse
Affiliation(s)
- Daniel E Goszczynski
- Department of Animal Science, University of California, Davis, California 95616, USA
| | - Michelle M Halstead
- Department of Animal Science, University of California, Davis, California 95616, USA
| | - Alma D Islas-Trejo
- Department of Animal Science, University of California, Davis, California 95616, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California 95616, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California 95616, USA
| |
Collapse
|
28
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
29
|
Liu A, Liu M, Li Y, Chen X, Zhang L, Tian S. Differential expression and prediction of function of lncRNAs in the ovaries of low and high fecundity Hanper sheep. Reprod Domest Anim 2021; 56:604-620. [PMID: 33475207 DOI: 10.1111/rda.13898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Litter size is an important trait that determines the production efficiency of sheep bred for meat. Its detailed investigation can reveal the molecular mechanisms that control the fecundity of sheep and possibly accelerate the breeding process of new varieties of sheep that have high prolificacy. Long non-coding RNAs (lncRNAs) have proven to be an important factor in the regulation of follicular development. However, the mechanisms by which lncRNAs regulate litter size in sheep remain unclear. In the present study, ovarian tissues from the follicular (F) or luteal phase (L) of Hanper sheep that were either monotocous (M) or polytocous (P; FM, FP, LM and LP groups) were collected and sequenced to identify differentially expressed lncRNAs and predict their function. The results indicate that the number of up- and down-regulated lncRNAs in the follicular phase (FM vs. FP) was 95 and 111 and 109 and 49, respectively, in the luteal phase (LM vs. LP). The functional enrichment of the different lncRNAs coexpressed with mRNA was analysed. The results demonstrated that the KISS1-GnRH-LH/FSH-E2 and EGF-EGFR-RAS-PI3K signalling pathways promoted the initiation of the primordial period, follicular development and ovulation in the follicular phase (FM vs. FP). During the luteal phase (LM vs. LP), the production and development of the corpus luteum in ewes was influenced by the KITLG-KIT/FGF-FGFR/HGF-MET-RAS-ERK signalling pathway. STEM clustering functional enrichment analysis of the differentially expressed lncRNAs indicated that profile11 was principally enriched in the Cytokine-Jak-STAT, PDGF-PDGFR-PI3K and KITLG-KIT-RAS-ERK signalling pathways. By analysis of the differential expression of the lncRNAs and their expression in each group, lncRNAs Xist (loc101112291) and Gtl2 (loc101123329) were found to be highly expressed, suggesting that regulation of follicular development was mediated through methylation processes.
Collapse
Affiliation(s)
- Aiju Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Menghe Liu
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Yuexin Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Limeng Zhang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,The Research Center of Cattle and Sheep, Embryonic Technique of Hebei Province, Baoding, China
| |
Collapse
|
30
|
Jia X, He Y, Chen SY, Wang J, Hu S, Lai SJ. Genome-wide identification and characterisation of long non-coding RNAs in two Chinese cattle breeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1735266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Wu X, Zhou X, Xiong L, Pei J, Yao X, Liang C, Bao P, Chu M, Guo X, Yan P. Transcriptome Analysis Reveals the Potential Role of Long Non-coding RNAs in Mammary Gland of Yak During Lactation and Dry Period. Front Cell Dev Biol 2020; 8:579708. [PMID: 33324637 PMCID: PMC7723986 DOI: 10.3389/fcell.2020.579708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mammary gland is a remarkably dynamic organ of milk synthesis and secretion, and it experiences drastic structural and metabolic changes during the transition from dry periods to lactation, which involves the expression and regulation of numerous genes and regulatory factors. Long non-coding RNA (lncRNA) has considered as a novel type of regulatory factors involved in a variety of biological processes. However, their role in the lactation cycle of yak is still poorly understood. To reveal the involved mechanism, Ribo-zero RNA sequencing was employed to profile the lncRNA transcriptome in mammary tissue samples from yak at two physiological stages, namely lactation (LP) and dry period (DP). Notably, 1,599 lncRNA transcripts were identified through four rigorous steps and filtered through protein-coding ability. A total of 59 lncRNAs showed significantly different expression between two stages. Accordingly, the results of qRT-PCR were consistent with that of the transcriptome data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that target genes of differentially expressed lncRNAs (DELs) were involved in pathways related to lactation, such as ECM-receptor interaction, PI3K-Akt signaling pathway, biosynthesis of amino acids and focal adhesion etc. Finally, we constructed a lncRNA-gene regulatory network containing some well known candidate genes for milk yield and quality traits. This is the first study to demonstrate a global profile of lncRNA expression in the mammary gland of yak. These results contribute to a valuable resource for future genetic and molecular studies on improving milk yield and quality, and help us to gain a better understanding of the molecular mechanisms underlying lactogenesis and mammary gland development of yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xian Guo
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
32
|
Lai S, Du K, Shi Y, Li C, Wang G, Hu S, Jia X, Wang J, Chen S. Long Non-Coding RNAs in Brown Adipose Tissue. Diabetes Metab Syndr Obes 2020; 13:3193-3204. [PMID: 32982350 PMCID: PMC7507876 DOI: 10.2147/dmso.s264830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Obesity has become a widespread disease that is harmful to human health. Fat homeostasis is essentially maintained by fat accumulation and energy expenditure. Studies on brown adipose tissue (BAT) represent a promising opportunity to identify a pharmaceutical intervention against obesity through increased energy expenditure. Long non-coding RNAs (lncRNAs) were thought to be critical regulators in a variety of biological processes. Recent studies have revealed that lncRNAs, including ones that are BAT-specific, conserved, and located at key protein-coding genes, function in brown adipogenesis, white adipose browning (ie, beige adipogenesis), and brown thermogenesis. In this review, we describe lncRNA properties and highlight functional lncRNAs in these biological processes, with the goal of establishing links between lncRNAs and BAT. Based on the advances of lncRNAs in the regulation of BAT, we discussed the advantages of potential lncRNA-based obesity drugs. Further BAT lncRNA-based drug development may provide new exciting approaches to defend obesity by regulation of fat homeostasis.
Collapse
Affiliation(s)
- Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Cao Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Guoze Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang550025, People’s Republic of China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| |
Collapse
|
33
|
Hao Z, Luo Y, Wang J, Hu J, Liu X, Li S, Jin X, Ke N, Zhao M, Hu L, Lu Y, Wu X, Qiao L. RNA-Seq Reveals the Expression Profiles of Long Non-Coding RNAs in Lactating Mammary Gland from Two Sheep Breeds with Divergent Milk Phenotype. Animals (Basel) 2020; 10:ani10091565. [PMID: 32899158 PMCID: PMC7552154 DOI: 10.3390/ani10091565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) play a key role in regulating the expression level of mRNAs. The expression profiles of ovine mammary gland were investigated in two sheep breeds with divergent milk phenotype using RNA-Seq. A total of 1894 lncRNAs were found to be expressed and 68 of these were differentially expressed between the two breeds. Some important Gene Ontogeny (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were related to lactation and mammary gland morphogenesis were found for the target genes of differentially expressed lncRNAs. This study can improve our understanding of the functions of lncRNAs in the regulation of lactation, milk yield, and milk components in sheep. Abstract Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.
Collapse
|
34
|
Alexandre PA, Reverter A, Berezin RB, Porto-Neto LR, Ribeiro G, Santana MHA, Ferraz JBS, Fukumasu H. Exploring the Regulatory Potential of Long Non-Coding RNA in Feed Efficiency of Indicine Cattle. Genes (Basel) 2020; 11:genes11090997. [PMID: 32854445 PMCID: PMC7565090 DOI: 10.3390/genes11090997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) can regulate several aspects of gene expression, being associated with complex phenotypes in humans and livestock species. In taurine beef cattle, recent evidence points to the involvement of lncRNA in feed efficiency (FE), a proxy for increased productivity and sustainability. Here, we hypothesized specific regulatory roles of lncRNA in FE of indicine cattle. Using RNA-Seq data from the liver, muscle, hypothalamus, pituitary gland and adrenal gland from Nellore bulls with divergent FE, we submitted new transcripts to a series of filters to confidently predict lncRNA. Then, we identified lncRNA that were differentially expressed (DE) and/or key regulators of FE. Finally, we explored lncRNA genomic location and interactions with miRNA and mRNA to infer potential function. We were able to identify 126 relevant lncRNA for FE in Bos indicus, some with high homology to previously identified lncRNA in Bos taurus and some possible specific regulators of FE in indicine cattle. Moreover, lncRNA identified here were linked to previously described mechanisms related to FE in hypothalamus-pituitary-adrenal axis and are expected to help elucidate this complex phenotype. This study contributes to expanding the catalogue of lncRNA, particularly in indicine cattle, and identifies candidates for further studies in animal selection and management.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
- Correspondence: ; Tel.: +61-7-32142453
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Roberta B. Berezin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Gabriela Ribeiro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Miguel H. A. Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil;
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| |
Collapse
|
35
|
Chen Z, Zhou J, Wang M, Liu J, Zhang L, Loor JJ, Liang Y, Wu H, Yang Z. Circ09863 Regulates Unsaturated Fatty Acid Metabolism by Adsorbing miR-27a-3p in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8589-8601. [PMID: 32689797 DOI: 10.1021/acs.jafc.0c03917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fatty acid composition plays a key role in regulating flavor and quality of milk. Therefore, in order to improve milk quality, it is particularly important to investigate regulatory mechanisms of milk fatty acid metabolism. Circular RNAs (circRNAs) regulate expression genes associated with several biological processes including fatty acid metabolism. In this study, high-throughput sequencing was used to detect differentially expressed genes in bovine mammary tissue at early lactation and peak lactation. Circ09863 profiles were influenced by the lactation stage. Functional studies in bovine mammary epithelial cells (BMECs) revealed that circ09863 promotes triglyceride (TAG) synthesis together with increased content of unsaturated fatty acids (C16:1 and C18:1). These results suggested that circ09863 is partly responsible for modulating fatty acid metabolism. Additionally, software prediction identified a miR-27a-3p binding site in the circ09863 sequence. Overexpression of miR-27a-3p in BMECs led to decreased TAG synthesis. However, overexpression of circ09863 (pcDNA-circ09863) in BMECs significantly reduced expression of miR-27a-3p and enhanced gene expression of fatty acid synthase (FASN), a target of miR-27a-3p. Overall, data suggest that circ09863 relieves the inhibitory effect of miR-27a-3p on FASN expression by binding miR-27a-3p and subsequently regulating TAG synthesis and fatty acid composition. Together, these mechanisms provide new research avenues and theoretical bases to improve milk quality.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jingpeng Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Mengjie Wang
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Jiahua Liu
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Longfei Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Yusheng Liang
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Hua Wu
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
36
|
Comparative genomics and gene-trait matching analysis of Bifidobacterium breve from Chinese children. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Sun S, Li C, Yang D, He Q, Niu H, Luo J, Yang Y, Shi H, Luo J. Identification and characterization of putative ovarian lincRNAs in dairy goats treated for repeated estrous synchronization. Anim Reprod Sci 2020; 221:106537. [PMID: 32861106 DOI: 10.1016/j.anireprosci.2020.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
The goal of this study was to identify and characterize effects of repeated estrous synchronization (ES) treatments on the regulation of ovarian intergenic long non-coding RNAs (lincRNAs) in dairy goats. Six does were randomly assigned to a group administered three ES treatment regimens separated by 2 weeks or to a group administered only one ES treatment regimen (control) at the same time as the third ES treatment in the does administered the three hormonal regimens for ES. The paired-end RNA Sequencing procedures were used to evaluate lincRNAs of ovarian tissues. A total of 134 lincRNAs were differentially abundant between the two treatment groups. Several target genes were annotated and were related to hormone activity, cellular response to hormone stimulus, response to hormone, female pregnancy, as well as regulation of hormone secretion. These genes were noticeably enriched in MAPK, Hippo, estrogen signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation, ovarian steroidogenesis as well as GnRH signaling pathways. According to the enriched GO terms and KEGG pathways of regulated genes, 13 differentially abundant lincRNAs could be promising candidates for regulating reproductive functions of female goats. Current results indicate that repeated treatments with gonadotropins affected hormone sensitivity, estrogen synthesis, and ovarian function. The results also indicated that when there was imposing of the three hormonal treatment regimens for ES, there were several lincRNAs that could contribute to dysregulation of several genes that are important for reproduction in dairy goats. Findings provide novel insights for further investigation of lncRNAs biological functions in goats.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dikun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiuya He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huimin Niu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianing Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huaiping Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
38
|
Abstract
Less than 2% of mammalian genomes code for proteins, but 'the majority of its bases can be found in primary transcripts' - a phenomenon termed the pervasive transcription, which was first reported in 2007. Even though most of the transcripts do not code for proteins, they play a variety of biological functions, with regulation of gene expression appearing as the most common one. Those transcripts are divided into two groups based on their length: small non-coding RNAs, which are maximally 200 bp long, and long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides. The advances in next-generation sequencing methods provided a new possibility of investigating the full set of RNA molecules in the cell. In this review, we summarized the current state of knowledge on lncRNAs in three major livestock species - Sus scrofa, Bos taurus and Gallus gallus, based on the literature and the content of biological databases. In the NONCODE database, the largest number of identified lncRNA transcripts is available for pigs, but cattle have the largest number of lncRNA genes. Poultry is represented by less than a half of records. Genomic annotation of lncRNAs showed that the majority of them are assigned to introns (pig, poultry) or intergenic (cattle). The comparison with well-annotated human and mouse genomes indicates that such annotation is a result of lack of proper lncRNA annotation data. Since lncRNAs play an important role in genomic studies, their characterization in farm animals' genomes is critical in bridging the gap between genotype and phenotype.
Collapse
|
39
|
Du K, Ren AY, Cai MC, Wang GZ, Jia XB, Hu SQ, Wang J, Chen SY, Lai SJ. Identification of long non-coding RNAs in the early growth stage of Holstein mammary gland. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1747557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
- K. Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - A.-Y. Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - M.-C. Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - G.-Z. Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - X.-B. Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - S.-Q. Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - J. Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - S.-Y. Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - S.-J. Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Genome-wide identification and characterization of long non-coding RNAs during differentiation of visceral preadipocytes in rabbit. Funct Integr Genomics 2019; 20:409-419. [PMID: 31745672 DOI: 10.1007/s10142-019-00729-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes, including adipogenesis. Despite being considered an ideal animal model for studying adipogenesis, little is known about the roles of lncRNAs in the regulation of rabbit preadipocyte differentiation. In the present study, visceral preadipocytes isolated from newborn rabbits were cultured in vitro and induced for differentiation, and global lncRNA expression profiles of adipocytes collected at days 0, 3, and 9 of differentiation were analyzed by RNA-seq. A total of 2066 lncRNAs were identified from nine RNA-seq libraries. Compared to protein-coding transcripts, lncRNA transcripts exhibited characteristics of a longer length and lower expression level. Furthermore, 486 and 357 differentially expressed (DE) lncRNAs were identified when comparing day 3 vs. day 0 and day 9 vs. day 3, respectively. Target genes of DE lncRNAs were predicted by the cis-regulating approach. Prediction of functions revealed that DE lncRNAs when comparing day 3 vs. day 0 were involved in gene ontology (GO) terms of developmental growth, growth, developmental cell growth, and stem cell proliferation, and involved in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of PI3K-Akt signaling pathway, fatty acid biosynthesis, and the insulin signaling pathway. The DE lncRNAs when comparing day 9 vs. day 3 were involved in GO terms that associated with epigenetic modification and were involved in the KEGG pathway of cAMP signaling pathway. This study provides further insight into the regulatory function of lncRNAs in rabbit visceral adipose and facilitates a better understanding of different stages of preadipocyte differentiation.
Collapse
|
41
|
Guo L, Li L, Zhang Y, Fu S, Zhang J, Wang X, Zhu H, Qiao M, Wu L, Liu Y. Long non-coding RNA profiling in LPS-induced intestinal inflammation model: New insight into pathogenesis. Innate Immun 2019; 25:491-502. [PMID: 31474162 PMCID: PMC6900666 DOI: 10.1177/1753425919872812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
LPS can induce an inflammatory immune response in the intestine, and long
non-coding RNA (lncRNA) is involved in the process of inflammatory disease.
However, the biological role of lncRNA in the intestinal inflammation of piglets
remains unclear. In this study, the lncRNA expression profile of the ileal
mucosa of piglets challenged by LPS was analysed using lncRNA sequencing. In
total, 112 novel lncRNAs were predicted, of which 58 were up-regulated and 54
down-regulated following LPS challenge. Expression of 15 selected lncRNAs was
validated by quantitative PCR. We further investigated the target genes of
lncRNA that were enriched in the signalling pathways involved in the
inflammatory immune response by utilising Gene Ontology and Kyoto Encyclopaedia
of Genes and Genomes analysis, with cell adhesion molecules and mTOR signalling
pathway identified. In addition, the co-expression networks between the
differentially expressed lncRNAs and the target mRNAs were constructed, with
seven core lncRNAs identified, which also demonstrated that the relationship
between lncRNAs and the target genes was highly correlated. Our study offers
important information about the lncRNAs of the mucosal immune system in piglets
and provides new insights into the inflammatory mechanism of LPS challenge,
which might serve as a novel target to control intestinal inflammation.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Linna Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
| | - Yang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Mu Qiao
- Key Laboratory of Animal Embryo Engineering and Molecular
Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei
Academy of Agricultural Sciences, PR China
| | - Lingying Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
- Yulan Liu, Hubei Key Laboratory of Animal
Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR
China.
| |
Collapse
|
42
|
Feng W, Zong W, Li Y, Shen X, Cui X, Ju S. Abnormally expressed long noncoding RNA B3GALT5-AS1 may serve as a biomarker for the diagnostic and prognostic of gastric cancer. J Cell Biochem 2019; 121:557-565. [PMID: 31338903 DOI: 10.1002/jcb.29296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022]
Abstract
Early diagnosis of gastric cancer (GC) is an effective method to improve prognosis. Increasing number of long noncoding RNAs (lncRNAs) have been reported as biomarkers for several cancers. We aim to detect the level of lncRNA B3GALT5-AS1 and its association with clinical parameters and to further explore its application value in GC. We measured serum B3GALT5-AS1 expression in 107 patients with GC, 40 polyp patients, and 87 normal controls to explore the significance of serum B3GALT5-AS1 in GC using the quantitative real-time polymerase chain reaction method. The result demonstrated that B3GALT5-AS1 level was markedly richer in GC patients than that in normal people (P < .001). B3GALT5-AS1 may be served as a diagnostic marker for distinguishing GC patients from healthy people, and the proportion under the receiver operating characteristics curve is 0.816 (95% confidence interval, 0.758-0.874; P = .03). Further exploration validated that high serum B3GALT5-AS1 level was related to TNM stage (P = .024), and lymph node metastasis (P = .023). Our study suggested that serum B3GALT5-AS1 may be employed as an ideal biomarker for early screening of GC.
Collapse
Affiliation(s)
- Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaopeng Cui
- General Surgery Department, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
43
|
Gao Y, Li S, Lai Z, Zhou Z, Wu F, Huang Y, Lan X, Lei C, Chen H, Dang R. Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine ( Bos taurus) Testes. Front Genet 2019; 10:646. [PMID: 31333723 PMCID: PMC6624472 DOI: 10.3389/fgene.2019.00646] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Testis development and spermatogenesis are strictly regulated by numbers of genes and non-coding genes. However, long non-coding RNAs (lncRNAs) as key regulators in multitudinous biological processes have not been systematically identified in bovine testes during sexual maturation. In this study, we comprehensively analyzed lncRNA and mRNA expression profiling of six bovine testes at 3 days after birth and 13 months by RNA sequencing. 23,735 lncRNAs and 22,118 mRNAs were identified, in which 540 lncRNAs (P-value < 0.05) and 3,525 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two stages. Correspondingly, the results of RT-qPCR analysis showed well correlation with the transcriptome data. Moreover, GO and KEGG enrichment analyses showed that DE genes and target genes of DE lncRNAs were enriched in spermatogenesis. Furthermore, we constructed lncRNA–gene interaction networks; consequently, 15 DE lncRNAs and 12 cis-target genes were involved. The target genes (SPATA16, TCF21, ZPBP, PACRG, ATP8B3, COMP, ACE, and OSBP2) were found associated with bovine sexual maturation. In addition, the expression of lncRNAs and cis-target genes was detected in bovine Leydig cells, Sertoli cells, and spermatogonia. Our study identified and analyzed lncRNAs and mRNAs in testis tissues, suggesting that lncRNAs may regulate testis development and spermatogenesis. Our findings provided new insights for further investigation of biological function in bovine lncRNA.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
44
|
Ibeagha-Awemu EM, Li R, Dudemaine PL, Do DN, Bissonnette N. Transcriptome Analysis of Long Non-Coding RNA in the Bovine Mammary Gland Following Dietary Supplementation with Linseed Oil and Safflower Oil. Int J Mol Sci 2018; 19:E3610. [PMID: 30445766 PMCID: PMC6274745 DOI: 10.3390/ijms19113610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023] Open
Abstract
This study aimed to characterize the long non-coding RNA (lncRNA) expression in the bovine mammary gland and to infer their functions in dietary response to 5% linseed oil (LSO) or 5% safflower oil (SFO). Twelve cows (six per treatment) in mid lactation were fed a control diet for 28 days followed by a treatment period (control diet supplemented with 5% LSO or 5% SFO) of 28 days. Mammary gland biopsies were collected from each animal on day-14 (D-14, control period), D+7 (early treatment period) and D+28 (late treatment period) and were subjected to RNA-Sequencing and subsequent bioinformatics analyses. Functional enrichment of lncRNA was performed via potential cis regulated target genes located within 50 kb flanking regions of lncRNAs and having expression correlation of >0.7 with mRNAs. A total of 4955 lncRNAs (325 known and 4630 novel) were identified which potentially cis targeted 59 and 494 genes in LSO and SFO treatments, respectively. Enrichments of cis target genes of lncRNAs indicated potential roles of lncRNAs in immune function, nucleic acid metabolism and cell membrane organization processes as well as involvement in Notch, cAMP and TGF-β signaling pathways. Thirty-two and 21 lncRNAs were differentially expressed (DE) in LSO and SFO treatments, respectively. Six genes (KCNF1, STARD13, BCL6, NXPE2, HHIPL2 and MMD) were identified as potential cis target genes of six DE lncRNAs. In conclusion, this study has identified lncRNAs with potential roles in mammary gland functions and potential candidate genes and pathways via which lncRNAs might function in response to LSO and SFA.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| | - Ran Li
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| | - Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada.
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| |
Collapse
|
45
|
Zheng X, Ning C, Zhao P, Feng W, Jin Y, Zhou L, Yu Y, Liu J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 2018; 101:11061-11073. [PMID: 30268606 DOI: 10.3168/jds.2018-14900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) play a critical role in mammary development and breast cancer biology. Despite their important role in the mammary gland, little is known of the roles of lncRNA in bovine lactation, particularly regarding the molecular processes underlying it. To characterize the role of lncRNA in bovine lactation, 4 samples of Holstein cow mammary gland tissue at peak and late lactation stages were examined after biopsy. We then profiled the transcriptome of the mammary gland using RNA sequencing technology. Further, functional lncRNA-mRNA coexpression pairs were constructed to infer the function of lncRNA using a generalized linear model, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. More than 1,000 putative lncRNA were identified, 117 of which were differentially expressed between peak and late lactation stages. Bovine lncRNA were shorter, with fewer exon numbers, and expressed at significantly lower levels than protein-coding genes. Seventy-two differentially expressed (DE) lncRNA were coexpressed with 340 different protein-coding genes. The KEGG pathway analysis showed that target mRNA for DE lncRNA were mainly related to lipid and glucose metabolism, including the peroxisome proliferator-activated receptors and 5' adenosine monophosphate-activated protein kinase signaling pathways. Further bioinformatics and integrative analyses revealed that 12 DE lncRNA potentially played important roles in bovine lactation. Our findings provide a valuable resource for future bovine transcriptome studies, facilitate the understanding of bovine lactation biology, and offer functional information for cattle lactation.
Collapse
Affiliation(s)
- X Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - C Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - P Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - W Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - L Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - J Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Kern C, Wang Y, Chitwood J, Korf I, Delany M, Cheng H, Medrano JF, Van Eenennaam AL, Ernst C, Ross P, Zhou H. Genome-wide identification of tissue-specific long non-coding RNA in three farm animal species. BMC Genomics 2018; 19:684. [PMID: 30227846 PMCID: PMC6145346 DOI: 10.1186/s12864-018-5037-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/27/2018] [Indexed: 03/08/2023] Open
Abstract
Background Numerous long non-coding RNAs (lncRNAs) have been identified and their roles in gene regulation in humans, mice, and other model organisms studied; however, far less research has been focused on lncRNAs in farm animal species. While previous studies in chickens, cattle, and pigs identified lncRNAs in specific developmental stages or differentially expressed under specific conditions in a limited number of tissues, more comprehensive identification of lncRNAs in these species is needed. The goal of the FAANG Consortium (Functional Annotation of Animal Genomes) is to functionally annotate animal genomes, including the annotation of lncRNAs. As one of the FAANG pilot projects, lncRNAs were identified across eight tissues in two adult male biological replicates from chickens, cattle, and pigs. Results Comprehensive lncRNA annotations for the chicken, cattle, and pig genomes were generated by utilizing RNA-seq from eight tissue types from two biological replicates per species at the adult developmental stage. A total of 9393 lncRNAs in chickens, 7235 lncRNAs in cattle, and 14,429 lncRNAs in pigs were identified. Including novel isoforms and lncRNAs from novel loci, 5288 novel lncRNAs were identified in chickens, 3732 in cattle, and 4870 in pigs. These transcripts match previously known patterns of lncRNAs, such as generally lower expression levels than mRNAs and higher tissue specificity. An analysis of lncRNA conservation across species identified a set of conserved lncRNAs with potential functions associated with chromatin structure and gene regulation. Tissue-specific lncRNAs were identified. Genes proximal to tissue-specific lncRNAs were enriched for GO terms associated with the tissue of origin, such as leukocyte activation in spleen. Conclusions LncRNAs were identified in three important farm animal species using eight tissues from adult individuals. About half of the identified lncRNAs were not previously reported in the NCBI annotations for these species. While lncRNAs are less conserved than protein-coding genes, a set of positionally conserved lncRNAs were identified among chickens, cattle, and pigs with potential functions related to chromatin structure and gene regulation. Tissue-specific lncRNAs have potential regulatory functions on genes enriched for tissue-specific GO terms. Future work will include epigenetic data from ChIP-seq experiments to further refine these annotations. Electronic supplementary material The online version of this article (10.1186/s12864-018-5037-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - James Chitwood
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
47
|
Yang B, Jiao B, Ge W, Zhang X, Wang S, Zhao H, Wang X. Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics 2018; 19:605. [PMID: 30103699 PMCID: PMC6090732 DOI: 10.1186/s12864-018-4974-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND It is known that long non-coding RNAs (lncRNAs) play an important role in various biological processes, including cell proliferation, differentiation and apoptosis. However, their functions and profiles in lactation cycle of dairy cows are largely unknown. In this study, lncRNA-seq technique was employed to compare the expression profiles of lncRNAs and mRNAs from Chinese Holstein mammary gland in dry and lactation period. RESULT Totally 3746 differentially expressed lncRNAs (DELs) and 2890 differentially expressed genes (DEGs) were identified from the dry and lactation mammary glands of Holstein cows. Functional enrichment analysis on target genes of lncRNAs indicated that these genes were involved in lactation-related signaling pathways, including cell cycle, JAK-STAT, cell adhesion, and PI3K-Akt signaling pathways. Additionally, the interaction between lncRNAs and their potential miRNAs was predicted and partly verified. The result indicated that the lactation-associated miR-221 might interact with lncRNAs TCONS_00040268, TCONS_00137654, TCONS_00071659 and TCONS_00000352, which revealed that these lncRNAs might be important regulators for lactation cycle. CONCLUSION This study provides a resource for lncRNA research on lactation cycle of bovine mammary gland. Besides, the interaction between lncRNAs and the specific miRNA is revealed. It expands our knowledge about lncRNA and miRNA biology as well as contributes to clarify the regulation of lactation cycle of bovine mammary gland.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Lab of Feed and Animal Nutrition, Tongren Polytechnic College, Tongren, 554300, Guizhou, China
| | - Beilei Jiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaolan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shanhe Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
48
|
Cai W, Li C, Liu S, Zhou C, Yin H, Song J, Zhang Q, Zhang S. Genome Wide Identification of Novel Long Non-coding RNAs and Their Potential Associations With Milk Proteins in Chinese Holstein Cows. Front Genet 2018; 9:281. [PMID: 30105049 PMCID: PMC6077245 DOI: 10.3389/fgene.2018.00281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules involved in various biological processes. However, their role in milk performance is unknown. Here, whole transcriptome RNA sequencing was used to generate the lncRNA transcriptome profiles in mammary tissue samples from 6 Chinese Holstein cows with 3 extremely high and 3 low milk protein percentage phenotypes. In this study, 6,450 lncRNA transcripts were identified through 5 stringent steps and filtration by coding potential. In total, 31 lncRNAs and 18 novel genes were identified to be differentially expressed in high milk protein samples (HP) relative to low milk protein samples (LP), respectively. Differentially expressed lncRNAs were selected to predict target genes through bioinformatics analysis, followed by the integration of differentially expressed mRNA data, gene function, gene ontology (GO) and pathway, genome wide association study (GWAS) and quantitative trait locus (QTL) information, as well as network analysis to further characterize potential interactions. Several lncRNAs were found (such as XLOC_059976) that could be used as candidate markers for milk protein content prediction. This is the first study to perform global expression profiling of lncRNAs and mRNAs related to milk protein traits in dairy cows. These results provide important information and insights into the synthesis of milk proteins, and potential targets for the future improvement of milk quality.
Collapse
Affiliation(s)
- Wentao Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenghao Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Weikard R, Hadlich F, Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Kuehn C. Long noncoding RNAs are associated with metabolic and cellular processes in the jejunum mucosa of pre-weaning calves in response to different diets. Oncotarget 2018; 9:21052-21069. [PMID: 29765519 PMCID: PMC5940403 DOI: 10.18632/oncotarget.24898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/25/2018] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) emerged as important regulatory component of mechanisms involved in gene expression, chromatin modification and epigenetic processes, but they are rarely annotated in the bovine genome. Our study monitored the jejunum transcriptome of German Holstein calves fed two different milk diets using transcriptome sequencing (RNA-seq). To identify potential lncRNAs within the pool of unknown transcripts, four bioinformatic lncRNA prediction tools were applied. The intersection of the alignment-free lncRNA prediction tools (CNCI, PLEK and FEELnc) predicted 1,812 lncRNA transcripts concordantly comprising a catalogue of 1,042 putative lncRNA loci expressed in the calves’ intestinal mucosa. Nine lncRNA loci were differentially expressed (DE lncRNAs) between both calf groups. To elucidate their biological function, we applied a systems biology approach that combines weighted gene co-expression network analysis with functional enrichment and biological pathway analysis. Four DE lncRNAs were found to be strongly correlated with a gene network module (GNM) enriched for genes from canonical pathways of remodeling of epithelial adherens junction, tight junction and integrin signaling. Another DE lncRNA was strongly correlated with a GNM enriched for genes associated with energy metabolism and maintaining of cellular homeostasis with a focus on mitochondrial processes. Our data suggest that these DE lncRNAs may play potential regulatory roles in modulating biological processes associated with energy metabolism pathways and cellular signaling processes affecting the barrier function of intestinal epithelial cells of calves in response to different feeding regimens in the pre-weaning period.
Collapse
Affiliation(s)
- Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Caroline Gerbert
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - Georg Dusel
- University of Applied Sciences, Bingen, Germany
| | - Christa Kuehn
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
50
|
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9:20179-20212. [PMID: 29732012 PMCID: PMC5929455 DOI: 10.18632/oncotarget.24591] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer related deaths in women. It is therefore important to understand the mechanisms underlying breast cancer development as well as raises the need for enhanced, non-invasive strategies for novel prognostic and diagnostic methods. The emergence of long non-coding RNAs (lncRNAs) as potential key players in neoplastic disease has received considerable attention over the past few years. This relatively new class of molecular regulators has been shown from ongoing research to act as critical players for key biological processes. Deregulated expression levels of lncRNAs have been observed in a number of cancers including breast cancer. Furthermore, lncRNAs have been linked to breast cancer initiation, progression, metastases and to limit sensitivity to certain targeted therapeutics. In this review we provide an update on the lncRNAs associated with breast cancer and mammary gland development and illustrate the versatility of such lncRNAs in gene control, differentiation and development both in normal physiological conditions and in diseased states. We also highlight the therapeutic and diagnostic potential of lncRNAs in cancer.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Current Address: Genome Institute of Singapore, Agency for Science Technology and Research, 138672, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- School of Pharmacy, Curtin University, Perth, 6845, Australia
| |
Collapse
|